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1-quasi-hereditary algebras
Daiva Pucinskaiteé

Abstract

Motivated by the structure of the algebras associated to the blocks of the BGG-
category O, we define a subclass of quasi-hereditary algebras called 1-quasi-hereditary.
Many properties of these algebras only depend on the defining partial order. In partic-
ular, we can determine the quiver and the form of the relations. Moreover, if the Ringel
dual of a 1-quasi-hereditary algebra is also 1-quasi-hereditary, then the structure of the
characteristic tilting module can be computed.

Introduction

The class of quasi-hereditary algebras, defined by Cline, Parshall and Scott [3], can
be regarded as a generalization of the algebras associated to the blocks of the Bernstein-
Gelfand-Gelfand category O(g) of a complex semisimple Lie algebra g (see [2]). Every block
B(g) is equivalent to the category of modules over a finite dimensional C-algebra Az(g).

The algebras Ap(g) are BGG-algebras as defined in [7] and in [12]. They are endowed
with a duality functor on their module category which fixes the simple modules. Another
important structural feature is the presence of exact Borel subalgebras and A-subalgebras
introduced by Konig in [§]. These subalgebras provide a correspondence between A-good
filtrations and Jordan-Hoélder-filtrations. Moreover, Soergel has shown that Az(g) is Morita
equivalent to its Ringel dual R(Ag(g)) (see [11]).

Motivated by these results, in this paper we introduce a class of quasi-hereditary alge-
bras, called 1-quasi-hereditary. Among other properties they are characterized by the fact
that all possible non-zero filtration-multiplicities for A-good filtrations of indecomposable
projectives and Jordan-Holder filtrations of standard modules are equal to 1.

The class of 1-quasi-hereditary algebras is related to the aforementioned classes of quasi-
hereditary algebras: Many factor algebras (related to saturated subsets) of an algebra of
type Ap(g) are 1-quasi-hereditary. The understanding of 1-quasi-hereditary algebras gives
some information on the relations, the structure of the characteristic tilting module etc. of
Ap(g). Another class of examples is provided by the quasi-hereditary algebras considered
by Dlab, Heath and Marko in [4]. These algebras are 1-quasi-hereditary BGG-algebras,
however 1-quasi-hereditary algebras are in general not BGG-algebras. All known 1-quasi-
hereditary algebras have exact Borel and A-subalgebras. Several examples, which show the
complexity of such algebras and their additional properties are presented in [9].

Our first main result shows that many invariants of 1-quasi-hereditary algebras depend
only on the given partial ordering:

Theorem A. Let A= (KQ/Z,<) be a (basic) 1-quasi-hereditary algebra. Then

(1) Q is the double of the quiver of the incidence algebra corresponding to <,

ie. @y ={ i==j | i andj are neighbours w.r.t. < }.
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(2) T is generated by the relations of the formp—z ci-p(jgyi, k), wherep = (j—---—k)
jk<i
and p(j,i, k) are paths in Q of the form (j=j1— - = jn—i =k — - —k.=k)
with j1 <+ <Jm<i >k >--->k,.

(3) The A-good filtrations of the projective indecomposable module at the vertex i € Qq
are 1n one-to-one correspondence with special sequences of vertices j with j > i.

An important feature in the representation theory of quasi-hereditary algebras is the
concept of the Ringel dual: The algebra R(A) := Enda(7) is quasi-hereditary, where
T = @z‘er T(7) is the characteristic tilting module. In view of Soergels work, this raises
the question whether the class of 1-quasi-hereditary algebras is closed under Ringel-duality.

Theorem B. Let A = (KQ/Z,<) be a 1-quasi-hereditary algebra. Then
R(A) is 1-quasi-hereditary if and only if T(i) is local for any i € Q.

Moreover, in this case we have a precise description of 7'(7).

Our paper is organised as follows: In Section 1, we introduce some notations, recall some
definitions and basic facts for later use.

In Section 2, we give several properties of 1-quasi-hereditary algebras, which can be
derived from the definition using the general representation theory of bound quiver algebras.
These properties are essential for the proof of Theorem A (1).

In Section 3, we present a particular basis of a 1-quasi-hereditary algebra A, which can
be described combinatorially and only depends on the corresponding partial order (it consist
the paths of the form p(j, 7, k)). Consequently, we obtain a system of relations of A described
in Theorem A (2).

In Section 4, we determine the set of A-good filtrations of all projective indecomposable
modules over 1-quasi-hereditary algebras and establish their relationship with the Jordan-
Holder-filtrations of costandard modules. Using the result of Ringel [10], which says that
the subcategory F(A) is resolving, we determine all local modules having A-good filtrations.
We also record the dual results.

In Section 5, we consider factor algebras A(i) := A/A(Y_,; e;)A for i € Qo of a 1-quasi-
hereditary algebra A, where e; is a primitive idempotent. If A(4) is 1-quasi-hereditary, then
we obtain an explicit expression of the direct summand 7'(i) of the characteristic tilting
module.

Using these results in Section 6, we turn to the question when the Ringel dual of a 1-
quasi-hereditary algebra is 1-quasi-hereditary. We elaborate on Theorem B by establishing
necessary and sufficient conditions involving the structure of tilting modules and projective
indecomposable modules.

1. Preliminaries

Throughout the paper, A denotes a finite dimensional, basic K-algebra over an algebraically closed
field K, which will be represented by a quiver and relations (Theorem of Gabriel) and mod A is the
category of finite dimensional left A-modules. In the following part we will focus on some general
facts from the representations theory of bound quiver algebras, which we will use in this paper.



The relevant material can be found in [IJ.

We consider algebras A = K@Q/Z and by @y (resp. 1) we denote the set of ver-
tices (resp. the set of arrows) in ). For any i € @)y the corresponding trivial path will
be denoted by e;, the simple module, the projective indecomposable and the injective in-
decomposable A-module, will be denoted by S(i), P(i) and I(i) respectively. A path p =
(j—++—i—---— k)isthe product of paths py = (i = -+ > k)and p, = (j — -+ — 9)
written as p = p; - p. The A-map corresponding to p is given by f, : P(k) — P(j) via
fola-er) =a-p-e;forall a € Aand we have f, = f,, o f,,.

For any M € mod A it is M = @z‘er M;, where M; is the subspace of M corresponding
to i € Qy. We denote by [M : S(i)] = dimy M; the Jordan-Holder multiplicity of S(i) in M.
For any m € M, we denote by (m) the submodule of M generated by m (i.e. (m)=.A4-m).
The set of all local submodules of M with top isomorphic to S(i), we denote by Loc;(M).
It is clear that Loc;(M) = {(m) | m € M;\ {0}} = {im(f) | f € Homa(P(i), M), f # 0}.

The definition of quasi-hereditary algebras introduced by Cline-Parshall-Scott [3] implies
in particular the presence of a partial order on the vertices of the corresponding quiver. The
equivalent definition and relevant terminology is given by Dlab and Ringel in [5]. To recap
briefly: For an algebra A = KQ/Z let (Qo, <) be a partially ordered set. For every i € Q)
the standard module A(7) is the largest factor module of P(i) such that [A(i) : S(j)] =0
for all j € Qo with j £ ¢ and the costandard module V() is the largest submodule of
I(i) such that [V(i) : S(j)] = 0 for all j € Qo with 7 £ i. We denote by F(A) the
full subcategory of mod. A consisting of the modules having a filtration such that each
subquotient is isomorphic to a standard module. The modules in §F(A) are called A-good
and the corresponding filtrations are A-good filtrations (resp. V-good modules have V-good
filtrations and belong to §(V)). For M € §F(A), we denote by (M : A(7)) the (well-defined)
number of subquotients isomorphic to A(i) in some A-good filtration of M (resp. V(i)
appears (M : V(i)) times in some V-good filtration of M € F(V)).

The algebra A = (KQ/Z, <) is quasi-hereditary if for all i, j € @)y the following holds:
o [A(i):S>H)] =1,
e P(i) is a A-good module with (P (i) : A(j)) =0 for all j 24 and (P(i) : A(7)) = 1.

