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Abstract

Let M = H3/Γ be a hyperbolic 3-manifold of finite volume. We show
that if H and K are abelian subgroups of Γ and g ∈ Γ, then the double
coset HgK is separable in Γ. As a consequence we prove that if M is a
closed, orientable, Haken 3-manifold and the fundamental group of every
hyperbolic piece of the torus decomposition of M is conjugacy separable
then so is the fundamental group of M . Invoking recent work of Agol and
Wise, it follows that if M is a compact, orientable 3-manifold then π1(M)
is conjugacy separable.

1 Introduction

The profinite topology on a group Γ is the coarsest topology in which every
homomorphism from Γ to a finite group is continuous. When Γ is the funda-
mental group of a manifold M , the profinite topology on Γ encodes the finite-
sheeted covering spaces of M , and as such is of great interest in the field of
low-dimensional topology.

Definition 1.1. If a subset X of Γ is closed in the profinite topology then X is

called separable. Equivalently, for every γ ∈ Γ −X there is a homomorphism

φ from Γ to a finite group such that φ(γ) /∈ φ(X).

1. A group Γ is residually finite if the trivial subgroup is separable in Γ.

2. A group Γ is conjugacy separable if every conjugacy class in Γ is separable.

3. A group Γ is subgroup separable or locally extended residually finite
(LERF) if every finitely generated subgroup of Γ is separable in Γ.

4. A group Γ is double-coset separable if for every pair H,K of finitely gen-

erated subgroups of Γ, and every g ∈ Γ the double coset HgK is separable.

Note that conjugacy separability and subgroup separability both imply resid-
ual finiteness, while double-coset separability implies subgroup separability.
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Hempel showed, using Thurston’s Geometrization Theorem, that the funda-
mental groups of Haken 3-manifolds are residually finite [17]. Scott proved that
the fundamental groups of surfaces and Seifert-fibered 3-manifolds are subgroup
separable [29], and asked whether the same holds for all 3-manifold groups.
Burns, Karass and Solitar [9] answered this question in the negative by giv-
ing an example of a graph manifold with non-subgroup-separable fundamental
group, but it follows from the main theorems of recent preprints of Agol [2] and
Wise [34] that the fundamental groups of hyperbolic 3-manifolds are subgroup
separable. In this paper, we are concerned with conjugacy separability and
double-coset separability in 3-manifold groups.

1.1 Conjugacy separability

Our first theorem extends the results of [32], in which it was proved that the
fundamental groups of graph manifolds are conjugacy separable.

Theorem 1.2. LetM be a closed, orientable, Haken 3-manifold and let N1, . . . , Nm

be the pieces of the torus decomposition of M . If each π1(Ni) is conjugacy sep-

arable then π1(M) is conjugacy separable.

This is an important step in the proof that the fundamental group of any
compact, orientable 3-manifold is conjugacy separable, as we now explain. We
follow the same broad strategy that Hempel used in his proof of residual finite-
ness, although there are more difficult technical obstacles to overcome.

Let M be a compact, orientable 3-manifold, possibly with boundary. We
are interested in the question of whether or not π1(M) is conjugacy separable.
If M has boundary then, cutting along compressing discs and appealing to the
fact that a free product of conjugacy separable groups is conjugacy separable
[31], we may assume that ∂M is incompressible. Let D be the double of M
along ∂M . Then π1(M) is a retract of π1(D). In particular, a pair of elements
is conjugate in π1(M) if and only if it is conjugate in π1(D), and it follows
that if π1(D) is conjugacy separable then so is π1(M). In this way, we can
reduce to the case in which M is orientable and closed. Passing to the pieces of
the Kneser–Milnor decomposition, and appealing again to the fact that a free
product of conjugacy separable groups is conjugacy separable, we can reduce
further to the irreducible case.

The next step is to pass to the pieces of the torus decomposition of M ,
described by Jaco–Shalen [18] and Johannson [20]. This point is the heart of
Hempel’s argument. He proves a gluing theorem that reduces the residual finite-
ness of π1(M) to the residual finiteness of the fundamental groups of the pieces.
In the context of conjugacy separability, Theorem 1.2 supplies the necessary
gluing theorem.

This reduces the question of which 3-manifold groups are conjugacy separa-
ble to the geometric case. If M is a torus bundle over a circle then π1(M) is
polycyclic, and so is conjugacy separable by a theorem of Remeslennikov [28].
Martino proved that the fundamental groups of Seifert-fibered 3-manifolds are
conjugacy separable [24].
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The hyperbolic case is much more difficult, but dramatic progress has been
made recently. The crucial concept is the notion of a special group, introduced
by Haglund and Wise [13]1. Minasyan proved that special groups are conjugacy
separable [26], while Chagas and the third author gave conditions under which
conjugacy separability passes to finite extensions [10]. Taking these two results
together, it follows that, if N is a hyperbolic 3-manifold and π1(N) is virtually
special (that is, π1(N) has a special subgroup of finite index) then π1(N) is
conjugacy separable.

Many hyperbolic 3-manifold and orbifold groups are known to be virtually
special [7, 8, 10, 11], among them non-cocompact arithmetic and standard co-
compact arithmetic lattices. Wise has announced a proof that the fundamental
group of any hyperbolic 3-manifold containing an embedded geometrically finite
surface is virtually special [33]; the heart of his proof is contained in [34]. Very
recently, Agol has given a proof that the fundamental group of any closed hy-
perbolic 3-manifold group is virtually special [2]. His proof uses the work of [34],
as well as Kahn and Markovic’s resolution of the Surface Subgroup Conjecture
[21] and an extension of the techniques of [1].

Combining the recent work of Wise and Agol with Theorem 1.2 we deduce
that the fundamental group of every closed, orientable 3-manifold is conjugacy
separable. As described above, conjugacy separability for any compact, ori-
entable 3-manifold, possibly with boundary, reduces to the closed case. We
therefore have a complete resolution of the question of conjugacy separability
for the fundamental groups of compact, orientable 3-manifolds.

Theorem 1.3. If M is any compact, orientable 3-manifold then π1(M) is con-
jugacy separable.

We emphasize again that Theorem 1.3 depends on the results of [2] and [34].

1.2 Double-coset separability

In [32], the second and third authors proved a combination theorem for conjugacy-
separable groups, and were able to check the hypotheses in the case when the
vertex groups are the fundamental groups of Seifert-fibered 3-manifolds. To
prove Theorem 1.2, we need to check the hypotheses of the combination the-
orem for the fundamental groups of hyperbolic 3-manifolds of finite volume.
In particular, we need to prove that double cosets of peripheral subgroups of
Kleinian groups of finite covolume are separable. In fact, we prove the following
more general result.

Theorem 1.4 (Theorem 3.2). LetM = H3/Γ be a hyperbolic 3-orbifold of finite

volume. If H and K are abelian subgroups of Γ and g ∈ Γ, then the double coset

HgK = {hgk | h ∈ H, k ∈ K} is separable in Γ.

In the closed case, this result can also be deduced from the subgroup sepa-
rability of Γ [2]. Indeed, Minasyan proved that, if G is a word-hyperbolic group

1By a special group we shall mean a group that is the fundamental group of a compact
A-special cube complex. The reader is referred to [13] for definitions.
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(as Γ is when M is closed), and every quasi-convex subgroup H is separable in
G, then for any pair of quasi-convex subgroups H and K and any g ∈ G the
double coset HgK is separable [25]. (Abelian subgroups of a word-hyperbolic
group are always quasi-convex.) However, Minasyan’s theorem has not been
generalized to the case in which M has boundary.

Haglund and Wise prove that double cosets of hyperplane subgroups are
separable in virtually special groups—see [13], to which the reader is also referred
for the definition of a hyperplane subgroup. When Γ is virtually special and H
is a hyperplane subgroup of Γ then Γ has a finite-index subgroup that splits as
an amalgamated product or HNN extension over H . It follows that if Γ is a
Kleinian group of finite covolume then no hyperplane subgroup of Γ is abelian.

