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PROPERTIES OF POINTED AND CONNECTED HOPF ALGEBRAS OF

FINITE GELFAND-KIRILLOV DIMENSION

Abstract. Let H be a pointed Hopf algebra. We show that under some mild assumptions H

and its associated graded Hopf algebra grH have the same Gelfand-Kirillov dimension. As an

application, we prove that the Gelfand-Kirillov dimension of a connected Hopf algebra is either

infinity or a positive integer. We also classify connected Hopf algebras of GK-dimension three

over an algebraically closed field of characteristic zero.

1. Introductioin

The Gelfand-Kirillov dimension (or GK-dimension for short) has been a useful tool for investi-

gating infinite-dimensional Hopf algebras. For example, Hopf algebras of low GK-dimensions are

studied in [5, 8, 11, 26, 24, 25].

It is well known that every Hopf algebra H has a coradical filtration {Hn}
∞
n=0. If H is pointed

with group-like elements G, then the associated graded algebra of H with respect to the filtration

{Hn}
∞
n=0 is a graded Hopf algebra, which we denote by grH . The structure of grH is relatively

easier in the sense that it has a nice decomposition grH ∼= R#kG, where R is a certain graded

subalgebra of grH (see [20, Theorem 3]). In the first part of this paper, we clarify the behavior of

the GK-dimension of a pointed Hopf algebra under taking associated graded algebra. In fact, we

prove the following Theorem.

Theorem 1.1 ((Theorem 5.4)). Retain the above notation. If R is finitely generated, then

GKdimR+GKdim kG = GKdimgrH = GKdimH.

The first equality follows from Lemma 5.2, which is a generalized version of [26, Lemma 5.5].

The proof of the second equality depends heavily on Takeuchi’s construction of free Hopf algebras,

which we will review briefly in Section 3.

An interesting phenomenon is that the GK-dimension of every known Hopf algebra is either

infinity or a non-negative integer. So it is tempting to conjecture that this is always true for

any Hopf algebra. As positive evidence for this conjecture, we prove in Theorem 6.10 that the

GK-dimension of a connected Hopf algebra over an algebraically closed field of characteristic zero is
1
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either infinity or a positive integer. This is basically a consequence of Theorem 5.4 and the following

result.

Theorem 1.2 ((Proposition 6.5)). Let K be a connected coradically graded Hopf algebra and assume

that the base field k is algebraically closed of characteristic 0. If K is finitely generated, then K is

isomorphic to the polynomial ring in ℓ variables for some ℓ ≥ 0 as algebras.

For the definition of coradically graded Hopf algebras, one can refer to Definition 2.1. Notice

that if H is a connected Hopf algebra, then grH is a connected coradically graded Hopf algebra

(see Remark 2.2).

In the last two sections, with the help of the results from previous sections, we classify connected

Hopf algebras of GK-dimension three over an algebraically closed field of characteristic zero. The

result can be stated as follows. Note that we use P (H) to denote the space of primitive elements of

H .

Theorem 1.3 ((Theorem 7.8)). Let H be a connected Hopf algebra of GK-dimension three (over

an algebraically closed field of characteristic 0). Then H is isomorphic to one of the following:

(I) The enveloping algebra U(g) for some three-dimensional Lie algebra g;

(II) The Hopf algebras A(0, 0, 0), A(0, 0, 1), A(1, 1, 1) or A(1, λ, 0) from Example 7.1 for some

λ ∈ k;

(III) The Hopf algebras B(λ) from Example 7.2 for some λ ∈ k.

Acknowledgment. The author thanks Professor James Zhang, Professor Dingguo Wang, Xingting

Wang and Cris Negron for useful conversations and for their careful reading of this paper. The

research was partially supported by the US National Science Foundation.

2. Preliminaries

Throughout this paper, k denotes a base field. All algebras, coalgebras and tensor products are

taken over k unless otherwise stated. Given a group G, we will use kG to denote the group algebra

of G over k.

For a coalgebra C, we denote the comultiplication and the counit by ∆ and ǫ, respectively. Let

G(C) be the set of the group-like elements in C, and C+ be the kernel of the counit. The coradical

C0 of C is defined to be the sum of all simple subcoalgebras of C. The coalgebra C is called

pointed if C0 = kG(C), and connected if C0 is one-dimensional. Also, we use {Cn}
∞
n=0 to denote
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the coradical filtration of C [15, 5.2.1]. The coalgebra C is called coradically finite if dimk Cn <∞

for any n. For a Hopf algebra H , we use P (H) to denote the space of primitive elements of H .

Let C =
∞
⊕

i=0

C(i) be a graded coalgebra. We say that C is coradically graded if C0 = C(0)

and C1 = C(0)
⊕

C(1). If C is coradically graded, then as shown by [6, Lemma], Cn =
⊕

i≤n C(i)

for any n ≥ 0. Now we recall the definition of graded Hopf algebras, which will be used intensively

in this paper.

Definition 2.1. Let H be a Hopf algebra with antipode S. If

(1) H =
∞
⊕

i=0

H(i) is a graded algebra,

(2) H =
∞
⊕

i=0

H(i) is a graded coalgebra,

(3) S(H(n)) ⊂ H(n) for any n ≥ 0,

then H =
∞
⊕

i=0

H(i) is called a graded Hopf algebra. If in addition,

(4) H =
∞
⊕

i=0

H(i) is a coradically graded coalgebra,

then H is called a coradically graded Hopf algebra.

Remark 2.2. It turns out that the notion of coradically graded Hopf algebra is very natural. For

example, let H be a pointed Hopf algebra with coradical filtration {Hn}n≥0. Then the associated

graded space grH =
⊕

n≥0Hn/Hn−1 is a graded Hopf algebra [15, p. 62]. Moreover, as mentioned

in [1, Definition 1.13], grH is a coradically graded coalgebra. Therefore, grH is a coradically graded

Hopf algebra.

3. Takeuchi’s construction of free Hopf alegbras

In [23], Takeuchi proved that for any coalgebra C there exists a Hopf algebra H(C) characterized

by the following universal property:

(1) There is a coalgebra map i : C → H(C),

(2) For any Hopf algebra H and coalgebra map f : C → H , there is a Hopf algebra map

f ′ : H(C) → H such that f = f ′i.

The Hopf algebra H(C) is called the free Hopf algebra generated by C [23, Definition 1]. Takeuchi

showed the existence of H(C) by an explicit construction, which we will describe briefly.

Let V =
⊕∞

i=0 Vi where Vi = C if i is even and Vi = Ccop if i is odd. Notice that V has a

natural coalgebra structure. Let S : V → V cop be the coalgebra map sending (x0, x1, x2, · · · ) to
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(0, x0, x1, x2, · · · ). Then S induces a bialgebra map S : T (V ) → T (V )op,cop. Let I be the two-sided

ideal of T (V ) generated by the set

{S ∗ Id(x) − ǫ(x)1 |x ∈ V }
⋃

{Id ∗ S(x)− ǫ(x)1 |x ∈ V },

where ∗ represents the convolution. Moreover, I is a coideal and S(I) ⊂ I. By [23, Lemma 1], the

Hopf algebra T (V )/I, with the antipode induced from the map S, is the universal object H(C).

Takeuchi’s construction generalizes the notion of a free group generated by a set in the following

sense.

Proposition 3.1 ([23, Lemma 34]). H(kG(C)) = k〈G(C)〉, where 〈G(C)〉 is the free group generated

by the set G(C).

Let C be a coalgebra with coradical C0 and let C = C0⊕V be a decomposition of C as a k-space.

Then H(C) can be realized by giving a natural Hopf structure on the algebra H(C0) ∐ T (V ) [23,

§6], where ∐ denotes the coproduct in the category of algebras. Now the canonical coalgebra map

i : C → H(C) can be identified with the map induced by maps C0 → H(C0) and V → T (V ). By

this characterization, we have

Lemma 3.2 ([23, Theorem 35]). Suppose that C is a pointed coalgebra and G(C) ∪B is a k-basis

for C. Let X = G(C)∪G(C)−1 ∪B and let Y be the set of finite sequences (x1, · · · , xn) of elements

of X such that (xi, xi+1) is not of the form (g±1, g∓1) where g ∈ G(C). Set

x = x1 · · ·xn ∈ H(C) for x = (x1, · · · , xn) ∈ Y,

where by abuse of notation we still use xj for its image in H(C) under the canonical map i : C →

H(C). Then {x |x ∈ Y } forms a k-basis for H(C).

