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Abstract

We define a Fourier transform and a convolution product for functions

and distributions on Heisenberg–Clifford Lie supergroups. The Fourier

transform exchanges the convolution and a pointwise product, and is an

intertwining operator for the left regular representation. We generalize

various classical theorems, including the Paley–Wiener–Schwartz theorem,

and define a convolution Banach algebra.

1 Introduction

Recently, several attempts have been made to extend the notion of a Fourier
transform to a supersymmetric context. An obstacle one encounters is that su-
percommutative Lie supergroups with non-trivial odd part do not admit enough
unitary representations to decompose reasonable spaces of superfunctions.

In this paper we associate a natural Fourier transform with purely odd Lie
supergroups. The situation is analogous to geometric quantization of translation
groups on vector spaces: The action on the cotangent bundle is Hamiltonian only
after central extension. This leads to the canonical commutation relations and
thus, to the definition of the Heisenberg group. Similarly, the central extension
of the underlying supergroup of a super vector space produces the Heisenberg–
Clifford supergroup which admits unitary representations in abundance. In
fact, the representation theory of Heisenberg–Clifford algebras resembles the
representation theory of Heisenberg groups, so that the harmonic analysis of
phase space can be used as a guideline for the harmonic analysis of purely odd
superspaces.

In the present paper, we will restrict ourselves to the case of a purely odd
super vector space and its central extension. In a later paper, we will combine
the purely odd with the classical, purely even Fourier analysis to provide a
complete picture of the harmonic analysis for Heisenberg–Clifford supergroups.

To put our work in perspective, we mention some previous work on Fourier
transforms of functions on linear supermanifolds. The earliest reference known
to the authors is the article [15] by Rempel and Schmitt. More recent papers
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include work by Brackx, De Schepper and Sommen [6], and by De Bie [8]. Inves-
tigation of Fourier transform on Heisenberg–Clifford Supergroups was started
by Bieliavsky, de Goursac and Tuynman in their preprint [5]. These approaches
have in common that the Fourier transform is defined in close formal analogy
with the formula

f̂(ζ) =

∫

R

f(x)e−iζx dx,

and one of the crucial ideas is an appropriate generalization of the exponential
eiζx. Our approach is somewhat different, in that we take as a starting point
the formula

f̂(π) =

∫

G

f(x)π(x) dx,

where π is an irreducible representation ofG, and dx is a left Haar measure on G.
Of course, forG = R the two formulas agree if we take for π the unitary character
x 7→ e−iζx. Our approach is naturally covariant and thus well-adapted to the
supergroup structures. Indeed, we expect that it will generalize to arbitrary Lie
supergroups (though, of course, these may not have any unitary representations
in general). The irreducible unitary representations of the Heisenberg–Clifford
Lie supergroup have been classified by Salmasian [17], and our approach depends
heavily on his classification.

The Fourier transform F that we introduce takes values in a certain endo-
morphism algebra H. We define a convolution product in analogy with

(f ∗ g)(x) =

∫

G

f(y)g(y−1x) dy,

which behaves well with respect to the Fourier transform in the sense that the
Fourier transform F(F ∗ G) agrees with the pointwise product F(F )F(G) in
H. This convolution product seems to be new. (However, Bieliavsky et. al. [5]
define a ⋆-product which is mapped to a pointwise product under a quantization
map).

We give a brief summary of the paper and state the main results.
In Section 2 we define the Heisenberg–Clifford Lie algebra hc = hc(V, β) as-

sociated with a symplectic super vector space (V, β). We restrict our attention
to V purely odd and β positive definite and non-degenerate. Then we define
a Lie supergroup HC = (HC0, C

∞
HC) with underlying Lie group HC0 = R, and

Lie superalgebra hc. We introduce a left invariant integral
∫
HC

F for smooth
compactly supported functions F ∈ C∞

c (HC) and define distributions on HC .
This material is known, except possibly for our treatment of the invariant in-
tegral. If (ai)

n
i=1 is an orthonormal basis of (V, β), then γ := a1 · · · an ∈ U(hc)

depends only on the orientation of the basis. We define
∫
HC F :=

∫
R
F (γ;x) dx

- in our case, this is just the well-known Berezin integral, but an appropriate
choice of γ will yield an invariant integral on more general supergroups. The
invariant integral gives rise to a non-degenerate invariant pairing 〈·, ·〉 between
C∞(HC) and C∞

c (HC). Lastly, we define spaces D′(HC) and E ′(HC) of distri-
butions and compactly supported distributions as topological dual spaces. The
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non-degenerate pairing then allows us to identify a smooth function F with the
distribution Φ 7→ 〈F,Φ〉.

The definition of a finite-dimensional unitary representation of HC is given
in Section 3. It is known that all irreducible unitary representations of HC are
finite-dimensional if V is purely odd. Representations of the universal enveloping
algebra U(hc) in which a central element z acts by a scalar iζ factor through
a Clifford algebra Cl(VC, ζβ). The spin module of this algebra is then used
to define a representation (πζ ,S) whenever ζ ∈ C; real and positive values of
ζ yield all unitary irreducible representations of HC, which follows from the
results of Salmasian [17]. It is well-known that the Clifford algebra Cl(VC, ζβ)
is isomorphic to an algebra H of endomorphisms of S, and we define a trace T
and a sesquilinear form 〈A|B〉 = T (AB†) on H.

In Section 4, we combine the invariant integral with the family (πζ ,S) of
representations in order to define the Fourier transform of F at ζ ∈ C to be the
H-valued integral F(F )(ζ) := F̂ (ζ) :=

∫
HC F · π−ζ . The first main theorem is

the following:

Theorem A. The Fourier transformation intertwines the left regular represen-
tation with π−ζ , that is,

(Lu;xF )̂ (ζ) = π−ζ(u;x)F̂ (ζ)

for ζ ∈ C, u ∈ U(hc) and x ∈ R.

We introduce the Schwartz space S(HC) as the space of functions F ∈
C∞(HC) for which F (u) is rapidly decreasing for all u ∈ U(hc). Then the pre-
ceding theorem suggests a definition of a space S(R,H) of H-valued Schwartz
functions on R. The main idea is to define the components A(u; ζ) of a function

A : R → H in such a way that if A = F̂ , then A(u) is the Fourier transform of
F (u). Then we can prove that the Fourier transform is an isomorphism of these
topological vector spaces.

Theorem B. The Fourier transform restricts to an isomorphism of the topo-
logical vector spaces S(HC) and S(R,H).

Next, we extend the definition of Fourier transform to compactly supported
distributions. If U ∈ D′(HC), then its Fourier transform Û(ζ) extends to an
entire holomorphic function on C. Lastly, we prove a Paley–Wiener–Schwartz
theorem, characterizing the image of the space C∞

[−a,a](HC) of functions with

support in the compact interval [−a, a] under the Fourier transform.

Theorem C. The Fourier transform is a bijection between the space C∞
[−a,a](HC)

and the space of functions A : C → H whose components satisfy the following
exponential growth condition:

For every N ∈ N there is a constant CN such that

|T (A(ζ)dπ−ζ(u)))| ≤ CN (1 + |ζ|)−NeaIm(ζ) for all u ∈ U(hc), ζ ∈ C.
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Let (m,m∗) and (i, i∗) denote the multiplication and inversion morphism
of the Lie supergroup HC . The last section begins with the definition of a
convolution product

(F ∗G)(u;x) := (−1)|u|(|G|+|γ|)〈F,Lu;xi
∗G〉

where F and G are smooth functions on HC, one of which is compactly sup-
ported. In the rather technical Proposition 5.5 we prove that our formula indeed
yields a smooth function on HC, and that

〈F ∗G,Φ〉 = 〈F ⊗G,m∗Φ〉 = 〈F, i∗(G ∗ i∗Φ)〉.

In Theorem 5.7 we prove the following property of the convolution product.

Theorem D. If F and G are smooth compactly supported functions on HC,
then

(F ∗G)̂ (ζ) = F̂ (ζ)Ĝ(ζ),

The convolution product can be extended to include convolutions U ∗F of a
distribution U and a smooth function F, if one of F,U is compactly supported.
Lastly, we define Sobolev-type spaces (W k,p(HC), ‖ · ‖k,p). If the order of differ-
entiability k is large enough, the convolution product can be extended to these
Banach spaces, and we prove

Theorem E. If n = dimV, the space Wn,1(HC) is a Banach algebra with
respect to the convolution product.