1.3 An outline

This paper is structured as follows. In Section 2 we state the algebraic results
underlying the proof of Theorem 1.4. In Section 3 we prove Theorem 1.4 and
discuss some implications. In Section 4 we recall the results of [32] and prove
Theorem 1.2.
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2 Algebraic preliminaries

In this section we prove algebraic results that will be used in the proof of The-
orem 1.4. We assume standard terminology of algebraic number theory. For
reference see [19].

Notation 2.1. By a number field we mean a finite field extension of Q. If k
is a number field, let Ok denote the ring of algebraic integers of k. If p is a

non-zero prime ideal of Ok, then we complete k at p to obtain the local field kp,
with ring of algebraic integers Okp

. The ring Okp
has a unique maximal ideal.

The quotient of Okp
by this maximal ideal is called the residue class field of Okp

.

The quotient map is called the residue class field map with respect to p.

We begin by stating two theorems and two corollaries from [16].

Theorem 2.2. Let k be a number field and let δ be a non-zero element of k
that is not a root of unity. Let S be a finite set of prime ideals of Ok. Then

there exists a positive integer n with the following property. For each integer

m ≥ n, there exists a non-zero prime ideal p of Ok, lying outside of S, such that

δ ∈ Okp
and the multiplicative order of the image of δ in the residue class field

of Okp
is equal to m.
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For the proof of Theorem 2.2 please see Theorem 2.3 of [16].

Corollary 2.3. Let R be a finitely generated ring in a number field k, let δ
be a non-zero element of R that is not a root of unity, and let x1, x2, . . . , xj
be non-zero elements of R. Then there exists a positive integer n with the

following property. For each integer m ≥ n, there exist a finite field F and a

ring homomorphism η : R → F such that the multiplicative order of η(δ) is

equal to m and η(xi) 6= 0, for each 1 ≤ i ≤ j.

The deduction of Corollary 2.3 from Theorem 2.2 is given in [16]. (See
Corollary 2.5 of [16].) We include the proof in this paper for the convenience of
the reader.

Proof. Fix a finite generating set G of R. Let S denote the finite set of prime
ideals of Ok which divide an element of {G, x1, x2, ... , xj}. By Theorem 2.2,
there exists a positive integer n with the following property. For each integer
m ≥ n there exists a non-zero prime ideal p of Ok, lying outside of S, such that
δ ∈ Okp

and the multiplicative order of the image of δ in the residue class field
of Okp

is equal to m. Fix m ≥ n and let p ⊂ Ok be the corresponding prime
ideal. Let F denote the residue class field of Okp

and let η : Okp
→ F denote the

residue class field map with respect to p. Since p /∈ S, R ∈ Okp
and x1, x2, ..., xj

are units in Okp
. Therefore, the restriction of η to R satisfies the conclusion of

the corollary. �

Theorem 2.4. Let k be a number field. Let λ and ω be non-zero elements of

k such that λ is not a multiplicative power of ω. Let P be a finite set of prime

ideals of Ok. Then there exist primes p and q, lying outside of P , such that

λ, ω ∈ Okp
∩Okq

and (ηp × ηq)(λ) is not a multiplicative power of (ηp × ηq)(ω).

For the proof of Theorem 2.4 please see Theorem 2.7 of [16].

Corollary 2.5. Let R be a finitely generated ring in a number field k. Let λ
and ω be non-zero elements of R such that λ is not a multiplicative power of ω.
Then there exist a finite ring S and a ring homomorphism η : R→ S such that

η(λ) is not a multiplicative power of η(ω).

The deduction of Corollary 2.5 from Theorem 2.4 is similar to the deduction
of Corollary 2.3 from Theorem 2.2. See Corollary 2.8 of [16] for details.

Theorem 2.4 can be interpreted as a multiplicative subgroup separability
result for finitely generated rings lying in number fields. We conclude this
section with an additive subgroup separability result.

Theorem 2.6. Let R be a finitely generated ring in a number field k. By fixing

a Q embedding of k into C, we may view k ⊂ C. Let β be an element of R and

set A = {m + nβ | m,n ∈ Z} and B = {m + nβ | m,n ∈ Q}. If b ∈ R − B,

then there exist a finite ring S and a ring homomorphism η : R → S such that

η(b) /∈ η(A).
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Proof. We first consider the case where b /∈ Q(β). Let L denote the normal
closure of k over Q. Since b /∈ Q(β), there exists an element σ ∈ Gal(L/Q)
such that σ(b) 6= b and σ fixes Q(β) pointwise. By the Tchebotarev Density
Theorem, there are infinitely many primes p of Q with unramified extension p

in L such that σ is the Frobenius automorphism for p/p. Fix one such p/p such
that R ⊂ OLp

, where OLp
denotes the ring of integers in the p-adic field Lp.

Such a choice is possible since R is finitely generated, and each generator is an
integer in Lp for all but finitely many p. Let Fp denote the residue class field of
OLp

and let Fp denote the finite field of p elements. Let η be the composition
of the inclusion map of R into OLp

with the residue map:

η : R →֒ OLp
→ Fp.

Since σ is the Frobenius automorphism of L/Qwith respect to p/p, Gal(Lp/Qp) =
〈σ′〉 where σ′ = σ on L. Since A ⊂ Q(β) and σ fixes Q(β) pointwise, A ⊂ Qp.
Since σ(b) 6= b, b /∈ Qp. The Galois group of Fp/Fp is also induced by σ. It
follows that η(A) ⊂ Fp, but η(b) /∈ Fp. Therefore, η and S = Fp satisfy the
conclusion of the theorem.

Now consider the case where b ∈ Q(β). Let f be the minimal monic polyno-
mial of β over Q and let n be the degree of f . Our assumption that b /∈ B implies
that n > 2. Moreover, we can express b = a0 + a1β + a2β

2 + . . . + an−1β
n−1,

where ai ∈ Q and at least one coefficient ai0 ∈ {a2, a3, . . . , an−1} is non-zero.
Since R is a finitely generated ring consisting of algebraic numbers, R is inte-
gral over Z[1/s], for all but finitely many integers s. Choose s such that the
coefficients of f are in Z[1/s] and ai ∈ Z[1/s], ∀i ∈ {0, 1, 2, . . . , n − 1}. Let
Z[1/s][T ] denote the polynomial ring of Z[1/s]. Let p be a prime that does not
divide s or the numerator of ai0 and let Fp denote the finite field of p elements.
Since f is a monic polynomial, the map

Z[1/s][T ] → Z[1/s][β], given by T → β,

is an epimorphism with kernel (f). Therefore, the map

ρ : Z[1/s][β] → Z[1/s][T ]/(f), given by β → T + (f),

is an isomorphism. The quotient map

Z[1/s] → Z[1/s]/(p) ∼= Fp

induces
φ : Z[1/s][T ]/(f) → Fp[T ]/(f),

where f is the image of f in the polynomial ring Fp[T ]. Write f = f1f2 . . . fm

as a product of irreducible factors in Fp[T ], and let Fi = Fp[T ]/(f i). Then the
natural map

ψ : Fp[T ]/(f) → F1 × F1 × . . . × Fm

is an isomorphism. Let

ρi : Z[1/s][β] → Z[1/s][T ]/(f) → Fp[T ]/(f) → F1 × F1 × . . . × Fm → Fi
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be the composition of (ψφρ) with the projection of F1 × F1 × . . . × Fm onto
Fi. Since Fi is a field, the kernel of ρi is a maximal ideal pi of Z[1/s][β]. By
replacing R with R[1/s], if necessary, we may assume that 1/s ∈ R. Thus, R is
an integral extension of Z[1/s][β]. Therefore, there exists a maximal ideal qi of
R such that (Z[1/s][β]) ∩ qi = pi. Let ηi denote the quotient map R → R/qi.
Note that the restriction of ηi to Z[1/s][β] is equal to ρi. Let πi : R/q1 ×
R/q2 × . . . × R/qm → R/qi denote the projection onto the i-th factor. By
the universal property of direct products of rings, there exists a unique ring
homomorphism η : R → R/q1 ×R/q2 × . . . ×R/qm such that πi ◦ η = ηi. We
claim that η(b) /∈ η(A). Assume, to the contrary, that η(b) = η(c0 + c1β) for
some c0 + c1β ∈ A. Then

b− (c0 + c1β) = (a0 − c0) + (a1 − c1)β + a2β
2 + . . . + an−1β

n−1

is in the kernel of ρi for every i ∈ {1, 2, . . . ,m}. Let

h(T ) = (a0 − c0) + (a1 − c1)T + a2T
2 + . . . + an−1T

n−1 ∈ Z[1/s][T ]

and let h be the image of h in Fp[T ]. Then f divides h in Fp[T ]. But this
contradicts the fact that the image of ai0 is non-zero in Fp and so 1 < deg(h) <
n. Therefore, η and S = R/q1 × R/q2 × . . . ×R/qm satisfy the conclusion of
the theorem. �

3 Proof of double-coset separability

In this section we prove that double cosets of abelian subgroups of Kleinian
groups of finite covolume are separable. The proof will use the following propo-
sition from [27].

