
CRITICAL SLOPE p-ADIC L-FUNCTIONS
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Abstract. Let g be an eigenform of weight k+2 on Γ0(p)∩Γ1(N) with p - N .

If g is non-critical (i.e. of slope less than k + 1), using the methods of [1, 20],
one can attach a p-adic L-function to g which is uniquely determined by its

interpolation property together with a bound on its growth. However, in the

critical slope case, the corresponding growth bound is too large to uniquely
determine the p-adic L-function with its standard interpolation property.

In this paper, using the theory of overconvergent modular symbols, we

give a natural definition of p-adic L-functions in this critical slope case. If,
moreover, the modular form is not in the image of theta then the p-adic L-

function satisfies the standard interpolation property.

1. Introduction

Let p be a prime number, and let f =
∑
n anq

n denote a normalized cuspidal
eigenform of weight k + 2 on Γ1(N) with nebentype ε and with p - N . If f is
a p-ordinary form, then by [1, 20] we can attach a p-adic L-function to f which
interpolates special values of its L-series. On the other hand, if f is non-ordinary
at p, we have two p-adic L-functions attached to f , one for each root of x2 −
apx+ε(p)pk+1. These two roots correspond to the two p-stabilizations of f to level
Γ0 := Γ1(N) ∩ Γ0(p), and, more precisely, we are attaching a p-adic L-function to
each of these forms.

In the case when f is p-ordinary, one of these p-stabilizations is p-ordinary and
the other has slope k + 1 (critical slope). The methods of [1, 20] only apply to
forms of slope strictly less than k + 1, which is why in this case we only have one
p-adic L-function. It is the goal of this paper to give a natural construction of p-
adic L-functions of critical slope forms, and thus to construct the “missing” p-adic
L-function in the ordinary case.

The basic starting point of our method is the theory of overconvergent modular
symbols developed by the second author. Let Dk denote the space of locally Qp-
analytic distributions on Zp endowed with the weight k action. This distribution
space Dk admits a surjective map to Symk(Q2

p). Thus, we get an induced Hecke-
equivariant map

H1
c (Γ0,Dk) −→ H1

c (Γ0,Symk(Q2
p))

which we refer to as the specialization map. The target of this map is finite-
dimensional while the source is infinite-dimensional if it is non-zero. Nonetheless,
we have the following comparison theorem of the second author (see [19] and also
[15, Theorem 5.12]).
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Theorem 1.1. We have

H1
c (Γ0,Dk)(<k+1) ∼=−→ H1

c (Γ0,Symk(Q2
p))

(<k+1).

That is, the specialization map is an isomorphism on the subspace where Up acts
with slope strictly less than k + 1.

This comparison theorem should be viewed as the analogue of Coleman’s theorem
on small slope overconvergent modular forms being classical.

Let f now be a normalized cuspidal eigenform of level Γ0, which we assume for
simplicity has its Fourier coefficients in Zp. (Note that we are certainly allowing the
possibility that f is old at p.) Consider the modular symbol φf ∈ H1

c (Γ0,Symk(Q2
p))

attached to f . If f is of non-critical slope, by Theorem 1.1, φf lifts uniquely to a
Hecke-eigensymbol Φf ∈ H1

c (Γ0,Dk). Moreover, if we “integrate” this symbol from
∞ to 0, the resulting distribution we get is exactly the p-adic L-function of f (see
[19] and [15, Prop 6.3]).

To define critical slope p-adic L-functions, we repeat this analysis for the slope
k + 1 subspace. To this end, let θk+1 : M†−k(Γ,Qp) −→ M†k+2(Γ,Qp) denote the
p-adic θ-operator which acts on q-expansions by (q ddq )k+1. Here M†r (Γ,Qp) is the
space of overconvergent modular forms of weight r.

The following is the main theorem of this paper (see Theorem 8.1).

Theorem 1.2. Let f be an eigenform in Sk+2(Γ0,Qp) with slope k + 1. Then

H1
c (Γ0,Dk)(f) −→ H1

c (Γ0,Symk(Q2
p))(f)

is an isomorphism if and only if f /∈ im(θk+1).

Here, the subscript (f) denotes the generalized eigenspace on which the Hecke-
algebra acts via the eigenvalues of f .

In particular, if f is not in the image of θk+1, using the same arguments as above,
we can associate a unique Hecke-eigensymbol Φf ∈ H1

c (Γ0,Dk) which specializes to
φf . We then simply define the p-adic L-function of f to be the value of Φf when
integrated from ∞ to 0.

Many examples of these critical slope p-adic L-functions are computed in [15].
Their zeroes appear to contain interesting patterns which encode the classical µ-
and λ-invariants of the corresponding ordinary p-adic L-function.1

The case when f is in the image of θk+1 remains an interesting one. In this
situation, we know that there is some non-zero Hecke-eigensymbol Φf ∈ H1

c (Γ0,Dk)
in the kernel of specialization with the same eigenpacket2 as f . In fact, there are
two such symbols, one in each of the eigenspaces of complex conjugation. Numerical
experiments from [15] suggest that there is a 1-dimensional space of such symbols in
each eigenspace; if this were true, we could define a p-adic L-function, at least up to
scaling. However, we have been unable to establish this claim even in a particular
case.3

1Since the writing of this paper, Loeffler and Zerbes (see [11]) proved that analogous formulas

involving Iwasawa invariants hold for the critical slope p-adic L-function defined via Kato’s Euler
system (see Remark 9.5).

2Here “eigenpacket” is synonymous with “system of Hecke-eigenvalues” – see section 6.2.
3Since the writing of this paper, Belläıche has proven that this eigenspace is 1-dimensional and

has defined critical slope p-adic L-functions in this case as well (see [3]).
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In the course of the paper, we actually first prove a weaker version of the above
theorem (see Theorem 6.7). The conclusion of this weaker theorem is the same,
but its hypothesis is stronger. Namely, we assume that f does not possess a mod
p companion form. (It is straightforward to see that if f ∈ im(θk+1) then f has a
mod p companion form – see Proposition 6.9). We chose to include both proofs of
these theorems in this paper as the proof of the weaker theorem is simpler in some
aspects and may be more easily generalized to a wider class of reductive groups.

We now sketch a proof of the non-critical slope comparison theorem, and then
sketch the two proofs dealing with the critical slope subspace. Using the Riesz de-
composition (reviewed in section 4), it follows that the specialization map restricted
to the slope less than k + 1 subspace

H1
c (Γ0,Dk)(<k+1)

ρ∗k
� H1

c (Γ0,Symk(Q2
p))

(<k+1)

is surjective. Moreover, the kernel of the specialization map can be identified with

H1
c (Γ0,D−2−k)(k + 1);

here, we are twisting by the (k+ 1)st power of the determinant, and thus the Hecke
operator Tn acts by nk+1Tn (see section 3.4). In particular, Up acts with slope at
least k + 1 on this space. It follows that the specialization map restricted to the
slope less than k + 1 subspace is also injective, proving the comparison theorem.

To deal with the critical slope case, assume that f is an eigenform of slope k+1.
We wish to show (under some hypotheses) that the f -isotypic subspace(

H1
c (Γ0,D−2−k)(k + 1)

)
(f)

vanishes. Assume the contrary, and let Ψ denote some non-zero Hecke-eigensymbol
in this subspace. Let Ψ0 denote the untwisted symbol in H1

c (Γ0,D−2−k). Since Ψ
has slope k + 1, the symbol Ψ0 has slope 0.

Approach 1: By scaling, we may assume that Ψ0 takes values in D0
−2−k, the unit

ball of D−2−k. In section 3.5, we introduce a descending filtration Filr D0
m for any

negative weight m, such that any normalized eigensymbol taking values in Filr D0
m

has slope bounded below by r. Specifically, for r = 1, the subspace Fil1D0
m consists

of distributions whose total measure is divisible by p. Since Ψ0 has slope zero, its
image Ψ0 in

H1
c (Γ0,D0

−2−k/Fil1D0
−2−k)

is a non-zero eigensymbol. Moreover, the quotient D0
−2−k/Fil1D0

−2−k is simply Fp
with a certain non-trivial matrix action. Thus, this non-zero eigensymbol is related
to an ordinary weight 2 modular form with some nebentype at p.

Using Hida theory, we can then find a congruent form of small weight with no
nebentype at p. Precisely, let j be the unique integer with k + 2 ≡ j (mod p − 1)
and 2 ≤ j ≤ p. Then there exists an eigenform g of level Γ0 and weight p + 1 − j
such that ρg ⊗ ωk+1 ∼= ρf . Here ρf and ρg are the residual Galois representations
attached to f and g, and ω is the mod p cyclotomic character. In particular, g is a
mod p companion form for f . Thus we deduce that the specialization map restricted
to the f -isotypic subspace is an isomorphism as long as f does not possess a mod
p companion form.