We view the present set of results as a first step towards a systematic har-
monic analysis on abelian Lie supergroups. We expect such a theory to have im-
mediate applications to linear differential equations on superspaces. Moreover,
it will be an important tool in a non-abelian harmonic analysis of homogeneous
superspaces which is just evolving (see [2–4]).

Acknowledgements. The first named author was funded by the Leibniz inde-
pendent junior research group grant, and the SFB/Transregio 12 grant, both
provided by Deutsche Forschungsgemeinschaft (DFG).

2 Preliminaries

In this section we provide the basic definitions necessary for our construction.
The material in this section is mostly known, so we will omit proofs wherever
possible. As general references, we mention [10, 14].

If V = V0 ⊕ V1 is a super vector space, we write |v| for the parity of a
homogeneous element v ∈ V. If m = dimV0 and n = dimV1, we say that V is of
graded dimension (m,n). If W is another super vector space, we equip V ⊗W
with a grading such that |v ⊗ w| ≡ |v| + |w|(2). The space of all linear maps
from V to W is denoted Hom(V,W ), and has grading defined in such a way
that |φ(v)| ≡ |φ|+ |v|(2) for φ ∈ Hom(V,W ), v ∈ V. We let Hom(V,W ) denote
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the subspace of even linear maps. A bilinear form β on V is even if |u|+ |v| = 1
implies β(u, v) = 0, and a non-degenerate even bilinear form β is symplectic if

β(u, v) = −(−1)|u||v|β(v, u)

for all homogeneous u, v ∈ V.

Definition 2.1. Given a finite-dimensional super vector space V over R to-
gether with a symplectic form β on V, we define the Heisenberg–Clifford Lie
superalgebra by

hc(V, β) = V ⊕ R,

with grading hc(V, β)0 = V0 ⊕ R and hc(V, β)1 = V1 and elements u + x with
u ∈ V and x ∈ R. We denote by z the central element 0 + 1. The bracket is
given by

[u+ λz, v + µz] = 2β(u, v)z, u, v ∈ V, λ, µ ∈ R, (2.1)

and the one-dimensional center z(hc(V, β)) of hc(V, β) is spanned by z.

Remark 2.2. Throughout this article, we will assume that V is purely odd super
vector space of graded dimension (0, n). Then, β is simply a non-degenerate
symmetric bilinear form, and we assume that β is positive definite. We will
write hc or hc(V ) for hc(V, β), and similarly z for z(hc(V, β)), if no confusion is
possible.

Remark 2.3. Let (ai)
n
i=1 be an orthonormal basis of (V, β). Then the univer-

sal enveloping algebra U(hc(V, β)) is generated by the elements ai and z ∈
z(hc(V, β)), subject to the relations

aiaj =

{
−ajai if i 6= j

z if i = j
(2.2)

and zai = aiz for all i = 1, . . . , n.

As in the ungraded case, there is a symmetrization map ω : S(hc) → U(hc).
Here, S(hc) ∼= R[z]⊗ΛV is the symmetric algebra of the super vector space hc.
The elements ai ∈ V pairwise anticommute, and therefore the map ω is simply
given by ω(zk ⊗ (ai1 ∧ · · · ∧ aik)) = zkai1 · · · aik .

Given a natural number n ≥ 1, we let n = {1, 2, . . . , n}. If (ai)
n
i=1 is a basis

of V, then the subsets of n parametrize a basis (aI)I⊂n of ΛV in the usual way
by

aI = ai1 ∧ · · · ∧ aik ,

where I = {i1 < · · · < ik}. We denote the images of aI under ω also by aI .
Then a Poincaré–Birkhoff–Witt basis of U(hc) is given by {zkaI | k ∈ N, I ⊂ n}.

We introduce a special element of hc(V, β), which is up to a sign the chirality
operator in the theory of Clifford algebras.

Definition 2.4. If (ai)
n
i=1 is an orthonormal basis of (V, β), we let

γ := a1 · · ·an = ω(1⊗ (a1 ∧ · · · ∧ an)) ∈ U(hc(V, β)).

Since the volume element a1 ∧ · · · ∧ an ∈ ΛnV only depends on the orientation
of the orthonormal basis, the same is true for γ.
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Recall that if g is a Lie superalgebra, then U(g) carries the structure of a
super Hopf algebra (see e.g. [12, Section 3]). The coproduct ∆ and the antipode
S will be used below to define a Lie supergroup corresponding to hc. They are
uniquely determined by the following properties: The coproduct ∆ : U(g) →
U(g) ⊗ U(g) is an even unital algebra homomorphism which satisfies ∆(x) =
x⊗ 1 + 1⊗ x for x ∈ g. The antipode S : U(g) → U(g) is an even unital super-
antiautomorphism, that is, S(uv) = (−1)|u||v|S(v)S(u), and on elements x ∈ g

it is given by S(x) = −x.

Remark 2.5. The element ∆(γ) will play an important role in this article. With
respect to an orthonormal basis (ai)

n
i=1, it is given by

∆(γ) =

n∏

i=1

(ai ⊗ 1 + 1⊗ ai) =
∑

I⊂n

aI ⊗ ∗aI . (2.3)

Here ∗aI = ±aIc , where the sign is such that aI · (∗aI) = γ in U(hc), and
Ic = n \ I. Concretely, if I = (i1 < . . . < ik), let σI denote the permutation of
n determined by σI(j) = ij for 1 ≤ j ≤ k and σI(k + 1) < . . . < σI(n). Then

∗aI = sgn(σI)aIc .

Note that both (aI)I⊂n and (∗aI)I⊂n form a bases of U(hc) as a z-module. We
will use Sweedler’s notation

∆(γ) =
∑

i

γ
(1)
i ⊗ γ

(2)
i . (2.4)

This, however, requires some care, since the γ
(j)
i are not uniquely determined

by equation (2.4).

In [13], Koszul constructs a Lie supergroup associated with a Lie supergroup
pair. We recall the definition of a Lie supergroup pair and the construction of
the corresponding sheaf.

Definition 2.6. A Lie supergroup pair G = (G0, g) consists of a Lie group G0,
and a real Lie superalgebra g whose even part g0 is the Lie algebra of G0, and a
smooth linear action Ad of G0 on g by even linear automorphisms. We require
that the action Ad extends the adjoint action of G0 on g0 and that its differential
dAd : g0 × g → g is the restriction of the bracket [·, ·]. The subalgebra g0 of g
acts on U(g) from the left, and if U ⊂ G0 is open, then g0 acts on C∞(U) by left
invariant differential operators. Consider C∞(U) as a purely even g0-module
and define

C∞
G (U) := Hom

g0
(U(g), C∞(U)).

If F ∈ C∞
G (U) we write F (u;x) for F (u)(x) if u ∈ U(g) and x ∈ U.

Definition 2.7. We define the Heisenberg–Clifford Lie supergroup pair by
HC = (R, hc), where the action Ad of R on hc is the trivial action. If U ⊂ R is
open, we let z ∈ z act on C∞(U) by zf = −f ′.
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Proposition 2.8. a) Let U ⊂ R be open, and denote by µ the pointwise multi-
plication of functions in C∞(U). The assignment U 7→ C∞

HC(U) is a sheaf of
supercommutative unital superalgebras on R, if the algebra multiplication is
defined by

F ·G := µ ◦ (F ⊗G) ◦∆.

The pair (R, C∞
HC) is a supermanifold.

b) As a superalgebra, C∞
HC(U) is isomorphic to

HomR(ΛV,C
∞(U)) ∼= C∞(U)⊗ ΛV ∗,

where the algebra structure on the right hand side is the obvious one. The
isomorphism is given by F 7→ (F ◦ ω)|ΛV , where ω is the symmetrization
map.

Remark 2.9. If (ai)
n
i=1 is a basis of V, let (ξi)ni=1 denote the dual basis of V ∗.

We use superscripts ξI = ξi1 ∧ . . . ∧ ξik for the elements of ΛV ∗, since this has
become standard in the literature on supermanifolds. Due to the simple form of
the symmetrization map ω, the isomorphism in Proposition 2.8 b) is given by

F 7→
∑

I⊂n

fI ⊗ ξI ,

where fI := F (aI). This coordinate-dependent notation for smooth functions is
quite common in the literature. However, we will avoid using coordinates as far
as possible.

We recall that a Lie supergroup is a supermanifold (G, C∞
G ) together with

morphisms m = (m0,m
∗), i = (i0, i

∗) and e : ∗ → (G, C∞
G ), satisfying the usual

group axioms (here, ∗ is the (0, 0)-dimensional supermanifold).