Proposition 3.1. Let G0, H and K be finitely generated subgroups of a group

G and set H0 = H ∩G0 and K0 = K ∩G0. If [G : G0] is finite and if H0K0 is

separable in G0, then HK is separable in G.

For a proof of this result see Proposition 2.2 of [27].

Theorem 3.2. Let M = H3/Γ be an orientable hyperbolic 3-orbifold of finite

volume. Let H and K be abelian subgroups of Γ, and let g ∈ Γ. Then the double

coset HgK = {hgk | h ∈ H, k ∈ K} is separable in Γ.

Proof. As noted in [27], since the profinite topology on Γ is equivariant under
left and right multiplication, the double coset HgK is closed in Γ if and only if
HgK = g−1HgK is closed in Γ. Therefore, to prove the theorem, it suffices to
show that if H and K are abelian subgroups of Γ, then the double coset HK is
separable in Γ. Note that g ∈ HK if and only if g−1 ∈ KH . Therefore, HK is
separable in Γ if and only if KH is separable in Γ.

By Selberg’s Lemma [4], Γ has a subgroup of finite index Γ0 which is torsion
free. Let H0 = H ∩ Γ0 and K0 = K ∩ Γ0. By Proposition 3.1, if H0K0 is
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separable in Γ0, then HK is separable in Γ. Therefore, we may assume that Γ
is torsion free, and thus the fundamental group of a hyperbolic manifold. Since
abelian subgroups of finitely generated Kleinian groups are separable [3], we
may assume that H and K do not commute. In particular, both H and K
are non-trivial. Since Γ is torsion free, the non-trivial abelian subgroups of Γ
are free abelian of rank 1 or 2. The free abelian subgroups of rank 1 can be
generated by loxodromic or parabolic isometries. The free abelian subgroups of
rank 2 are generated by parabolic isometries. If H has rank 1, let H ′ be the
maximal cyclic subgroup of Γ containing H . If H has rank 2, let H ′ be the
maximal abelian subgroup of Γ containing H . Then H has finite index in H ′.
Let {a1, a2, . . . , an−1} be a set of non-trivial coset representatives of H ′/H .
By [3], H is a separable subgroup of Γ. Therefore, there exists a subgroup ΓH

of finite index in Γ such that H ⊂ ΓH but ΓH ∩ {a1, a2, . . . , an−1} = ∅. Then
ΓH ∩ H ′ = H . In a similar way, define K ′ and choose ΓK of finite index in
Γ such that ΓK ∩ K ′ = K. Let Γ0 = ΓH ∩ ΓK and set H0 = H ∩ Γ0 and
K0 = K ∩ Γ0. Then Γ0 is a subgroup of finite index in Γ, H0 = Γ0 ∩ H ′ and
K0 = Γ0 ∩ K ′. By Proposition 3.1, by replacing Γ with Γ0, if necessary, we
may assume that rank-one elements of {H,K} are maximal cyclic subgroups of
Γ and rank-two elements of {H,K} are maximal abelian subgroups of Γ. This
assumption will be used if H and/or K is parabolic. However, the proof does
not require loxodromic subgroups to be maximal.

Given the assumptions and reductions above, we need to consider the fol-
lowing cases.

Case 1. H loxodromic, K loxodromic

The group of orientation preserving isometries of H3 may be identified with
PSL(2,C). Thus there exists a discrete, faithful representation ρ : π1(M) →
PSL(2,C) which is well-defined up to conjugation in PSL(2,C). Let Q(trΓ)
denote the field obtained by adjoining the traces of the elements of ρ(Γ) to Q.
Since M has finite volume, it follows from Mostow Rigidity that Q(trΓ) is a
number field. By Proposition 2.2(e) of [5] we may conjugate ρ(Γ) in PSL(2,C)
to lie in a finite field extension of Q(trΓ). Therefore we may view Γ ⊂ PSL(2, k),
where k is a finite extension of Q. Write H = 〈h〉 and K = 〈k〉. In this case, h
and k are conjugate in PSL(2,C) to matrices of the form

±

(
λ 0
0 λ−1

)
, λ ∈ C, |λ| 6= 1, and ±

(
ω 0
0 ω−1

)
, ω ∈ C, |ω| 6= 1,

respectively. Since Q(trΓ) is a number field, the eigenvalues, λ and ω, are
algebraic numbers. By adjoining λ and ω to k, if necessary, we may assume that
h and k are diagonalizable over k. Therefore, after conjugating in PSL(2, k),

h = ±

(
λ 0
0 λ−1

)
and k = ±

(
a b
c d

)(
ω 0
0 ω−1

)(
a b
c d

)
−1

,

for some

g = ±

(
a b
c d

)
∈ PSL(2, k).
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By assumption, h and k do not commute. Since Γ is discrete, it follows that the
fixed points of h on the sphere at infinity are disjoint from the fixed points of
k. Therefore, all of the elements in {a, b, c, d} are non-zero.

Let G be the subgroup of PSL(2, k) generated by Γ and g. We will show that
HKg is separable in G. Since the profinite topology on G is equivariant under
left and right multiplication, it will follow that HK is separable in G, implying
that HK is separable in Γ, as required. To prove that HKg is separable in G,
note that

HKg =
{
±

(
λm 0
0 λ−m

)(
a b
c d

)(
ωn 0
0 ω−n

)

= ±

(
aλmωn bλmω−n

cλ−mωn dλ−mω−n

) ∣∣∣ m,n ∈ Z
}
,

and let

γ = ±

(
r s
t u

)
∈ G−HKg

be given. Since M has finite volume, Γ is finitely generated. Therefore, G is
finitely generated. Let R be the ring generated by the coefficients of G over Z.
Then G ⊂ PSL(2, R) ⊂ PSL(2, k). Suppose that rs/ab is not a multiplicative
power of λ2. Then by Corollary 2.5, there exist a finite ring S and a ring homo-
morphism η : R → S such that η(ab) 6= 0 and η(rs/ab) is not a multiplicative
power of η(λ2). The map η induces a group homomorphism

η : G →֒ PSL(2, R) → PSL(2, S).

Suppose that η(γ) ∈ η(HKg). Then there exist elements m,n ∈ Z such that
η(γ) = η(hmkng). Equating coefficients, we have:

{ η(r) = η(aλmωn), η(s) = η(bλmω−n),
η(t) = η(cλ−mωn), η(u) = η(dλ−mω−n)

}

or

{ η(−r) = η(aλmωn), η(−s) = η(bλmω−n),
η(−t) = η(cλ−mωn), η(−u) = η(dλ−mω−n)

}
.

In either case, η(rs) = η(abλ2m), a contradiction. Therefore, we may assume
that rs/ab = λ2m0 , for some m0 ∈ Z. By a similar argument, we may assume
that rt/ac = ω2n0 , for some n0 ∈ Z.