Now we are able to prove the following proposition, which determines the coradical of H(C)

when C is pointed. For a given k-subspace W of an algebra R and any n ≥ 1, let Wn denote the

k-subspace of R spanned by products of ≤ n elements in W .

Proposition 3.3. Let C be a pointed coalgebra. For any n ≥ 1. Then the following statements are

true.

(I) the Hopf algebra H(C) is pointed and the coradical of H(C) is equal to the subalgebra gen-

erated by G(C) and their inverses, which is isomorphic to k〈G(C)〉.

(II) for any n ≥ 1, Cn is a subcoalgebra of H(C) and any element in G(Cn) can be expressed as

a product of ≤ n elements in G(C).
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Proof. Denote H(C) by H . It is clear that the subalgebra ofH generated by G(C) and their inverses

is contained in H0. By Lemma 3.2, this subalgebra is isomorphic to k〈G(C)〉.

Choose a subset B of C such that B =
⋃∞
i=1Bi and G(C)

⋃

B1

⋃

· · ·
⋃

Bn is a k-basis of Cn for

any n. Let V be the k-space spanned by B. By [23, §6], H ∼= k〈G(C)〉∐T (V ) as an algebra. Hence

we can define a grading on H by setting deg g = 0 for any g ∈ G(C) and deg bi = i for any bi ∈ Bi.

Under this grading, H becomes a graded algebra (but not necessarily a graded coalgebra) and C is

a graded subspace of H . Let H(n) be the k-subspace of H spanned by homogeneous elements of

degree n.

Now, fix a basis of H described in Lemma 3.2 with the chosen set B. Then this is a basis

consisting of homogeneous elements with respect to the grading defined above. For any m ≥ 0,

let Am =
∑m

i=0H(i). It is clear that {Am}m≥0 is an algebra filtration on H and A0 is exactly

the subalgebra of H generated by G(C) and their inverses. Moreover, by the choice of B, we have

Cm ⊂ Am for any m ≥ 0. Let x = x1 · · ·xn be as in Lemma 3.2 and suppose that xj ∈ Bij (here

we set B0 = G(C)
⋃

G(C)−1). Then by definition Am is spanned by x such that
∑

j ij ≤ m. Pick

such an x ∈ Am. Notice that ∆(x) = ∆(x1) · · ·∆(xn) and for each j, ∆(xj) ⊂
∑

t Ct ⊗ Cij−t ⊂
∑

tAt ⊗Aij−t. As a consequence,

∆(x) ∈
∑

t

At ⊗Am−t.

This shows that {Am}m≥0 is also a coalgebra filtration. By [15, Lemma 5.3.4], H0 ⊂ A0. This

proves the first statement.

For the second statement, it is easy to check that Cn is a subcoalgebra of H . As mentioned

before, C is a graded k-subspace of H . This means that C =
⊕∞

i=0 C(i) where C(i) = C
⋂

H(i).

Now G(Cn) = Cn
⋂

G(H) ⊂ Cn
⋂

H(0). Since C is a graded k-subspace of H , Cn
⋂

H(0) = C(0)n.

Notice that C(0) is spanned by G(C). Hence every element in G(Cn) can be expressed as a linear

combination with each summand a scalar multiple of a product of ≤ n elements in G(C). Since

distinct group-like elements are k-linearly independent by [21, 3.2.1], every element in G(Cn) is

actually a product of ≤ n elements in G(C). �

Remark 3.4. Suppose that C =
⊕∞

i=0 C(i) is a pointed graded coalgebra such that C(0) = C0.

Now C has a canonical decomposition C = C0⊕V , where V =
⊕∞

i=1 C(i). Then by the construction

of the comultiplication and the antipode on H(C0) ∐ T (V ) in [23, Lemma 26, Lemma 27], H(C) =

H(C0) ∐ T (V ) becomes a graded Hopf algebra, where elements in H(C0) have degree 0 and the

grading on T (V ) is inherited from V . It is clear that the canonical inclusion i : C → H(C) becomes



6 POINTED HOPF ALGEBRAS OF FINITE GK-DIMENSION

a graded coalgebra map. Moreover, if there is a graded coalgebra map f from C to a graded Hopf

algebra H , then the lifting Hopf algebra map f ′ : H(C) → H is also graded.

Corollary 3.5. Let H be a pointed Hopf algebra. Then every finite-dimensional subspace V of H is

contained in a finitely generated Hopf subalgebra. Moreover, if D is a finite-dimensional subcoalgebra

of H with group-like elements G(D), then elements in G(Dn) can be expressed as products of ≤ n

elements in G(D).

Proof. Since V is contained in a finite-dimensional subcoalgebra of H , we can assume V = D is a

finite-dimensional subcoalgebra. Let C be a copy of D as coalgebras. Then there is an injective

coalgebra map f : C → H whose image is D. By the universal property of H(C), there is a Hopf

algebra map f ′ : H(C) → H such that f = f ′i, where i is the inclusion C → H(C). (Notice here

if we do not introduce a copy C of D, then by writing D we could mean either a subcoalgebra of

H or a subcoalgebra of H(D), which may cause confusion in the proof). By Lemma 3.2, H(C) is a

finitely generated algebra. By construction, D is contained in f ′(H(C)). This proves the first claim.

Let S = {g1, · · · , gℓ} be the set of group-like elements of C. Then {f(g1), · · · , f(gℓ)} is the set

of group-like elements of D. Notice that Cn is a subcoalgebra of H(C). By (II) of Proposition

3.3, every group-like element of Cn can be expressed as a product of ≤ n elements in S. Since Cn

is mapped onto Dn by f ′, we have G(Dn) = f ′(G(Cn)) by [15, Corollary 5.3.5]. The result then

follows. �

Corollary 3.6. Let H be a finitely generated pointed Hopf algebra. Then H0 is a finitely generated

algebra. In fact, if D is a finite-dimensional subcoalgebra of H that generates H as an algebra, then

H0 is generated by G(D).

Proof. Since every finite-dimensional subspace ofH is contained in a finite-dimensional subcoalgebra

by [15, 5.1.1], we can assume that H is generated as an algebra by a finite-dimensional subcoalgebra

D. By assumption H0 is spanned by G(H). For any g ∈ G(H), there exists some n such that

g ∈ Dn. Notice that Dn is a subcoalgebra of H . Hence g ∈ G(Dn). Now the result follows from

the second statement of Corollary 3.5. �

Remark 3.7. Let H =
⊕∞

i=0H(i) be a graded pointed Hopf algebra such that H(0) is spanned by

all group-like elements of H . In this case, every finite-dimensional subspace V of H is contained in

a finitely generated graded Hopf subalgebra of H . In fact, without loss of generality, we can assume

that V is a finite-dimensional graded subspace of H . By a similar argument as in [15, Theorem
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5.1.1], V is contained in a finite-dimensional graded subcoalgebra C of H . Then the result follows

from Remark 3.4 and an argument similar to that of Corollary 3.5.

We conclude this section with a proposition regarding the GK-dimension of a pointed Hopf

algebra, which is a direct consequence of Corollary 3.5.

Proposition 3.8. Let H be a pointed Hopf algebra. Then

GKdimH = sup
E

GKdimE,

where the supreme is taken over all finitely generated Hopf subalgebras of H.

4. Pointed Hopf algebras and their associated graded Hopf algebras

Throughout this section, let H be a pointed Hopf algebra with group-like elements G. We use

grH to denote the associated graded Hopf algebra of H with respect to the coradical filtration.

There is a canonical Hopf projection ψ : grH → H0. Let R = (grH)coψ, the algebra of coinvariants

of ψ [1, 1.5]. By definition R is a graded subalgebra of grH . In fact, it is well known that R is a

graded braided Hopf algebra in G
GYD, the Yetter-Drinfeld category over G, and

(4.1) grH ∼= R#H0,

as Hopf algebras. Let H+
0 be the k-space spanned by the elements of the form 1− g where g ∈ G.

Notice that HH+
0 is a coideal of H . Denote the coalgebra H/HH+

0 by θ(H) and the coalgebra

projection H → θ(H) by πH .