Approach 2: By [18], eigenpackets in H1
c (Γ0,Dk) are in one-to-one correspondence
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with eigenpackets in M†k+2(Γ,Qp) for any p-adic weight k (with one exception when
k = 0). See section 7 where a proof of this result is given. In particular, the
eigensymbol Ψ0 corresponds to some overconvergent modular form g ∈M†−k(Γ,Qp)
such that the eigenpacket of θk+1g is the same as the eigenpacket of f . By looking
at q-expansions, we see that f = θk+1g, and deduce that f ∈ im(θk+1). Thus, the
specialization map restricted to the f -isotypic subspace is an isomorphism as long
as f is not in the image of θk+1.

We close this introduction by mentioning two other approaches to constructing
critical slope p-adic L-functions. The first combines Perrin-Riou’s dual exponential
map with the existence of Kato’s zeta element (see [13, 3.2.2] and [6, Remark 4.12]).
The second uses Emerton’s theory of Ĥ1 (see [7, 8]). At the end of section 9, we
recall these two methods and discuss the role played by the condition f /∈ im(θk+1).

The format of the paper is as follows: in the following section we review the
basic definitions of modular symbols. In the third section, we introduce the relevant
spaces of distributions, and the filtration on them described above. In the fourth
section, we review the Riesz decomposition. In the fifth section, we prove the
non-critical comparison theorem. In the sixth section, we prove a critical slope
comparison theorem by the first approach outlined above. In the seventh and
eighth sections, we present a proof of the results of [18] and use these results to
give a second proof of the critical slope comparison theorem. In the final section,
we discuss p-adic L-functions.

Acknowledgements: We heartily thank the referee for many helpful comments, cor-
rections, and suggestions which led to a significant improvement of this paper.

2. Modular Symbols

2.1. Basic definitions. Let p be a prime and N an integer prime to p. Set Γ0 =
Γ1(N) ∩ Γ0(p) and

S0(p) =
{(

a b
c d

)
∈M2(Z) such that p - a, p | c and ad− bc 6= 0

}
.

If M is a right Z[S0(p)]-module, let M̃ denote the associated locally constant sheaf
on the open modular curve YΓ0 , and let

H1
c (Γ0,M) := H1

c (YΓ0 , M̃)

denote the space of one-dimensional compactly supported cohomology with coeffi-
cients in M̃ .

When the order of each torsion element of Γ0 acts invertibly on M , the space
H1
c (Γ0,M) admits a description in terms of modular symbols. Indeed, let ∆0 :=

Div0(P1(Q)) denote the set of degree 0 divisors on P1(Q) endowed with a left
GL2(Q)-action via linear fractional transformations. The space Hom(∆0,M) ad-
mits a right action of S0(p) by

(φ
∣∣γ)(D) = φ(γD)

∣∣γ
where D ∈ ∆0 and γ ∈ S0(p). Then by [2, Proposition 4.2] there exists a canonical
isomorphism

H1
c (Γ0,M) ∼= HomΓ0(∆0,M)(1)

where the target of the map is the set of Γ0-invariant homomorphisms.
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IfH denotes the free polynomial algebra over Z generated by the Hecke operators
T` for ` - Np and Uq for q|Np, then both H1

c (Γ0,M) and HomΓ0(∆0,M) are
naturally H-modules. For instance, the Up-operator on HomΓ0(∆0,M) can be
explicitly realized by

φ
∣∣Up =

p−1∑
a=0

φ
∣∣ ( 1 a

0 p

)
.

The isomorphism (1) is Hecke-equivariant, and throughout the paper, we will
identify these two spaces when the order of the torsion elements of Γ0 act invertibly
on M (for example, whenever N ≥ 4). Note that this condition holds when M is a
vector space over a field of characteristic 0, when Γ0 is torsion-free, or when M is
a Zp-module with p > 3.

Also, as the congruence subgroup Γ0 is fixed throughout the paper, we simply
write H1

c (M) for H1
c (Γ0,M) and refer to it as the space of M -valued modular

symbols (of level Γ0).

2.2. Miscellany. For r ∈ Z≥0, let M(r) denote the S0(p)-module whose underly-
ing set is M and whose S0(p)-action is twisted by the rth power of the determinant.
For an H-module X, set X(r) to be the H-module whose underlying set is X and
whose Hecke action by T` (resp. Uq) is given by `rT` (resp. qrUq). We then have
the tautological isomorphism

H1
c (M(r)) ∼= H1

c (M)(r).

We also mention that the matrix ι =
(−1 0

0 1

)
normalizes Γ0, and thus induces an

involution on H1
c (M); if 2 acts invertibly on M , this involution gives a decomposi-

tion
H1
c (M) = H1

c (M)+ ⊕H1
c (M)−

into ±1-eigenspaces for ι.
Lastly, if M is a Banach space and if Γ0 acts by unitary operators on M , then

H1
c (M) is also a Banach space under the norm

||Φ|| = sup
D∈∆0

||Φ(D)||.

This supremum exists as ||Φ(D)|| is constant on each of the finitely many Γ0-orbits
of ∆0. (Note here that we are implicitly using the identification in (1).)

3. Distributions

3.1. Definitions. For each r ∈ |C×p |, let

B[Zp, r] = {z ∈ Cp | there exists some a ∈ Zp with |z − a| ≤ r}.

Then B[Zp, r] is the Cp-points of a Qp-affinoid variety. For example, if r ≥ 1 then
B[Zp, r] is the closed disc in Cp of radius r around 0. If r = 1

p then B[Zp, r] is the
disjoint union of the p discs of radius 1

p around the points 0, 1, . . . , p− 1.
Let A[r] denote the Qp-Banach algebra of Qp-affinoid functions on B[Zp, r]. For

example, if r ≥ 1

A[r] =

{
f(z) =

∞∑
n=0

anz
n ∈ Qp[[z]] such that {|an| · rn} → 0

}
.



6 ROBERT POLLACK AND GLENN STEVENS

The norm on A[r] is given by the supremum norm. That is, if f ∈ A[r] then

||f ||r = sup
z∈B[Zp,r]

|f(z)|p.

For r1 < r2, there is a natural restriction map A[r2] → A[r1] that is injective,
completely continuous and has dense image. We define

A = lim−→
s>0

A[s] and A†(Zp, r) = lim−→
s>r

A[s].

The first of these spaces is naturally identified with the space of locally analytic
Qp-valued functions on Zp, while A†(Zp, r) is identified with the space of Qp-
overconvergent functions on B[Zp, r]. The topology on each is given by the inductive
limit topology. Note that there are natural continuous inclusions

A†(Zp, r) ↪→ A[r] ↪→ A;

the image of each of these maps is dense in its target space.
Set D[r] (resp. D, D†(Zp, r)) equal to the space of continuous Qp-linear func-

tionals on A[r] (resp. A, A†(Zp, r)) endowed with the strong topology. Note that

D = lim←−
s>0

D[s] and D†(Zp, r) = lim←−
s>r

D[s],

with the projective limit topology.
We have that D[r] is a Banach space under the norm

||µ||r = sup
f∈A[r]

f 6=0

|µ(f)|
||f ||r

while D (resp. D†(Zp, r)) has its topology defined by the family of norms {|| · ||s} for
s ∈ |C×p | with s > 0 (resp. s > r). By duality, we have continuous linear injective
maps

D ↪→ D[r] ↪→ D†(Zp, r).
When r = 1, we simply write A, A†, D, D† for A[1], A†(Zp, 1), D[1], D†(Zp, 1)
respectively.

3.2. Difference operator. For future reference we record here a simple result
about finite differences. Namely, we define the difference operator ∆ : A† −→ A†
by

(∆f) (z) = f(z + 1)− f(z),

and define ∆ : D† −→ D† by duality.

Proposition 3.1. We have an exact sequence

0 −→ D† ∆−→ D† ρ−→ Qp −→ 0

where ρ : D† −→ Qp is defined by ρ(µ) = µ(1).