By assumption, γ /∈ HKg. In particular,
(
r s
t u

)
/∈
{
±

(
aλm0ωn0 bλm0ω−n0

cλ−m0ωn0 dλ−m0ω−n0

)}
.

Since R is finitely generated, R ⊂ Okp
for all but finitely many prime ideals p

of Ok. For each of these primes p the residue class field map ηp : Okp
→ Fp

induces a group homomorphism

ηp : G →֒ PSL(2,Okp
) → PSL(2, Fp),

9



where Fp is the residue class field of Okp
. Choose p such that

(∗)

(
ηp(r) ηp(s)
ηp(t) ηp(u)

)
/∈
{
±

(
ηp(aλ

m0ωn0) ηp(bλ
m0ω−n0)

ηp(cλ
−m0ωn0) ηp(dλ

−m0ω−n0)

)}
.

Suppose ηp(γ) ∈ ηp(HKg). Then there exist elements m,n ∈ Z such that
ηp(γ) = ηp(h

mkng). Equating coefficients as above, ηp(λ
2m) = ηp(rs/ab) =

ηp(λ
2m0) and ηp(ω

2n) = ηp(rt/ac) = ηp(ω
2n0). Therefore, ηp(λ

m) = ±ηp(λm0)
and ηp(ω

n) = ±ηp(ωn0), contradicting (∗). This completes the proof in this
case.

Case 2. H loxodromic, K maximal parabolic

The proof of this case follows from the proof of Lemma 3.2 in [15].

Case 3. H maximal parabolic, K maximal parabolic

Since M is a hyperbolic 3-manifold of finite volume, we may view M as
the interior of a compact manifold M ′ with a finite number of tori boundary
components. Such a manifold can be obtained from M by truncating the cusp
tori. Furthermore, π1(M

′) ∼= π1(M) = Γ. There is a one-to-one correspondence
between the boundary tori ofM ′ and the conjugacy classes of maximal parabolic
subgroups of Γ. Suppose that H and K correspond to the same boundary
component of M ′. Then there exists an element ζ ∈ Γ such that K = ζHζ−1.
Since H and K do not commute, ζ /∈ H . Since H is a separable subgroup of Γ
[22], there exist a finite group G and a group homomorphism f : Γ → G such
that f(ζ) /∈ f(H). Let Γ0 be kernel of f , and set H0 = H∩Γ0 and K0 = K∩Γ0.
Since Γ0 is normal in Γ, K0 = ζH0ζ

−1. If there exists an element υ ∈ Γ0 such
that K0 = υH0υ

−1, then (υ−1ζ)H0(υ
−1ζ)−1 = H0. Therefore, υ−1ζ fixes the

parabolic fixed point of H . Since H is a maximal parabolic subgroup of Γ,
υ−1ζ ∈ H . But then f(ζ) ∈ f(H), a contradiction. We conclude that H0 and
K0 are not conjugate in Γ0. By Proposition 3.1, if H0K0 is separable in Γ0,
then HK is separable in Γ. Therefore, by replacing Γ with Γ0, if necessary, we
may assume that H and K correspond to different boundary components ofM ′.
Let T1 and T2 denote the boundary components of M ′ corresponding to H and
K, respectively. By Thurston’s Hyperbolic Dehn Surgery Theorem [6], we may
choose generators h1, h2 for H such that Mh1

and Mh2
are complete hyperbolic

3-manifolds of finite volume, whereMh1
andMh2

are the manifolds obtained by
Dehn surgery on M ′ along T1 sending h1 and h2, respectively, to a meridian of
the attached solid torus. Similarly, we may choose generators k1, k2 for K such
that Mk1

and Mk2
are complete hyperbolic 3-manifolds of finite volume, where

Mk1
and Mk2

are obtained by Dehn surgery on M ′ along T2.
For simplicity we use the fact that the representation ρ : Γ → PSL(2,C)

may be lifted to a representation

Γ → SL(2,C).
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(See Proposition 3.1.1 of [12].) Therefore, we view Γ ⊂ SL(2,C). By an argu-
ment similar to that in Case 1, we may assume that Γ ⊂ SL(2, k), where k is a
finite field extension of Q,

h1 =

(
1 1
0 1

)
and h2 =

(
1 β1
0 1

)
,

for a fixed element β1 ∈ C− R. If A1 = {m+ nβ1 | m,n ∈ Z}, then

H =
{(

1 x
0 1

) ∣∣∣ x ∈ A1

}
.

Moreover,

k1 =

(
a1 b1
c1 d1

)(
1 1
0 1

)(
a1 b1
c1 d1

)
−1

and k2 =

(
a1 b1
c1 d1

)(
1 β2
0 1

)(
a1 b1
c1 d1

)
−1

,

for fixed elements
(
a1 b1
c1 d1

)
∈ SL(2,C) and β2 ∈ C− R.

If A2 = {m+ nβ2 | m,n ∈ Z}, then

K =
{(

1− ya1c1 ya1
2

−yc12 1 + ya1c1

) ∣∣∣ y ∈ A2

}
.

Since H and K do not commute, c1 6= 0. Note that a1
2 and c1

2 are elements of
the coefficient field k. Since k is a number field, a1 and c1 are algebraic numbers.
Therefore, after adjoining a1 and c1 to k, and conjugating Γ in SL(2, k) by

(
1 a1/c1
0 1

)
,

we may assume that

H =
{(

1 −a1/c1
0 1

)(
1 x
0 1

)(
1 a1/c1
0 1

)
=

(
1 x
0 1

) ∣∣∣ x ∈ A1

}
, and

K =
{(

1 −a1/c1
0 1

)(
1− ya1c1 ya1

2

−yc12 1 + ya1c1

)(
1 a1/c1
0 1

)
=

(
1 0

−yc12 1

) ∣∣∣ y ∈ A2

}
.

Then

HK =
{(

1 x
0 1

)(
1 0

−yc1
2 1

)
=

(
1− xyc1

2 x
−yc1

2 1

) ∣∣∣ x ∈ A1, y ∈ A2

}
.

To show that HK is separable in Γ, let

γ =

(
r s
t u

)
∈ Γ−HK

11



be given. Suppose that u 6= 1. As in Case 1, there exists a finitely generated
ring R1 such that Γ ⊂ SL(2, R1) ⊂ SL(2, k). Since R1 is finitely generated,
R1 ⊂ Okp

for all but finitely many primes p of Okp
. For each of these primes p

the residue class field map ηp : Okp
→ Fp induces a group homomorphism

ηp : Γ →֒ SL(2,Okp
) → SL(2, Fp),

where Fp is the residue class field of Okp
. Choose p such that ηp(u) 6= ηp(1).

Then ηp(γ) /∈ ηp(HK), as required. Therefore, we may assume that u = 1.
Since the determinant of γ is equal to 1,

γ =

(
1 + st s
t 1

)
.