Lemma 4.1. Retain the above notation. Then H/Hn is a free (right) H0-module for any n ≥ 0.

Proof. By [19, Lemma 1], for any m ≥ 0, Hm+1/Hm is a free H0-module. Hence inductively we see

that Hn+i/Hn is a free H0-module for any i ≥ 1 and Hn+i/Hn
∼=

i−1
⊕

j≥0

Hn+j+1/Hn+j as H0-modules.

As a consequence, H/Hn
∼=

⊕

j≥0

Hn+j+1/Hn+j as H0-modules. The result then follows. �

Lemma 4.2. Retain the above notation and let I = HH+
0 . Then I ∩Hn = HnH

+
0 for any n ≥ 0.

Proof. For any n ≥ 0, we have the short exact sequence

0 → Hn → H → H/Hn → 0.

Since H/Hn is a free H0-module, the following sequence is exact,

0 → Hn ⊗H0
k → H ⊗H0

k → (H/Hn)⊗H0
k → 0.
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This shows that the canonical map Hn/HnH
+
0 → H/I is injective, which implies that I ∩ Hn =

HnH
+
0 . �

Let Fn be πH(Hn) ⊂ θ(H). Then {Fn}n≥0 becomes a coalgebra filtration on θ(H). The following

lemma is clear.

Lemma 4.3. Suppose that f : C → D is a surjective coalgebra map and C has a coalgebra filtration

{An}n≥0. Let Bn = f(An). Then {Bn}n≥0 is a coalgebra filtration on D. Moreover, f induces a

surjective graded coalgebra map grA C → grB D.

By this lemma, we see that there is a surjective graded coalgebra map grH → grF θ(H) induced

by πH .

Proposition 4.4. Retain the above notation. Then grF θ(H) is isomorphic to θ(grH) as graded

coalgebras.

Proof. By definition, θ(grH) = grH/(grH)H+
0 . So we only have to show that the kernel of the

map grH → grF θ(H) induced by πH is (grH)H+
0 . It suffices to prove that for any n ≥ 0, the

canonical map Hn+1/Hn → πH(Hn+1)/πH(Hn) has kernel (Hn+1/Hn)H
+
0 . Let I = HH+

0 . It is

easy to check that the

ker(Hn+1/Hn → πH(Hn+1)/πH(Hn)) =
Hn+1 ∩ (Hn + I)

Hn

=
Hn+1 ∩ I +Hn

Hn

.

By Lemma 4.2, Hn+1 ∩ I = Hn+1H
+
0 . Therefore,

Hn+1 ∩ I +Hn

Hn

=
Hn+1H

+
0 +Hn

Hn

= (Hn+1/Hn)H
+
0 .

This completes the proof. �

Now we are able to determine the coradical filtration of θ(H) by using the following lemma.

Lemma 4.5. Let C be a coalgebra with a coalgebra filtration {Fn} such that F0 = C0. If the

associated graded coalgebra with respect to {Fn} is coradically graded, then {Fn} agrees with the

coradical filtration of C.

Proof. Denote the associated graded coalgebra with respect to {Fn} by grF C. By the definition

of coalgebra filtration and the fact that F0 = C0, it is easy to see that Fn ⊂ Cn for any n ≥ 1.
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If the assertion is not true, then choose n to be minimal such that Fn ( Cn. Pick some element

y ∈ Cn\Fn. Then

(4.2) ∆(y) ∈

n
∑

i=0

Ci ⊗ Cn−i = Cn ⊗ F0 + F0 ⊗ Cn +

n−1
∑

i=1

Fi ⊗ Fn−i.

Suppose y ∈ Fm\Fm−1 for some m ≥ n + 1. Let y be the corresponding non-zero element in

grF C(m). Since grF C is coradically graded, y is not in (grF C)m−1. But by (4.2), y is in (grF C)1,

which is a contradiction. This completes the proof. �

Proposition 4.6. The coradical filtration of the coalgebra θ(H) is {πH(Hn)}n≥0.

Proof. By Proposition 4.4, grF θ(H) ∼= θ(grH) as coalgebras. By the proof of [20, Theorem 3],

θ(grH) ∼= R as graded coalgebras, where R is defined in (4.1). By [1, p.15], R is coradically graded.

The result now follows from Lemma 4.5. �

5. GK-dimensions of H and grH

This section is devoted to the proof of Theorem 5.4. Let H be a pointed Hopf algebra with group-

like elements G. As mentioned in the previous section, grH has a decomposition grH ∼= R#H0.

By construction, the graded algebra R is connected in the sense that R(0) = k. So if R is finitely

generated as an algebra, then it is locally finite.

Lemma 5.1. Retain the above notation. Let D be a graded subcoalgebra of grH. Then

D ⊂
⊕

i≥0

⊕

h∈G(D)

R(i)h.

Proof. Let y be a non-zero element in D. By assumption we can further assume that y is homoge-

neous of degree s. If s = 0, then y ∈ D(0) = kG(D). If s ≥ 1, then by the decomposition (4.1), we

can write y =
∑N

i=1 yihi where hi’s are distinct group-like elements and 0 6= yi ∈ R(n). We only

need to show that hi ∈ G(D) for any i. Let ψ : grH → H0 be the canonical Hopf projection. Then

it is obvious that ψ maps D onto D(0) = kG(D). Now we have

(Id⊗ ψ)∆(y) =

N
∑

i=1

yihi ⊗ hi ∈ D ⊗D(0).

Hence hi ∈ G(D) by the choice of yi and hi. �

The next lemma is about the GK-dimensions of skew group algebras. It can be viewed as a

generalization of [26, Lemma 5.5]. Let Γ be a group and A an algebra with a left G-action. As



10 POINTED HOPF ALGEBRAS OF FINITE GK-DIMENSION

k-spaces, the skew group algebra A ∗ Γ is isomorphic to A⊗ kΓ. The multiplication is given by

(a ∗ g)(b ∗ h) = a(g.b) ∗ gh,

where a, b ∈ A, g, h ∈ Γ and a∗g stands for a⊗g. We will omit the ∗ in a∗g if there is no confusion.

We say that the Γ-action on A is locally finite if any finite-dimensional subspace of A is contained

in a finite-dimensional Γ-submodule of A.

Lemma 5.2. Let A and Γ be as above and suppose that the Γ-action on A is locally finite. Then

GKdimA ∗ Γ = GKdimA+GKdim kΓ.

Proof. We say a subalgebra B of A is Γ-affine if B is generated as an algebra by a finite-dimensional

Γ-submodule of A. It is easy to check by the local finiteness condition that

GKdimA = sup
B

GKdimB,

where B runs over all Γ-affine subalgebras of A. Next we claim that

GKdimA ∗ Γ = sup
B,L

GKdimB ∗ L,

where B runs over all Γ-affine subalgebras of A and L runs over all finitely generated subgroups of Γ.

In fact, by the definition of the GK-dimension, GKdimA ∗Γ = sup
E

GKdimE, where the supremum

is taken over all finitely generated subalgebras E of A ∗Γ. Let V be a finite-dimensional generating

subspace of E. Then there exists g1, · · · , gs ∈ G and some finite-dimensional subspace W of A such

that V ⊂Wg1 +Wg2 + · · ·Wgs. By the local finiteness condition we can further assume that W is

a finite-dimensional Γ-submodule of A.

Let B be the subalgebra of A generated by W and let L be the subgroup of G generated by

g1, · · · , gs and their inverses. Then it is clear that B is Γ-affine and E ⊂ B ∗ L. This prove the

claim. Now,

GKdimA ∗ Γ = sup
B,L

GKdimB ∗ L

= sup
B,L

(GKdimB +GKdimkL)

= sup
B

GKdimB + sup
L

GKdim kL

= GKdimA+GKdim kΓ.

The second equality follows from [26, Lemma 5.5]. For the last equality, one just notices that

GKdim kΓ = sup
L

GKdim kL by Proposition 3.8. �
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Recall from [15, §5.4] that for g ∈ G,

P1,g(H) = {x ∈ H |∆(x) = x⊗ 1 + g ⊗ x}.

Let P ′
1,g(H) be a subspace of P1,g(H) such that P1,g(H) = k(1− g)⊕ P ′

1,g(H) and define

P ′
T (H) =

⊕

g∈G

P ′
1,g(H).

