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SOME ANALYSIS ON AMALGAMATED FREE PRODUCTS OF

VON NEUMANN ALGEBRAS IN NON-TRACIAL SETTING

YOSHIMICHI UEDA

Abstract. Several techniques together with some partial answers are given to the questions
of factoriality, type classification and fullness for amalgamated free product von Neumann
algebras.

1. Introduction

It was quite recent that the complete answers were given in [27, 28] to the questions of
factoriality, type classification, fullness and Sd- and τ -invariants for arbitrary free product von
Neumann algebras. It is natural as a next project to consider the same questions for more
general amalgamated free product von Neumann algebras. Such attempts were already made
by us [21, 24, 23] almost 10 years ago for amalgamated free products over Cartan subalgebras.
However the results there are far from satisfactory as compared to those on plain free prod-
uct von Neumann algebras. The aim of this paper is to take a still very first step towards
‘satisfactory’ answers to those questions for amalgamated free product von Neumann algebras.
As simple consequences we will give partial answers at least when amalgamated free products
are taken over type I von Neumann algebras, which are improvements of our previous works
[21, 24, 23, 25, 26].

The proofs in [27, 28] are divided into analytical and combinatorial parts in essence. Combi-
natorial parts are completed by some ‘induction arguments’, whose essential idea originates in
several works due to Dykema, especially [6]. On the other hand, analytical parts are devoted
to proving several inequalities involving the Hilbert space norms arising from some states of
particular form (instead of so-called free product states themselves), whose essential ideas ap-
parently go back to the ICC argument for factoriality of group von Neumann algebras and the
so-called 14 ε-argument both due to Murray and von Neumann. However our problems are of
the nature of type III von Neumann algebras, and thus the lack of trace causes main difficulties.
Hence the key is to overcome such difficulties. Here we will take up such analytical aspects
in the general amalgamated free product setup, and indeed improve the analytical results in
[27, 28] with new techniques from the recent amazing development on type II1 factors opened
by several breakthroughs due to Popa. We hope that the technical facts provided in this paper
are sufficient as analytical parts in future ‘best-possible’ answers to the questions mentioned
above at least in the case where amalgamated free products are taken over type I von Neumann
subalgebras.

The organization of this paper is as follows. Section 2 is preliminaries on amalgamated
free product von Neumann algebras. In section 3 we provide a non-tracial version of one of
the results in Ioana–Peterson–Popa’s article [9, Theorem 1.1]. In relation to it we provide a
non-tracial adaptation of the so-called intertwining-by-bimidule criterion due to Popa, which
may be of independent interest as future reference. In the same section we also generalize
our previous results of controlling central sequences [27, Proposition 3.5],[28, Proposition 3.1]
to the amalgamated free product setting. In section 4, we give several partial answers to
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2 Y. UEDA

the questions mentioned above by utilizing technologies developed in §3. Those include an
answer to the factoriality and non-amenability questions of a given amalgamated free product
(M,E) = (M1, E1) ⋆N (M2, E2) when M1 is ‘diffuse relative to N ’, M2 ‘non-trivial relative to
N ’, and N of type I.

Standard notation rule here follows our previous papers [27, 28]; for example, the center,
the unitary group and the set of projections of a given von Neumann algebra M are denoted
by Z(M), Mu and Mp, respectively, and also the central support of e ∈ Mp in M by cMe .
Notations and facts concerning amalgamated free products of von Neumann algebras will be
summarized in next section 2.

2. Amalgamated Free Product von Neumann Algebras

Let M1 ⊇ N ⊆ M2 be σ-finite von Neumann algebras, and faithful normal conditional
expectations E1 : M1 → N , E2 : M2 → N be given. Their amalgamated free product
(M,E) = (M1, E1) ⋆N (M2, E2) is a pair of von Neumann algebraM containingM1 ⊇ N ⊆M2

and faithful normal conditional expectation E : M → N satisfying (i) M = M1 ∨ M2, (ii)
E ↾Mk

= Ek (k = 1, 2) and (iii) E ↾Λ◦(M◦
1 ,M

◦
2 )
≡ 0, where Λ◦(M◦

1 ,M
◦
2 ) denotes the set of all

alternating words in M◦
1 := Ker(E1) and M◦

2 := Ker(E2). The construction of such a pair is
a bit complicated, but this simple formulation perfectly serves as a working definition. The
construction was introduced in the tracial setting in [15] based on the C∗-algebraic one [31].
Its modular theoretical treatment was given in [21], and will be reviewed below.