1.1 Remark. If (A, <) is quasi-hereditary, then for any ¢ € Qg(.A) the following holds:

A(i)=P@)/ | Y > im(f) | resp. V(i) =) N ker(f)

1<j feHomy (P(5),P(7)) 1<j feHom 4 (1(2),1(j))

Moreover, if ¢ € @)y is minimal with respect to <, then A(i) = V(i) = S(i) and if i € Q) is
maximal then P(i) = A(7) as well as I(i) = V(i).

1.2 Definition. A quasi-hereditary algebra A = (KQ/Z, <) is called 1-quasi-hereditary if
for all i,j € Qo = {1,...,n} the following conditions are satisfied:

(1) There is a smallest and a largest element with respect to <,
without loss of generality we will assume them to be 1 resp. n,



(2) [AG) : SG)] = (PG) : A@)) =1 for j <,
(3) soc P(j) = top I(j) = S(1),
(4) A(i) — A(n) and V(n) - V().

The class of 1-quasi-hereditary algebras are related to several subclasses of quasi-hereditary
algebras: Many factor algebras (related to a saturated subsets) of an algebra associated
to a block of the category O(g) of a semisimple C-Lie algebra g are 1-quasi-hereditary. If
rank(g) < 2, then an algebra corresponding to a block of O(g) is 1-quasi-hereditary. This al-
gebras are BGG-algebras in the sense of [12] and Ringel self-dual, however 1-quasi-hereditary
algebras are not BGG-algebras in general and the class of 1-quasi-hereditary algebras is not
closed under Ringel duality. Moreover all known 1-quasi-hereditary algebras have exact
Borel and A-subalgebras in sense of Konig [§]. In [9] we give several examples to illustrate
this specific properties.

Let (Qo, <) be the corresponding poset of a 1-quasi-hereditary algebra KQ/Z. n
For any j € )y, we define ’,’\ AG)
P N
Ay ={i€Qy|i<j} and AV :={icQ|i>j Y
o =1 |1 <J} { |12} Nasue
If i < j (resp. i > j) and they are neighbours with respect to <, then we write N

i<j (resp i j). Obviously, Qo = AW = A(,) and i € AY) if and only if j € Ag,).

According to the Brauer-Humphreys reciprocity formulas (P(j) : A(7)) = [V(i) : S(j)]
and (1(j) : V(3)) = [A(7) : S(7)] (see [3]) the Axiom (2) in the Definition [[2is equivalent to
the analog multiplicities axiom for injective indecomposable and costandard modules. For
any 1-quasi-hereditary algebra (A, <) and all i, j € Q(A) we thus have

. . . . . . . . 1 ifie AV,
(PU): A@) = (16): V) = [A0): SO = V6 500 = { o L (¥

An algebra A is quasi-hereditary if and only if the opposite algebra A% of A related to
the same partial order < on Qo(A%) = Qy(A) is quasi-hereditary. There are the following
relationships between the standard and costandard as well as between the A-good and V-
good modules of A and A% (we denote by D the standard K-duality): For all i,7 € Q,
we have A4 (i) = D(V 400(i)) and [A4(7) : S(J)] = [Vaer (i) : S(j)]. For M € F(A4), it is
D(M) € F(Vyor) and (M : A(i)) = (D(M) : V_400(7)). The corresponding dual properties
hold for V 4(i) and M € §(V _4). The general properties of the standard duality imply that
Axiom (3) and (4) in the Definition are self-dual (see [I, Theorem 5.13]). This yields

the following lemma.

1.3 Lemma. An algebra A is 1-quasi-hereditary if and only if AP is 1-quasi-hereditary.

2. Projective indecomposables and the Ext-quiver

The structure of a 1-quasi-hereditary algebra A is related to properties of the projective indecom-
posable modules, which will be exhibited in this section. This implies that the structure of the
standard A-modules, the quiver etc. is directly connected with the given partial order.



The relationship between the dimension vectors of an A-module M and of the subquo-
tients of M as well as the equation (x) shows that dimension vectors of modules A(j), V(j),
P(7), I(j) and A only depend on the structure of the poset (Qp, <).

2.1 Lemma. Let A= (KQ/Z,<) be a 1-quasi-hereditary algebra and j, k € Qy. Then

dimg P(j) = dimg 1(j) = Z ‘A(k)‘ and
keA()

dimKA = Z ‘A(j)‘Q

J€Qo
(2) [P(j) = S(k)] = [1(j) : S(k)] = [AY n AP,
(3) P(1) = I(1), where 1 = min{Qy, <}.

Proof. (1) The dimensions of A(i), V (i), P(i), I(i) and A we obtain directly from (x).
() The sanion () mples [P S0 Fcro 80 - S = 2 oA

SR+ icnonam [A(E) = S = [AD N A®|. Similarly, we have [I(j) : S(k)] = |AYW N AW,
(3) The Definition [[2] ( ) implies P(1) — I(1). Since dimg P(1) @ dimg I(1), w
obtain P(1) = I(1). D

Any projective indecomposable module over a 1-quasi-hereditary algebra may be con-
sidered as a submodule of P(1) because of Definition [[2 (3) and Lemma 2] (3).

2.2 Lemma. Let A = (KQ/Z,<) be a I-quasi-hereditary algebra, i,j € Qo and M (i) be
a submodule of P(1) isomorphic to P(i). Then

(1) Loc;(M(j)) € Loci(M(i))
(2) Loc;(M(j)) = Loc;(M (7)) if and only if i € AW

In particular, P(i) < P(j) if and only if i € AY), and there exists a unique submodule of
P(j) which is isomorphic to P(1).

Proof. (1) Since Loc;(M(j)) = {(m) | m € M(5);\{0}} for all i,7 € Qy, it is enough
to show M(j); € M(i);. Lemma 2T (2) implies dimg P(1); = dimgx M(i); = |AD|, thus
M(i) € P(1) yields P(1); = M(i);. Consequently, M(j); C P(1); = M(i); for all 4, j € Qo.

(2) Obviously, i € AU if and only if [A® NAW| = |[AD|. In this case we have

Since Loc;(P(1)) = Loc;(M(7)), we obtain that for any submodule N of P(1) with
N = P(i) it holds N C M (i), thus dimy N = dimg M (i) implies N = M (7). Consequently,
M (i) is the unique submodule of M(j) isomorphic to P(i) if i € AY) because of (2). O

2.3 Remark. From now on, for ,j € Qo with i € AY) we consider P(i) as a submodule
of P(j). Since for every F' € Enda(P(j)) with F'(P(i)) # 0 the submodule F(P(7)) of P(j)
is local with top F'(P(i)) = S(i), Lemma 2.2 implies F'(P(i)) C P(i). The submodule P(7)
of P(j) is an End4(P(j))P-module for all i € AU).



2.4 Lemma. Let A = (KQ/Z,<) be a 1-quasi-hereditary algebra and j € Qo. Then

/(ZP(Z’)) and V(j ﬂker ) — 1(3)).

Jj<u

Prof. Since Loci(P()) = (1) | € Bom(P(). PL). £ #0) B2 Lo (P(0), wr
obtain Y ¢cyyom ,(p(s),p()) (f) = P(i) for every i € AY). Moreover, ZKZ P(i ) > i P0),
since for every k€ AU\ {5} there exists i € Qo with j<i < k, thus P(k) C P(i). We obtain

aG) B PG (S0 P0)):
Using the standard duality we have V(j) = (0, ker(1(j) — I(i)). O

Definition (4) shows that any standard module can be considered as a submodule of
A(n). Thus we consider any submodule of A(j) as a submodule of A(n).