Lemma 5.3. Let H be a pointed Hopf algebra. Then the following statements are equivalent.

(I) dimk P
′
T (H) <∞,

(II) dimk R(1) <∞,

(III) the graded algebra R is locally finite,

(IV) the coalgebra θ(H) is coradically finite.

Proof. By [15, Theorem 5.4.1(1)] and the definition of R, P ′
T (H) ∼= R(1) as k-spaces. Hence (I) and

(II) are equivalent. Since R is a coradically graded coalgebra and R(0) = k, the equivalence of (II)

and (III) follows from [17, Lemma 2.3 (2)]. As shown in the proof of Theorem 5.4, dimk πH(Hn) =

dimk

∑n

i=1R(i). By Proposition 4.6, {πH(Hn)}n≥0 is the coradical filtration of θ(H). This shows

that (III) and (IV) are equivalent. �

Now we are ready to prove the main theorem of this section.

Theorem 5.4. Retain the above notation. Suppose that dimk R(1) <∞. Then

(5.1) GKdimR+GKdim kG = GKdimgrH ≤ GKdimH ≤ GKdim kG+ γ,

where γ = lim
n→∞

logn dimk πH(Hn) = lim
n→∞

logn dimk

⊕n
i=0 R(i). If R is a finitely generated algebra,

then

(5.2) GKdimR+GKdim kG = GKdimgrH = GKdimH = GKdim kG+ γ,

Proof. Let Vn =
⊕n

i=1 R(i). By Lemma 5.3, Vn is finite-dimensional for any n. Also, {Vn}n≥0 is the

coradical filtration of R since R is a coradically graded coalgebra. On the other hand, R ∼= θ(grH)

as graded coalgebras. It then follows from Proposition 4.4 and Proposition 4.6 that Vn ∼= πH(Hn)

as k-spaces. As a consequence, the number γ is well defined.

It is well known that R#kG is just R ∗ G as algebras. Moreover, the G-action on R preserves

the grading. Since every finite-dimensional subspace V of R is contain in Vs for some s ≥ 0, we see

that the G-action on R is locally finite. Now by Lemma 5.2, GKdimR+GKdim kG = GKdimgrH .
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By [10, Lemma 6.5], GKdimgrH ≤ GKdimH . Next we are going to show that GKdimH ≤

GKdim kG+ γ.

Now let C be a finite-dimensional subspace of H . Without loss of generality, we can assume

that C is a subcoalgebra of H . Let S = G(C). By the choice of C, the set S is finite. Denote by

GS(ℓ) the set of elements in G that can be expressed as products of ≤ ℓ elements in S ∪S−1 and let

gS(ℓ) = |GS(ℓ)|. By Corollary 3.5, G(Cℓ) ⊂ GS(ℓ). Suppose that C ⊂ HN for some N ≥ 1. Then

Cn ⊂ HnN . Let D = grCn, the associated graded coalgebra of Cn with respect to its coradical

filtration. Notice that D is naturally embedded in grH . Since G(D) can be identified with G(Cn),

we have G(D) ⊂ GS(n).

Now by Lemma 5.1, we have

D ⊂

nN
⊕

i=0

⊕

h∈G(D)

R(i)h

=
⊕

h∈G(D)

VnNh ⊂
⊕

h∈GS(n)

VnNh.

As a consequence,

dimk C
n = dimkD ≤ dimk VnN · gS(n).

Therefore,

lim
n→∞

logn dimk C
n ≤ lim

n→∞
logn dimk VnN · gS(n)

≤ lim
n→∞

logn dimk VnN + lim
n→∞

logn gS(n)

≤ lim
n→∞

logn dimk Vn + lim
n→∞

logn gS(n)

≤ γ +GKdim kG.

This proves (5.1).

When R is finitely generated, by [10, Proposition 6.6], GKdimR = lim
n→∞

logn dimk Vn = γ.

Combining this fact with (5.1), we have (5.2). �

Remark 5.5. In Theorem 5.4, if we further assume that G is a finite group, then {Hn}n≥0 is a finite

filtration in the sense that dimkHn <∞ for any n ≥ 0. This is true because Hn/Hn−1
∼= R(n)⊗kG

as k-spaces for all n. In this case, the result GKdimgrH = GKdimH follows from [10, Proposition

6.6].

Remark 5.6. It is easy to check that grH is finitely generated if and only if both R and kG are

finitely generated. Hence if grH is finitely generated, then GKdimR+GKdim kG = GKdimgrH =

GKdimH .
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IfH is a finitely generated pointed Hopf algebra, then G is a finitely generated group by Corollary

3.5. However, the finite generation of H does not imply that dimk R(1) < ∞, as shown in the

following example.

Example 5.7. Let the base field k be Fp, where p is a prime number. Let H = k[x]. Then H is a

connected Hopf algebra where x is primitive. It is well known that grH ∼= k[x1, x2, · · · ]/(x
p
1, x

p
2, · · · )

with xi being primitive. As a consequence, GKdimgrH = 0 since every finitely generated subalgebra

of grH is finite-dimensional. On the other hand, GKdimH = 1.

The above example relies heavily on the assumption that the base field k has characteristic p. In

fact, based on known examples, it is conjectured that if the base field is of characteristic 0, and H

is finitely generated with finite GK-dimension, then R(1) is always finite-dimensional. Some partial

results are discussed in [25, Section 3].

We conclude this section with a straightforward corollary. For the definitions and basic properties

of Yetter-Drinfeld modules and Nichols algebras, a good reference is [1].

Corollary 5.8. Let H be a pointed Hopf algebra with group-like elements G. If grH ∼= B(V )#kG,

where V is a finite-dimensional left Yetter-Drinfeld module over G and B(V ) is the Nichols algebra

of V , then

GKdimB(V ) + GKdim kG = GKdimgrH = GKdimH.

6. Connected Hopf algebras

This section is primarily devoted to the study of connected Hopf algebras. Let H be a connected

Hopf algebra. Then its associated graded Hopf algebra grH with respect to the coradical filtration

is also connected. Moreover, the natural grading on grH makes it into a coradically graded Hopf

algebra as mentioned in Section 2. In fact, we are able to show that if the base field is algebraically

closed of characteristic 0 and GKdimH < ∞, then GKdimH must be a non-negative integer ℓ

and grH is isomorphic to the polynomial ring in ℓ variables as algebras (see Proposition 6.5 and

Theorem 6.10). As a consequence, we derive some ring-theoretic properties of such Hopf algebras.

For instance, we show that they are always domains, which reproves an unpublished result by Le

Bruyn.

By [15, Lemma 5.2.10], a connected bialgebra is automatically a connected Hopf algebra. Fur-

thermore, we have the following lemma.
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Lemma 6.1. Let H be a connected Hopf algebra and K a sub-bialgebra of H. Then K is a Hopf

subalgebra of H.

Proof. Let S be the antipode of H . We need to show that S(K) ⊂ K. It suffices to show that

S(Kn) ⊂ K for any n ≥ 0. When n = 0, the statement is true since K0 is spanned by the unit 1. For

any n ≥ 1 and c ∈ Kn, by [15, Lemma 5.3.2], ∆(c) = 1⊗ c+ c⊗ 1+
∑

ai⊗ bi, where ai, bi ∈ Kn−1.

Since S is the convolution inverse of the identity map, we have S(c) + c +
∑

aiS(bi) = ǫ(c). By

induction hypothesis, S(c) ∈ K. This completes the proof. �

The following technical lemma will be used frequently in the rest of the paper.

Lemma 6.2. Let f : A → B be a surjective algebra map. If A is a Noetherian prime algebra and

GKdimA < GKdimB + 1 <∞, then f is an isomorphism.

Proof. We only have to show that I := ker f is zero. If not, then by Goldie’s theorem, the ideal I

contains a regular element. Now by [10, Proposition 3.15], GKdimB +1 ≤ GKdimA. But this is a

contradiction. �

Lemma 6.3. Let K =
⊕∞

n=0K(n) be a graded Hopf algebra with K(0) = k. Then the following

statements are true.

(I) If K is generated in degree one, then K is cocommutative;

(II) If K is coradically graded, then K is commutative.

Proof. It is easy to check that if a Hopf algebra is generated by elements x such that ∆(x) = τ∆(x),

where τ is the twisting map, then the Hopf algebra is cocommutative. Since K(1) is spanned by

primitive elements, the statement (I) is true.