Proof. It follows immediately from the definitions that ρ is surjective and that
ρ ◦ ∆ = 0. To show ∆ : D† −→ D† is injective it suffices to show ∆ : A† → A†
is surjective. For this, we introduce the notation z(0) = 1 and for each n ≥ 1 let
z(n) = z(z − 1) · · · (z − n + 1). Then for any s ∈ |C×p | with s > 1 and any λ ∈ C×p
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with |λ| = s, one has that the sequence
{
z(n)

λn

}
n

is an ON-basis for A[s]. Indeed,{
zn

λn

}
n

is an ON-basis, and for any integer n ≥ 0 we have∥∥∥∥z(n)

λn
− zn

λn

∥∥∥∥
s

≤ s−1 < 1

from which it follows that the sequences
{
z(n)

λn

}
n

and
{
zn

λn

}
n

are related by a

change of coordinates matrix with p-integral entries that is congruent to the identity
matrix modulo the maximal ideal in the ring of integers of Cp.

It follows from this that a function f on Zp is in A† if and only if it is represented
by a sum of the form

f(z) =
∞∑
n=0

anz
(n)

that converges for all z with |z| ≤ s for some s ∈ |C×p | with s > 1. This happens
if and only if |an|sn → 0 as n → ∞. In particular, we then have |an/n|rn → 0 as
n→∞ for every r with 1 < r < s and therefore

g(z) :=
∞∑
n=1

an−1

n
z(n)

converges to a function g ∈ A†. But an easy calculation shows ∆(z(n)) = nz(n−1)

for all n ≥ 1 and it follows that ∆(g) = f .
Finally, we show ker(ρ) ⊆ Image(∆). So let µ ∈ ker(ρ). Then µ(1) = 0. We

then define ν ∈ D† by

ν(z(n)) =
1

n+ 1
µ(z(n+1))

and note that for any f ∈ A† given by f(z) =
∑∞
n=0 anz

(n) as before, we have

(ν|∆)(f) = ν(∆f) =
∞∑
n=1

anν(nz(n−1)) =
∞∑
n=1

anµ(z(n)) = µ(f)

where the last equality above follows since µ(1) = 0. Thus ν|∆ = µ and the proof
of the proposition is complete. �

3.3. The action of Σ0(p). Let

Σ0(p) =
{(

a b
c d

)
∈M2(Zp) such that p - a, p | c and ad− bc 6= 0

}
be the p-adic version of S0(p). Fix an integer k, and let Σ0(p) act on A[r] on the
left by

(γ ·k f)(z) = (a+ cz)k · f
(
b+ dz

a+ cz

)
where γ =

(
a b
c d

)
∈ Σ0(p) and f ∈ A[r]. Then Σ0(p) acts on D[r] on the right by

(µ
∣∣
k
γ)(f) = µ(γ ·k f).

where µ ∈ D[r]. These two actions then induce actions on A, A†(Zp, r), D, and
D†(Zp, r).
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To emphasize the role of k in these actions, we will include it as a subscript (e.g.
Ak[r] denotes A[r] endowed with the weight k action). When r = 1, we simplify
the notation and write Ak, A†k, Dk, D†k for Ak[1], A†k(Zp, 1), Dk[1], D†k(Zp, 1)
respectively.

Remark 3.2. We note that the space Ak can be viewed as a locally analytic
induction. Indeed, let Nopp (resp. T ) denote the subgroup of lower triangular (resp.
diagonal) matrices in GL2(Qp). Let I denote the Iwahori subgroup of GL2(Zp), and
let X denote its image in Nopp\GL2(Qp). Then X inherits a natural right action
by Σ0(p). Also, Zp injects into X by sending z to ( 1 z

0 1 ).
Let λ denote the character of T that maps ( a 0

0 d ) onto ak, and set

Aλ := {f : X → Qp : f is locally analytic and f(tx) = λ(t)f(x) for t ∈ T} .

Here, a function on X is locally analytic if its restriction to the image of Zp in
X is locally analytic. One then verifies that restriction to Zp induces a Σ0(p)-
isomorphism between Aλ and Ak. Similarly, A[r] can be viewed as a “rigid analytic
induction”.

3.4. Finite-dimensional quotients. Assume for this section that k is a non-
negative integer. Let Pk denote the space of polynomials of degree at most k with
coefficients in Qp. Then Pk is naturally a subspace of A†k and is preserved under
the weight k action of Σ0(p). Set P∨k equal to the Qp-dual of Pk which we endow
with the structure of a right Σ0(p)-module via the action

(`
∣∣
k
γ)(P ) = `(γ ·k P )

where ` ∈ P∨k , P ∈ Pk and γ ∈ Σ0(p). (We note that P∨k is isomorphic as a
representation space to Symk(Q2

p) where Q2
p is viewed as a right GL2(Qp)-module.)

Dualizing the inclusion of Pk into A†k, yields a Σ0(p)-equivariant surjection

ρk : D†k−→P
∨
k .

We have the following proposition.

Proposition 3.3. We have an exact sequence

0 −→ D†−2−k(k + 1) δ−→ D†k
ρk−→ P∨k −→ 0

where δ is defined by
(δµ)(f) = µ((d/dz)k+1f)

with µ ∈ D†k and f ∈ A†k.

Proof. To explicitly describe the kernel of ρk, note that (d/dz)k+1 yields a Σ0(p)-
equivariant map

A†k −→ A
†
−2−k(k + 1).

Here the action on the target of the map is twisted by the (k + 1)st power of the
determinant. This map is easily seen to be surjective with kernel Pk. Thus we have
an exact sequence

0 −→ Pk −→ A†k −→ A
†
−2−k(k + 1) −→ 0.

Dualizing this sequence then yields the proposition. �
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3.5. A filtration on D−k. Let k be a positive integer. Set

D0
−k =

{
µ ∈ D−k with µ(zj) ∈ Zp for all j ≥ 0

}
which is the unit ball of D−k, and consider the decreasing filtration of D0

−k given
by

Filr D0
−k =

{
µ ∈ D0

−k such that µ(zj) ∈ pr−jZp
}
.

Proposition 3.4. The filtration

D0
−k ⊃ Fil1 D0

−k ⊃ · · · ⊃ Filr D0
−k ⊃ · · ·

is stable under the weight −k action of Σ0(p).

Proof. For µ ∈ Filr D0
−k, we have

(µ
∣∣γ)(zj) = µ

(
(a+ cz)−k−j(b+ dz)j

)
.

Note that

(a+ cz)−k−j(b+ dz)j = a−k−j(1 + a−1cz)−k−j(b+ dz)j =

a−k−j

( ∞∑
s=0

(
−k − j
s

)
a−scszs

)(
j∑
t=0

(
j

t

)
bj−tdtzt

)
=
∞∑
i=0

aiz
i,

since −k− j < 0. Moreover, since a ∈ Z×p and c ∈ pZp, a direct computation shows
that ordp(ai) ≥ i− j. Substituting back in yields

(µ
∣∣γ)(zj) =

∞∑
i=0

aiµ(zi).

Thus, to show that µ
∣∣γ ∈ Filr D0

−k, we need to show that
∑∞
i=0 aiµ(zi) is divisible

by pr−j for j < r.
To see this, note that µ(zi) is divisible by pr−i as µ ∈ Filr D0

−k. For i between 0
and j, µ(zi) is thus divisible by pr−j . For i between j and r, aiµ(zi) is divisible by
pi−j · pr−i = pr−j . Thus, (µ

∣∣γ)(zj) is divisible by pr−j , and µ
∣∣γ is in Filr D0

−k. �

Remark 3.5. Note that the subset{
µ ∈ D0

−k such that µ(zj) = 0 for j < r
}

is not preserved by the weight k action of Σ0(p).

Remark 3.6. In this paper, we only make use of the first step of this filtration.
In [15], we make more extensive use of an analogous filtration on Dk for k ≥ 0 in
order to do explicit computations with overconvergent modular symbols.

The following lemma will be useful in our study of critical slope modular symbols.
In what follows, Fp(aj) denotes the Σ0(p)-module Fp on which

(
a b
c d

)
acts by aj .

Lemma 3.7. We have
D0
−k/Fil1 D0

−k
∼= Fp(a−k)

as Σ0(p)-modules.
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Proof. As a group, D0
−k/Fil1 D0

−k is isomorphic to Fp and is generated by any µ
such that µ(1) 6= 0. To see the Σ0(p)-action, note that

(µ
∣∣γ)(1) = µ

(
(a+ cz)−k

)
= a−kµ

(
(1 + a−1cz)−k

)
= a−kµ

( ∞∑
i=0

(
−k
i

)
a−icizi

)
≡ a−kµ(1) (mod p)

which proves the claim. �

4. Slope decompositions

Let X be a Banach space over Qp equipped with a completely continuous en-
domorphism U = UX . If h ∈ R, we define X(<h) to be the subspace on which U
acts with slope less than h (see Definition 4.7). In this section, we observe that the
association of X to X(<h) preserves exact sequences.