2.5 Lemma. Let A = (KQ/Z,<) be a 1-quasi-hereditary, j € Qo. Then M is a submodule
of A(j) if and only if M = Z A(7) for some A C Ay. In particular, Loc;(A(j)) = {A(2)}
ieA
if i € Ay and Loc;(A(j)) =0 if i € Ajy. Moreover, rad A(j Z Al
>

Proof. For every i € )y we have Loc;(A(n)) = {A(4)}, since [A(n) : S(i)] =1 (see Defi-
nition [L2] (2)). If ¢ € Ay, then [A(j) : S(i)] = 1, thus Loc;(A(j)) # 0. Since Loc;(A(j)) C
Loc;(A(n)), we obtain Loc;(A(7)) = {A(i)}. Ifz’ ¢ Agj), then [A(y) : S(i)] = 0, thus
Loc;(A(y)) = 0. Any submodule M of A(j) is a sum of some local submodules of A(y),
thus M = .., A7) for some A C Agj). In particularly, rad A(j) = Ez’e/\(j)\{j} =D iai A0),
since for any k € Ag;)\ {j} there exists i € Qo with k < i<, thus A(k) C A(4). O

2.6 Remark. Since for a 1-quasi-hereditary algebra A the algebra A is also 1-quasi-
hereditary (see [[3]), every statement yields a corresponding dual statement. Lemma
and Lemma, implies that for all j,] € Qp and all i € A¢j) and k € A® we obtain

S(1) = A(i) = A(j) = P(k) = P(l) — P(1) 2 I1(1) - I(l) - I(k) - V(j) = V(i) - S(1).

We are now going to determine the shape of the Ext-quiver of a 1l-quasi-hereditary
algebra (cf. Theorem A (1)).

2.7 Theorem. Let A = (KQ/Z,<) be a 1-quasi-hereditary algebra. In the Ext-quiver
of A the vertices i and j are connected by an arrow if and only if they are neighbours with

respect to <. Moreover, ifi<ij (ori>j) then Ha €@ \i&j}‘ = Ha €@ |jﬁ>i} =1.

Proof. Let j,k € Qo. The number of arrows from k to j is the number of S(k) in
the decomposition of top (rad P(j)) (see [I, Lemma 2.12]). We denote by N(j) the set
{keQolkajtU{keQo|krj}. We have to show top (rad P(j)) = @Djeyy S(k). In
other words, for every k € N(j) there exists L(k) € Locg(P(j)) with

rad P(j) = > yengy L(k) and  L(t) £ Ekte;l(kj) L(k) for every t € N(j).



We denote by SM(A(j)) the set of submodules of A(j) and by SM(P(j) | 2=, P(i)) the set
of submodules M of P(j) with >, . P(i) € M. The function F': SM (P(j) | quiP(i)> —
SM(A(j)) with F(M) = M/ (ZMP(Z')) is bijective (see 2.4). By Lemma for any
k € Ay there exists L(k) € Locy(P(j)) such that F (L(k) —|—ZMP(2’)> = A(k) and
F (ZkeA L(k) + EMP(i)> = Y pea A(k) for any subset A C Ay, since F' preserves and
reflects inclusions. In particular, F'(rad P(j)) = rad A(j) = >, A(k) > ok A(K),
thus
radP(]) = ijkL(k:) + qui P(Z)

Since A(t) £ ZJ;;; A(k), we obtain L(t) € Z;;z; L(k) + >, P(i) for every ¢ with j > ¢.
In order to prove P(t) € >, L(k) + EJ; P(i) for t with j <, it is enough to show the
following two statements: Let M, M’ be some submodules of P(j), then

0 P(t) € M and P(t) € M’ implies P(t) £ M + M,

O P(t) € L(k) for every k with j >k and P(t)  P(i) for every ¢ with j<i # t.
O: For all m € M; and m' € M| we have (m) # P(t) and (m’) # P(t). Since (m),(m') €
Loci(P(j)) € Loc(P(t)) for m,m’ # 0, we obtain m,m' € rad P(t), thus m +m' €
rad P(t). Consequently, Loc,(M+M') = {{m +m') | m € M\ {0} ,m" € M;\{0}} C Loc;(rad P(t))
and hence P(t) £ M + M'.
O: Assume P(t) C L(k) for some j> k. Let G : P(k) — L(k), then L(k) = P(k)/ker(G)
implies the existence of N € Loc;(P(k)) with ker(G) C N such that P(t) =2 N/ker(G).

Since N C  P(t), we have ker G = 0 and P(k) = L(k), a contradiction because for j >k,

it holds P(k) < P(j). For all i,t € Qo with j <i,t and i # ¢t we have P(t) € P(i) by
Lemma 2.2 ]

3. A basis of a 1-quasi-hereditary algebra

From now on A = (KQ/Z, <) is a 1-quasi-hereditary algebra with 1 < i < n for all i € Q.
We use the same notations as in the previous section.

The structure of the quiver of a 1-quasi-hereditary algebra shows that for all j,7,k € Qg
with i € AU N A®) there exists a path

J—= A== A =1 with <A <o <N <0 Tesp.
P—=p ==y —k with i 2 >2--->p >k

called increasing path from j to i, resp. decreasing path from i to j. By concatenating
these, we get a path from j to k passing through i, and we write p(j, i, k) for the image in
A of such path. When ¢ = j = k, the path p(j, j,j) is the trivial path e;. All increasing
resp. decreasing paths (as well all arrows) of the quiver occur in this way: A path of the
form p(j,4,1) is increasing resp. p(i,1, k) is a decreasing path.



3.1 Remark. Recall that the module generated by p(j,i, k) is the image of the A-map
JGiaw - P(k) = P(j) via f(im(er) = p(4,1, k), thus a submodule of P(j) from Loc(P(7)).

(a) Theorem 2.7 implies rad P(j) = >, (j — 1) + >_;; (4 — @) for any j € Qp. Since
(j — i) € Loc;(P(j)), we obtain that (; — i) belongs to the submodule P(i) of P(j) for all
i with j < (see 22). It is easy to see that (j — i) = P(i): Assume (j — i) C P(i), then
(j —i) < EZJ;ZZ/I (J = 1') + > ;5 (4 — ) implies P(i) £ rad P(j) (see O in the proof of 2.7,
a contradiction.

The A-map corresponding to (j — i) with j<i is therefore an inclusion. Consequently the
A-map corresponding to an increasing path p(j, 4, ) provides a composition of the inclusions,
thus f(;i4 : P(i) = P(j). In particularly, for any two increasing paths p and ¢ from j to i we
have (p) = (g), since im(f,) — im(f,) = P(i) (see Z2). Thus (p(j,,1) = (p(7",1,)) = P(i)
for all j,j" € Ag;). Using our notations, we have rad P(j) = >, P(i) + Z]Dk (p(7,4,k)).

(b) A path p(j,14, k) is the product of p(i,i, k) and p(j,14,1), therefore using (a) we have

fiGiw) @ P(k) P(i) < J”) P(j). Hence the module (p(j,i,k)) may be considered as a

submodule of P(i)(C P(j)) from Locg(P(i)). In particular, it is easy to see that for all

J, k € Qo we have (p(j,n,k)) = A(k) because A(k) is the uniquely submodule of P(n) =
)

A(n) from Locg(P(n)) (s elm)

3.2 Theorem. Let A = (KQ/Z,<) be a I1-quasi-hereditary algebra and j, k € Qqo. For
any i € AV AR we fiz a path of the form p(j,i,k). The set

{p(j,i,k) | i€ AW NAW} is a K-basis of P(j).

Fii,k)
S

In particular, B; := {p(j,i, k)|lie AV, ke A(i)} is a K-basis of P(j) for any j € Qo and
B = {p(j.i, k)| j k€ Qo, i € AVNAW} is a K-basis of A.

The chosen paths p(j,i, k) for all i € AW N A®) are symbolically repre-
sented in the picture to the right (a path p(j,4, k) is not uniquely deter-
mined). Theorem shows that for any path p in A, which starts in j

and ends in k there exist ¢; € K such that p = Z ¢i-p(Jg,i, k). In
1eANGNAK)
other words p — Z ¢;i - p(j,i,k) € T (here p and p(j, i, k) are paths
ieAGNAK)

in Q). Using general methods any relation in Z can by transform in this
form (see for example [II, Section 11.2, I1.3]).
Part (2) of Theorem A follows directly from

The proof of the Theorem is based on the statements of the following lemma. Recall
that for i € AY) we consider P(i) as a submodule of P(j) (see Z.3).