Let B1 = {m+ nβ1 | m,n ∈ Q} and B2 = {m+ nβ2 | m,n ∈ Q}. Suppose that
either s /∈ B1 or −t/c12 /∈ B2. By Theorem 2.6, there exist a finite ring S and a
ring homomorphism η : R1 → S such that η(s) /∈ η(B1) or η(−t/c12) /∈ η(B2),
respectively. This ring homomorphism induces a group homomorphism

η : Γ →֒ SL(2, R1) → SL(2, S),

such that η(γ) /∈ η(HK). Therefore, we may assume that s ∈ B1 and −t/c12 ∈
B2. Moreover, since γ /∈ HK, either s /∈ A1 or −t/c1

2 /∈ A2. We will assume
that s /∈ A1. (The argument if −t/c12 /∈ A2 is similar, with the roles of H and
K interchanged). Since s ∈ B1, there exists a non-zero integer v0 such that
v0s ∈ A1. Write v0s = m0 + n0β1, where m0, n0 ∈ Z. Since s /∈ A1, either v0
does not divide m0 or v0 does not divide n0. We will assume that v0 does not
divide m0. (The argument if v0 does not divide n0 is similar, with the roles of
h1 and h2 interchanged). Let Mh2

be the hyperbolic 3-manifold obtained from
M ′ by Dehn surgery along T1, as defined above. Let

φ : Γ ∼= π1(M
′) → π1(Mh2

)

be the homomorphism induced by inclusion. Then φ(H) is an infinite cyclic lox-
odromic subgroup of π1(Mh2

) generated by φ(h1), and φ(h2) is trivial. By as-
sumption, H andK correspond to different boundary components ofM ′. There-
fore, φ(K) is a maximal parabolic subgroup of π1(Mh2

). If φ(γ) /∈ φ(HK), then
we are done by Case 2. Therefore, we may assume that φ(γ) = φ(hm1

1
)φ(kγ),

for some m1 ∈ Z and kγ ∈ K. Since v0 does not divide m0, v0m1 −m0 6= 0.
Recall that Γ ⊂ SL(2, R1) ⊂ SL(2, k). Let L denote the normal closure of k

over Q and let τ ∈ Gal(L/Q) represent complex conjugation. Since β1 ∈ C−R,
τ(β1) 6= β1. By the Tchebotarev Density Theorem, there exist infinitely many
primes p of Q with unramified extension p in L such that τ is the Frobenius
automorphism for p/p. Fix one such p/p such that p is an odd prime, p does
not divide v0m1 −m0 and R1 ⊂ OLp

, where OLp
denotes the ring of integers

in the p-adic field Lp. Let Fp denote the residue class field of OLp
and let Fp

denote the finite field of p elements. Let η1 be the composition of the inclusion
map of R1 into OLp

with the residue map:

η1 : R1 →֒ OLp
→ Fp.

12



Since τ is the Frobenius automorphism of L/Qwith respect to p/p, Gal(Lp/Qp) =
〈τ ′〉 where τ ′ = τ on L. Since τ(β1) 6= β1, β1 /∈ Qp. The Galois group of Fp/Fp

is also induced by τ . It follows that η1(β1) /∈ Fp. The map η1 : R1 → Fp induces
a group homomorphism

ψ1 : Γ →֒ SL(2, R1) → SL(2, Fp).

If ψ1(γ) /∈ ψ1(HK), then we are done. Suppose that ψ1(γ) = ψ1(hk) for some
h ∈ H, k ∈ K. If h = hm1 h

n
2 and x = m+ nβ1, then

(
η1(1 + st) η1(s)
η1(t) 1

)
= ψ1(γ) = ψ1(hk) =

(
η1(1− xyc1

2) η1(x)
η1(−yc12) 1

)
,

for some y ∈ A2 corresponding to k. Therefore, η1(v0m + v0nβ1) = η1(v0x) =
η1(v0s) = η1(m0 + n0β1). Since η1(β1) /∈ Fp, the set {1, η1(β1)} is linearly
independent over Fp. It follows that

(∗) v0m ≡ m0 (mod p).

Now consider the hyperbolic 3-manifold Mh2
. Recall that φ(H) is a loxo-

dromic subgroup of π1(Mh2
) generated by φ(h1), φ(K) is a maximal parabolic

subgroup of π1(Mh2
), and φ(γ) = φ(hm1

1
kγ), for some m1 ∈ Z and kγ ∈ K.

As before, there exists a finitely generated ring R2 in a number field F , such
that π1(Mh2

) ⊂ SL(2, R2) ⊂ SL(2, F ). Moreover, after conjugating π1(Mh2
) in

SL(2, F ), if necessary, we may assume that

φ(h1) =

(
λ 0
0 λ−1

)
and

φ(K) =
{(

a2 b2
c2 d2

)(
1 z
0 1

)(
a2 b2
c2 d2

)
−1 ∣∣∣ z ∈ A3 = {m+ nβ3 | m,n ∈ Z}

}
,

for some (
a2 b2
c2 d2

)
∈ SL(2, F ) and β3 ∈ C− R.

Then

φ(HK) =
{(

λm(1− a2c2z) λma2
2z

−λ−mc2
2z λ−m(1 + a2c2z)

) ∣∣∣ m ∈ Z, z ∈ A3

}
.

Write

φ(kγ) =

(
1 zγ
0 1

)
, zγ ∈ A3.

Since π1(Mh2
) is discrete, φ(H) and φ(K) do not share a fixed point. There-

fore, a2 and c2 are non-zero. By Corollary 2.3, there exist a finite field S and
a ring homomorphism η2 : R2 → S such that the multiplicative order of η2(λ)
is divisible by p, and η2(a2) and η2(c2) are non-zero in S. Since λ is a unit in
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R2, η2(λ) 6= 0. Let o denote the multiplicative order of η2(λ). Consider the
composition:

ψ2 : Γ → π1(Mh2
) →֒ SL(2, R2) → SL(2, S),

where the first map φ : Γ → π1(Mh2
) is induced by inclusion and the last map

SL(2, R2) → SL(2, S) is induced by η2. If ψ2(γ) /∈ ψ2(HK), then we are done.
Suppose that ψ2(γ) = ψ2(hk), for some h ∈ H, k ∈ K. If h = hm

1
hn
2
, then

ψ2(γ) =

(
η2(λ

m1(1 − a2c2zγ)) η2(λ
m1a2

2zγ)
η2(−λ−m1c2

2zγ) η2(λ
−m1(1 + a2c2zγ))

)
=

ψ2(hk) =

(
η2(λ

m(1− a2c2z)) η2(λ
ma2

2z)
η2(−λ−mc2

2z) η2(λ
−m(1 + a2c2z))

)
,

for some a ∈ A3 corresponding to k. This gives the equations:

η2(λ
m1(1− a2c2zγ)) = η2(λ

m(1− a2c2z))
η2(λ

m1a2
2zγ) = η2(λ

ma2
2z)

η2(−λ−m1c2
2zγ) = η2(−λ−mc2

2z)
η2(λ

−m1(1 + a2c2zγ)) = η2(λ
−m(1 + a2c2z)).

If η2(zγ) = 0, then η2(z) = 0, and so η2(λ
m) = η2(λ

m1). If η2(zγ) 6= 0,
then by solving for η2(z/zγ) in the second and third equations, we have that
η2(λ

2m) = η2(λ
2m1 ). In either case, 2m ≡ 2m1 (mod o). Since p divides o and

p is an odd prime, it follows that

(∗∗) m ≡ m1 (mod p).

Finally, consider the product

(ψ1 × ψ2) : Γ → SL(2, Fp)× SL(2, S).

If (ψ1 × ψ2)(γ) /∈ (ψ1 × ψ2)(HK), then we are done. Suppose that (ψ1 ×
ψ2)(γ) = (ψ1 × ψ2)(hk) for some h ∈ H, k ∈ K. Then ψ1(γ) = ψ1(hk) and
ψ2(γ) = ψ2(hk). If h = hm1 h

n
2 , then by (∗) and (∗∗), v0m ≡ m0 (mod p) and

m ≡ m1 (mod p). Therefore, v0m1 ≡ m0 (mod p). This contradicts the fact
that we chose p not to divide v0m1 − v0. This completes the proof of Case 3.

Case 4. H loxodromic, K parabolic

Let K ′ be the maximal parabolic subgroup of Γ containing K. By Case
2 and the assumptions at the beginning of the proof, we may assume that K
is a maximal cyclic subgroup of Γ. Therefore, there exists a basis {k1, k2} of
K ′ such that K = 〈k1〉. Let H = 〈h〉. To prove that HK is separable in Γ,
let γ ∈ Γ − HK be given. By Case 2, we may assume that γ ∈ HK ′ − HK.
Therefore, γ = ha0km0

1
kn0

2
, for some a0,m0, n0 ∈ Z. Since γ /∈ HK, n0 6= 0.

As above, we may assume that Γ ⊂ SL(2, R) ⊂ SL(2, k), where R is a finitely
generated ring contained in a number field k. Moreover,

k1 =

(
1 1
0 1

)
and k2 =

(
1 β
0 1

)
,
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for some β ∈ C − R. Since H is loxodromic, h is conjugate in SL(2,C) to an
element

f =

(
λ 0
0 λ−1

)
, λ ∈ C, |λ| 6= 1.