Let C denote the category of Banach spaces over Qp which are equipped with
a completely continuous operator U . If X and Y are in C, we say f : X → Y is
U -equivariant if f ◦ UX = UY ◦ f .

Theorem 4.1 (Riesz decomposition). Let X ∈ C. For each irreducible polynomial
Q in Qp[T ] with Q(0) 6= 0, the space X decomposes into a direct sum of two closed
subspaces preserved by U :

X ∼= X(Q)⊕X ′(Q)

such that Q(U) is nilpotent on X(Q) and invertible on X ′(Q). Moreover, X(Q) is
finite-dimensional over Qp.

Proof. See [16, pg. 82 - Remarques 3]. �

Lemma 4.2. With X and Q as above, we have
(1) X(Q) =

⋃
n ker(Q(U)n);

(2) X ′(Q) =
⋂
n im(Q(U)n).

In particular, the Riesz decomposition is unique.

Proof. For the first part, X(Q) ⊆
⋃
n ker(Q(U)n) as Q(U) is nilpotent on X(Q).

Moreover, the projection of
⋃
n ker(Q(U)n) to X ′(Q) is zero since Q(U) acts in-

vertibly on X ′(Q). Thus, the above containment is an equality.
For the second part, since Q(U) acts invertibly on X ′(Q), we have X ′(Q) ⊆⋂
n im(Q(U)n). Since X(Q) is finite-dimensional, Q(U)n annihilates X(Q) for some

n. Applying Q(U)n to the Riesz decomposition of X then yields im(Q(U)n) =
X ′(Q), proving the lemma. �

Corollary 4.3. For X,Y ∈ C with f : X → Y a U -equivariant linear map, we
have f(X(Q)) ⊆ Y (Q) and f(X ′(Q)) ⊆ Y ′(Q).

Proof. This follows immediately from the previous lemma as f(ker(Q(UX)n)) ⊆
ker(Q(UY )n) and f(im(Q(UX)n)) ⊆ im(Q(UY )n) by the U -equivariance. �

Corollary 4.4. Let X1, X2, X3 ∈ C, and let

0→ X1 → X2 → X3 → 0
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be an exact sequence (of vector spaces) with each map U -equivariant. Then for any
irreducible polynomial Q ∈ Qp[T ] with Q(0) 6= 0,

0→ X1(Q)→ X2(Q)→ X3(Q)→ 0

is an exact sequence.

Proof. Exactness is clear except for the surjection X2(Q) → X3(Q). Take x3 ∈
X3(Q), and let x2 + x′2 be some preimage with x2 ∈ X2(Q) and x′2 ∈ X ′2(Q). As
the image of x′2 lands in X ′3(Q), we have that x2 maps to x3. �

Definition 4.5. If Q ∈ Qp[T ] is a monic polynomial, we define v(Q) := supα v(α)
where α runs over the roots of Q in Qp. In particular, Q(0) 6= 0 if and only if
v(Q) <∞.

Lemma 4.6. Let X ∈ C, and let Q ∈ Qp[T ] be a monic polynomial with Q(0) 6= 0.
Then

v(Q) < −v(‖U‖) =⇒ X(Q) = 0
where ‖U‖ denotes the norm of U acting on X.

Proof. Since Q(0) 6= 0, we may write
Q(T )
Q(0)

=
∏
i

(1− T/αi)

where all αi 6= 0. Now assume v(Q) < v(‖U‖). Then we also have

‖U/αi‖ < 1 for i = 1, . . . , d.

In particular, substituting U for T , we can write Q(U)/Q(0) = 1 − V where V is
a continuous operator on X whose norm satisfies ‖V ‖ < 1. From this we conclude
that 1− V , hence also Q(U)n, is an invertible operator on X for every n ≥ 0. But
by Lemma 4.2 we know that every element of X(Q) is contained in the kernel of
Q(U)n for some n. Hence X(Q) = 0 as claimed. �

Definition 4.7. For X ∈ C and h ∈ R, set

X(<h) :=
⊕

v(Q)<h

X(Q)

where Q runs over all monic irreducible polynomials of Qp[T ], and v(Q) denotes
the valuation of any root of Q. We define X(=h) and X(≤h) similarly.

Proposition 4.8. Let X1, X2, X3 ∈ C, and let

0→ X1 → X2 → X3 → 0

be an exact sequence (of vector spaces) with each map U -equivariant. Then

0→ X
(<h)
1 → X

(<h)
2 → X

(<h)
3 → 0

is exact. The same assertion is true for X(=h)
i and X(≤h)

i .

Proof. This follows from Corollary 4.4 as X(<h)
i is a direct sum over various X(Q).

�

Lemma 4.9. Let X ∈ C and h ∈ R.
(1) The vector spaces X(<h), X(=h) and X(≤h) are all finite-dimensional.
(2) If the operator U : X −→ X satisfies ‖U‖ ≤ p−h, then X(<h) = 0.
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Proof. Let PU be the characteristic power series of U acting on X. Then X(Q) 6= 0
if and only if the reciprocal of a root of Q is a root of PU . Since each X(Q) is
finite-dimensional and PU has only finitely roots with slope less than or equal to h,
(1) follows. Assertion (2) is an immediate consequence of Lemma 4.6. �

5. Comparison theorem

As the map ρk : D†k → P∨k defined in section 3.4 is Σ0(p)-equivariant, it induces
a map on cohomology

H1
c (D†k)

ρ∗k−→ H1
c (P∨k )

which we call the specialization map.
In this section, we sketch a proof of a theorem of second author which states

that ρ∗k is a isomorphism on the subspace of slope strictly less than k + 1.

5.1. Some lemmas.

Lemma 5.1. We have an exact sequence

0→ H1
c (D†−2−k)(k + 1)→ H1

c (D†k)
ρ∗k→ H1

c (P∨k )→ 0.

Proof. The sequence

0→ D†−2−k(k + 1)→ D†k
ρk→ P∨k → 0

induces a long exact sequence of compactly supported cohomology groups4 and
since H∗c (D†−2−k(k+ 1)) ∼= H∗c (D†−2−k)(k+ 1) for ∗ = 1, 2, this long exact sequence
takes the form

H1
c (D†−2−k)(k + 1)→ H1

c (D†k)→ H1
c (P∨k )→ H2

c (Γ0,D†−2−k)(k + 1).

First note that the leftmost map is clearly injective as we may view these compactly
supported cohomology groups as spaces of modular symbols via (1). To complete
the proof, it therefore suffices to prove H2

c (Γ0,D†−2−k) = 0. This is an immediate
consequence of the next lemma. �

Lemma 5.2. For k ∈ Z,

H2
c (Γ0,D†k) =

{
Qp if k = 0,
0 otherwise.

Proof. By Poincaré duality we have an isomorphism H2
c (Γ0,D†k) ∼= H0(Γ0,D†k),

where the latter is just the group of Γ0-coinvariants of D†k. So letting I ⊆ Z[Γ0] be
the augmentation ideal, we need to compute D†k/ID

†
k.

We first observe that for τ =
(

1 1
0 1

)
the element τ − 1 ∈ I acts on D†k as the

difference operator ∆ studied at the end of section 3.1. In particular, Proposition
3.1 asserts that the sequence

0 −→ D†k
τ−1−→ D†k

ρ−→ Qp −→ 0

is exact. When k = 0, one sees at once from the definitions that ID†k ⊆ ker(ρ), so
in this case the above sequence implies ID†k = ker(ρ), proving the first equality.

4For a nice treatment of cohomology with supports, we recommend section II 2.5ff of [10].
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Now suppose k 6= 0 and consider the distribution δ′0 ∈ D
†
k defined by δ′0(f) =

f ′(0) for f ∈ A†k. Choose γ =
(
a b
c d

)
∈ Γ0 to be any element for which ac 6= 0.

Setting µ := δ′0|(γ − 1) we have µ ∈ ID†k. But ρ(µ) = µ(1) = δ′0(γ · 1) and
since (γ · 1)(z) = (a+ cz)k we have ρ(µ) = kcak−1 6= 0. Thus when k 6= 0 we have
ker(ρ) ( ID†k and therefore ID†k = D†k, proving the final assertion of the lemma. �

For r ∈ |C×p |, Dk[r] is a Banach space and therefore H1
c (Dk[r]) is naturally a

Banach space as well. In particular, for h ∈ R, we have a well-defined subspace
H1
c (Dk[r])(<h). In contrast with this, H1

c (Dk) is a Frechet space, and not a Banach
space, and thus the arguments of the previous section do not apply. We sidestep
this issue by directly defining H1

c (Dk)(<h) := H1
c (Dk)∩H1

c (Dk)(<h); here, to make
sense of this intersection, we are implicitly using (1) and are identifying these
spaces as subsets of Hom(∆0,Dk). Similarly, we define H1

c (D†k)(<h) := H1
c (D†k) ∩

H1
c (Dk[r])(<h), which we will see does not depend on the choice of r (see the next

lemma).