3.3 Lemma. Let A = (KQ/Z,<) be a 1-quasi-hereditary algebra and j,k € @Qo. Let
0OC---Cc D CDC---C P(j) be a A-good filtration of P(j), where D/D’ = A(i) for
some i € AU N AR, Then we have the following:

(1) D=P@i)+ D',
(2) D' C (p(4,i,k)) + D" C D for any path of the form p(j,i,k).

8



In particular, there exists a subset A of AU with D = Z P(i).

iEA

Proof. (1) Let 0 = D(r+1) C D(r) C --- C D(1) = P(j) be a A-good filtration with
D()/D(l+1) = A(4) for all » <1 < 1. There is some local submodule L({) of P(j) with
top isomorphic to S(i;) such that D(I) = L(I) + D(I +1). Definition 2 yields 4, € AY) and
therefore L(1) C P(i;) C P(j) (see22). We obtain D(I) = L(I)+D(l+1) C P(i;)+ D(I+1)
for all 1 <1 <r. In order to show D(l) = P(i;) + D(l + 1), we have to show P(i;) C D(I).

Assume P(i;) € D(l). There exists t € {1,...,l — 1} with P(4) C D(t) and P(i;) €
D(t+1) and hence D(t+1) C P(i))+D(t+1) C D(t). We show now P(i;)+D(t+1) = D(t),
this then implies D(t)/D(t+1) = A(i;) = A(4;) and hence (P(j) : A(7;)) > 2, a contradiction
(see Definition [[.2).

Since 0 # P(i;)/ (P(i) N D(t+1)) — D(t)/D(t + 1) = A(i), the standard module
A(i;) has a local submodule with top isomorphic to S(i;). Thus [A(i;) : S(4)] # 0 and

,
hence i, € A®@ and therefore L(t) C P(i;) C P(i;) (see 22). Consequently, D(t) =

L(t)+ D(t+1) C P(i;) + D(t+ 1) C D(t). We have P(i;) + D(t + 1) = D(t).

Via induction on r — k we obtain D(k) =" _, P(iy,) for any 0 < k <r.

(2) By Lemma 2.4] and (1), since D/D" = P(i)/(P(i) N D') = A(i), we obtain P(i) N
D" = ., P(l). Because (p(j,i,k)) is a submodule of P(i) C P(j) (see BI(b)), it is
enough to show (p(j,i,k)) € > ., P(l). This implies (p(j,4,k)) € D’ and consequently
D" c (p(j,i,k))+ D' C P(i)+ D' = D.

Let i > k, then p(i,i,k) = (1 = k). We have (p(i,i,k)) € >, P(l), since rad P(i) =
Yook (P(3, k) + >, P(l) (seeBI(a)). To deal with the general paths we consider maps.

5.1, fiix)), we have im (P(k;) Taiw P(i) 5 P(i)/ (X.y P(l))) £ 0.

im
Since im (10 fuim) € P(i)/ (X PU)) 2 A(i) and Locy(AG1) 22 {A(K)}, we obtain
im (7ro f(m,k)) = A(k). Lemma 2.4 implies ker (7ro f(i7i7k)) = quj P(7). This implies a
commutative diagram

. =

Because (p(i, 1, k))

P(k) RLLL N P(i)
{ Im
P(k)/ (ZP@)) en o piyy (ZP@))
k<j i<l
A(k) A(d)

The map f; ;) is an inclusion, since f; ;) # 0.
Now let ¢ > k with ¢>1; >---> [, > k. Inductively we obtain the commutative diagrams
for the path p(i,i, k) = (i = 1 = -+ = by = k) = p(lny lin, &) - p(ln—1, b1, L) - - - (4,4, [1)

f 1:'m—1:'m 1.01,l2 i,1,lq .

P(k:) Sl tm k) P(lm) (U1l m) Fayiq.19) P(ll) Feiity) P(z)
{ 4 4 iy
A(k) s A(ly) s e s A(ly) s A7)

For the maps fuik) = faan) © fi i) © 0 fmtmp and w2 P(@) = P(i)/ (30 P(I')) =
A(i) we have im (7o fzir) # 0, thus im(fu.r) = (p(i,4,k)) € 3, P(1). Therefore

i1 fiiai . . .
fiGiw = P(k) gy P(7) g P(j) shows that the submodule im(f(;;x) = (0(j,4,k)) of



P(i) C P(j) is not the submodule of >, , P(l). O

Proof of the theorem. Let §:0= D(r+1) C D(r) C --- C D(1) = P(j) be A-good,
then {D()/D(U+1) |1 <1< r} EB IA@) i € ADY. Let {ir,...,in} = AD 1 A® such
that §: 0 C D(ipy +1) C D(ipy) € -+ € D(ia+ 1) C D(is) € D(iy + 1) C D(i1) € P(j)
is a subfiltration of § with D(i)/D(i; + 1) = A(4;) for 1 < ¢ < m. By Lemma 3.3 (2) the
filtration § can be refined to

0 C D(im+1) C D, im, k) + D(ip, +1) C D(ip,) C - -

C D(i2+ 1) C (p(j, iz, k)) + D(i2 + 1) € D(i2)
C D(ir+1) C (p(j,ir, k) + D(ir + 1) € D(in) € P(j)
Therefore p(j,i1,k),...,p(J, im, k) are linear independent in P(j);. Since m = }A(j) N A(k)}

21z dimg P(j), the set {p(j,i,k) | i € AV NAP®} is a K-basis of P(j)y.

Because (¢, {p(j,i,k) | i € AW NABY = {p(j,i, k)| i€ AV, k€ Ay}, the set B;

is a K-basis of P(j). O
. ‘ [B.Tkv) 2.2
3.4 Remark. Let j € Qg and i,l € AY) with [ € AW, then p(j,[,k) € P(l) C

P(i) C P(j) for all k € Ay. We obtain that the set
B;(i) == {p(j,l,k) | L € A, k€ Ay} is a K-basis of the submodule P(i) of P(j),

since dimg P(7) 2.1 N A(l)’ = |B;(7)| and B;(¢) is a subset of B; defined in It
is easy to check that for all subsets I't,T'y of AW and I'y 5 := (U;ep, A?) N (Ujer, AY) the
set (Uier, B5(i) N (Uier, Bi(@) = User, , B, (i) is a K-basis of the submodule

(Xier, P@) N (Zier, P(0) = Xier,, P(1) of  P(j).

4. Good filtrations

In this section, we show the relationship between the Jordan-Holder filtrations of V(j) and A-good
filtrations of P(j) resp. the Jordan-Holder filtrations of A(j) and V-good filtrations of I(j) over
a l-quasi-hereditary algebra (A, <). The sets of these Jordan-Holder filtrations resp. good filtra-
tions are finite and related to certain sequences of elements from A ;) resp. AY) which depend on <.

For any i € A(;) we can consider the standard module A(i) as a submodule of A(j) and
V(i) as a factor module of V(n) (see [L2(4)). We denote by K(j) the kernel of the map
V(n) - V(j). We have &(j) C R(¢) if and only if i € Ay (see [20).

4.1 Proposition. Let A = (KQ/Z,<) be 1-quasi-hereditary, j € Qo, r = ‘A(j)‘ and

T() = {i=(ir,d2,.. .. 1) | im € Agyy, i Z i, L <k <t <r}. Then the following func-
tions are bijective:
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(1) S : T(j) — {Jordan-Hélder-filtrations of A(j)} with
S(#E): 0=J0)cJA)C---CJ(t)C---C J(r) such that J(t iA
Morcover, J(8)/J(t — 1) 2= S(ir) for 1<t <r. "

(2) 8 :T(j) — {Jordan-Hélder-filtrations of V(j)} with
S(i): Jr)yc---cI@t)c---cIA) cI0)=V() such that J(t) <ﬂ5ﬂm>

Moreover, J(t—1)/3(t) = S(iy) for 1<t <r.