For the second statement, by Remark 3.7, we can assume, without loss of generality, that K is

finitely generated and thus locally finite. Let S =
⊕∞

n=0K(n)∗ be the graded dual of K. Then S

is also a graded Hopf algebra with S(0) = k. By [2, Lemma 5.5], S is generated in degree one and

thus cocommutative by (I). Hence K is commutative. �

Notice that for any connected Hopf algebra H , grH is connected coradically graded. Hence the

following proposition is clear.

Proposition 6.4. Let H be a connected Hopf algebra. Then grH is commutative.
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In fact, if the base field is algebraically closed of characteristic 0, we can say more about the

algebra structure of a connected coradically graded Hopf algebra.

Proposition 6.5. Let K =
⊕∞

n=0K(n) be a coradically graded Hopf algebra with K(0) = k and

assume that the base field k is algebraically closed of characteristic 0. If K is finitely generated,

then K is isomorphic to the polynomial ring in ℓ variables for some ℓ ≥ 0 as algebras.

Proof. Since K is finitely generated commutative, K ∼= O(Γ), the coordinate ring of some algebraic

group Γ over k. Hence K has finite global dimension. Now the result follows from [18, III.2.5]. �

The previous proposition leads to the following theorem, which is a result by Le Bruyn (unpub-

lished).

Theorem 6.6. Assume that the base field k is algebraically closed of characteristic 0. Let H be a

connected Hopf algebra. Then H is a domain.

Proof. We only need to show that grH is a domain. By Remark 3.7, every finite subset of grH

is contained in a finitely generated graded Hopf subalgebra of grH . By Proposition 6.5, such

subalgebras are domains. The result then follows. �

Remark 6.7. In Theorem 6.6, the statement fails if the base field is of characteristic p. For

example, let k = Fp and H = k[x]/(xp). It is well known that H has a unique connected Hopf

algebra structure under which x is primitive. Obviously, H is not a domain.

Lemma 6.8. Assume that the base field k is algebraically closed of characteristic 0. Let K be a

connected coradically graded Hopf algebra and L a finitely generated graded Hopf subalgebra of K.

If L 6= K, then GKdimK ≥ GKdimL+ 1.

Proof. Let N be the smallest number such that L(N) 6= K(N). Pick y ∈ K(N) \ L(N). By the

choice of N we see that ∆(y) = 1 ⊗ y + y ⊗ 1 + w, where w ∈
⊕N−1

i=1 L(i) ⊗ L(N − i). Hence

the algebra P generated by L and y is a finitely generated graded sub-bialgebra of K. By Lemma

6.1, P is a Hopf subalgebra of K. By replacing K with P , we may assume that K is also finitely

generated. Now we have an exact sequence of Hopf algebras

0 → L→ K → H → 0,

in the sense that L is a normal Hopf subalgebra ofK andH = K/L+K = K/KL+. Since L 6= K, the

connected Hopf algebra H is not isomorphic to k by [22, Theorem 4.3] and therefore GKdimH ≥ 1.
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By taking the spectrum, we get an exact sequence of algebraic groups [22, Theorem 5.2]

1 → Γ1 → Γ2 → Γ3 → 1.

By [9, 7.4 Proposition B], dimΓ2 = dimΓ1 + dimΓ3, where dim represents the dimension of an

affine variety. It is well known that for any affine variety X , dimX = GKdimO(X). Consequently,

GKdimK = GKdimL+GKdimH.

Now the result follows since GKdimH ≥ 1. �

In next section, we will lift the result to the ungraded case in Lemma 7.4.

Lemma 6.9. Assume that the base field k is algebraically closed of characteristic 0. Let K be a

connected coradically graded Hopf algebra. Then K has finite GK-dimension if and only if K is

finitely generated.

Proof. If K is finitely generated, then by Proposition 6.5, K has finite GK-dimension. Now assume

that K is not finitely generated. If dimkK(1) = ∞, then K has a Hopf subalgebra isomorphic to

U(g), where g := K(1) is an infinite-dimensional Lie algebra. Hence GKdimK = ∞. Now assume

that dimkK(1) <∞. It suffices to show that there is a chain of Hopf subalgebrasK(1) ⊂ K(2) ⊂ · · ·

such that GKdimK(i) + 1 ≤ GKdimK(i+1). Let K(1) be the subalgebra generated by K(1). Then

K(1) is a finitely generated graded Hopf subalgebra of K. Since K(1) ( K by assumption, there

is some homogeneous element y ∈ K \ K(1) such that ∆(y) = 1 ⊗ y + y ⊗ 1 + w where w ∈

(K(1))+ ⊗ (K(1))+. Let K(2) be the subalgebra generated by K(1) and y. It is obvious that K(2) is

again a finitely generated graded Hopf subalgebra. By Lemma 6.8, GKdimK(2) ≥ GKdimK(1)+1.

Now K(2) ( K, so we can repeat the above process and get the desired chain of Hopf subalgebras.

This completes the proof. �

Now we are able to deliver the following theorem.

Theorem 6.10. Assume that the base field k is algebraically closed of characteristic 0 and let H

be a connected Hopf algebra. Then the following statements are equivalent:

(I) GKdimH <∞;

(II) GKdimgrH <∞;

(III) grH is finitely generated;

(IV) grH is isomorphic to the polynomial ring of ℓ variables for some ℓ ≥ 0 as algebras.

In this case, GKdimH = GKdimgrH, which is a positive integer.
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Proof. If GKdimH = ∞, we need to show that GKdimgrH is also infinity. If not, by Lemma

6.9, grH is finitely generated. Then by Theorem 5.4 (or [10, Proposition 6.6]), GKdimH =

GKdimgrH <∞, which is a contradiction. If GKdimH <∞, by [10, Lemma 6.5], GKdimgrH ≤

GKdimH <∞. Hence (I) and (II) are equivalent. The equivalence of (II) and (III) is just Lemma

6.9. The equivalence of (III) and (IV) follows from Proposition 6.5.

If one of the four conditions holds, then GKdimH = GKdimgrH by Theorem 5.4. Moreover, in

this case GKdimgrH is a positive integer by (IV). This completes the proof. �

As a consequence of Theorem 6.10, a connected Hopf algebra enjoys many nice ring-theoretical

properties. A few of them are listed in the following corollary.

Corollary 6.11. Assume that the base field k is algebraically closed of characteristic 0 and let H

be a connected Hopf algebra of GK-dimension ℓ <∞. Then H is

(I) a noetherian domain of global dimension ℓ and Krull dimension ≤ ℓ;

(II) Auslander-regular;

(III) GK-Cohen-Macaulay, i.e., for any non-zero finitely generated H-module M ,

j(M) + GKdimM = GKdimH,

where j(M) := min{n | ExtnH(M,H) 6= 0}.

Proof. By Theorem 6.10, grH is a noetherian domain of global dimension and Krull dimension ℓ.

Now by [4, Lemma I.12.12, Theorem I.12.13] and [16, Lemma 5.6, Corollary 6.18], H is a noetherian

domain of global dimension and Krull dimension ≤ ℓ. Moreover, by taking M to be the trivial

H-module k in (III), we have j(k) = ℓ. This shows that the global dimension of H is ℓ.

Since grH is noetherian, the filtration {Hn}n≥0 onH is Zariskian by [3, 2.10]. Then the statement

(II) follows from [3, Theorem 3.9].

For the statement (III), we first choose a good filtration {Mn}n∈Z of M in the sense of [12,

Definition 5.1]. It then follows from [12, Lemma 5.4] that grM is a finitely generated grH-module.

It is clear that grH is GK-Cohen-Macaulay. Hence jgrH(grM) + GKdimgrM = GKdimgrH . As

mentioned in the proof of [3, Theorem 3.9], jgrH(grM) = j(M). By Theorem 6.10, GKdimgrH =

GKdimH and grH is a finitely generated algebra. It then follows from [10, Proposition 6.6] that

GKdimgrM = GKdimM . This completes the proof. �
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7. Connected Hopf algebras of GK-dimension three

Throughout this section, the base field k is algebraically closed of characteristic

zero. We are going to classify all connected Hopf algebras of GK-dimension three. To begin with,

we introduce two classes of Hopf algebras.