Lemma 5.3. For any h ∈ R and any r > 1 with r ∈ |C×p |, the natural maps

H1
c (Dk)(<h) ∼−→ H1

c (Dk)(<h) ∼−→ H1
c (D†k)(<h) ∼−→ H1

c (Dk[r])(<h)

are isomorphisms.

Proof. By (1), we may view each of these compactly supported cohomology spaces
as spaces of modular symbols. From this optic, it is clear that all of the above
maps are injective. To prove the lemma, it then suffices to show that any Φ ∈
H1
c (Dk[r])(<h) actually takes values inDk. Since Up acts invertibly onH1

c (Dk[r])(<h),
for each n ≥ 1, Φ = Ψ

∣∣Unp for some Ψ ∈ H1
c (Dk). For D ∈ Div0(P1(Q)) and

g ∈ Ak[r], we have

Φ(D)(g) = (Ψ|Unp )(D)(g) =
pn−1∑
a=0

(
Ψ
∣∣ ( 1 a

0 pn

))
(D)(g)

=
pn−1∑
a=0

(
Ψ
((

1 a
0 pn

)
D
) ∣∣ ( 1 a

0 pn

))
(g) =

pn−1∑
a=0

Ψ
((

1 a
0 pn

)
D
) ((

1 a
0 pn

)
g
)
.

Since g ∈ Ak[r], we have
(

1 a
0 pn

)
g extends naturally to an element of Ak[rp−n].

Thus, the above computation shows that Φ(D) extends to Dk[rp−n] for all n, and
thus to Dk. �

5.2. Proof of comparison theorem.

Theorem 5.4 (Stevens). We have

H1
c (Dk)(<k+1) ∼−→ H1

c (P∨k )(<k+1)

is an isomorphism.

Proof. From Lemma 5.1, we have the following exact sequence of Hecke modules:

0→ H1
c (D†−2−k)(k + 1)→ H1

c (D†k)
ρ∗k→ H1

c (P∨k )→ 0.

By Proposition 4.8 and Lemma 5.3, passing to the slope less than k + 1 subspaces
gives an exact sequence

0→ H1
c (D−2−k)(k + 1)(<k+1) → H1

c (Dk)(<k+1) → H1
c (P∨k )(<k+1) → 0.
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As Up has norm ≤ 1 on H1
c (D−2−k), it follows that Up induces operators on

H1
c (D−2−k)(k + 1) of norm ≤ p−(k+1). From Lemma 4.9.2, it follows that the first

term of the above exact sequence vanishes. Thus H1
c (Dk)(<k+1) ∼= H1

c (P∨k )(<k+1)

and the theorem follows from Lemma 5.3. �

Remark 5.5. This theorem can be viewed as an overconvergent modular symbol
version of Coleman’s theorem that non-critical overconvergent modular forms are
classical.

6. The critical slope subspace I

We now study the restriction of the specialization map to the subspace where
Up acts with slope equal to k + 1. Throughout this section, we assume that there
are no elements of order p in Γ0.

6.1. Some lemmas on filtrations. Let k be a positive integer.

Lemma 6.1. If µ ∈ Filr D0
−k, then µ

∣∣( 1 a
0 p

)
∈ prD0

−k.

Proof. We have that

(µ
∣∣( 1 a

0 p

)
)(zj) = µ

(
(a+ pz)j

)
=

j∑
i=0

(
j

i

)
aj−ipiµ(zi)

which is divisible by pr as µ(zi) ∈ pr−iZp. �

Lemma 6.2. We have that

H1
c (Filr D0

−k)
∣∣Up ⊆ prH1

c (D0
−k).

Proof. For Φ ∈ H1
c (Filr D0

−k), we have

(Φ
∣∣Up)(D) =

p−1∑
a=0

Φ(
(

1 a
0 p

)
D)|
(

1 a
0 p

)
,

which, by Lemma 6.1, is divisible by pr as Φ(
(

1 a
0 p

)
D) ∈ Filr D0

−k.
Note that we are implicitly using the identification in (1) here which is the reason

for the assumption on the torsion in Γ0 given at the start of the section. Indeed,
we need this hypothesis as p does not act invertibly on Filr D0

−k. �

Lemma 6.3. If Φ ∈ H1
c (D0

−k) is a Up-eigensymbol with slope h and ||Φ|| = 1, then
the image of Φ in H1

c (D0
−k/Filr D0

−k) is non-zero for r > h.

Proof. This lemma follows from Lemmas 6.1 and 6.2. �

6.2. Some linear algebra. Recall that H denotes the free polynomial algebra
over Z generated by the Hecke operators T` for ` - Np and Uq for q|Np. We define
an eigenpacket of H over a ring R to be a homomorphism η : H → R. If M is
a (right) H-module, we say that an eigenpacket η occurs in M , if there is some
non-zero m ∈M such that m

∣∣T = η(T )m for all T ∈ H.
Let V be a finite-dimensional vector space over Qp with an action of H. For

T ∈ H and α ∈ Qp, let V(α,T ) denote the generalized eigenspace of T acting on
V ⊗Qp with eigenvalue α. For η, an eigenpacket of H over Qp, we define

V(η) =
⋂
T∈H

V(η(T ),T ),
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the η-isotypic subspace of V . Note that an eigenpacket η occurs in V if and only if
V(η) 6= 0.

Lemma 6.4. Let V ′, V , and V ′′ be finite-dimensional Qp-vector spaces equipped
with an action of H. If

0→ V ′ → V → V ′′ → 0
is an H-equivariant exact sequence, then

0→ V ′(η) → V(η) → V ′′(η) → 0

is exact.

Proof. By basic linear algebra (i.e. Jordan canonical form), for a fixed T ∈ H,
passing to a generalized eigenspace of T preserves exact sequences. Since H is a
commutative algebra, forming the η-isotypic subspace is done by repeatedly re-
stricting to generalized eigenspaces of elements of H. �

Remark 6.5. Passage to eigenspaces (as opposed to generalized eigenspaces) does
not preserve exact sequences. For instance, let V = Qpe1 ⊕ Qpe2, and let V ′′ =
V/Qpe1. Let T act on V by the matrix ( 1 1

0 1 ) and on V ′′ trivially. The natural
map V → V ′′ is then T -equivariant, and the image of e2 in V ′′ is an eigenvector.
However, no preimage of this vector in V is an eigenvector.

If f =
∑
n anq

n is an eigenform in Sk(Γ0,Qp), then ηf : H → Qp given by
ηf (T`) = a` and ηf (Uq) = aq is the eigenpacket attached to f . To simplify notation,
we write V(f) for V(ηf ).

6.3. A lemma relating modular symbols and modular forms. Let Γ1 =
Γ1(Np).

Lemma 6.6. If η is an eigenpacket of H which occurs in H1
c (Γ0,Fp(aj)), then

there is some eigenform g in M2(Γ1, ω
j ,Qp) whose eigenpacket reduces to η.

Proof. One checks that the natural map

H1
c (Γ0,Fp(aj))→ H1

c (Γ1,Fp)(ωj)

is an isomorphism. (Here again we are using the the identification in (1)). We claim
that the natural map

H1
c (Γ1,Zp)→ H1

c (Γ1,Fp)
is surjective. To see this, note that the cokernel of this map equals the p-torsion in
H2
c (Γ1,Zp). By Poincaré duality, we have H2

c (Γ1,Zp) ∼= H0(Γ1,Zp) = Zp, which is
torsion-free. Thus, η lifts to some eigenpacket occurring in H1

c (Γ1,O)(ωj) where O
is some finite extension of Zp. By the classical Eichler-Shimura isomorphism [17,
Chapter 8], the lemma then follows5. �

5We note that in [17], Eichler-Shimura is stated in the form Sk+2⊕Sk+2
∼= H1

par(Γ, Vk) where

Vk := Symk(C2) and the isomorphism is given by (f, g) 7→ ξf |ι + ξg where ι is the operator

induced by the matrix
`−1 0

0 1

´
. To obtain the form used here, we note that H1

par is defined by the
exactness of the sequence

0 −→ H1
par(Γ, Vk) −→ H1(Γ, Vk)

ρ−→
M

x∈cusps(Γ)

H1(Γx, Vk)

where, for x ∈ cusps(Γ), Γx is the stabilizer in Γ of some fixed representative of x in P1(Q)

and ρ is the direct sum of the restriction morphisms. But the composition of the canonical map
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6.4. Main theorem I. Let f be a critical slope eigenform in Sk+2(Γ0,Qp). Since
f is necessarily the critical p-stabilization of a p-ordinary form of level Γ1(N), by
Hida theory, f has the same residual Galois representation as some eigenform in
Sj(Γ0,Qp) with 1 ≤ j ≤ p − 1 and j ≡ k + 2 (mod p − 1). We thus say that f
possesses a mod p companion form, if there is an eigenform g in Mp+1−j(Γ0,Qp)
with ρf

∼= ρg ⊗ ωk+1 ∼= ρg ⊗ ωj−1.