Proof. (1) By definition of 7 (j) for ¢ = (i1,...,4,...,4) € T(j) we have A\ {i,} C

{i1, ..., 01}, thusrad A(i;) ZK% A(l) CJ(t—1)foralll <t <r.Forle {iy,... i;—1}

we have [A(l) @ S(i)] 0, since [ 2 i;. Because [A(i;) : S(iy)] = 1, we have A(iy) €

J(t —1). Hence J(t)/J(t — 1) = A(ir)/ (A(iy) N J(t — 1)) = A(iy)/rad A(i;) = S(i) for
every 1 <t < r. The function § is well defined and injective.

Let F: 0= M(0) c M(1) C --- C M(r") = A(j) be a Jordan-Hélder-filtration of
A(j) with M(t)/M(t — 1) = S(i;) for all 1 < ¢ < 7'. Then 4, € A(;) and 7’ ’A(j)} =r.

There exists A(t) C A with M(t) > ieaw A(4) for any 1 < ¢ < r. By induction

on t we can show A(t) = {i1,... 4} with i, 2 i, for 1 < k < v < ¢: Let t = 1, then

zyﬁy:Aa)Qﬁa)A<)sm&wwg+1yM() S(is1), we obtain A(is) € M(t + 1)
and A(iz41) € M(t), because Loc;, ., (A(j)) L {A(zt+1)}. Thus M(t+1) = M(t)+ A(iy11)
and | 2 i,yq for all [ € {iy,...,4}. This implies F = S(iy,...,1,), i.e. the function S is
surjective.

(2) Since A% is also 1-quasi-hereditary (see[[3), by duality the function S is bijective. [

In a similar way, we can determine all A-good filtrations of P(j), resp. V-good filtrations
of 1(j), for every j € Qy. For any i € AY) we continue denotind by P(i) the projective
submodule of P(j) with top isomorphic to S(i) and by K(j) we denote the kernel of the
map P(1) — I(j) (see 26). Obviously, it is (j) C K(i) if and only if i € AU).

4.2 Proposition. Let A = (KQ/Z,<) be a 1-quasi-hereditary algebra, j € Qo, = }A(j)}
and L(j) = {'i: (i1,02, ...y 0) | Gm € AV, Gy Zdy, 1<k <t < r}. Then the following
functions are bijective:

(1) 2 : L(j) — {A-good filtrations of P(j)} with
2(@): 0=D(r+1)CD(r)C---CD(t)C---CD(1) such that D(t) := Zr: P(in).

Moreover, D(t)/D(t+ 1) = A(i;) for every 1 <t <r.
(2) N : L(j) — {V-good filtrations of I1(j)} with

N (3): N(1)C---C N(t) C---C N(r) C I(j) with N(t) :(ﬂm%>
Moreover, N(t +1)/N(t) = V(i) for every 1 <t <r.

11



Proof. (1) By definition of £(j) for 4 = (i1,...,4,...,4.) € T(j) we have AN\ {i,} C
{iss1,....4,} for any 1 < ¢ < r. We obtain B;(i,) N (U,_ry1 Bilim)) = U;,; B;(),
using the notations from 5.4l Therefore P(i,) N D(t + 1) = >, _, P(i) = >, ., P(i) and

consequently D(t)/D(t 4+ 1) = P(iy)/ (3, 4 P(i)) [Q:E]A(it). The filtration 2(%) is A-good
and ¥ is injective.

Let F:0C D(r') C --- C D(1) = P(j) be a A-good filtration, with D(¢)/D(t + 1) =
A(iz), then ' = r = |[AY| and D(t) = Y, _, P(i) (see Lemma B3). The inclusion
D(t) € D(k) implies P(i) € P(i;) for k < t. Hence i 2 i; for all 1 <k <t <r (see 22)

(2) follows from the properies of the standard duality D. O

The definitions of 7 (j) and L£(j) yields T (n) = £(1). Comparing the compositions fac-
tors of the filtrations corresponding to % € 7 (n), we obtain that the Jordan-Hélder filtration
S(i) of V(n) induces the A-good filtration 2(i) of P(1). Thus all A-good filtrations of
P(1) can be represented in a diagram whose shape coincides with the submodule diagram
of V(n). Moreover, any sequence from L(j) can by completed to a sequence of £(1), thus
all A-good filtrations of P(j) are part of this diagram for every i € ()y. Analogously, the
submodule diagram of A(n) and the diagram of all V-good filtrations of I(1) has the same
form (for the illustration of this see Example 4 of [9]): For ¢ = (i1,...,im,... i) € T(n)
we have the following relationship between the Jordan-Holder filtrations of A(j) and A(n)
(resp. V(j) and V(n)) as well as A-good filtrations of P(j) and P(1) (resp. V-good filtra-
tions of I(j) and I(1)). The factors of the filtrations S(4) and A (3) (resp. S(é) and 2(3))

are labeled by the same vertices (as indicated above the corresponding filtration):
s(1) S(it) S(n)

— —_— —_—
S(): o0cJ)c---cJit—-1)cJt)cC---CJ(n—1)C J(n)=A(n) for (i1,...,it) € T(J),
filtration of A(j)
S(n) S(it) S(1)
SE: IJn)cIn-1cC---CcJH)cIJt—-1)c---CJ(1)cCcJI0)=V(n) for (i1,...,i:) € T(J),
filtration of V(j)
A(n) A(ie) A(1)
— —_— —_—~
2(i): 0cDn)C---CDEt+1)cCD(t)cC---CD(2)c D(1)=P(1) for (it,...,in) € L(J),

A-good filtration of P(j)

V(1) V(ir) V(n)
A(3) N(I)CN@2)C---CNEt)CN(Et+1)C---CN(n)CNn+1)=I(1) for (i,...,in) € L(j),

V-good filtration of I(j)

Let A C Qp and A := Uica A® . We can always construct a sequence (iy, ..., 4, ..., i) €
L£(1) with {i;,...,i,} = A. For any k € A there exists ani € A with i < k, thus P(k) C P(i)
and consequently >, P(l) = >, P(j)-

4.3 Corollary. Let Ay and Ay be some subsets of Qo with Ay C Ay. Then for the submod-
ules My := Z P(l) and My := Z P(l) of P(1), it is My C My and My/Msy € F(A) (resp.

leA leAs
for Ny = ﬂ K(l) and Ny := ﬂ K(l) we have Ny C Ny and Nyo/Ny € F(V)) with
lehA leAs
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1 ifk € A\Ay,

(My/Ms = A(k)) = { 0 olse L if ke A\Ay,

and (NQ/Nl . V(k)) = { 0 else.

Proof. We can construct a sequence & = (i1, ..., 0,0, ---,in) € L(1) such that
{ity, .. in} = A, for v = 1,2. In the A-good filtration Z(¢) of P(1) we have D(t,) =
S, P(i) = M, and a A-good filtrations of M, for v =1,2

o 2(i):0C D(n) C---CD(tx) C---C D(ty) C---C D(1) = P(1).

~
A-good filtration of Ma

N J/

TV
A-good filtration of M;

Since Ay C A;, we have M, C M; and M, /My € §F(A) because the induced filtration
D(ty)/My C D(ty — 1)/My C --- C D(t1)/M;y is A-good. The properties of the filtration
2(i) implies (M, : A(l)) = 1 for all [ € A, and (M, : A(l)) = 0 for all I € Qo\A,, here
v=1,2. Thus (My/Ms: A(k)) = (M, : A(k)) — (My : A(k)) implies the statement.

The dual statement follows by dual argumentation. 0

For every quasi-hereditary algebra A, the category §(A) is a resolving subcategory of
mod A (resp. §F(V) is a coresolving subcategory of mod .A), i.e. the category F(A) is closed
under extensions, kernels of surjective maps and it contains all projective A-modules (resp.
§(V) is closed under extensions, cokernels of injective maps and contains all injective A-
modules) (see [I0, Theorem 3 (resp. Theorem 3*)]).