Example 7.1. Let A be the algebra generated by elements X,Y, Z satisfying the following relations,

[X,Y ] = 0,

[Z,X ] = λ1X + αY,

[Z, Y ] = λ2Y,

where α = 0 if λ1 6= λ2 and α = 0 or 1 if λ1 = λ2. Then A becomes a Hopf algebra via

ǫ(X) = 0, ∆(X) = 1⊗X +X ⊗ 1, S(X) = −X,

ǫ(Y ) = 0, ∆(Y ) = 1⊗ Y + Y ⊗ 1, S(Y ) = −Y,

ǫ(Z) = 0, ∆(Z) = 1⊗ Z +X ⊗ Y + Z ⊗ 1, S(Z) = −Z +XY.

We denote this Hopf algebra by A(λ1, λ2, α).

Example 7.2. Let B be the algebra generated by elements X,Y, Z satisfying the following relations,

[X,Y ] = Y,

[Z,X ] = −Z + λY,

[Z, Y ] =
1

2
Y 2,

where λ ∈ k. Then B becomes a Hopf algebra via

ǫ(X) = 0, ∆(X) = 1⊗X +X ⊗ 1, S(X) = −X,

ǫ(Y ) = 0, ∆(Y ) = 1⊗ Y + Y ⊗ 1, S(Y ) = −Y,

ǫ(Z) = 0, ∆(Z) = 1⊗ Z +X ⊗ Y + Z ⊗ 1, S(Z) = −Z +XY.

We denote this Hopf algebra by B(λ).

Proposition 7.3. The algebras A(λ1, λ2, α) and B(λ) are connected Hopf algebras of GK-dimension

three.

Proof. We only prove the statement for B(λ). The case of A(λ1, λ2, α) can be proved analogously.
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As mentioned in [8, Section 1], to check B(λ) is a Hopf algebra, it suffices to check the Hopf

algebra axioms on a set of algebra generators for B(λ), namely, X,Y and Z. This is easy and we

leave it to the readers.

By Bergman’s Diamond Lemma, the algebra B(λ) has a k-linear basis of monomials

{Xw1Y w2Zw3},

where wi ∈ N. Define the degree of Xw1Y w2Zw3 to be w1 + w2 + 2w3 and let Fn be the k-space

spanned by all monomials of degree ≤ n. It is easy to check that {Fn}n≥0 is an algebra filtration

on A by the defining relations. Hence by [10, Lemma 6.1 (b)],

GKdimB(λ) = lim
n→∞

logn dimk Fn = 3.

Next, we claim that {Fn}n≥0 is also a coalgebra filtration on B, i.e. ∆(Fn) ⊂
∑n

i=0 Fi ⊗ Fn−i for

any n. Let Xw1Y w2Zw3 be a monomial such that w1 + w2 + 2w3 ≤ n. Then

∆(Xw1Y w2Zw3) =∆(X)w1∆(Y )w2∆(Z)w3

∈(F0 ⊗ F1 + F1 ⊗ F0)
w1+w2 · (

2
∑

i=0

Fi ⊗ F2−i)
w3

⊂(

w1+w2
∑

i=0

Fi ⊗ Fw1+w2−i) · (

2w3
∑

i=0

Fi ⊗ F2w3−i)

⊂

n
∑

i=0

Fi ⊗ Fn−i.

For the last two inclusions, we use the fact that {Fn}n≥0 is an algebra filtration. Then it follows

from [15, Lemma 5.3.4] that the coradical of B(λ) is contained in F0, which is one-dimensional.

Hence B(λ) is a connected coalgebra. This completes the proof. �

Before moving on to study connected Hopf algebras of GK-dimension three, we still need a few

lemmas.

Lemma 7.4. Let H be a connected Hopf k-algebra of finite GK-dimension and K a Hopf subalgebra

of H. If GKdimK = GKdimH, then K = H.

Proof. By [15, Lemma 5.2.12], grK is naturally embedded in grH as a graded Hopf subalgebra.

Also, by Theorem 6.10, GKdimgrK = GKdimK = GKdimH = GKdimgrH and they are all

finitely generated. It suffices to show that grK = grH . If not, by Lemma 6.8, GKdimgrH ≥

GKdimgrK + 1, which is a contradiction. �
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The following proposition is a direct consequence of Lemma 7.4.

Proposition 7.5. Let H be a connected Hopf algebra of finite GK-dimension. Then GKdimH ≥

dimk P (H). If GKdimH = dimk P (H), then H ∼= U(g) as Hopf algebras, where g = P (H). If

GKdimH = 3, then dimk P (H) = 2 or 3.

Proof. Let g = P (H). Then the injective Lie algebra map g →֒ H induces a Hopf map U(g) → H .

It is well known that P (U(g)) = g and therefore by [15, Corollary 5.4.7] the Hopf map U(g) →

H is injective. By PBW Theorem, GKdimU(g) = dimk g. Hence GKdimH ≥ GKdimU(g) =

dimk P (H). If GKdimH = dimk P (H), then we have GKdimH = GKdimU(g). Hence H = U(g)

by Lemma 7.4. The last statement is from [26, Lemma 5.11]. �

The following proposition is an easy consequence of Proposition 7.5. It is also mentioned in [8].

Proposition 7.6. Let H be a connected Hopf algebra of GK-dimension strictly less than 3. Then

GKdimH = 0, 1 or 2. In fact,

(I) if GKdimH = 0, then H ∼= k, the trivial Hopf algebra;

(II) if GKdimH = 1, then H ∼= k[x] with x being primitive;

(III) if GKdimH = 2, then H ∼= U(g), where g is either the 2-dimensional abelian Lie algebra

or the Lie algebra with basis {x, y} and [x, y] = y.

Now we focus on connected Hopf algebras of GK-dimension three. The following theorem is the

key to our main theorem of this section.

Theorem 7.7. Let H be a connected Hopf algebra of GK-dimension ≥ 3 such that dimk P (H) = 2.

Then for any linearly independent primitive elements x, y, there exists z ∈ H such that ∆(z) =

1⊗ z + x⊗ y+ z ⊗ 1. Moreover, if in addition GKdimH = 3, then for any such z, the set {x, y, z}

generates H as an algebra.

We postpone the proof to the last section. Now we are ready to deliver the main theorem of this

section.

Theorem 7.8. Let H be a connected Hopf algebra of GK-dimension three. Then H is isomorphic

to one of the following:

(I) The enveloping algebra U(g) for some three-dimensional Lie algebra g;

(II) The Hopf algebras A(0, 0, 0), A(0, 0, 1), A(1, 1, 1) or A(1, λ, 0) from Example 7.1 for some

λ ∈ k;
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(III) The Hopf algebras B(λ) from Example 7.2 for some λ ∈ k.

Proof. By Proposition 7.5, dimk P (H) is either 2 or 3. If dimk P (H) = 3, then by Proposition 7.5,

H ∼= U(g) as Hopf algebras, where g = P (H). This gives the Hopf algebras in (I). Now we focus

on the case dimk P (H) = 2.

Let h = P (H). Then h is a two-dimensional Lie algebra. It is well known that there are two

isomorphic classes of two-dimensional Lie algebras.

Case 1: The Lie algebra h is spanned by x and y with [x, y] = 0. By Theorem 7.7, there is z ∈ H

such that ∆(z) = 1⊗ z+ x⊗ y+ z⊗ 1 and x, y, z generate H as an algebra. It is easy to check that

[z, x] and [z, y] are primitive elements. Therefore

[z, x] = a11x+ a12y,(7.1)

[z, y] = a21x+ a22y,

where aij ∈ k.

Let P be a 2×2 invertible matrix such that P−1AP is a Jordan matrix, where A = (aij). We take

detP = 1. Let P = (bij) and P
−1 = (cij). Then by setting x′ = b11x + b21y and y′ = b12x + b22y,

the relations (7.1) become

[z, x′] = λ1x
′ + αy′,

[z, y′] = λ2y
′,

where





λ1 α

0 λ2



 is a Jordan matrix. Now we have

∆(z) = 1⊗ z + (c11x
′ + c21y

′)⊗ (c12x
′ + c22y

′) + z ⊗ 1.