Theorem 6.7. Let f be an eigenform in Sk+2(Γ0,Qp) with slope k + 1. If Γ0 has
no elements of order p, and if f does not possess a mod p companion form, then

H1
c (Γ0,Dk)(f)

∼−→ H1
c (Γ0,P∨k )(f)

is an isomorphism.

Proof. By Proposition 4.8 and Lemma 5.1, we have an exact sequence

0→ H1
c (D−2−k)(k + 1)(=k+1) → H1

c (Dk)(=k+1) → H1
c (P∨k )(=k+1) → 0

of finite-dimensional vector spaces. By Lemma 6.4, passing to f -isotypic subspaces
gives an exact sequence

0→ H1
c (D−2−k)(k + 1)(f) → H1

c (Dk)(f) → H1
c (P∨k )(f) → 0.

Assume that Ψ ∈ H1
c (D−2−k)(k + 1)(f) is some non-zero H-eigenvector, and we

will produce a mod p companion form for f .
Let Ψ0 be the corresponding untwisted H-eigensymbol in H1

c (D−2−k). By scal-
ing, we may assume that ||Ψ0|| = 1, and in particular, Ψ0 takes values in D0

−2−k.
Since Ψ has slope k + 1, we have that Ψ0 has slope 0. Thus, by Lemma 6.3, the
reduction of Ψ0 modulo Fil1 D0

−2−k is non-zero.
By Lemma 3.7, we have

H1
c (D0

−2−k/Fil1 D0
−2−k) ∼= H1

c (Fp(a−2−k)).

Thus, by Lemma 6.6, there is some eigenform h in M2(Γ1, ω
−2−k,Qp) whose eigen-

packet reduces to the eigenpacket attached to the image of Ψ0. In particular, this
means that ρh ⊗ ωk+1 ∼= ρf .

Note that h is necessarily p-ordinary as Ψ0 has slope 0. Thus, by Hida theory,
there is a unique weight between 2 and p for which ρh occurs at level Γ0 (as opposed
to Γ1). To find this weight, note that

det ρh = ω−1−k = ωp−j

where j is the unique integer satisfying j ≡ k + 2 (mod p− 1) and 1 ≤ j ≤ p− 1.
Thus, there is some p-ordinary eigenform g in Mp+1−j(Γ0,Qp) with ρg

∼= ρh, and
f possesses a mod p companion form. �

Ek+2
ξ−→ H1(Γ, Vk) with ρ maps Ek+2 isomorphically to the image of ρ, so we have a canonical

splitting H1
par(Γ, Vk)⊕Ek+2

∼−→ H1(Γ, Vk) of Hecke modules. Combining this with [17] we obtain
a Hecke-equivariant isomorphism

Sk+2 ⊕Mk+2
∼= H1(Γ, Vk).

(Here and elsewhere we refer to this statement as the classical Eichler-Shimura isomorphism.)

By Lefschetz duality, there is a Hecke-equivariant perfect pairing over C between H1(Γ, Vk) and
H1
c (Γ, Vk). Thus a Hecke eigenpacket occurs in H1

c (Γ, Vk) if and only if it occurs in H1(Γ, Vk),

which by the above version of Eichler-Shimura, is equivalent to its occurrence in Mk+2. For the

application given here, we take k = 0, but in chapter 7, we will need the general statement.
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6.5. On the condition of Theorem 6.7. The hypothesis of Theorem 6.7 (on
the non-existence of a mod p companion form) can be readily verified for a given
modular form. In this section, we give examples of forms that satisfy and fail this
condition.

Example 6.8. Let f0 be the normalized newform on Γ0(11) that corresponds
to the elliptic curve X0(11). Let p = 3, and let f correspond to the critical 3-
stabilization of f0 to level 33. (Note that Γ0(11) is torsion-free and so we are free
to take p = 3 in this example.) We need to verify that f does not possess a mod 3
companion form. That is, we need to see that there is no form g in M2(Γ0(33),Qp)
such that ρg ⊗ ω ∼= ρf . To see this, note that a5(f) = 1, and thus any such
g would need to satisfy a5(g) reduces to 2 in F3. However, M2(Γ0(33),Qp) is six-
dimensional with three dimensions coming Eisenstein series and the remaining three
dimensions coming from the two 3-stabilizations of f0 and from one newform on
Γ0(33) corresponding to the unique elliptic curve over Q with conductor 33. All of
the Eisenstein series have a5 equal to 6 while all of cuspforms have a5 congruent to
1. Thus f has no mod 3 companion form.

Let θk+1 denote the θ-operator on overconvergent modular forms which takes
S†−k(Γ,Qp) to S†k+2(Γ,Qp) and which acts on q-expansions by (qd/dq)k+1.

Proposition 6.9. If f ∈ Sk+2(Γ0,Qp) is a critical slope eigenform which is in the
image of θk+1, then f possesses a mod p companion form.

Proof. Write f = θk+1h with h ∈ S†−k(Γ,Qp). Since f has slope k + 1, we must
have that h is a p-ordinary form as ap(f) = pk+1ap(h). Thus, by Hida theory (as
in the proof of Theorem 6.7), there is a modular form g in Sp+1−j(Γ0,Qp) with
j ≡ k+2 (mod p−1), 1 ≤ j ≤ p−1 and with ρg ∼= ρh. Since ρh⊗χk+1 ∼= ρf where
χ is the cyclotomic character, we immediately see that g is a mod p companion
form for f . �

Example 6.10. Let E/Q be any elliptic curve with CM, and let f0 be the corre-
sponding normalized newform. Let p be a good ordinary prime for E, and let f be
the criticial p-stabilization of f0. By [4, Prop 7.1], the form f is in the image of θ,
and in particular, the form f fails the conditions of Theorem 6.7.

In [15], computations were done for f corresponding to the CM elliptic curve
X0(32) with p = 5. In these computations, an approximation to an overconvergent
Hecke-eigensymbol was found with the same eigenvalues as f . However, this symbol
was in the kernel of specialization, and no symbol was found which specialized to
the classical modular symbol attached to f .

Example 6.11. Let f0 again be the normalized newform on Γ0(11) that cor-
responds to X0(11), but now take p = 5. Let f correspond to the critical 5-
stabilization of f0 to level 55. In this case, f does possess a mod 5 companion
form. Indeed, ρf ∼= 1 ⊕ ω where 1 is the trivial character. We thus need to find
an eigenform g of weight 4 such that ρg ∼= ω3 ⊕ 1. But then simply the Eisenstein
series E4 (stabilized to level 55) serves as a companion form for f .

We note that despite the fact that the hypotheses of Theorem 6.7 are not sat-
isfied in the previous example, its conclusion still holds in this case. This will be
established in the following two sections.
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7. Eigenpackets in H1
c (Γ0,Dk) and M†k+2(Γ0,Qp)

Let ε : H −→ Qp be the eigenpacket attached to Ecrit
2 , the critical slope Eisen-

stein series of weight 2 on Γ0(p). Explicitly, we have ε(T`) = ` + 1 for ` - Np and
ε(Uq) = q for q|Np. We will also let Ecrit

2 := QpE
crit
2 .

The following theorem of the second author compares the eigenpackets which
occur in spaces of overconvergent modular symbols and in spaces of overconvergent
modular forms.

Theorem 7.1 (Stevens [18, 19]). Let k be any integer. A finite slope eigenpacket for
ψ : H −→ Qp occurs in H1

c (Γ0,Dk) if and only if either ψ occurs in M†k+2(Γ0,Qp)
or k = 0 and ψ = ε.

The proof, which will occupy the rest of this section, comes down to comparing,
for a fixed element u ∈ UpH, the characteristic Fredholm series of u acting on
overconvergent modular forms with the characteristic Fredholm series for u acting
on overconvergent modular symbols.