Using this fact, when dealing with 1-quasi-hereditary algebras we can determine all local
modules in F(A) resp. colocal modules in F(V).

4.4 Corollary. Let A = (KQ/Z,<) be a I-quasi-hereditary algebra, j € Qo and M, N be
A-modules with top M = S(j), soc N = S(j). Then

(1) M € F(A) if and only if M = P(j)/ (Z P(z)) for some A C AW\ {j}.

(IS

(2) N € §(V) if and only if N = <ﬂ lC(z)) JK(5) for some A € AW\ {j}.

iEA

Proof. (1) The filtration 0 C ker (P(j) - M) C P(j) can be refined to a A-good
filtration 2(3) for some ¢ € L(j), thus ker (P(j) - M) = >",_, P(i) for some A C AU).
Since M # 0, we have j € A. The other direction follows from Corollary (4.3l

(2) is the dual statement of (1). O

4.5 Remark. If for all j € Qg and all i € AU), and any two paths p, ¢ of the form
p(j,%,4) it is p = ¢ and any two paths p’, ¢’ of the form p(i,i,j) it is p' = ¢, then the
algebra B(A) = KQpa)/Ip) given by the quiver Qpy = (Qo, {(j = 1) € Q1| j <i})
with all commutativity relations and the partially ordered set (Qo, <) is a (strong) exact
Borel subalgebra of A and C(A) := B(A)? is a A-subalgebra of A in the sense of Konig
(see [K]). The structure of the A-module A(j) corresponds to the structure of Po(a)(j) (this
also holds for V(j) and Ip(4y(j)). In this case is a consequence of [8 Proposition 2.5]
and [.T1

All known 1-quasi-hereditary algebras have exact Borel and A-subalgebras. We conjec-
ture that this is in general the case.
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5. The characteristic tilting module

For any quasi-hereditary basic algebra (A, <) the full subcategory F(A)NF(V) of mod A consisting
of all A-modules which are A-good and V-good is determined by the so called characteristic tilting
module T4 of A defined by Ringel in [I0]: For any i € Qo there exists an (up to isomorphism)
uniquely determined indecomposable A-module T4(7) in F(A)NF(V) with the following properties:
For j £ 1 it is (Ta(1) : A(j)) = (Ta(i) : V() = [Ta(i) : S()) = 0 and (Ta(i) : AG) = (Ta) -
V(i)) = [Ta(i) : S(i)] = 1. Moreover, there exists a submodule Y4(i) € §(V) of T4(i) with
Ta(i)/Ya(i) = V(i) (resp. a factor module X 4(i) € F(A) with ker(T4(7) - Xa(i)) = A(7)). The
A-module T4 is isomorphic to €B,c, T'a(i). Moreover, any module in F(A)NF(V) is a direct sum
of some copies of T)4(1).

We recall the notations and properties of some factor algebra of a quasi-hereditary algebra
A = (KQ/Z,<), which will be used later: Let A be some saturated subset of Qo (i.e. if
v € Aand k € Qo then k < v implies k € A), by J(A) we denote the ideal A(3 ;0\ €i1)A
of A. For the quiver Q(A) of the factor algebra A(A) := A/J(A) we have Qo(A) = A and
Qi(A) ={(i—>j)e@i]i,jeA}. Al paths p = (k1 > ko — -+ = kyp,) in A with & & A for
some 1 <t < m span J(A) as a K-space. Moreover, all A(A)-modules can be considered as the
A-modules M with [M : S(i)] = 0 for all i € Qo\A. The projective A(A)-module P4y (7) is iso-
morphic to the A-module P(i )/J( ) (¢) for every i € Qo(A). In particular, the algebra (A(A), <)
is quasi-hereditary with A(i) = A (@) and V(i) = V 4p)(i) for all i € A (see [6]). We have
F(A4n)) € S(A) (resp. F(V.an ) S(V)) and T4p) is a direct summand of T4 (more precisely

Tacn (i) = Ta(i)).

Let A = (KQ/Z,<) be a 1-quasi-hereditary algebra with 1 < i < n for all i € Qy. Since
2.1
P(1) = I(1) admits A-good and V-good filtrations with X (n) = P(1)/P(n) € §(A) and
Y (n) =ker (P(1) - I(n)) € §(V) (see @), we have P(1) = T'(n). PN
We fix i € Qy. The factor algebra A(i) of A is defined as follows: SN\
/j/ il% ! \t\
17 e e
A(i) == AJJ(i) where J(i):=A[ Y ¢ |A WA
JEQ\A() g
\*f\l\\k\{w/
For the quiver Q(i) of A(i) we have Qo(i) := Ay and Q1(i) :== {(j = k) € Q1 | j,k € A }.

5.1 Theorem. Let A = (KQ/Z,<) be a I1-quasi-hereditary algebra and i € Qq. The
following statements are equivalent:

(i) A(i) is 1-quasi-hereditary,

@) T = P/ [ S0 Py |, (@) T() = () ker(I(1) - I(D)),

1€Qo\A) 1€Qo\A ()

(i1i) socT'(i) is simple, (i3i’) top T'(i) is simple.

The subset A;) of Qg is saturated, thus (A(7), <) is a quasi-hereditary algebra. The proof
of this theorem is based on some properties of projective A(i)-modules, which we consider
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in the next lemma. For A(7)-modules resp. paths we use the index (7). It should be noted
that for any [ € A(;) a path p(j,[, k) runs through some vertices from A; (see Sec.3).

5.2 Lemma. Leti € Qy and (A(i), <) be defined as above. Then the following statements
hold for any j € Qo(7).

AT A\
Lo
@ Po = PO | 3 PW)| and 0
IEAGN\A ;) SN
{p(i)(j, LE)|le AN Ay, k€ A(l)} is a K-basis of Py)(j), ,'7;1\(“
(b) Py(i) = Piy(1), Ii(1) = Iy)(5), E(i:f:/“Am Ao
(¢) (Piy(j) : Dy(k)) = [Awy (k) : Sy (G)] = 1 for all k € AD 0 Ag. "x\\jj/

Proof.(a) Since Py)(j) = P(j)/(J(i)P(4)), it is enough to show J(i)P(j) = ZleA(j)\A(i) P(1).
Theset {p(j, 1, k) | 1 € AO\Ay), k€ AgyU{p(, k) |1 € ADNAG, ke Ay} isa K-basis

-~ -~

Bi:= Bo:=
of P(j) (see B.2). Any path starting in j and passing through some [ € Qo\A(;) belongs
to spany B;. Thus By = UleA(j)\A(i) B,(l) is a K-basis of J(i)P(j) and of the submodule
ZleA(j)\A(i) P(l) of P(j), in the notation of B.4 We have J(i)P(j) = ZleA(i)\A(i) P(l) and
{p(i)(j, Lk)|p(jl k)€ BQ} = {p(i)(j,l, k)|le AV N A(i), k e A(l)} is a K-basis OfP(i)(j).
(b) We have P(j)N (Zler\A(i) P(l)) = Zle/\u)\/\(i) P(l), according to 3.4l for the subsets
Fl = A(j) and FQ = QO\A(Z) of QO = A(l) Thus

P(.i)/( > P(l))N(P(J‘)Jr > PU))/( > P(l)) CP(U/( > P(l))-

lGA(j)\A(i) lGQo\A(i) IGQO\A(Z') IGQO\A(i)

Py (4) Py (1)
Therefore P;)(j) can be considered as a submodule of F;)(1) for any j € A,.
Any projective indecomposable A(i)°’-module can by embedded in the projective inde-
composable A(7)°’-module corresponding to the minimal vertex 1 because A% is 1-quasi-
hereditary and A% (i) = A(i)°?. Using duality, we obtain I;) (1) — I1;)(j).