Proposition 2.10. The supermanifold (R, C∞
HC) is a Lie supergroup with mul-

tiplication

m = (m0,m
∗), m0(x, y) := x+ y, (m∗F )(u ⊗ v;x, y) := F (uv;x+ y),

inversion

i = (i0, i
∗), i0(x) := −x, (i∗F )(u;x) := F (S(u);−x),

and identity element e = (e0, e
∗) given by e0(∗) := 0 and e∗F := F (1; 0).

Definition 2.11. We denote the algebra of global sections by C∞(HC) :=
C∞
HC(R) and refer to elements of C∞(HC) as smooth functions on HC.
The left regular action of HC on C∞(HC) is given by

(LxF )(u; y) := F (u; y − x), (LuF )(v, y) := (−1)|u||F |F (S(u)v; y)

for x ∈ R and u ∈ U(hc). This defines linear maps Lx, Lu : C∞(HC) → C∞(HC)
of parity |Lx| = 0 for x ∈ R and |Lu| = |u| for u ∈ U(hc). We write Lu;x for
Lu ◦ Lx = Lx ◦ Lu.
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Lemma 2.12. a) The assignments x 7→ Lx and u 7→ Lu define representations
of R and U(hc) on the vector space C∞(HC).

b) If v ∈ V, then Lv is a super-derivation on C∞(HC), that is, Lv(F · G) =
LvF ·G+ (−1)|v||F |F · LvG.

Definition 2.13. By Proposition 2.8, C∞(HC) is isomorphic as a superalgebra
to C∞(R) ⊗ ΛV ∗. Since C∞(R) carries a nuclear Fréchet topology, this tensor
product also carries a nuclear Fréchet topology. For each compact K ⊂ R and
u ∈ U(hc) we define a seminorm on C∞(HC) by

pK,u(F ) := max
x∈K

|(LuF )(1;x)|

Given a basis (ai)
n
i=1 of V and a countable exhaustion {Kj}j∈J of R by compact

sets, the Fréchet topology on C∞(HC) can be defined by the countable family
{pKj,zkaI

}j,k,I of seminorms.

We define vector valued and compactly supported functions as well as func-
tions of Schwartz class.

Definition 2.14. If K ⊂ R is compact, we let

C∞
K (HC) := {F ∈ C∞(HC) | (∀u ∈ U(hc)) : suppF (u) ⊂ K}

be the space of smooth functions with support contained in K, and we give
C∞
K (HC) the topology defined by the seminorms pu(F ) = maxx∈K |LuF (1;x)|.

Then the union
C∞
c (HC) := ∪iC

∞
Ki

(HC),

where {Ki} is a countable exhaustion of R by compact sets, is the space of com-
pactly supported smooth functions on HC, which is a countable strict inductive
limit of Fréchet spaces, or an LF space.

If W is a finite-dimensional super vector space over R or C, we define the
vector space of smooth W -valued functions on HC by C∞(HC,W ) := (C∞(HC)⊗
W )0.

Lastly, the Schwartz space S(HC) of rapidly decreasing functions is defined
to be the space of F ∈ C∞(HC) for which

sj,u(F ) := sup
x∈R

|xj(LuF )(1;x)| < ∞

for all j ∈ N and u ∈ U(hc).

Remark 2.15. a) The space S(HC) is simply the subspace of C∞(HC) of all F
which satisfy F (u) ∈ S(R) for all u ∈ U(hc).

b) The spaces of functions we have defined so far are isomorphic as vector spaces
to C∞(R) ⊗W, C∞

c (R) ⊗W and S(R) ⊗W, respectively, where W = ΛV ∗

is finite-dimensional. Therefore, there is only one reasonable tensor product
topology, and we will use this topology throughout.
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Lemma 2.16. The linear maps Lu;x are continuous on C∞(HC), C∞
c (HC) and

S(HC).

Proof. After choosing coordinates, the proof reduces to showing that the deriva-
tive f 7→ f ′ is continuous on C∞(R), C∞

c (R) and S(R), which is trivial by
definition.

The Invariant Integral

Definition 2.17. Let W be a finite-dimensional super vector space.

a) If F ∈ C∞
c (HC,W ), we define the integral of F over HC as

∫

HC

F :=

∫

R

F (γ;x) dx,

where γ is defined in 2.4.

b) If F ∈ C∞(HC) and G ∈ C∞(HC,W ) are such that F · G has compact
support, we let

〈F,G〉 :=

∫

HC

F ·G.

Remark 2.18. a) The integral and the pairing have parity |γ|, that is, if |F |+
|γ| ≡ 1(2), then

∫
HC

F = 0, and if |F |+ |G|+ |γ| ≡ 1(2), then 〈F,G〉 = 0.

b) The product in C∞(HC) is supercommutative, and therefore

〈F,G〉 = (−1)|F ||G|〈G,F 〉.

Lemma 2.19. The integral is left invariant in the sense that
∫

HC

LxF =

∫

HC

F and

∫

HC

LuF = 0

for all x ∈ R and all u ∈ U(hc). The pairing 〈·, ·〉 is invariant in the sense that

〈Lu;xF,G〉 = (−1)|F ||u|〈F,LS(u);−xG〉 (2.5)

for x ∈ R and u ∈ U(hc).

Proof. Invariance under Lx, x ∈ R follows from translation invariance of the
Lebesgue measure, since LxF (γ; y) = F (γ; y − x). In order to check invariance
under U(hc), choose an orthonormal basis (ai)

n
i=1 of V. It then suffices to show

that
∫
Lai

F = 0 for 1 ≤ i ≤ n and
∫
LzF = 0. We compute

∫

HC

Lai
F = ±

∫

R

F (aiγ;x) dx

= ±

∫

R

F (za1 . . . âi . . . an;x) dx

= ±

∫

R

F (a1 . . . âi . . . an)
′(x) dx

9



which is zero because F (a1 . . . âi . . . an) is compactly supported. For the same
reason,

∫
LzF =

∫
R
F (γ)′(x) dx = 0. If v ∈ hc, we have

∫
HC Lv(F ·G) = 0, and

because Lv is a super-derivation, this implies

〈LvF,G〉 = −(−1)|v||F |〈F,LvG〉.

Let u, v ∈ hc. Then −Lu = L−u = LS(u), and it follows that

〈LuvF,G〉 = (−1)|F |(|uv|)〈F,LS(uv)G〉.

This implies that equation (2.5) holds for arbitrary u ∈ U(hc) and x ∈ R.

Lemma 2.20. If F,G ∈ C∞
c (HC), then

∣∣∣∣
∫

HC

F

∣∣∣∣ ≤ vol(suppF ) · psuppF,γ(F )

and
pK,u(F ·G) ≤

∑

i

p
K,u

(1)
i

(F )p
K,u

(2)
i

(G)

where u ∈ U(hc) and ∆(u) =
∑

i u
(1)
i ⊗ u

(2)
i .

In particular, the integral
∫
HC is a continuous linear functional, and the

algebra multiplication on C∞(HC) and the pairing 〈·, ·〉 are continuous.

Lastly, we define distributions and compactly supported distributions.

Definition 2.21. We define the spaces D′(HC) of distributions on HC and
E ′(HC) of compactly supported distributions on HC to be the topological dual
spaces of C∞

c (HC) and C∞(HC), respectively. We introduce the duality pairing
〈·, ·〉 and write 〈U,Φ〉 := U(Φ) if U is a distribution and Φ is a smooth function.

Remark 2.22. a) By Lemma 2.20, every element F ∈ C∞(HC) defines a dis-
tribution via Φ 7→ 〈F,Φ〉, and the corresponding map C∞(HC) → D′(HC) is
injective. Similarly, there is an injection C∞

c (HC) → E ′(HC).
b) The spaces C∞

c (HC) and C∞
c (R)⊗ΛV ∗ are isomorphic as algebras and as

topological vector spaces. Hence, the topological dual D′(HC) can be identified
with D′(R) ⊗ ΛV. For U ∈ D′(HC) we denote U(aI) ∈ D′(R) the distribution
determined by U(f ⊗ ξI) = U(aI)(f). Similarly, we define U(aI) ∈ E ′(R) if
U ∈ E ′(HC).

Lemma 2.23. Let F,G ∈ C∞(HC), and assume that one of F,G is compactly
supported. Then

〈F,G〉 =
∑

i

∫

R

(−1)|γ
(1)
i

||γ
(2)
i

|F (γ
(1)
i ;x)G(γ

(2)
i ;x) dx.