Let z′ = z − 1
2c11c12x

′2 − 1
2c11c22y

′2 − c12c21x
′y′. Then a direct calculation shows that

(7.2) ∆(z′) = 1⊗ z′ + x′ ⊗ y′ + z′ ⊗ 1,

and

[z′, x′] = λ1x
′ + αy′,(7.3)

[z′, y′] = λ2y
′,

Notice that x′, y′, z′ generate H and [x′, y′] = 0.

If λ1 = λ2 = 0 and α = 0 (resp, α = 1), then there is a surjective Hopf map from A(0, 0, 0) (resp.

A(0, 0, 1)) to H sending X,Y, Z to x′, y′, z′, respectively.
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If λ1 = λ2 6= 0 and α = 1, then there is a surjective Hopf map from A(1, 1, 1) to H sending

X,Y, Z to x′, 1
λ1

y′, 1
λ1

z′, respectively.

If λ1 6= 0 and α = 0, then there is a surjective Hopf map from A(1, λ2/λ1, 0) to H sending X,Y, Z

to 1
λ1

x′, y′, 1
λ1

z′, respectively.

If λ2 6= 0 and α = 0, then there is a surjective Hopf map from A(1, λ1/λ2, 0) to H sending X,Y, Z

to 1
λ2

y′,−x′, 1
λ1

(z′ − x′y′), respectively.

By Lemma 6.2, all the above surjective Hopf maps are isomorphisms. This completes the proof

of (II).

Case 2: The Lie algebra h is spanned by x and y with [x, y] = y. Again by Theorem 7.7, there

is z ∈ H such that ∆(z) = 1 ⊗ z + x ⊗ y + z ⊗ 1 and x, y, z generate H as an algebra. A straight

calculation shows that [z, y]− 1
2y

2 and [z, x] + z are primitive elements. Therefore

[z, x] = −z + a11x+ a12y,

[z, y] =
1

2
y2 + a21x+ a22y,

where aij ∈ k. By replacing z with z − a11x, we can assume that a11 = 0. We claim that

a21 = a22 = 0. Notice that the relations between x, y, z can be rewritten as

yx = xy − y,

zx = xz − z + a12y,

zy = yz +
1

2
y2 + a21x+ a22y.

By these relations, we have

z(yx) = xyz +
1

2
xy2 + a21x

2 + a22xy − 2yz + (a12 − 1)y2 − 2a21x− 2a22y.

On the other hand,

(zy)x = xyz +
1

2
xy2 + a21x

2 + a22xy − 2yz + (a12 − 1)y2 − a22y.

Since z(yx) = (zy)x by associativity, we have −2a21x − 2a22y = −a22y, which implies that a21 =

a22 = 0. Now it is clear that there is a surjective Hopf algebra map from B(a12) toH sendingX,Y, Z

to x, y, z, respectively. By Lemma 6.2, this surjective map is an isomorphism. This completes the

proof of (III). �

Remark 7.9. It is clear from the proof of Theorem 7.8 that any Hopf algebra H listed in (II) and

(III) has GK-dimension 3 and dimk P (H) = 2.
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In fact, by following the same lines as in case 1 and case 2 in the proof of the previous theorem,

we have the following proposition.

Proposition 7.10. Let H be a connected Hopf algebra of GK-dimension ≥ 3 such that dimk P (H) =

2. Then for any linearly independent primitive elements x, y, there exists z ∈ H such that ∆(z) =

1 ⊗ z + x ⊗ y + z ⊗ 1. Moreover, the algebra C generated by x, y, z is a Hopf subalgebra of H and

GKdimC = 3.

For the rest of this section, we are going to look closer at the Hopf algebras listed in Theorem

7.8 (II) and (III).

Lemma 7.11. Let H be a connected Hopf algebra of GK-dimension three such that dimk P (H) = 2

and let x, y, z be a set of generators as described in Theorem 7.7. Denote by K the Hopf subalgebra

generated by x and y. Then H2/K2 is spanned by the image of z.

Proof. It is clear that z ∈ H2 \K2. Hence we only have to show that H2/K2 is one-dimensional.

Notice that H1 = K1. Therefore it suffices to show that grH(2)/ grK(2) is one dimensional. By

Theorem 7.7, x, y ∈ grH(1) and z ∈ grH(2) generate grH . It is also clear that grK is the

Hopf subalgebra of grH generated by x and y. As a consequence, grH(2) = kz + (grH(1))2 =

kz + (grK(1))2 = kz + grK(2). This completes the proof. �

For any Hopf algebra H , the commutator ideal [H,H ] is a Hopf ideal [8, Lemma 3.7]. We call

H/[H,H ] the abelianization of H . For any h ∈ H , let ad(h) ∈ Endk(H) be the linear map sending

u to [h, u] for any u ∈ H .

Proposition 7.12. For any given λ ∈ k, A(0, 0, 0), A(0, 0, 1), A(1, 1, 1) and A(1, λ, 0) are pairwise

non-isomorphic. Also, A(1, λ, 0) ∼= A(1, γ, 0) if any only if λ = γ or λγ = 1.

Proof. We start with the first statement. It is clear from defining relations that the abelianizations

of A(0, 0, 0), A(0, 0, 1) and A(1, 1, 1) are A(0, 0, 0), k[X,Z] and k[Z], respectively. And the abelian-

ization of A(1, λ, 0) is k[Z] if λ 6= 0, and k[Y, Z] if λ = 0. Now to prove the first statement, we only

have to show A(0, 0, 1) ≇ A(1, 0, 0) and A(1, 1, 1) ≇ A(1, λ, 0) for λ 6= 0.

Suppose that f is a Hopf isomorphism from H ′ := A(1, 1, 1) to H := A(1, λ, 0). We label the

canonical generators of H ′ by X ′, Y ′ and Z ′. Let K ′ (resp. K) be the Hopf subalgebra of H ′ (resp.

H) generated by X ′, Y ′ (resp. X,Y ). Then f restricts to a Hopf isomorphism from K ′ to K. As a

consequence, f induces a linear isomorphism from H ′
2/K

′
2 to H2/K2. This indicates that f(Z ′) is
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of the form aZ + u for some a ∈ k× and u ∈ K2. Now consider the maps

ad(Z ′) : H ′
1 → H ′

1 and ad(f(Z ′)) : H1 → H1.

Since f restricts to a linear isomorphism from H ′
1 to H1 and f ◦ ad(Z ′) = ad(f(Z ′)) ◦ f , the two

maps must have the same eigenvalues and the same number of independent eigenvectors. However,

from the defining relations we see that ad(Z ′) has only one linearly independent eigenvector while

ad(f(Z ′)) = ad(aZ + u) has two. This shows that A(1, 1, 1) ≇ A(1, λ, 0). If we replace H ′ and H

by A(0, 0, 1) and A(1, 0, 0) respectively, then the above argument shows that A(0, 0, 1) ≇ A(1, 0, 0).

This completes the proof of the first statement.

Next, we proceed to prove the second statement. As mentioned before, the abelianization of

A(1, λ, 0) is k if λ 6= 0, and k[Y ] if λ = 0. Hence A(1, 0, 0) ≇ A(1, λ, 0) for any λ 6= 0. Now assume

A(1, λ, 0) ∼= A(1, γ, 0) and we have to show that either λ = γ or λγ = 1. Repeat the argument in

the second paragraph of the proof by taking H ′ = A(1, λ, 0) and H = A(1, γ, 0). It is easy to check

by defining relations that adZ ′ has eigenvalues {1, λ} and ad f(Z ′) has eigenvalues {a, aγ}. Since

they have the same eigenvalues, we must have










1 = a

λ = aγ

or











1 = aγ

λ = a

.

Clearly, these imply that either λ = γ or λγ = 1.

Conversely, we only have to show that if λγ = 1, then A(1, λ, 0) ∼= A(1, γ, 0). Label the canonical

generators of A(1, λ, 0) by X ′, Y ′ and Z ′. Then there is a surjective Hopf map from A(1, λ, 0) to

A(1, γ, 0) sending X ′, Y ′, Z ′ to Y,−λX, λ(Z − XY ), respectively. This map is an isomorphism by

Lemma 6.2. �

Proposition 7.13. B(λ) ∼= B(γ) if and only if λ = γ.