(c) Since A(k) = Ay (k), we have [Ag) (k) : Sqy(5)] 1 for all k € AW N Ag). For the

sets Ay = AU = A, and A, = A(j)\A(Z-) = A, (in the notation of@) we have M; = P(j)
and M2 = ZlEA(j)\A(i) P(l) Thus (Ml/MQ : A(”(k)) =1forall k € Al\AQ = A(j) N A(z) O

For all j € Qo(i) it is 1 < j < 4 and Ay)(j) = A(j) as well as V(;(j) = V(j), thus
Aiy(j) = A (i) and V(1) = Vy(j) (see 2.8). The foregoing lemma shows that the
axioms of a 1-quasi-hereditary algebra are satisfied for (A(7), <) if and only if if and only if
P (1) = i (1).

5

Proof of the theorem. Let i € (Qy. Since soc A(7) = S(1)foralli € Qpand T'(i) € F(A),

we obtain socT'(7) = S(1)™ for some m > 1.
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(i) = (1) If A(4) is 1-quasi-hereditary, then P (1) = I;(1) is isomorphic to T;) (i),
since ¢ is maximal in Qo (7). The A-modules 7{; (i) and 7T'(7) are isomorphic. Lemma [5.2] (a)

implies 7)) = Py (1) = P(1)/ (Liequa,, PU >)

(i1) = (i19) Since socT' (i) = S(1)™ = V(1)™ and T'(i) € F(V), the filtration 0 C
socT'(i) C T'(i) can be refined to a V-good filtration of T'(i) since §(V) is coresolving. We
have (T(i) : V(1)) = (socT(i) : V(1)) + (T'(i)/socT(i) : V(1)). It is enough to show
(T'(i) : V(1)) = 1, this implies [soc T'(i) : S(1)] = (socT(i) : V(1)) =m = 1.

Since T'(i) 2 P(1)/ (Ezego\% P(l)), P(1) € §(A), the filtration 0 € 3.0, P()
P(1) can be refined to a A-good filtration Z(1) for some & = (i1,...,4,...,1,) € L(1)
(see 2). There exists 1 <t <n with D(t+ 1) = Zler\A(i) P(l). Thus (T'(7) : A(y)) =1
for j € {i1,...,4} and (T'(d) : A(j)) = 0 for j € {it—1,...,in}. In the notation of €3 for

Ay = Qo and Ay = Qo\A(;) we obtain T'(¢) = M, /M, and (T'(i) : A(j)) = (1) ieflsjeé A,
Hence Ay = {i1,...,4}. Since i 2 i, for 1 < k < v < ¢, we have (iy,...,%) € T(4)
(see dT]). Thus i; = 1 and i, = 1.

Let now A : 0= N(r+1) C N(r) C --- C N(1) = T(i) be a V-good filtration with
N(v)/N(v+1) = V(j,) for every 1 < v < r. We have to show {iy,...,4;} C {j1,...,Jr}

Then the filtrations Z(¢) and .4 as well as dimg A(j) |gl:ldim;( V(j) implies

dim 7(i) = Z dimye A(j) = Z dimg V(j) + Z  dimge V().

J

In other words, this implies {i,...,%} = {j1,...,j-} and t = r. Consequently, for all
j €{i1,..., it} we obtain (T'(:) : V(j)) = 1 and therefore (T'(z) : V(i1)) = (T'(3) : V(1)) = 1.

We show this by induction on ¢ — w: If w = 0, then i = 4, € {ji,..., .}, since
(I'(i) : V(i)) = 1 by the properties of T'(i). Assume by, it (w—1),-- -, € {J1,---,Jr}-
For the k-th coordinate of the dimension vector of 7'(i) we have

[TG): S(k)] = S A SEI+ D [AG)  S(R)] (A-good fitration 2(3))

ledis, it (wi)} JE€{lt—w,ensit}

— Z [V(]) . S(k’)] —+ Z [V(]) . S(kf)] (V—good filtration JV)

G€{i1 e mir} G it—ynit}
JE{it—apse-rit} v

Let X(k) = > e, it_(w+1)}[A(l) : S(k)] and Y(k) := Zjéi{ilj:}}[V(j) . S(k)] for

k € Qo. Since [A(j) : S(k)] = [V(j) : S(k)] for all j,k € Qo (see Sec.1 (x)), we obtain
X(k) = Y(k) for all k € Qo. By definition of 7 (i) for (i1,...,% (wt1),-.-,%t) € T (i)
we obtain i1, ..., 40— (1) & AW\ {3, 0y} Thus X (k) 0 =Y(k) for all k €
Ali=Gorn)\ {it,(wﬂ)}. We obtain {71, ..., 5 P\{ft—w, - . ., 3} € AGt—twsn)\ {it,(wﬂ)}. More-
over, for k = 4;_(y41) we have X (k) # 0 since [A(k) : S(k)] = 1, therefore Y (k) # 0. There
exists j € {j1,. -, Jr P\{tmws - -+ i} with [V(4) © S(it—win))] = 1, hence j € Ali-win),
Thus j & A1)\ {it_(w+1)} and j € AG-w+)) implies j = Bt—(wt1) € {1+ Jr

(17i) < (i7") The socle of T'(i) is simple if and only if 7'(i) is a submodule of I(1).
The filtration 0 C T'(i) C I(1) can be refined to a V-good filtration .4'(é) for some
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T = (i1, 0ty i) € L(1) (see E2) There exists 1 < t < n with T'(i) = N(t) =
N7, ker(I(1) — I(iy)) and (T(i) : V(j)) = { (1) ﬁj 2 g; :;2}1_}’ We know that 7T/(4)
satisfies (7'(¢) : V(j)) = 0 for all j € Qo\Aw and (T(7) : V(j)) # 0 implies j € Ap).
Since i1,...,5-1 € Ay and @ & {i,...,1,}, we obtain Ay N {4,...,i,} = 0. Therefore
{it, . e ,Zn} == Qo\A(Z)

(17") = (7ii") The dual argumentation of (i) = (ii).
(17i") < (i) The dual argumentation of (iii) < (i7').
(13i) = (i) If socT(i) = S(1), then (ii) = (ii') = (id') = (i) implies T'(i) =
1

5.2a)
P(1)/ (ZZEQO\AU) PU)) = Pu)(1). Sincesoc Py (1) = S(1) and dimg P (1) = dimg I(;(1)
(see Brauer-Humphreys reciprocity formulas and Lemmab.2 (¢)), we obtain P (1) = I(;(1).
Therefore the algebra A(i) is 1-quasi-hereditary. O

5.3 Remark. If i € Q) is a neighbor of 1 (i.e. 1<), then for the A(i)-module Fp;)(1)

we have rad P;)(1) = P (i) = Agy(i) = A(i) because 0 C FPp)(i) C Py)(1) is the uniquely
determined A-good filtration of P;)(1). Therefore soc Py (1) = S(1) and consequently
A(7) is l-quasi-hereditary. Theorem [l implies that for any 1-quasi-hereditary algebra
A= (KQ/I,<) with1 <i<nitis:

o T(1)=A(1)= V(1) = S(1),
e T'(n) = P(1)x=I(1),

e T(i)=P1)/[ > PG| () ker(P(1) - I(i)) for any i € Qo with 1<i.
jEQO\{Li} jGQo\{l,i}

An example of a 1-quasi-hereditary algebra A such that for some i € Qy(A) the algebra
A(17) is not 1-quasi-hereditary can be found in [9].