Similarly, if U ∈ D′(HC) or U ∈ E ′(HC), there are distributions U(γ
(1)
i ) ∈

D′(R) or in E ′(R) such that

〈U,Φ〉 =
∑

i

(−1)|γ
(1)
i

||γ
(2)
i

|〈U(γ
(1)
i ),Φ(γ

(2)
i )〉 (2.6)

for all Φ ∈ C∞
c (HC) or in C∞(HC), respectively.
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Proof. By definition,

(F ·G)(γ;x) = µ((F ⊗G)(∆(γ);x, x))

=
∑

i

µ((F ⊗G)(γ
(1)
i ⊗ γ

(2)
i ;x, x))

=
∑

i

(−1)|γ
(1)
i

||G|F (γ
(1)
i ;x)G(γ

(2)
i ;x).

Now observe that |G(γ
(2)
i )| = |G|+ |γ

(2)
i | = 0, since C∞(R) is purely even, and

it follows that |G| = |γ
(2)
i |.

The fact that 〈U,Φ〉 can be written as
∑

i(−1)|γ
(1)
i

||γ
(2)
i

|U(γ
(1)
i )(Φ(γ

(2)
i )) fol-

lows from Remark 2.22 b).

3 Representations

We define representations and unitary representations of Lie supergroup pairs.
In this, we follow Alldridge [4, Appendix B] and Carmeli et.al. [7]. Then we use
spin modules to construct a family (πζ)ζ∈C of representations of HC . Salmasian
showed in [17] that all irreducible unitary representations of HC are, up to
unitary equivalence, of the form πζ with ζ real and positive. Since the repre-
sentations πζ are a crucial ingredient in our definition of the Fourier transform,
we give a detailed description.

Definition 3.1. Let V be a finite-dimensional super vector space over K ∈
{R,C}. A representation π = (π0, dπ) of a Lie supergroup pair G = (G0, g)
on V consists of a representation π0 of G0 on V by even K-linear maps, and
a Lie superalgebra representation dπ of hc on V, such that d(π0) = dπ|g0 and
dπ(Ad(g)x) = π0(g)dπ(x)π0(g

−1) for all g ∈ G0 and x ∈ g.

The global functions A := C∞
G (G0) form a supercommutativeR-superalgebra.

If V is a finite-dimensional super vector space, then so is End(V ), and we de-
fine C∞(G0,End(V )) := (A ⊗ End(V ))0. This space can be identified with the
space EndA(A⊗V ) of even A-linear endomorphisms of the left A-module A⊗V.
Consider the subset GL(A⊗V ) of invertible A-linear endomorphisms. We have
the following characterization of linear representations of HC on V.

Proposition 3.2. Linear representations π of G on a finite-dimensional super
vector space V are in bijective correspondence with elements F ∈ GL(A⊗ V ) ⊂
C∞(G0,End(V )) which satisfy

(m∗ ⊗ idV ) ◦ F = (idV ⊗F ) ◦ F and (e∗ ⊗ idV ) ◦ F = idV .

Proof. See [4, Proposition B.19]. For later use, we just note that the element
F ∈ C∞(G0,End(V )) corresponding to a representation π = (π0, dπ) is given
by

F (u;x) = π0(x) ◦ dπ(u) ∈ End(V ). (3.1)

11



Definition 3.3. Let (H, (·, ·)) be a Z2-graded Hilbert space over C. We say
that (H, (·, ·)) is a super Hilbert space if the graded pieces are orthogonal with
respect to (·, ·). If (H, (·, ·)) is a super Hilbert space, we define the super inner
product by 〈u|v〉 := i|u||v|(u, v), and the super adjoint T † of a continuous linear
operator by T † := (−1)|T |T ∗, where T ∗ is the usual adjoint.

Remark 3.4. The definitions of 〈·|·〉 and T † are such that

〈u|v〉 = (−1)|u||v|〈v|u〉 and 〈Tu|v〉 = (−1)|u||T |〈u|T †v〉.

Definition 3.5. A representation π = (π0, dπ) of a Lie supergroup pair (G0, g)
on a finite-dimensional super Hilbert space is unitary if π0 is a unitary repre-
sentation of G0 and dπ(u)† = −dπ(u) for all u ∈ g.

Remark 3.6. a) Observe that if π is a unitary representation, then

dπ(u)† = dπ(S(u))

for all u ∈ U(g).

b) We restrict our attention to finite-dimensional representations because all
irreducible unitary representations of HC are finite-dimensional. In the gen-
eral setting, there are technical subleties due to the fact that the operators
dπ(x), x ∈ g1 are in general unbounded (see [7, Definition 2]).

c) Suppose that π = (π0, dπ) is a unitary representation of G = (G0, g). If we
let ρ(x) = e−iπ/4dπ(x) for x ∈ g1, then the ρ(x) are self-adjoint and satisfy

ρ(x)ρ(y) + ρ(y)ρ(x) = −idπ([x, y])

(see [7, Section 2.3] for details).
We will use this observation in the next subsection by first constructing

operators cζ(v) for v ∈ hc1 = V, which are self-adjoint if ζ is real and non-
negative, and then setting

dπζ(v) = eiπ/4cζ(v)

for v ∈ V.

Spin Modules

The construction by Carmeli et.al. [7] and Salmasian [17] of unitary represen-
tations of HC is based on the following idea. If H is an irreducible unitary
representation of HC, then by a super version of Schur’s lemma, the central el-
ement z acts by a scalar iζ. This scalar ζ has to be positive, essentially because
z is the square of an odd element in hc. The operators cζ(v) = e−iπ/4dπ(v) for
v ∈ V are self-adjoint and satisfy

[cζ(v), cζw)] = 2ζβ(v, w) id .

12



This means that cζ factors through a representation of the quotient of the com-
plexified universal enveloping algebra U(hc)C by the ideal generated by z−ζ. But
this quotient is a Clifford algebra Cl(VC, ζβ), and the irreducible representations
of Clifford algebras are well-known.

We will need this construction also for general ζ ∈ C, in which case the
corresponding representations are no longer unitary. Also, we need some refined
information about the representation, and therefore we recall the construction
in some detail. As additional references, we use the exposition by Deligne [9,
Proposition 2.2], and the book by Rosenberg [16, Section 2.2.2].

Proposition 3.7. Consider the complex space (VC, ζβ), where ζ is any non-zero
complex number.

a) If dimV = 2k > 0 is even, then Cl(VC, ζβ) is isomorphic as complex
superalgebra to H = End(S), where S is the complex super vector space
CN |N , N = 2k−1.

b) Let D be the superalgebra C[ǫ] with ǫ odd and ǫ2 = ζ. If dim V = 2k+1, then
Cl(VC, ζβ) is isomorphic as complex superalgebra to H = EndD(S), where
S = DN = D ⊗C CN , N = 2k is a left D-module.

Proof. We first consider the case dimVC = 2k > 0. The choice of an orthonormal
basis in V yields a tensor product decomposition

Cl(VC, ζβ) = Cl(C2)⊗ · · · ⊗ Cl(C2),

(see [9]), where the spaces C2 are equipped with the bilinear form (u, v) =
ζ(u1v1 + u2v2). Therefore, it suffices to consider the case k = 1. Let a1, a2 be
an orthonormal basis of VC and let

cζ(a1) :=

(
0 ζ
1 0

)
, cζ(a2) :=

(
0 iζ
−i 0

)
∈ End(C1,1).

This clearly defines a representation of Cl(C2) and the arguments in [9] show
that cζ is an algebra isomorphism.

Now we turn to the case of dimVC = 2k + 1, and again we can reduce to
k = 1. It suffices to construct elements cζ(ai) ∈ EndD(D ⊗ C2) for a basis
a0, a1, a2 of VC. To this end, we follow [7].

We let x0 = ǫ ⊗ id, x1 = 1 ⊗ c1(a1) and x2 = 1 ⊗ c1(a2) in D ⊗Mat(2,C),
where the c1(ai) are defined as in the even case with ζ = 1. Now we let

cζ(a0) = ix0x1x2, cζ(a1) = −icζ(a0)x1, cζ(a2) = −icζ(a0)x2

(see [7]). Then a simple computation shows that this defines a representation
of Cl(VC, ζβ), and an isomorphism of superalgebras.

Definition 3.8. We define the symbol [n] for n ∈ N by [n] = n/2 if n is even
and [n] = (n + 1)/2 if n is odd. Let H be as in Proposition 3.7, and consider
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the linear functional T on H defined by

T (A) =

{
STr(A), n even

Tr(eiπ/4ǫA), n odd
.