The eigenvalue λ is an algebraic number. By adjoining λ to k, we may assume
that h is diagonalizable over SL(2, k). Therefore,

h =

(
a b
c d

)(
λ 0
0 λ−1

)(
a b
c d

)
−1

, for some

(
a b
c d

)
∈ SL(2, k).

By expanding R, if necessary, we may assume that {λ, λ−1, a, b, c, d} ⊂ R. Let L
denote the normal closure of k over Q and let τ ∈ Gal(L/Q) represent complex
conjugation. As in Case 3, by the Tchebotarev Density Theorem, there exist
infinitely many primes p of Q with unramified extension p in L such that τ is
the Frobenius automorphism for p/p. Fix one such p/p such that p does not
divide n0 and R ⊂ OLp

, where OLp
denotes the ring of integers in the p-adic

field Lp. Let Fp denote the residue class field of OLp
and let Fp denote the finite

field of p elements. Let η be the composition of the inclusion map of R into OLp

with the residue map:
η : R →֒ OLp

→ Fp.

Since τ is the Frobenius automorphism of L/Q with respect to p/p, η(β) /∈ Fp.
The map η : R → Fp induces a group homomorphism

ψ : Γ →֒ SL(2, R) → SL(2, Fp).

Suppose that ψ(γ) ∈ ψ(HK). Then ψ(ha0km0

1
kn0

2
) = ψ(hakm1 ), for some a,m ∈

Z. Therefore, ψ(km0−m
1

kn0

2
) = ψ(ha−a0). The trace of each element in K ′ is

equal to 2. It follows that η(λa−a0 ) + 1/η(λa−a0) = 2, and so η(λa−a0 ) = 1.
This means that ψ(fa−a0) is trivial. Since h is conjugate to f in SL(2, R),
ψ(ha−a0) = ψ(km0−m

1
kn0

2
) is trivial. Therefore, η(m0 − m + n0β) = 0. Since

η(β) /∈ Fp, the set {1, η(β)} is linearly independent over Fp. It follows that
η(n0) = 0. But this contradicts the fact that p does not divide n0. We conclude
that ψ(γ) /∈ ψ(HK), as required

Case 5. H parabolic, K parabolic

Let H ′ and K ′ be the maximal parabolic subgroups of Γ, containing H
and K, respectively. By the assumptions at the beginning of the proof, either
H = H ′, or H is a maximal cyclic subgroup of H ′. A similar statement is true
for K. If H = H ′ and K = K ′ then we are done by Case 3. Therefore, we
assume that either H or K is infinite cyclic. Choose bases {h1, h2} for H ′ and
{k1, k2} for K ′ such that H = 〈h1〉 if H is infinite cyclic, and K = 〈k1〉 if K is
infinite cyclic. To show that HK is separable in Γ, let γ ∈ Γ−HK be given. By
Case 3, we may assume that γ ∈ H ′K ′ −HK. Therefore, γ = hm1

1
hn1

2
km2

1
kn2

2
,

for some m1,m2, n1, n2 ∈ Z. Since γ /∈ HK, either (i) H is infinite cyclic and
n1 6= 0 or (ii) K is infinite cyclic and n2 6= 0. Without loss of generality, assume
that (i) holds.
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The argument is then very similar to the argument in Case 4. We may
assume that Γ ⊂ SL(2, R) ⊂ SL(2, k), where R is a finitely generated ring in a
number field k. Moreover,

h1 =

(
1 1
0 1

)
, h2 =

(
1 β1
0 1

)
, and

K =
{(

a b
c d

)(
1 y
0 1

)(
a b
c d

)
−1

=

(
1− acy a2y
−c2y 1 + acy

) ∣∣∣ y ∈ {m+ nβ2}
}
,

for some

(
a b
c d

)
∈ SL(2, R) and β1, β2 ∈ C− R.

By assumption, H and K do not commute. Therefore c 6= 0. As in Case 4, by
the Tchebotarev Density Theorem, there exist a prime p that does not divide
n1, a finite field Fp of characteristic p, and a ring homomorphism

η : R → Fp

such that the set {1, η(β1)} is linearly independent over Fp, and η(c) 6= 0. The
map η induces a group homomorphism

ψ : Γ →֒ SL(2, R) → SL(2, Fp).

Suppose that ψ(γ) ∈ ψ(HK). Then ψ(hm1

1
hn1

2
km2

1
kn2

2
) = ψ(hu1

1
ku2

1
kv2
2
), for

some u1, u2, v2 ∈ Z. Therefore, ψ(hm1−u1

1
hn1

2
) = ψ(ku2−m2

1
kv2−n2

2
). Since H is

upper triangular and η(c) 6= 0, it follows that ψ(ku2−m2

1
kv2−n2

2
) = ψ(hm1−u1

1
hn1

2
)

is trivial. Therefore, η(m1 − u1 + n1β1) = 0. Since {1, η(β1)} is linearly inde-
pendent over Fp, η(n1) = 0. But this contradicts the fact that p does not divide
n1. �

We conclude this section with some corollaries to the proof of Theorem 3.2.
Since only Case 3 of Theorem 3.2 uses the full strength of the finite covolume
assumption, it is natural to consider finitely generated Kleinian groups which
are not necessarily of finite covolume.

Corollary 3.3. Let Γ be a finitely generated, torsion-free Kleinian group. Given

an abelian subgroup G of Γ, let A(G) denote the maximal abelian subgroup of

Γ containing G. Suppose that H and K are abelian subgroups of Γ such that

A(H) and A(K) are not both free abelian of rank 2. Then the double coset HK
is separable in Γ.

Proof. If Γ is elementary, then Γ is virtually abelian and hence the result follows
from Proposition 3.1 and [3]. If Γ is non-elementary, then Γ is isomorphic to
a geometrically finite Kleinian group Γ1 such that (i) every maximal parabolic
subgroup of Γ1 has rank 2, and (ii) the traces of the elements of Γ1 are algebraic
numbers. (See Theorem 1 of [3] or Theorem 4.2 of [30].) By replacing Γ with
Γ1, we assume that conditions (i) and (ii) hold for Γ. Our assumptions then
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imply that at least one of H or K must be loxodromic. The proof then follows
from Cases 1, 2 and 4 of Theorem 3.2. �

In Theorem 3.2, we prove that certain double cosets of Kleinian groups of
finite covolume are closed in the profinite topology on Γ. We now consider the
congruence topology on Γ.

Definition 3.4. Let k be a number field and let Γ be a finitely generated subgroup

of PSL(2, k). Since Γ is finitely generated, Γ ⊂ PSL(2, R) ⊂ PSL(2, k), where
R is a ring obtained from Ok by inverting a finite number of elements. This

ring R is Dedekind and, therefore, for any non-zero ideal I, the quotient R/I is

finite. The quotient map R→ R/I induces a congruence homomorphism

η : Γ →֒ PSL(2, R) → PSL(2, R/I).

We say that a subset X of Γ is closed in the congruence topology on Γ if for

every element γ ∈ Γ−X, there exists a congruence homomorphism η such that

η(γ) /∈ η(X).

Recall that a set X ⊂ Γ is closed in the profinite topology on Γ if for every
element γ ∈ Γ−X , there exist a finite group G and a group homomorphism φ :
Γ → G such that φ(γ) /∈ φ(X). For the profinite topology we consider all group
homomorphisms from Γ into finite groups. For the congruence topology we
consider only congruence homomorphisms. Therefore, the congruence topology
is weaker than the profinite topology.

Corollary 3.5. Let M = H3/Γ be an orientable hyperbolic 3-orbifold of finite

volume. Let ρ : Γ → PSL(2,C) be a discrete, faithful representation such that

the coefficient field of ρ(Γ) is a finite field extension of Q. Then we may view

ρ(Γ) ⊂ PSL(2, R), where R is a finitely generated ring in a number field k. Let

H and K be abelian subgroups of Γ, and let g ∈ Γ. The double coset HgK is

closed in the congruence topology on Γ, with respect to ρ and R, if one of the

following conditions is satisfied.