Proof. Label the canonical generators of B(λ) by X ′, Y ′, Z ′. Suppose that f is an isomorphism

from H ′ := B(λ) to H := B(γ). By Theorem 7.8, P (H ′) (resp. P (H)) are spanned by X ′, Y ′ (resp.

X,Y ). Notice that f restricts to a linear isomorphism from P (H ′) to P (H). Hence

f(X ′) = a11X + a12Y,

f(Y ′) = a21X + a22Y,

for some non-degenerate matrix (aij). Since [f(X ′), f(Y ′)] = f(Y ′), we have

[a11X + a12Y, a21X + a22Y ] = a21X + a22Y.
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By using the fact [X,Y ] = Y and comparing the coefficients, we find that a11 = 1, a21 = 0 and

a22 6= 0. Since f is a coalgebra map,

∆f(Z ′) = (f ⊗ f)∆(Z ′) = 1⊗ f(Z ′) + (X + a12Y )⊗ a22Y + f(Z ′)⊗ 1.

Then it is easy to check that f(Z ′) − a22Z − 1
2a12a22Y

2 ∈ P (H). As a consequence, there exists

c, d ∈ k such that

f(Z ′) = a22Z +
1

2
a12a22Y

2 + cX + dY.

Since [f(Z ′), f(Y ′)] = 1
2f(Y

′)2,

[a22Z +
1

2
a12a22Y

2 + cX + dY, a22Y ] =
1

2
a222Y

2.

By comparing the coefficients, we find that c = 0. Now the relation [f(Z ′), f(X ′)] = −f(Z ′)+λf(Y ′)

gives

(7.4) [a22Z +
1

2
a12a22Y

2 + dY,X + a12Y ] = −a22Z −
1

2
a12a22Y

2 − dY + λa22Y.

The left-hand side of (7.4) becomes

−a22Z + a22γY +
1

2
a12a22Y

2 − a12a22Y
2 − dY.

Comparing this with the right-hand side of (7.4) we have λ = γ. This completes the proof. �

We conclude the section by two propositions regarding the algebra structures of the Hopf alge-

bras A(λ1, λ2, α) and B(λ), the first of which suggests that they can be considered as coalgebra

deformations of universal enveloping algebras. However, we will not pursue this direction further.

Proposition 7.14. For any choice of (λ1, λ2, α) (resp. λ), as an algebra, A(λ1, λ2, α) (resp. B(λ))

is isomorphic to the enveloping algebra of a solvable Lie algebra.

Proof. For A(λ1, λ2, α), by the defining relations in Example 7.1, we have A(λ1, λ2, α) ∼= U(g) as

algebras where g is the solvable Lie algebra spanned by X,Y and Z. For B(λ), let Z ′ := Z − 1
2XY ,

then B(λ) is generated by X,Y and Z ′ with the following relations

[X,Y ] = Y,

[Z ′, X ] = −Z ′ + λY,

[Z ′, Y ] = 0.

Now it is clear that B(λ) ∼= U(g) where g is the solvable Lie algebra spanned by X,Y and Z ′. �
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Since the Lie algebra U(sl2) is not solvable, we have the following corollary, which suggests that

U(sl2) has no non-trivial coalgebra deformations.

Corollary 7.15. For any choice of (λ1, λ2, α) (resp. λ), the Hopf algebra A(λ1, λ2, α) (resp. B(λ))

is not isomorphic to U(sl2) as an algebra.

8. Proof of Theorem 7.7

This section is devoted to the proof of Theorem 7.7. The proof uses the cohomology of coalgebras,

which we will recall briefly.

Let C be a coaugmented coalgebra in the sense that there is a coalgebra map from the trivial

coalgebra k to C. Let J = C+, the kernel of the counit, and one defines the reduced comultiplication

on J by

∆(c) = ∆(c)− (1⊗ c+ c⊗ 1).

Then the cobar construction ΩC on C is the differential graded algebra defined as follows:

• As a graded algebra, ΩC is the tensor algebra T (J),

• The differential in ΩC is given by

∂nC =

n−1
∑

i=0

(−1)i+1Id⊗i ⊗∆⊗ Id⊗(n−i−1).

Dually, given an augmented algebra A, one can construct a differential graded coalgebra BA,

which is called the bar construction of A. See [7, §19] for basic properties of cobar and bar

constructions.

Lemma 8.1. Let C = U(h) where h is a two-dimensional Lie algebra spanned by x and y. Then

dimk H
2(ΩC) = 1 and in fact H2(ΩC) = (x ⊗ y) where (x ⊗ y) is the cohomology class defined by

the cocycle x⊗ y.

Proof. By the PBW Theorem, the coalgebra C has a basis of the form {xiyj | i, j ∈ N}. It is also well

known that C becomes a graded coalgebra by setting deg xiyj = i+j. Denote the n-th homogeneous

part by C(n). Now J can be naturally identified with
⊕∞

i=1 C(i). Moreover, the graded k-linear

dual of the graded coalgebra C is isomorphic to A = k[x1, x2] as graded algebras, where xi has

degree 1. By [14, Lemma 8.6 (c)], B#A ∼= ΩC as DG algebras, where B#A is the graded dual of

the bar construction of A. On the other hand, by [13, Lemma 4.2], H•(B#A) ∼= Ext•A(kA, kA). As

a consequence, dimk H
2(ΩC) = dimk Ext

2
A(kA, kA) = 1.
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It is easy to check by definition that x⊗ y is a cocycle, i.e. ∂2(x⊗ y) = 0. We only have to show

that x ⊗ y /∈ Im ∂1. Suppose to the contrary that there is some w ∈ C such that ∂1(w) = x ⊗ y ∈

C(1) ⊗ C(1). Then by a degree argument, the element w is in C(2), i.e. w must be of the form

ax2 + bxy+ cy2 for some a, b, c ∈ k. However, an easy calculation shows that ∂1(ax2 + bxy+ cy2) is

in the k-subspace V spanned by x⊗ x, y ⊗ y and x⊗ y + y ⊗ x and clearly x⊗ y is not in V . This

completes the proof. �

Now we are ready to prove Theorem 7.7.

of Theorem 7.7. Let C be the subalgebra ofH generated by x and y. Then C is a Hopf subalgebra of

H and C is isomorphic to U(h) where h is a two-dimensional Lie algebra. Notice that by construction

C1 = H1. Let N ≥ 2 be the least number such that CN ( HN . By [15, Lemma 5.3.2], there exists

z′ ∈ HN \CN such that ∆(z′) = 1⊗z′+z′⊗1+u, where u ∈ HN−1⊗HN−1 = CN−1⊗CN−1 ⊂ C⊗C.

Without loss of generality, we assume that ǫ(z′) = 0.

Now we have two DG algebras, (ΩH, ∂H) and (ΩC, ∂C). In fact, (ΩC, ∂C) can be viewed as a

sub-complex of (ΩH, ∂H). Notice that 0 = ∂2H∂
1
H(z′) = ∂2H(u) = ∂2C(u), i.e. u is a cocycle. We

claim that u represents a non-zero cohomology class in H2(ΩC). If not, there is w ∈ C such that

∂1C(w) = 1⊗w−∆(w) +w⊗ 1 = u. As a consequence, ∆(z′ +w) = 1⊗ (z′ +w) + (z′ +w)⊗ 1, i.e.

z′ + w is a primitive element in H . By the fact that H1 = C1, z
′ + w ∈ C1. But this would imply

that z′ ∈ C, which contradicts the choice of z′.

By Lemma 8.1, the cohomology classes in H2(ΩC) represented by u and x ⊗ y only differ by a

non-zero scalar. Hence there exists v ∈ C+ and a ∈ k× such that ∂1(v) = au−x⊗y. Let z = az′+v.

Then z /∈ C and ∆(z) = 1⊗ z + x⊗ y + z ⊗ 1.

Next, assume that GKdimH = 3. Now we have to show that H is generated by x, y and z. Let

K be the subalgebra of H generated by x, y and z. Then it is easy to check that K is a sub-bialgebra

and thus a Hopf subalgebra of H by Lemma 6.1. By the construction of K, C ( K. By Lemma 6.8,

GKdimgrK ≥ GKdimgrC+1 = 3. On the other hand, GKdimgrK = GKdimK ≤ GKdimH = 3

since K ⊂ H . Hence GKdimK = 3. Now it follows from Lemma 7.4 that K = H . This completes

the proof. �
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