We define a sesquilinear form on H by 〈A|B〉 := T (AB†).

Lemma 3.9. Let S and H be as in Proposition 3.7.

a) If ζ is real, then S carries a sesquilinear form (·, ·)ζ such that cζ(v) is self-
adjoint for v ∈ V. The sesquilinear form is positive definite if ζ > 0. If ζ < 0
the form is positive definite on S0 and negative definite on S1.

b) Let (ai)
n
i=1 be an orthonormal basis of V. Then

T (einπ/4cζ(γ)) = (2ζ)[n]

and T (cζ(aI)) = 0 if I ( n. The sesquilinear form 〈A|B〉 = T (AB†) on H is
non-degenerate, positive definite on H0 and negative definite on H1.

Proof. a) Assume that ζ is real. In the case of n = 2 we define the sesquilinear
form (·, ·)ζ on S = C2 by (u, v)ζ = u1v̄1 + ζu2v̄2. Clearly, the cζ(ai) are self-
adjoint. Moreover, the inner product is negative definite on S1 if ζ < 0. Taking
tensor products yields the general result for the even case.

Now we consider the case when n is odd. We identify D ∼= C2, so that

multiplication by ǫ has matrix

(
0 ζ
1 0

)
with respect to the standard basis of

C2. If we define (·, ·)ζ on D by (u, v)ζ = u1v̄1 + ζu2v̄2, then multiplication by ǫ
is self-adjoint. By definition (see proof of Proposition 3.7), the operators cζ(ai)
are of the form ǫ⊗A where A is self-adjoint with respect to the standard inner

product on C2k . Extending these inner products to S = D ⊗ C2k makes all
cζ(v), v ∈ V self-adjoint. Again, it is clear that if ζ < 0, then the inner product
is negative definite on S1.

b) If n = 2,

cζ(a1a2) =

(
−iζ 0
0 iζ

)

shows that T (icζ(γ)) = 2ζ. If n = 3, we have

cζ(a0) = ǫ⊗

(
1 0
0 −1

)
, cζ(a1) = ǫ⊗

(
0 −i
i 0

)
, cζ(a2) = ǫ⊗

(
0 1
1 0

)

and hence cζ(γ) = ζǫ ⊗

(
−i 0
0 −i

)
. If we multiply by iǫ, we obtain iǫcζ(γ) =

ζ2 ⊗ id, and this endomorphism has trace 4ζ2 = (2ζ)[3].
The fact that the trace of the tensor product of two linear maps is given by

the product of the respective traces yields the statement for arbitrary n.
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Remark 3.10. Note that the entries of cζ(u) are polynomial in ζ. Hence for fixed
u ∈ U(hc), the map ζ 7→ cζ(u) is an entire holomorphic H-valued function on C.

Now we use the above construction to define representations of the Heisenberg–
Clifford Lie supergroup.

Definition 3.11. Let S,H and cζ be as in Proposition 3.7, and (·, ·)ζ as in
Lemma 3.9. For every ζ ∈ C we define a representation πζ = (πζ,0, dπζ) of HC
on S by πζ,0(x) = eixζ for x ∈ R and dπζ(v) = eiπ/4cζ(v) for v ∈ hc.

We also denote by πζ the element of C∞(HC,H) corresponding to (πζ,0, dπζ)
by Proposition 3.2, which is given by πζ(u;x) = eiζxdπζ(u) for x ∈ R and
u ∈ U(hc). If ζ > 0 is real, then the representation πζ is unitary on the super
Hilbert space (S, (·, ·)ζ).

Remark 3.12. The element γ acts by dπζ(γ) = (eiπ/4)ncζ(γ) Together with
Lemma 3.9 this implies

T (dπζ(γ)) = (2ζ)[n],

and T (dπζ(aI)) = 0 if I ( n.

4 The Fourier Transform

Throughout the remainder of this article, we let S and H be as in Proposi-
tion 3.7, and for ζ ∈ C, we let (πζ ,S) be the representation of HC defined
in 3.11. By Proposition 3.2 there is a unique element of C∞(HC,H) correspond-
ing to πζ , which we denote by the same letter. We use the H-valued function
πζ to define the Fourier transform of a compactly supported smooth function
on HC .

Definition 4.1. If F ∈ C∞
c (HC), we define the Fourier transform F(F ) or F̂

by

F(F ) : C → H, F(F )(ζ) := F̂ (ζ) :=

∫

HC

F · π−ζ .

This is well-defined since it is the integral of a compactly supported smooth
function with values in the finite-dimensional complex vector space H.

Remark 4.2. The Fourier transform of F ∈ C∞
c (HC) can be computed explicitly

as

〈F, π−ζ〉 =
∑

i

∫

R

F (γ
(1)
i ;x)π−ζ(γ

(2)
i ;x) dx

=
∑

i

∫

R

F (γ
(1)
i ;x)e−iζxdπ−ζ(γ

(2)
i ) dx.

Here, we have used that representations have even parity, and that π−ζ(u;x) =
π−ζ,0(x)dπ−ζ(u) = e−iζxdπ−ζ(u). We conclude that

F̂ (ζ) =
∑

i

F (γ
(1)
i )̂ (ζ) dπ−ζ(γ

(2)
i ), (4.1)
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where F (γ
(1)
i )̂ is the classical Fourier transform of F (γ

(1)
i ) ∈ C∞

c (R). In partic-

ular, F̂ extends to an entire holomorphic H-valued function.

An immediate consequence of this remark is the following Fourier inversion
formula.

Proposition 4.3. For F ∈ C∞
c (HC) we have

F (1;x) =
1

2π

∫

R

T (F̂ (ζ))(−2ζ)−[n]eixζ dζ.

Proof. We apply T to the sum in equation (4.1). By Remark 3.12, only the

summand with γ
(2)
i = γ contributes. Then, γ

(1)
i = 1 and we obtain

T (F̂ (ζ)) = F (1)̂ (ζ)T (dπ−ζ(γ)) = F (1)̂ (ζ)(−2ζ)[n],

so that the claim follows from the classical Fourier inversion formula.

Theorem 4.4. The Fourier transform satisfies

(Lu;xF )̂ (ζ) = π−ζ(u;x)F̂ (ζ)

for all x ∈ R and u ∈ U(hc(V )).

Proof. Invariance of the integral implies

(Lu;xF )̂ (ζ) = 〈Lu;xF, π−ζ〉 = (−1)|u||F |〈F,LS(u);−xπ−ζ〉.

We have

LS(u);−xπ−ζ(v, y) = π−ζ(uv;x+y) = π−ζ,0(x+y)dπ−ζ(uv) = π−ζ(u;x)π−ζ(v; y),

by equation (3.1) and because π−ζ,0(y) commutes with dπ−ζ(u). This implies

〈Lu;xF, π−ζ〉 = (−1)|u||F |〈F, π−ζ (u;x)π−ζ〉 = π−ζ(u;x)〈F, π−ζ〉,

and hence the claim.

Remark 4.5. Theorem 4.4, together with Proposition 4.3, implies

F (u;x) = (−1)|u||F |(LS(u)F )(1;x)

= (−1)|u||F | 1

2π

∫

R

T (F(LS(u)F )(ζ))(−2ζ)−[n]eixζ dζ

= (−1)|u||F | 1

2π

∫

R

T (dπ−ζ(S(u))F̂ (ζ))(−2ζ)−[n]eixζ dζ.

Recall that dπ(S(u)) = dπ(u)† for unitary representations π = (π0, dπ). There-
fore, using 〈A|B〉 = T (AB†) we can write

F (u;x) = (−1)|u||F | 1

2π

∫

R

T (dπ−ζ(u)
†F̂ (ζ))(−2ζ)−[n]eixζ dζ

=
1

2π

∫

R

T (F̂ (ζ)dπ−ζ (u)
†)(−2ζ)−[n]eixζ dζ

=
1

2π

∫

R

〈F̂ (ζ)|dπ−ζ (u)〉(−2ζ)−[n]eixζ dζ.
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Definition 4.6. a) If A : R → H is any map, we define

A(u; ζ) := 〈A(ζ)|dπ−ζ (u)〉(−2ζ)−[n]

for u ∈ U(hc) and non-zero ζ ∈ R. Note that

A(zu; ζ) = 〈A(ζ)|dπζ (zu)〉(2ζ)
−[n] = (iζ)A(u; ζ),

since 〈·|·〉 is conjugate linear in the second argument.

b) We say that A : R → H is of Schwartz class if for all u ∈ U(hc) and all k ≥ 0,
the function A(u; ζ) is smooth on R, and

sk,u(A) := sup
ζ∈R

∣∣∣∣
dk

dζk
A(u; ζ)

∣∣∣∣ < ∞.