• The groups H and K are both loxodromic subgroups of Γ.

• Exactly one of {H,K} is a loxodromic subgroup of Γ and the other is a

maximal parabolic subgroup of Γ.

• Exactly one of {H,K} is a loxodromic subgroup of Γ and the other is a

maximal cyclic parabolic subgroup of Γ.

Remark 3.6. In Corollary 3.5, we do not require any of the loxodromic sub-

groups to be maximal.

Proof. Since M = H3/Γ is a Kleinian group of finite covolume, there exists a
discrete, faithful representation from Γ into PSL(2,C) such that the coefficient
field of the image of Γ is a finite field extension of Q. By fixing one such
representation ρ we may view Γ ⊂ PSL(2, R) ⊂ PSL(2, k), where R is a finitely
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generated ring in a number field k. In the proof of Theorem 3.2, given an
abelian subgroup H of Γ, we adjoin finitely many algebraic numbers to R, if
necessary, and then conjugate Γ in PSL(2, R) such that H has a nice form.
We need to justify that we can replace our original representation ρ with the
new representation given by conjugation. (It is fine to replace our ring R with
a larger ring since any ring homomorphism from the larger ring restricts to
a ring homomorphism from R.) To see this let α ∈ PSL(2, R) and consider
Γ′ = αΓα−1 ⊂ PSL(2, R). Given a subset X ⊂ Γ and an element γ ∈ Γ − X ,
let X ′ = αXα−1 ⊂ Γ′ and γ′ = αγα−1 ∈ Γ′ −X ′. Suppose there exist a finite
ring S and a ring homomorphism R → S, such that, under the induced group
homomorphism

η : PSL(2, R) → PSL(2, S),

η(γ′) /∈ η(X ′). Then restricting η to Γ gives a congruence homomorphism

Γ →֒ PSL(2, R) → PSL(2, S)

such that η(γ) /∈ η(X). We conclude that, for the purposes of our proof, it is
legitimate to adjoin finitely many algebraic numbers to R and then replace Γ
with a conjugate of Γ in PSL(2, R).

We first show that loxodromic subgroups, maximal parabolic subgroups, and
maximal cyclic parabolic subgroups are closed in the congruence topology on Γ,
with respect to ρ and R. This is well-known and the proof of some of the cases
is in [3]. We include the proof here for the convenience of the reader.

Let A be a maximal abelian subgroup of Γ. As above, we view Γ ⊂
PSL(2, R) ⊂ PSL(2, k), where R is a finitely generated ring in a number field
k. After adjoining elements to R and k, if necessary, we may conjugate Γ in
PSL(2, R) such that A is upper triangular. Let

γ = ±

(
a b
c d

)
∈ Γ− A

be given. Since Γ is discrete and A is a maximal abelian subgroup of Γ, γ and
A do not share a fixed point on the sphere at infinity. Therefore, c 6= 0. Let I
be an ideal of R that does not divide c and consider the congruence map

η : Γ →֒ PSL(2, R) → PSL(2, R/I).

Then η(γ) /∈ η(A).
Let H be a loxodromic subgroup of Γ. Let A be the maximal abelian sub-

group of Γ containing H , and fix γ ∈ Γ−H . By the case above, we may assume
that γ ∈ A−H . Write H = 〈hm〉, where h is a loxodromic element that gener-
ates A and m is a positive integer. Since γ ∈ A −H , γ = ha, for some integer
a that is not divisible by m. By Corollary 2.3, there exists a congruence map

η : Γ →֒ PSL(2, R) → PSL(2, R/I)

such that the order of η(h) is divisible by m. Then η(γ) /∈ η(H).
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Let H be a maximal cyclic parabolic subgroup of Γ. Choose k ∈ Γ such
that A = 〈h, k〉 is the maximal abelian subgroup of Γ containing H , and fix
γ ∈ Γ−H . By the case above, we may assume that γ ∈ A−H . Write γ = hakb,
a, b ∈ Z. Since γ /∈ H , b 6= 0. By Case 4 of Theorem 3.2, for infinitely many
primes p, there exist congruence maps

ηp : Γ →֒ PSL(2, R) → PSL(2,Fp)

such that ηp(A) ∼= Z/pZ⊕ Z/pZ. If p does not divide b, then ηp(γ) /∈ ηp(H).
Let H , K and g be given as in the statement of the corollary. Since the

congruence topology on Γ is equivariant under left and right multiplication, it
suffices to show that the double coset HK is closed in the congruence topology.
By the argument above, we may assume that H and K do not commute. If H
and K are both loxodromic, then the argument follows from Case 1 of Theo-
rem 3.2. If H is loxodromic and K is a maximal parabolic subgroup of Γ, then
the argument follows from the proof of Lemma 3.2 of [15]. If H is loxodromic
and K is a maximal cyclic parabolic subgroup of Γ, then the argument follows
from Case 4 of Theorem 3.2. �

4 Proof of conjugacy separability

For a group G, we denote by Ĝ the profinite completion of G. For a subgroup
H of G, we denote by H the closure of H in Ĝ. The proof of Theorem 1.2 relies
on the main technical theorem of [32], which we state here for convenience. We
refer the reader to [32] for the definitions of the terms efficient and profinitely

acylindrical used in it.

Theorem 4.1 ([32], Theorem 5.2). Let G be a finite graph of groups with con-

jugacy separable vertex groups. Let G = π1(G), and suppose that the profinite

topology on G is efficient and that G is profinitely 2-acylindrical. For any ver-

tex v of G and incident edges e and f , suppose furthermore that the following

conditions hold:

1. for any g ∈ Gv the double coset GegGf is separable in Gv;

2. the edge group Ge is conjugacy distinguished in Gv;

3. the intersection of the closures of Ge and Gf in the profinite completion

of Gv is equal to the profinite completion of their intersection. That is,

the natural map Ĝe ∩Gf → Ge ∩Gf is an isomorphism.

Then G is conjugacy separable.

Definition 4.2. A subgroup H ⊆ G is called conjugacy distinguished if, when-

ever g ∈ G is not conjugate into H, there is a finite quotient of G in which the

image of g is not conjugate into the image of H.
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As in [32], we will apply Theorem 4.1 to the torus decomposition of M .
Henceforth, M denotes a closed, orientable, Haken 3-manifold. Let G = π1(M)
and let G be the graph-of-groups decomposition of G induced by the torus
decomposition of M .

Theorem 4.3 ([32], Theorem A). For M as above, the profinite topology of the

fundamental group of the graph of groups G is efficient.

It is convenient to make the extra assumption that every Seifert-fibered piece
of the torus decomposition ofM is large—that is, has a fundamental group that
virtually surjects a non-abelian free group. In this case, it turns out that G is
profinitely 2-acylindrical, and so Theorem 4.1 applies. In [32], the remaining
hypotheses of Theorem 4.1 were checked for graph manifolds. We will prove the
corresponding results about the fundamental groups of hyperbolic manifolds.

Therefore, we need to consider Gv = Γ, the fundamental group of a finite-
volume hyperbolic 3-manifold N . The incident edge groups Ge and Gv are
maximal parabolic subgroups of Γ, which we shall denote P and Q. The next
lemma is a consequence of Theorem 1.4.

Lemma 4.4. For any g ∈ Γ, the double coset PgQ is separable in Γ.

Lemma 4.5. The subgroup P is conjugacy distinguished in Γ.

Proof. As in the proof of Theorem 3.2, we may view Γ ⊂ SL(2, R) ⊂ SL(2, k),
where R is a finitely generated ring contained in a number field k. Since R is
finitely generated, R ⊂ Okp

for all but finitely many primes p of Okp
. For each

of these primes p the residue class field map ηp : Okp
→ Fp induces a group

homomorphism
ηp : Γ →֒ SL(2,Okp

) → SL(2, Fp),

where Fp is the residue class field of Okp
.