On the modular form side we have the work of Coleman-Mazur, Buzzard and
others, which in particular gives us the following theorem. In the following, let
Λ = Zp[[Z×p ]] denote the space of Iwasawa functions on weight space.

Theorem 7.2. Let u ∈ UpH. Then there is a (unique) power series Q(T ) ∈ Λ[[T ]]
such that for every non-negative integer k ∈ Z we have

Q(k, T ) = det
(

1− uT ;S†k+2 ⊕M
†
k+2

)
.

Moreover, for such k we have the congruence

Q(k, T ) ≡ det (1− uT ;Sk+2 ⊕Mk+2) (mod pk+1).

To compare this with corresponding constructions on the modular symbols side,
we fix Ω ⊆ X to be an affinoid disk (viewed as a Qp-affinoid) in weight space with
0 ∈ Ω. We form the Frechet A(Ω)-module

DΩ := D⊗̂Qp
A(Ω)

and endow it with the canonical action of Σ0, with respect to which specialization
of the second factor to any point k ∈ Ω induces a Σ0-morphism DΩ −→ Dk. It can
be shown that H1

c (DΩ) is a projective limit of ON-able A(Ω)-modules on which Up
acts in a completely continuous manner. Hence our fixed element u ∈ UpH also
acts completely continuously and we can form the Fredholm determinant

PΩ(T ) = det(1− uT ;H1
c (DΩ)) ∈ A0(Ω)[[T ]]

where A0(Ω) denotes the ring of integers in A(Ω). We then have the following
theorem.

Theorem 7.3. For any affinoid disk Ω ⊆ X as above, we have Q|Ω = PΩ.

To prove this, we note that for any k ∈ Ω and any generator πk of the maximal
ideal associated to k in A(Ω), the space

H1
c (DΩ)(k) := H1

c (DΩ)/πkH1
c (DΩ)

inherits a structure of Qp-Frechet space on which u is again completely continuous,
and the characteristic Fredholm series of u on this space is equal to the specialization
of PΩ at k:

PΩ(k, T ) = det
(
1− uT ;H1

c (DΩ)(k)
)
∈ Zp[[T ]].
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We also have an exact sequence

0 −→ DΩ
πk−→ DΩ −→ Dk −→ 0

and consequently a long exact sequence in cohomology, from which we may extract
the H-equivariant exact sequence of A(Ω)-modules

0 −→ H1
c (DΩ)(k) −→ H1

c (Dk) −→ H2
c (DΩ) −→ H2

c (DΩ).

On the other hand, it follows from Lemma 5.2 that the natural map DΩ −→ Qp

given by taking the total measure and composing with evaluation at 0 induces an
H-equivariant isomorphism over A(Ω):

H2
c (DΩ) ∼= H2

c (Qp) ∼= Ecrit
2

where A(Ω) acts on Ecrit
2 via specialization to 0. In particular, for any k 6= 0 in X

we have an isomorphism

H1
c (DΩ)(k) ∼= H1

c (Dk) (k 6= 0)

while for k = 0 we have the exact sequence

0 −→ H1
c (DΩ)(0) −→ H1

c (D0) −→ Ecrit
2 −→ 0.

But from the comparison theorem (Theorem 5.4) for modular symbols we have, for
any integer k ≥ 0,

det
(
1− uT ;H1

c (Dk)
)
≡ det

(
1− uT ;H1

c

(
Symk(Q2

p)
))

(mod pk+1).

On the other hand, since H1
c

(
Symk(Q2

p)
)

is dual to H1
(

Symk(Q2
p)
)

and the action
of u on the first is the transpose of the action of u on the second we have

det
(

1− uT ;H1
c

(
Symk(Q2

p)
))

= det
(

1− uT ;H1
(

Symk(Q2
p)
))

while the classical Eichler-Shimura6 theorem tells us

det
(

1− uT ;H1
(

Symk(Q2
p)
))

= det (1− uT ;Sk+2 ⊕Mk+2) .

Comparing this with Theorem 7.2 we obtain, for any non-negative integer k ≥ 0,
the congruence

PΩ(k, T ) ≡ Q(k, T ) (mod pk+1).
In fact, this congruence is easily improved to an equality. Indeed, for any positive
integer n we may choose a positive integer k′ > n− 1 sufficiently close to k in X so
that we have the following congruences

PΩ(k, T ) ≡ PΩ(k′, T ) ≡ Q(k′, T ) ≡ Q(k, T ) (mod pn).

It follows that PΩ(k, T ) ≡ Q(k, T ) (mod pn) for any positive integer n and therefore
PΩ(k, T ) = Q(k, T ), as claimed. Since this is true for any non-negative integer
k ∈ Ω and since Ω necessarily contains infinitely many such integers, it follows that
PΩ = Q|Ω and Theorem 7.3 is proved.

Let

M̃k+2 :=

{
M†k+2 if k 6= 0;
M†2 ⊕ Ecrit

2 if k = 0.

The following corollary is an easy consequence of the above discussion.

6Ibid
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Corollary 7.4. For any u ∈ UpH and any integer k, the set of non-zero eigenvalues
of u occurring in M̃k+2 is the same as the set of non-zero eigenvalues of u occurring
in H1

c (Dk).

We now complete the proof of the main theorem of this section.

Proof of Theorem 7.1. Let ψ : H −→ K be a finite slope eigenpacket as in the
statement of the theorem. Choose h ∈ Q with h > max{1, ordp(ψ(Up))}. It suffices
to prove

ψ occurs in H1
c (Dk)(<h) ⇐⇒ ψ occurs in M̃

(<h)
k+2 .

Let R be the image of H in the endomorphism ring of H1
c (Dk)(<h) over Qp and R̃

be the image of H in the endomorphism ring of M̃ (<h)
k+2 . Then both R and R̃ are

finite-dimensional Qp-algebras and we have canonical surjective homomorphisms

ϕ : H −→ R and ϕ̃ : H −→ R̃ .
One checks easily that ψ occurs in H1

c (Dk)(<h) if and only if ker(ϕ) ⊆ ker(ψ) and
this in turn is equivalent to Rad(ker(ϕ)) ⊆ ker(ψ). Similarly, ψ occurs in M̃

(<h)
k+2 if

and only if Rad(ker(ϕ̃)) ⊆ ker(ψ). So it suffices to show

Rad(ker(ϕ)) = Rad(ker(ϕ̃)).

So let T ∈ Rad(ker(ϕ)). Then there is a non-negative integer n such that
ϕ(T )n = 0 in R. We claim the element t := ϕ̃(Tn) ∈ R̃ is a nilpotent endo-
morphism of M̃ (<h)

k+2 . For this it suffices to show that t has no non-zero eigenvalue.
Suppose to the contrary that λ ∈ Qp were a non-zero eigenvalue of t occurring

in M̃
(<h)
k+2 . Since Up commutes with T , there must be a λ-eigenvector f ∈ M̃ (<h)

k+2

for t that is simultaneously an eigenvector for Up. Thus f |Up = αf for some
0 6= α ∈ Qp with ordp(α) < h. Now let m be an arbitrary positive integer and let
u = TnUmp . Clearly, f |u = λαm with λαm 6= 0, so by Corollary 7.4 the eigenvalue
λαm occurs as an eigenvalue for u in H1

c (Dk). But then there must be a λαm-
eigenvector x ∈ H1

c (Dk) for u that is simultaneously an eigenvector for Up. Let
β be the eigenvalue of Up acting on x. Clearly β is not zero and therefore x is
also an eigenvector for Tn and the eigenvalue of Tn on x is λ · (α/β)m, which is
not 0. But Tn annihilates H1

c (Dk)(<h), so we must have ordp(β) ≥ h. On the
other hand, Tn preserves the integral structure of H1

c (Dk), hence any eigenvalue of
Tn occurring in this space must be integral. Putting all of this together, we have
ordp(λ) ≥ m(ordp(β)−ordp(α) ≥ m(h−ordp(α)). Since this is true for all positive
integers m and since h > ordp(α) we must have λ = 0, which contradicts our initial
assumption that λ 6= 0. It follows that t has no non-zero eigenvalue occurring in
M̃

(<h)
k+2 and consequently that t is a nilpotent endomorphism of this space. Thus

T ∈ Rad(ker(ϕ̃)) and we conclude that

Rad(ker(ϕ)) ⊆ Rad(ker(ϕ̃)).