The space of H-valued functions of Schwartz class is denoted S(R,H).

c) If A ∈ S(R,H), we define

F−1(A)(u;x) :=
1

2π

∫

R

A(u; ζ)eixζ dζ. (4.2)

If (ai)
n
i=1 is a basis of V and we let sk,j,J := sk,zjaJ

, then the countable
family (sk,j,J ) defines a locally convex vector space topology on S(R,H).

Remark 4.7. If A ∈ S(R,H), then F−1(A) is an element of C∞(HC), because

F−1(A(zu))(x) = F−1(iζA(u))(x) =
d

dx
F−1(A(u))(x).

Lemma 4.8. A function A : R → H is of Schwartz class if and only if for all
u ∈ U(hc), the function x 7→ A(u;x) is in S(R).

Proof. Clearly, if all A(u) are in S(R), then sk,u(A) < ∞ for all u ∈ U(hc), k ∈ N.
Conversely, suppose that A ∈ S(R,H). Fix u ∈ U(hc). Then

sk,zju(A) = sup
ζ∈R

∣∣∣∣
dk

dζk
A(zju; ζ)

∣∣∣∣ = sup
ζ∈R

∣∣∣∣
dk

dζk
ζjA(u; ζ)

∣∣∣∣ < ∞

for all k, j ∈ N, where we have used that A(zju; ζ) = (iζ)jA(u; ζ). It follows
that A(u) ∈ S(R).

Theorem 4.9. The Fourier transform is an isomorphism of the topological
vector spaces S(HC) and S(R,H). Its inverse is given by (4.2).

Proof. Let F ∈ S(HC). Then

sk,j,J (F̂ ) = sup
ζ∈R

∣∣∣∣
dk

dζk
F̂ (zjaJ ; ζ)

∣∣∣∣ = sup
ζ∈R

∣∣∣∣
dk

dζk
〈F̂ (ζ), dπ−ζ(z

jaJ)〉

∣∣∣∣

= sup
ζ∈R

∣∣∣∣
dk

dζk

(
ζjF̂ (aJ ; ζ)

)∣∣∣∣ ,
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which is finite because F̂ (u) ∈ S(R) for all u ∈ U(hc). In particular, the last
expression is continuous in F, which proves that F : S(HC) → S(R,H) is
continuous.

If A ∈ S(R,H), then by Lemma 4.8, the components A(u) are in S(R). It
follows that F−1(A) ∈ S(HC). We apply the seminorms sj,u, defined in 2.14, to
obtain

sj,u(F
−1(A)) = sup

x∈R

∣∣xjF−1(A)(u;x)
∣∣ = sup

x∈R

∣∣∣∣ F−1

(
dj

dζj
A(u)

)
(x)

∣∣∣∣ .

The last expression involves the classical Fourier transform of the Schwartz
function (dj/dζj)(A(u)) and is continuous in A(u). This proves the continuity
of F−1.

To conclude this section, we define a Fourier–Laplace transform for com-
pactly supported distributions on HC and prove a theorem of Paley–Wiener–
Schwartz type.

Definition 4.10. If U ∈ E ′(HC) is a compactly supported distribution, we let

Û(ζ) := 〈U, π−ζ〉.

for ζ ∈ R.

Theorem 4.11. If U ∈ E ′(HC) we can extend the definition of Û(ζ) to complex

values of ζ. The function Û is an entire holomorphic function with values in H.

Proof. We write

〈U, F 〉 =
∑

i

(−1)|γ
(1)
i

||F |〈U(γ
(1)
i ), F (γ

(2)
i )〉

for appropriate distributions U(γ
(1)
i ) ∈ E ′(R). Then

Û(ζ) = U(π−ζ) =
∑

i

U(γ
(1)
i )x(π−ζ(γ

(2)
i ;x)) =

∑

i

U(γ
(1)
i )x(e

−iζx)dπ−ζ(γ
(2)
i ).

Here U(γ
(1)
i )x(e

−iζx) is the classical Fourier–Laplace transform of the compactly

supported distribution U(γ
(1)
i ). In particular, U(γ

(1)
i )x(e

−iζx) extends to an
entire holomorphic function of ζ (see [11, Theorem 7.1.14]). The same is true

for the matrices dπ−ζ(γ
(2)
i ) by Remark 3.10, hence the claim follows.

Now we formulate a Paley–Wiener–Schwartz theorem, which characterizes
the Fourier transformation of a compactly supported function by a growth con-
dition on the ‘components’ A(u) of A = F(F ) : C → H.

Definition 4.12. a) Let C∞
[−a,a](HC) denote the space of functions F ∈ C∞

c (HC)

for which the support of F (u) is contained in the compact interval [−a, a] for
all u ∈ U(hc).

18



b) We say that an entire holomorphic function A : C → H is of exponential
type a, where a is a positive real number, if for every N ∈ N there is a constant
CN such that

|ζ−[n]T (A(ζ)dπ−ζ(u))| ≤ CN (1 + |ζ|)−NeaIm(ζ) (4.3)

for all u ∈ U(hc), ζ ∈ C.

Theorem 4.13. The Fourier–Laplace transform is a bijection between the space
C∞
[−a,a](HC) and the space of entire holomorphic functions A : C → H of expo-

nential type a.

Proof. Let F ∈ C∞(HC). We use coordinates, so that

F̂ (ζ) =
∑

I⊂n

F (aI )̂ (ζ)dπ−ζ (∗aI),

and therefore
|ζ−[n]T (A(ζ)dπ−ζ(aI)))| = C|F (aI )̂ (ζ)|

for some positive constant C. By the corresponding classical Paley–Wiener–
Schwartz theorem [11, Theorem 7.3.1], this shows that if supp(F (aI)) ⊂ [−a, a],
for all I ⊂ n, then F(F ) is of exponential type a.

Conversely, if A : C → H is of exponential type a, then the classical theo-
rem implies that the components A(aI) are the Fourier transforms of smooth
functions F (aI) with support in [−a, a]. The F (aI) now uniquely determine an
element F ∈ C∞

[−a,a](HC) with Fourier transform equal to A, and this concludes
the proof.

5 The Convolution Product

In this section we study the convolution product for functions and distribu-
tions on HC . We prove basic properties of the convolution product, and in
Theorem 5.7 we show that the Fourier transform interchanges the convolution
product and the pointwise product of H-valued functions. Lastly, we obtain
a Banach convolution algebra as the completion of C∞

c (HC) with respect to a
Sobolev norm.

Definition 5.1. Let F,G ∈ C∞(HC) and assume that one of F,G is compactly
supported. We define the convolution of F and G by

(F ∗G)(u;x) := (−1)|u|(|G|+|γ|)〈F,Lu;xi
∗G〉.

Proposition 5.2. a) Suppose that one of F,G ∈ C∞(HC) has compact support.
Then the convolution product F ∗G is in C∞(HC).

b) supp(F ∗G) ⊂ suppF + suppG

c) Lu;x(F ∗G) = (Lu;xF ) ∗G for all u ∈ U(hc), x ∈ R.
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d)

(F ∗G)(u) =
∑

i

(−1)|γ
(1)
i

||γ
(2)
i

|F (γ
(1)
i ) ∗G(S(γ

(2)
i )u).

Proof. To check that F ∗G ∈ C∞(HC) we need to verify z-linearity. This follows
easily from

F (γ
(1)
i ) ∗G(S(γ

(2)
i )zu) = F (γ

(1)
i ) ∗G′(S(γ

(2)
i )u) = (F (γ

(1)
i ) ∗G(S(γ

(2)
i )u))′.

The inclusion of supports in b) follows easily as in the classical case.
Statement c) follows easily from the invariance of the pairing:

Lu;x(F ∗G)(v; y) = (−1)|u|(|F |+|G|+|γ|)(F ∗G)(S(u)v; y − x)

= (−1)|u||F |+|v|(|G|+|γ|)〈F,LS(u)v;y−xi
∗G〉

= (−1)|v|(|G|+|γ|)〈Lu;xF,Lv;yi
∗G〉

= ((Lu;xF ) ∗G)(v; y).

We compute F ∗G as follows.