Let γ be an element of Γ that is not conjugate into P . If γ is loxodromic,
then the square of the trace of γ, tr(γ)2, is not equal to 4. Choose a prime p of
Okp

such that R ⊂ Okp
and ηp(tr(γ)

2) 6= 4. Then ηp(γ) /∈ ηp(P ), as required.
Now suppose that γ is parabolic. As discussed in Case 3 of Theorem 3.2, we
may view N as the interior of a compact manifold N ′ with a finite number of
tori boundary components. There is a one to one correspondence between the
boundary components of N ′ and the conjugacy classes of maximal parabolic
subgroups of Γ. Let Tγ be the boundary component corresponding to γ and let
TP be the boundary component corresponding to P . Since γ is not conjugate
into P and P is a maximal parabolic subgroup, Tγ 6= TP . By Thurston’s
Hyperbolic Dehn Surgery Theorem, there exists a complete hyperbolic manifold
M of finite volume obtained by Dehn surgery on N ′ along Tγ . We may choose
M such that the image of γ is non-trivial in π1(M). Let

φ : Γ ∼= π1(N
′) → π1(M)

be the homomorphism induced by inclusion N ′ →M . Then φ(P ) is a maximal
parabolic subgroup of π1(M) and φ(γ) is loxodromic. The argument then follows
as above. �
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Lemma 4.6. Let P and Q be non-conjugate maximal parabolic subgroups of

Γ. There exists a sequence of group homomorphisms fn from Γ to finite groups

with the following properties.

1. For any finite index subgroup K of P , there exists an n with Ker(fn)∩P ⊂
K.

2. For every n, the intersection of fn(P ) and fn(Q) is trivial.

Proof. As in the proof of Lemma 4.5, we may view N as the interior of a
compact manifold N ′ with a finite number of tori boundary components, each
corresponding to a conjugacy class of a maximal parabolic subgroup of Γ. Let
TP and TQ denote the boundary components of N ′ corresponding to P and Q,
respectively. By assumption, TP 6= TQ. Choose a basis {p1, p2} of P such that
Np1

and Np2
are complete hyperbolic 3-manifolds of finite volume, where Np1

and Np2
are the manifolds obtained by Dehn surgery on N ′ along P sending p1

and p2, respectively, to a meridian of the attached solid torus. Let

φ : Γ ∼= π1(N
′) → π1(Np1

)

be the homomorphism induced by inclusion. Then φ(Q) is a maximal parabolic
subgroup of π1(Np1

), and φ(P ) is a loxodromic subgroup of π1(Np1
) generated

by φ(p2). We then proceed as in Case 3 of Theorem 3.2. We may view π1(Np1
) ⊂

SL(2, R1), where R1 is a finitely generated ring in a number field. Moreover, we
may assume that

φ(p2) =

(
λ 0
0 λ−1

)
and

φ(Q) =
{(

a b
c d

)(
1 z
0 1

)(
a b
c d

)
−1 ∣∣∣ z ∈ A = {m+ nβ | m,n ∈ Z}

}
,

for some (
a b
c d

)
∈ SL(2, R1), and λ, β ∈ R1.

Since π1(Np1
) is discrete, φ(P ) and φ(Q) do not share a fixed point. There-

fore, a and c are non-zero. Fix a natural number n. By Corollary 2.3, there
exist a finite field Fn and a ring homomorphism ηn : R1 → Fn such that the
multiplicative order of ηn(λ) is divisible by n, ηn(a) 6= 0 and ηn(c) 6= 0. This
ring homomorphism induces a group homomorphism

ηn : π1(Np1
) →֒ SL(2, R1) → SL(2, Fn)

such that the order of ηn(φ(p2)) is divisible by n. Moreover, since ηn(a) 6= 0
and ηn(c) 6= 0, the intersection of ηn(φ(P)) and ηn(φ(Q)) is trivial. Let

gn : Γ ∼= π1(N
′) → π1(Np1

) → SL(2, Fn)

21



denote the composition ηn ◦ φ. Then the intersection of gn(P ) and gn(Q) is
trivial, gn(p1) is trivial, and gn(p2) has order divisible by n. By a similar
argument, there exist a finite field Ln and a group homomorphism

hn : Γ ∼= π1(N
′) → π1(Np2

) → SL(2, Ln)

such that the intersection of hn(P ) and hn(Q) is trivial, hn(p2) is trivial, and
hn(p1) has order divisible by n. Let Kn = Ker(gn) ∩Ker(hn), and let

fn : Γ → Γ/Kn

denote the quotient map. Then the intersection of fn(P ) and fn(Q) is trivial,
and Ker(fn)∩P = Kn ∩P ⊂ 〈np1, np2〉 = nP . The collection {fn} satisfies the
conditions above, since given a subgroup K of finite index in P , there exists a
natural number n, such that nP ⊂ K. �

Lemma 4.7. Let P,Q be distinct maximal parabolic subgroups of Γ. The inter-

section of the closures P ∩Q is trivial in the profinite completion Γ̂.

Proof. We first consider the case in which P and Q are not conjugate in Γ.
By the universal property of the profinite completion, the maps fn : Γ → Γ/Kn

in Lemma 4.6 extend to continuous homomorphisms f̂n from Γ̂. Let f = (f̂n) :

Γ̂ →
∏

n Γ/Kn be the continuous homomorphism to the Cartesian product of
Γ/Kn. By Lemma 4.6 its restriction to P and Q is injective and the image of
P ∩Q in Γ/Kn is trivial. Therefore P ∩Q is trivial.

Suppose now that P and Q are conjugate in Γ. As in Case 3 of the proof of
Theorem 3.2, there is a subgroup Γ0 of finite index in Γ such that P0 = Γ0 ∩ P
and Q0 = Γ0 ∩Q are not conjugate in Γ0. By the non-conjugate case, we have
that P 0 ∩Q0

= 1 in the profinite completion Γ̂0. But Γ̂0 is a subgroup of finite

index in Γ̂, and so P ∩ Q is periodic in Γ̂. But P ∼= Ẑ2, which is torsion-free,
and so P ∩Q = 1 as required. �

These lemmas complement the corresponding results for Seifert-fibered man-
ifolds, which we list below for convenience. As usual, by a peripheral subgroup
of the fundamental group of a 3-manifold we mean a subgroup that (up to
conjugacy) corresponds to a boundary component of N .

Lemma 4.8 ([27]). Double cosets of peripheral subgroups in Seifert-fibered 3-

manifold groups are separable.

Lemma 4.9 ([32], Lemma 5.3). Every peripheral subgroup of the fundamental

group of a Seifert-fibered 3-manifold group is conjugacy distinguished.

Lemma 4.10 ([32], Lemma 5.4). Let N be a large Seifert-fibered 3-manifold

and let P,Q be distinct peripheral subgroups of π1(N). Then P̂ ∩ Q̂ = Ẑ, the
profinite completion of the canonical normal cyclic subgroup of π1(N).

Proceeding exactly as in [32], Lemmas 4.7 and 4.10 can be used together to
generalize Lemma 5.5 of [32] as follows.
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Lemma 4.11. Let M be a closed, orientable, Haken 3-manifold in which every

Seifert-fibered piece of the torus decomposition is large. Let G = π1(M) and let

G be the graph of groups induced by the torus decomposition of M . Then G is

profinitely 2-acylindrical.

When every Seifert-fibered piece of M is large, Theorem 1.2 is a direct
consequence of Theorem 4.1, together with Theorem 4.3 and Lemmas 4.4, 4.5,
4.7, 4.8, 4.9, 4.10 and 4.11. Of course, we also need the Geometrization Theorem
(proved in the Haken case by Thurston and in full by Perelman), which implies
that every piece of the torus decomposition is either Seifert-fibered or hyperbolic.

Finally, proceeding exactly as in the proof of Theorem D of [32], the full
statement of Theorem 1.2 follows.
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