6. The Ringel dual of a 1-quasi-hereditary algebra

The concept of Ringel duality is specific to the theory of quasi-hereditary algebras (see [10]): For
any quasi-hereditary (basic) algebra A the endomorphism algebra of the characteristic tilting .A-
module T4 is called the Ringel dual of A, denoted by R(A) [i.e. R(A) = Enda (T4)]. Since
the direct summands of T4 are pairwise non isomorphic, R(A) is a basic algebra. The vertices in
the quiver Q(R(A)) may be identified with the vertices of Q(A) [T'(i) «~ i]. The algebra R(.A)
is quasi-hereditary with respect to the opposite order on Qo(A). Furthermore, R(R(A)) and A
are isomorphic as quasi-hereditary algebras. The functor % 4)(—) := Hom4(T4, —) : mod A —
mod R(A) induces an equivalence between §4(V) and Fp(4)(A) and for any i € Qo(A) hold

Ra)(Va(i) = Apuy(i),  Za)(Ta(i)) = Pray(i), Za)(La(i)) = Tra)(i)-

Applying Z(4)(—) to an exact sequence 0 — M’ — M — M" — 0 in mod A with M', M, M" €
F(V) yields an exact sequence in R(A) and (M : V(i) = (Za)(M) : Ag(a)(i)) for all i € Qo(A).

The next theorem shows that the class of 1-quasi-hereditary algebras is not closed under
Ringel-duality (ct. Theorem B).
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6.1 Theorem. Let A= (KQ/Z,<) be a 1-quasi-hereditary algebra with 1 < i < n, then

R(A) is 1-quasi-hereditary if and only if T(i) = P(1)/ Z P(l) | for any i€ Q.
1€Qo\A )

Note that the Ringel dual of a 1-quasi-hereditary algebra is 1-quasi-hereditary if and
only if the equivalent conditions of Theorem [5.1] are satisfied.

We now consider some properties of R(A) for a 1-quasi-hereditary algebra A. The
vertices in Qo and Qo(R) will be identified. By <(z) we denote the partial order on Qy(R),
it means ¢ < j if and only if j <(g) i. Obviously, {1} = max {(Qo(R),<(r))} and {n} =
min { (Qo(R), <(r)) }. For the R(A)-modules we’ll use the index (R).

6.2 Lemma. Let A = (KQ/Z,<) be a 1-quasi-hereditary algebra. Then, for the Ringel
dual R(A) = (KQ(R)/I(R), <(R)) 1t 18:

(a) Plry(n) = Imy(n) = Tiry(1).
(b) Ay (i) = Awry(@) if and only if V(r)(i) > V(r)(j) if and only if j <(r) i
(c) soc Pr)(i) = top I(g) (1) = Sry(n) if and only if socT'(i) = S(1).
(d) [Aw(5) - Siry(i)] =1 fori <(w) j, if topT(i) = S(1).
Proof. (a) Using [[.3] and B3] we have I(1) = T'(n) resp. Laor(1) = Tyor(n). By applying

R ay(—) resp. D (Zaor)(—)) we obtain Tig)(1) = Pgy(n) resp. T(r)(1) = D(Tgeaor)(1)) =
D(PR(Aop)(n)) = I(R) (n) since R(AOp) = R(A)Op. Thus P(R)(n) = T(R)(l) = I(R)(n).

(b) There exist an exact sequence ¢ : 0 — & — V(j) — V(i) — 0, where & = kern
if and only if ¢ < j (see 28)). By applying Z)(—) to { we obtain an exact sequence

=

0 — Homa(T,R) = A (j) = A (i). Since topV(k) = S(1) and [V(k) : S(1)] =1
for all & € Qg (see Sec.1 (x)), we obtain topT € add S(1) and [R : S(1)] = 0. This implies
Hom (T, 8) = 0 and consequently Ag)(j) = Ar)(4) if and only if ¢ < j (ie. j <(g) ).

The algebra A is 1-quasi-hereditary, thus A(R( aor)y (7)) = A(gaory (i) if and only if
J <(r) @ Using duality, we have V(g)(i) = V(g)(j) if and only if j <(g) 1.

(c) "<=" Since socT'(i) = S(1), we have T'(¢i) — I(1) = T'(n). Thus we have an exact
sequence £ : 0 — T'(i) — T'(n) — T(n)/T(i) — 0 with T'(¢),T(n) and T'(n)/T(i) € F(V),
since §(V) is coresolving. Applying Z(a)(—) to £ yields an exact sequence 0 — Pp)(i) —
Piry(n) = Za)(T(n)/T(i)) — 0. Hence (a) implies soc Pg)(i) = S(r)(n).

According to Theorem B.] and top7'(i) € add(S(1)), we obtain that socT'(i) = S(1
imlies top T'(i) = S(1). Thus soc D(T'(i)) = soc Taor (i) = S(1) and therefore soc Pr(aor) (%)
Sr)(n). Using duality, we obtain top I(g)(i) = Sg)(n).

":>” Let socT'(i) = S(1)™ [we know socT'(i) € add(S(1))]. Since T'(i), I(1)™ = T'(n)
and N := T'(n)™/T(i) € §(V), applying Z(4)(—) to the exact sequence § : 0 — T'(i)
T(n)™ — N — 0 yields an exact sequence 0 — Pp)(i) = Fgr(n)" — Za(N) —

T

=

\-/ﬂ
o | 3

he
S(1):

(a)
It is sufficient to show that Pigr)(n)™ = Ig)(n)™ is an injective envelope of Pg)(i
assumption soc Ppy(i) = S(ry(n) implies then m = 1 and consequently soc7'(7)

~—

1%
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m

Assume Pgy(n)™ is not an injective envelope of P(g)(i), then Pgy(n) is a direct sum-

(a)
mand of Z4)(N). Since Pgy(n) = T(r(1) and (Tir)(1) : Ar) (1)) = 1, we obtain
(Z(4)(N) : Ary(1)) # 0. The properties of Z(a)(—) imply (N : V(1)) = (Z4)(N) :

A (1)) # 0. Since (T'(n) : V(1)) 1, the sequence § provides m = (T'(n)™: V(1)) =

(T'(7) : V(1)) + (VN :V(1)). Moreover, (T'(i): V(1)) > m because socT(i) = V(1)™ and
the filtration 0 C socT'(i) C T'(i) can be refine to a V-good filtration of 7'(i). We ob-
tain (7'(¢) : V(1)) = m and therefore (N : V(1)) = 0. We obtain a contradiction to our
assumption.

(d) The structure of Ag)(j) yields [Ary(7) : S (i)] = dimg Homu(T'(2), V(j)). If
topT'(i) = S(1) and an A-map F' : T(i) — V(j) is non zero, then F' is surjective and
dimg Homyu (7°(2), V(j)) = 1 because top V(j) = S(1) and [V(j) : S(1)] = 1. The properties

2.0l
of T'(3) yield T'(i) - V(i), thus we have a surjective map F” : T'(i) — V(i) V(j) for all
g with j <. Thus [Ag)(j) : S(r)(¢)] = dimg Hom4(T(7), V(j)) = 1 for all i <) J. O

Proof of the theorem. 7 = 7 If R(A) is 1-quasi-hereditary, then for any i € Qy(R) it is
soc P(g) (i) = S(gy(n) (here {n} = min {Qy(R), <(r)}). Lemma (d) implies socT'(i) =

S(1) and Theorem Bl provides T'(i) = P(1)/ (Zler\A(i) P(l)) for any ¢ € Q.

T UT6E) = P((1)/ (Zjer\A(i) P(j)), then soc T'(i) = top T'(i) = S(1) for any ¢ € Qg
(see B.J)). Lemma[6.2] (¢) and (b) provides (3) and (4) of Definition [[.2

According to Theorem [5.J] and Lemma (a) the A-module T'(7) can be considered as
the module Py)(1) = I(;(1) over a 1-quasi-hereditary algebra A(:). Thus (T'(i) : V(j)) =1
for every j € Qo(i) = Ay). We obtain (Pgy(i) : A (j)) = 1 for every j € Qo(R) with
i <(ry Jj and (e) yields (2) of Definition [[L2 O

If for some 1l-quasi-hereditary algebra A the algebra R(A) is not l-quasi-hereditary,
then there exists ¢ € @ such that socT'(i) = S(1)™ with m > 2, and consequently
(Pry(i) + Ary(1)) > 2. An example of a l-quasi-hereditary algebra A such that R(A)
is not 1-quasi-hereditary can be found in [9].

Acknowledgments. I would like to thank Rolf Farnsteiner and Julian Kiilshammer for
helpful remarks and comments.
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