(F ∗G)(u;x) =

= (−1)|u|(|G|+|γ|)
∑

i

(−1)|γ
(1)
i

|(|u|+|G|)

∫

R

F (γ
(1)
i ; y)Lu;xi

∗G(γ
(2)
i ; y) dy

= (−1)|u||γ|
∑

i

(−1)|γ
(1)
i

|(|u|+|G|)

∫

R

F (γ
(1)
i ; y)(i∗G)(S(u)γ

(2)
i ; y − x) dy

= (−1)|u||γ|
∑

i

(−1)|u||γ|+|γ
(1)
i

||G|

∫

R

F (γ
(1)
i ; y)G(S(γ

(2)
i )u;x− y) dy

=
∑

i

(−1)|γ
(1)
i

||G|(F (γ
(1)
i ) ∗G(S(γ

(2)
i )u))(x)

Now the claim follows, since the summands are non-zero only if |G| = |γ
(2)
i |.

Remark 5.3. Choose coordinates and consider the elements F = f ⊗ ξI and
G = g ⊗ ξJ of C∞

c (HC). We compute F ∗G using Proposition 5.2 b).

(F ∗G)(aK) =
∑

L⊂n

(−1)|L||Lc|F (aL) ∗G(∗aLaK)

= (−1)|I||I
c|f ∗G(∗aIaK).

This is non-zero only if ∗aIak is a multiple of aJ . Now ∗aI = sgn(σI)aIc , and
in U(hc) we have the equality

aIca(I∆J)c = ±z|I
c∩Jc|aJ ∈ U(hc),

where I∆J is the symmetric difference of the subsets I, J ⊂ n. Hence, we choose
K = (I∆J)c and obtain

(f ⊗ ξI) ∗ (g ⊗ ξJ ) = ±(f ∗ g)(|I
c∩Jc|) ⊗ ξ(I∆J)c .
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Proposition 5.4. The convolution product is an R-bilinear, continuous map
∗ : C∞(HC)×C∞

c (HC) → C∞(HC) with parity |γ|, that is, |F ∗G| = |F |+|G|+|γ|.

Proof. Bilinearity is clear, and continuity can be conveniently checked in coor-
dinates. By Remark 5.3 we have

(f ⊗ ξI , g ⊗ ξJ) 7→ ±(f ∗ g)(|I
c∩Jc|) ⊗ ξ(I∆J)c ,

hence continuity follows from the corresponding result for functions on R, to-
gether with continuity of the derivative as a map from C∞(R) to C∞(R). The
parity of the convolution product equals the parity of the pairing 〈·, ·〉, which is
|γ| by Remark 2.18.

Proposition 5.5. Let F,G and Φ be smooth functions on HC, at least two of
which are compactly supported. Then

〈F ∗G,Φ〉 = 〈F ⊗G,m∗Φ〉

and
〈F ∗G,Φ〉 = 〈F, i∗(G ∗ i∗Φ)〉.

Furthermore, if one of F,G is compactly supported, then

F ∗G = (−1)|F ||G|i∗(i∗G ∗ i∗F ).

Proof. We compute 〈F ∗G,Φ〉 for Φ ∈ C∞
c (HC) as

〈F ∗G,Φ〉 =
∑

j

(−1)|Φ||γ
(1)
j

|

∫

R

(F ∗G)(γ
(1)
j ; y)Φ(γ

(2)
j ; y) dy

=
∑

i,j

(−1)|Φ||γ
(1)
j

|+|G||γ
(1)
i

|

∫

R

(F (γ
(1)
i ) ∗G(S(γ

(2)
i )γ

(1)
j ))(y)Φ(γ

(2)
j ; y) dy

=
∑

i,j

(−1)|Φ||γ
(1)
j

|+|G||γ
(1)
i

|

∫

R2

F (γ
(1)
i ;x)G(S(γ

(2)
i )γ

(1)
j ; y − x)Φ(γ

(2)
j ; y) dxdy

=
∑

i,j

(−1)|Φ||γ
(1)
j |+|G||γ|

∫

R2

F (γ
(1)
i ;x)(L

γ
(2)
i

;x
G)(γ

(1)
j ; y)Φ(γ

(2)
j ; y) dxdy

=
∑

i

(−1)|G||γ|

∫

R

F (γ
(1)
i ;x)(L

γ
(2)
i

;x
G,Φ)dx.

Next, we use the invariance of the pairing 〈·, ·〉 to obtain

〈F ∗G,Φ〉 =
∑

i

(−1)|G||γ
(1)
i

|

∫

R

F (γ
(1)
i ;x)(G,L

S(γ
(2)
i

);−x
Φ)dx

=
∑

i,j

(−1)|G||γ
(1)
i

|+|Φ|(|γ
(1)
i

|+|γ
(1)
j

|)+|γ
(1)
j

||γ
(2)
i

|

∫

R2

F (γ
(1)
i ;x)G(γ

(1)
j ;x)Φ(γ

(2)
i γ

(2)
j ;x+ y) dxdy

= 〈F ⊗G,m∗Φ〉.
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The function i∗(G ∗ i∗Φ) takes values

i∗(G ∗ i∗Φ)(v; y) = (G ∗ i∗Φ)(S(v);−y)

=
∑

j

(−1)|Φ||γ
(1)
j

|(G(γ
(1)
j ) ∗ (i∗Φ)(S(γ

(2)
j )S(v)))(−y)

=
∑

j

(−1)|Φ||γ
(1)
j

|

∫

R

G(γ
(1)
j ;x)(i∗Φ)(S(γ

(2)
j )S(v))(−x− y) dx

=
∑

j

(−1)|Φ||γ
(1)
j

|

∫

R

G(γ
(1)
j ;x)Φ(γ

(2)
j v;x+ y) dx.

Therefore, comparing with the above computations yields

〈F ∗G,Φ〉 =
∑

i

(−1)|γ
(1)
i |(|G|+|Φ|)

∫

R

F (γ
(1)
i ;x)i∗(G ∗ i∗Φ)(γ

(2)
i ;x) dx

= 〈F, i∗(G ∗ i∗Φ)〉.

Lastly, we compute

(F ∗G)(u;x) = (−1)|u|(|G|+|γ|)〈F,Lu;xi
∗G〉

= (−1)|u|(|G|+|γ|)+|F |(|u|+|G|)〈Lu;xi
∗G,F 〉

= (−1)|F ||G|+|u|(|F |+|γ|)〈i∗G,LS(u);−xF 〉

= (−1)|F ||G|(i∗G ∗ i∗F )(S(u);−x),

which proves that F ∗G = (−1)|F ||G|i∗(i∗G ∗ i∗F ).

For later use we record the following corollary of our proof.

Corollary 5.6. a)

〈F ∗G,Φ〉 = 〈F, i∗(G ∗ i∗Φ)〉 =
∑

i

(−1)|G||γ|

∫

R

F (γ
(1)
i ;x)(L

γ
(2)
i

;x
G,Φ)dx.

b) The convolution product is associative.

Proof. Equality a) occurs in the course of the proof, and b) follows because

(F,G) 7→ 〈F ⊗G,m∗Φ〉

is associative.

Theorem 5.7. If F,G ∈ C∞
c (HC) and ζ ∈ R, then

(F ∗G)̂ (ζ) = F̂ (ζ)Ĝ(ζ)

in H.
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Proof. By definition of the Fourier transform and Proposition 5.5,

(F ∗G)̂ (ζ) = 〈F ∗G, π−ζ〉 = 〈F ⊗G, (m∗ ⊗ idS) ◦ π−ζ〉.

By Proposition 3.2 we have (m∗ ⊗ idS) ◦ π−ζ = (idS ⊗π−ζ) ◦ π−ζ , and the latter
is given by

((idS ⊗π−ζ) ◦ π−ζ)(u⊗ v;x, y) = π−ζ(u;x) ◦ π−ζ(v; y) ∈ H.

From this we conclude 〈F ⊗G, (m∗ ⊗ idS) ◦ π−ζ〉 = 〈F, π−ζ〉〈G, π−ζ〉 and hence
the claim.

For completeness, we also compute the Fourier transform of the pointwise
product of compactly supported superfunctions. To this end, we use the nota-
tion

((∆⊗ id) ◦∆)(γ) =
∑

i

γ
(1)
i ⊗ γ

(2)
i ⊗ γ

(3)
i .

Proposition 5.8. If F,G ∈ C∞
c (HC), then the Fourier transform of F · G is

given by

(F ·G)̂ (ζ) =
1

2π

∑

i

(F (γ
(1)
i )̂ ∗G(γ

(2)
i )̂ )(ζ)dπ−ζ (γ

(3)
i ).