The opposite inclusion is proved in precisely the same way. This completes the
proof of Theorem 7.1. �

Remark 7.5. We note that we will only apply this theorem when k is negative
and when the eigenpacket has slope 0 (and in particular the exceptional case of
Ecrit

2 does not intervene).
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Remark 7.6. Following Coleman and Mazur [5] one may also define the spaces
M†k+2 for any k ∈ X (K) with K/Qp finite. With those conventions, all of the
results in this section remain true and our proofs remain valid, also for non-integral
weights k.

8. The critical slope subspace II

We now strengthen the results of Theorem 6.7 using the results of the previous
section.

Theorem 8.1. Let f be an eigenform in Sk+2(Γ0,Qp) with slope k + 1. Then

H1
c (Γ0,Dk)(f) −→ H1

c (Γ0,P∨k )(f)

is an isomorphism if and only if f /∈ im(θk+1).

Proof. As in the proof of Theorem 6.7, we have an exact sequence

0→ H1
c (D−2−k)(k + 1)(f) → H1

c (Dk)(f) → H1
c (P∨k )(f) → 0.

Assume there is a non-zero H-eigensymbol Ψ ∈ H1
c (D−2−k)(k + 1)(f), and let

Ψ0 be the untwisted eigensymbol in H1
c (D−2−k). By Theorem 7.1, there is some

overconvergent eigenform g ∈ M†−k(Γ,Qp) with the same eigenpacket as Ψ0. The
eigenpacket of θk+1g ∈M†k+2(Γ,Qp) then equals the eigenpacket of f . Thus, looking
at q-expansions, we deduce that f = θk+1g.

Conversely, assume that f = θk+1g for some g ∈M†−k(Γ,Qp). By Theorem 7.1,
there is some H-eigensymbol Ψ0 in H1

c (D−2−k) with the same eigenpacket as g.
Twisting this symbol then gives an H-eigensymbol Ψ in

(
H1
c (D−2−k)(k + 1)

)
(f)

.
The image of Ψ in H1

c (Dk)(f)
∼= H1

c (Dk)(f) is then a non-zero symbol in the kernel
of specialization. �

Remark 8.2. When f is in the image of θk+1, the above theorem implies that
there is an H-eigensymbol Ψ ∈ H1

c (Dk)±(f) which is in the kernel of specializa-
tion. However, from Theorem 7.1 alone, one cannot conclude that this symbol
(up to scaling) is unique. Indeed, it is a priori possible that there are multiple
H-eigenvectors in H1

c (Dk)±(f), while in (M†k)(f), H acts non-semisimply and there
is only a one-dimensional space of overconvergent eigenforms.

Remark 8.3. We note that by Proposition 6.9, we have that Theorem 8.1 does
indeed imply Theorem 6.7.

9. p-adic L-functions

Let f =
∑
anq

n be a normalized eigenform in Sk+2(Γ0,Qp) with slope h < k+1.
In this case, there is a p-adic L-function µf ∈ D which interpolates the special values
of twists of the complex L-series of f . Specifically, if χ is a finite order character of
Z×p with conductor pn and j is an integer between 0 and k, then

(2) µf (xj · χ) =
1
anp
· p

n(j+1)

(−2πi)j
· j!
τ(χ−1)

· L(f, χ−1, 1)
Ω±f

where τ(χ−1) is a Gauss sum and Ω±f are certain complex periods. We note that
the p-adic L-function µf is uniquely determined by this interpolation property and
by a bound on its growth (i.e. that it is h-admissible).
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We now describe an alternative construction of this p-adic L-function via over-
convergent modular symbols to motivate our definition of p-adic L-functions for
critical slope forms.

Let Kf denote the finite extension of Qp containing the Fourier coefficients of
f . By Eichler-Shimura theory and multiplicity one, the f -isotypic subspace of
H1
c (Γ0,P∨k ))± ⊗Kf is one-dimensional. Let φ±f denote a non-zero element of this

subspace, normalized to have size 1, and set φf = φ+
f + φ−f .

Since we are assuming that f is non-critical, by Theorem 5.4, there is a unique
overconvergent modular symbol Φf ∈ H1

c (Dk) ⊗Kf which specializes to φf . The
following theorem relates Φf to the p-adic L-function of f .

Proposition 9.1. With f , φf and Φf as above, we have

Φf ({∞} − {0})
∣∣
Z×p

= µf ,

the p-adic L-function of f .

Proof. See [19] or [15, Prop 6.3]. �

We now consider the case where f has slope equal to k+1. In light of Proposition
9.1, we make the following definition of the p-adic L-function of f .

Definition 9.2. Let f be an eigenform in Sk+2(Γ0,Qp) of slope k+ 1 which is not
in the image of θk+1. Let Φf be the unique overconvergent eigensymbol of Theorem
8.1 which specializes to φf . We define the p-adic L-function of f to be

µf := Φf ({∞} − {0})
∣∣
Z×p
,

which is a locally analytic distribution on Z×p .

Proposition 9.3. Let f be an eigenform in Sk+2(Γ0,Qp) of slope k + 1 which is
not in the image of θ. Then µf is a (k + 1)-admissible distribution. Further, µf
satisfies the interpolation property in (2).

Proof. The admissibility claim follows from [15, Lemma 6.2]. The interpolation
property is a formal consequence of Φf being a Up-eigensymbol lifting φf as in
Proposition 9.1. �

Remark 9.4. Since µf is a (k+1)-admissible distribution, it is not uniquely deter-
mined by the above interpolation property. To uniquely determine this distribution
by interpolation, one would also need to specify its values at the characters of the
form xk+1χ with χ of finite order. We point out here that our method of pro-
ducing µf from overconvergent modular symbols does not directly give a way of
understanding its values at such characters.

Remark 9.5. We now sketch an alternative construction of a critical slope p-adic
L-functions given by combining Perrin-Riou’s dual exponential map with Kato’s
zeta-element (see [13] and [6] for more details).

Let f now be an eigenform on Γ0(N) with p - N , and let Vf denote the p-adic
representation attached to f . Consider Perrin-Riou’s dual-exponential map (see
[14] and [12, 2.1]),

lim←−
n

H1(Qn,p, Vf )
exp∗−→ Dk ⊗Dcris(Vf )
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where Qn,p is the n-th layer of the local cyclotomic Zp-extension of Qp. Kato’s
zeta-element z(f) = (zn(f)) ∈ lim←−nH

1(Qn, Vf ) is a norm-coherent system of global
cohomology classes; here, Qn is the n-th layer of the cyclotomic Zp-extension of Q.

Let zp(f) denote the restriction to p of z(f), and let

Lp(f) = exp∗(zp(f)) ∈ Dk ⊗Dcris(Vf ).

We have that Dcris(Vf ) decomposes under the ϕ-action into eigenspaces with eigen-
values α and β, the roots of x2 − apx+ pk+1. Let Lp,α(f) and Lp,β(f) denote the
two projections of Lp(f) onto these eigenspaces, which we can identify as locally
analytic p-adic distributions.

If f is non-ordinary at p, then these two p-adic distributions are precisely the
p-adic L-functions attached to f . If f is ordinary at p, and α is a p-unit, then
Lp,α(f) is the ordinary p-adic L-function of f . In this case, one defines Lp,β(f) to
be the critical slope p-adic L-function attached to f .

As long as Vf is not locally split at p, this distribution satisfies the interpolation
property of equation (2). However, if Vf is locally split at p, then Lp,β(f) vanishes
at all characters of the form xjχ(x) where χ has finite order and 0 ≤ j < k − 2,
and in particular, it is not even clear that Lp,β(f) is non-zero.

Comparing the above construction to the construction of this paper, we note
that if f is in the image of θk+1, then Vf is locally split at p (see [9, Prop 1.2]), and
further, the converse of this statement is known as well under some mild hypotheses.
In this case, by Theorem 8.1, there is at least one Dk-valued modular symbol Φf
in the kernel of specialization with the same eigenpacket as f . For this symbol, we
note that Φf ({∞}− {0}) also vanishes at all characters of the form xjχ(x) with χ
of finite order and 0 ≤ j < k − 2.

Remark 9.6. In [7, Section 4.5], Emerton gives a construction of a two-variable
p-adic L-function which specializes correctly to one-variable p-adic L-functions at
classical points of non-critical slope. Moreover, under some mild assumptions on the
residual representation (e.g. globally irreducible, p-distinguished), Emerton’s local-
global compatibility theorem [8] implies that this two-variable p-adic L-function
extends to critical slope forms which are not in the image of θk+1.

Remark 9.7. We close with the remark that it is a priori unclear that the con-
structions of this paper match the constructions mentioned in Remarks 9.5 and
9.6 as these critical slope p-adic L-functions are not uniquely determined by their
interpolation property.
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