Proof. We use the definition of Fourier transform and of the product in C∞(HC)
to obtain

(F ·G)̂ (ζ) = 〈F ·G, π−ζ〉 = 〈µ ◦ F ⊗G ◦∆, π−ζ〉

=

∫

R

(F ⊗G⊗ π−ζ)(∆ ◦ (id⊗∆)(γ;x) dx

=
∑

i

F(F (γ
(1)
i ) ∗G(γ

(2)
i ))(ζ)dπ−ζ (γ

(3)
i ).

Now the claim follows from the classical fact

f̂ g(ζ) =
1

2π
(f̂ ∗ ĝ)(ζ).

Convolution with a Distribution

Our next goal is to define the convolution U ∗ F of a distribution U ∈ D′(HC)
and a compactly supported function F.

Definition 5.9. Let U ∈ D′(HC) and F ∈ C∞
c (HC). We define a linear func-

tional U ∗ F on C∞(HC) by

〈U ∗ F,Φ〉 := 〈U, i∗(F ∗ i∗Φ)〉.
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Remark 5.10. Note that by Proposition 5.5, for U ∈ C∞(HC) this definition
agrees with Definition 5.1.

Proposition 5.11. Given U ∈ D′(HC) and F ∈ C∞
c (HC), the functional U ∗F

is a distribution on HC . The distribution U ∗F is given by the smooth function
H ∈ C∞(HC) defined by

H(u) =
∑

i

(−1)|γ
(1)
i

||F |U(γ
(1)
i ) ∗ F (γ

(2)
i u) (5.1)

for u ∈ U(hc).

Proof. We need to show that

〈U, i∗(F ∗ i∗Φ)〉 = 〈H,Φ〉

holds for all Φ ∈ C∞
c (HC). First we compute 〈H,Φ〉 as

〈H,Φ〉 =
∑

j

(−1)|γ
(1)
j

||Φ|

∫

R

H(γ
(1)
j ; y)Φ(γ

(2)
j ; y) dy

=
∑

i,j

(−1)|γ
(1)
j

||Φ|+|γ
(1)
i

||F |

∫

R

(U(γ
(1)
i ) ∗ F (S(γ

(2)
i )γ

(1)
j ))(y)Φ(γ

(2)
j ; y) dy

=
∑

i

(−1)|γ
(1)
i

||F |

U(γ
(1)
i )


∑

j

(−1)|γ
(1)
j

||Φ|

∫

R

F (S(γ
(2)
i )γ

(1)
j )(y − x)Φ(γ

(2)
j ; y) dy




=
∑

i

(−1)|F ||γ|〈U(γ
(1)
i ), 〈L

γ
(2)
i

;x
F,Φ〉〉.

Here we have used that
∫

R

(u ∗ f)(y)φ(y) dy = ux

(∫

R

f(y − x)φ(y) dy

)

for u ∈ D′(R) and f, φ ∈ C∞
c (R). Comparing with Corollary 5.6 we obtain

〈H,Φ〉 = 〈U, i∗(F ∗ i∗Φ)〉 = 〈U ∗ F,Φ〉,

which completes the proof.

Example 5.12. Let e = (e0, e
∗) be the identity of HC and define a distribution

U via 〈U,Φ〉 := e∗Φ = Φ(1; 0). Then U ∈ E ′(HC), which can be shown easily in
coordinates. We compute

〈U ∗ F,Φ〉 = 〈U, i∗(F ∗ i∗Φ)〉 = (F ∗ i∗Φ)(1; 0)

=
∑

i

(−1)|γ
(1)
i

||Φ|

∫

R

F (γ
(1)
i ;x)(i∗Φ)(S(γ

(2)
i );−x) dx

=
∑

i

(−1)|γ
(1)
i

||Φ|

∫

R

F (γ
(1)
i ;x)Φ(γ

(2)
i ;x) dx = 〈F,Φ〉
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for all Φ ∈ C∞
c (HC). Therefore, U ∗ F = F for all F ∈ C∞(HC).

The Convolution Algebra

We begin by recalling the definition of Sobolev spaces on R. We refer to [1] for
details. The Sobolev space W k,p(R) is the space of functions in Lp(R) whose dis-
tributional derivatives up to order k exist and are in Lp(R). The space W k,p(R)
is a Banach space with the norm

‖f‖k,p :=


 ∑

0≤j≤k

‖f (j)‖pp




1/p

,

where f (j) denotes the jth weak or distributional derivative of f.
For the rest of this section we fix an orthonormal basis (ai)

n
i=1 of V.We define

Sobolev norms on C∞
c (HC(V )) in analogy with the definition of ‖ · ‖k,p above,

replacing the derivatives by the differential operators LzjaJ
for zjaJ ∈ U(hc). As

in the classical case, a different choice of basis (ai)
n
i=1 will lead to an equivalent

norm.

Definition 5.13. If 1 ≤ p < ∞ and k ∈ N, we define a seminorm ‖ · ‖k,p on
C∞
c (HC) by

‖F‖k,p =


 ∑

j+(#I)≤k

‖(LzjaI
F )(1)‖pp




1/p

.

Here #I denotes the cardinality of I ⊂ n.

Lemma 5.14. If k ≥ dim V, then ‖·‖k,p is a norm on C∞
c (HC). The completion

of C∞
c (HC) with respect to ‖ · ‖k,p is a Banach space isomorphic to

⊕

I⊂n

W k−(#I),p(R),

equipped with the norm

‖(fI)I⊂n‖ =


∑

I⊂n

‖fI‖
p
k−(#I),p




1/p

.

Proof. Recall that after the choice of basis (ai)
n
i=1 of V we can identify

C∞
c (HC) ∼=

⊕

I⊂n

C∞
c (R)

as vector spaces via F 7→
∑

I⊂n fI ⊗ ξI , where fI = F (aI). If F = f ⊗ ξI and

k ≥ #I, then ‖F‖pk,p is given by

∑

j+(#J)≤k

‖(LzjaJ
F )(1)‖pp =

∑

j+(#J)≤k

‖F (zjaJ)‖
p
p =

∑

j≤k−(#I)

‖f (j)‖pp,
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hence
‖f ⊗ ξI‖k,p = ‖f‖k−(#I),p.

Clearly, if k < |I|, then ‖f ⊗ ξI‖k,p = 0, which shows that ‖ · ‖k,p is a norm on
C∞
c (HC) only for k ≥ dimV. The completion of C∞

c (HC) is the direct sum of the
completions of (C∞

c (R), ‖ · ‖k−(#I),p). But these completions are precisely the

classical Sobolev spaces (W k−(#I),p(R), ‖ ·‖k−(#I),p), see [1, Theorem 3.23].

Definition 5.15. We denote the completion of C∞
c (HC) with respect to ‖ · ‖k,p

by W k,p(HC).

Theorem 5.16. If HC = HC(V ) with dim V = n, then (Wn,1(HC), ∗) is a
Banach algebra.

Proof. Let (ai)
n
i=1 be the basis used to define the norm ‖ · ‖n,1, and let F,G ∈

Wn,1(HC). Then

‖F ∗G‖n,1 =
∑

j+(#J)≤n

‖F ∗G(zjaJ)‖1 ≤
∑

j+(#J)≤n

∑

I⊂n

‖F (aI) ∗G(zjaIcaJ)‖1,

by definition of the convolution product and the triangle inequality. Writing
C := I ∩J and A := I \C, B = J \C we can express the last sum as a sum over
pairwise disjoint subsets A,B and C of n. In the following, the prime indicates
that A,B,C are pairwise disjoint, and we set a = #A, b = #B and c = #C.

‖F ∗G‖n,1 ≤
∑′

A,B,C

∑

j≤n−b−c

‖(F (aA∪C) ∗G(a(A∪C)caB∪C))
(j)‖1

=
∑′

A,B,C

∑

j≤n−b−c

‖(F (aA∪C) ∗G(a(A∪B)c))
(j+b)‖1.

Now we need to ‘distribute’ the (j + b)-th derivative over the two factors in the
convolution product. The first factor is in Wn−a−c,1(R) and the second is in
W a+b,1(R). Clearly, we can differentiate the second factor b times. Then the
factors are differentiable of order n−a−c and a, respectively. But n−a−c+a =
n − c ≥ j + b ≥ j, since j + b + c ≤ n. Hence we can distribute the remaining
j derivatives over the two factors. This shows that the last sum is less than or
equal to


 ∑

i+(#I)≤n

‖F (ziaI)‖1





 ∑

j+(#J)≤n

‖G(zjaJ)‖1


 = ‖F‖n,1‖G‖n,1.
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