Let χ be a faithful normal semifinite weight on N . Then the modular automorphism σχ◦Et ,
t ∈ R, is simply computed as

σχ◦Et ↾Mk
= σχ◦Ek

t (k = 1, 2), (2.1)

see [21, Theorem 2.6]. This formula together with famous Takesaki’s criterion shows that
for each k = 1, 2 there is a unique faithful normal conditional expectation EMk

: M → Mk

characterized by

EMk
↾Λ◦(M◦

1 ,M
◦
2 )\M

◦
k
≡ 0. (2.2)

This fact is easily confirmed in the exactly same way as in [27, Lemma 2.1]. It is clear that
E ◦ EMk

= E holds. Consider the natural inclusion of the so-called continuous cores:

M̃ :=M ⋊σχ◦E R ⊇ M̃k :=Mk ⋊σχ◦Ek R (k = 1, 2) ⊇ Ñ := N ⋊σχ R, (2.3)

which is independent of the choice of χ thanks to Connes’s Radon-Nikodym cocycle theorem.

The canonical liftings (still being faithful normal conditional expectations) Ẽ : M̃ → Ñ , Ẽk :

M̃k → Ñ (k = 1, 2) are constructed by

Ẽ := E⊗̄IdB(L2(R)) ↾M⋊
σχ◦ER, Ẽk := Ek⊗̄IdB(L2(R)) ↾Mk⋊σχ◦Ek

R . (2.4)

Remark that the original E and Ek are recovered as the restrictions of Ẽ and Ẽk to M and

Mk via the canonical embeddings M →֒ M̃ and Mk →֒ M̃k, respectively. Here is a simple but

important fact [21, Theorem 5.1] that M̃1 and M̃2 are freely independent with amalgamation

over Ñ with respect to Ẽ, and moreover M̃ = M̃1 ∨ M̃2. Consequently the following natural
formula holds:

(M̃, Ẽ) = (M̃1, Ẽ1) ⋆Ñ (M̃2, Ẽ2). (2.5)

The canonical faithful normal semifinite traces Tr
M̃
, Tr

M̃k
(k = 1, 2) and TrÑ on M̃ , M̃k and

Ñ , respectively, (see [20, Theorem XII.1.1]) must satisfy Tr
M̃

= TrÑ ◦ Ẽ and Tr
M̃k

= TrÑ ◦ Ẽk
(see e.g. [14, §4]).
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Let Mω ⊇ Mω
k (k = 1, 2) ⊇ Nω be the ultraproducts of M ⊇ Mk (k = 1, 2) ⊇ N . Here

the inclusion relation is guaranteed by the existence of conditional expectations, and E and
Ek (k = 1, 2) can be lifted up to Eω : Mω → Nω and Eωk : Mω

k → Nω, respectively. All
the necessary facts on ultraproducts of von Neumann algebras are summarized in [27, §§2.2].
Remark that Mω

1 and Mω
2 are freely independent with amalgamation over Nω with respect to

Eω, see [23, Proposition 4]. However it is hopeless due to [18, Lemma 2.2] thatMω =Mω
1 ∨Mω

2

holds.

3. Technical Results

3.1. A non-tracial adaptation of Popa’s intertwining-by-bimodule criterion. Let M
be an arbitrary σ-finite (possibly type III) von Neumann algebra, and A,B be its (possibly non-
unital) von Neumann subalgebras with units 1A, 1B, respectively. Suppose that B is semifinite
with a faithful normal semifinite trace TrB and furthermore that there is a faithful normal
conditional expectation EB : 1BM1B → B.

Proposition 3.1. The following are equivalent:

(i) There is no net uλ of unitaries in A which satisfies EB(y
∗uλx) −→ 0 σ-strongly for

any x, y ∈ ⋃{
1AMp | p ∈ Bp; TrN (p) < +∞}.

(ii) There are a normal (possibly non-unital) ∗-homomorphism ρ : A → Mn(C)⊗̄B with

finite n ∈ N and a non-zero partial isometry w ∈Mn(C)⊗̄M such that

– (Trn⊗̄TrB)(ρ(1A)) < +∞,

– ww∗ ≤ e11 ⊗ 1A and w∗w ≤ ρ(1A), and
– (e11 ⊗ a)w = wρ(a) for all a ∈ A.

(iii) There are non-zero projections e ∈ A, f ∈ B, a normal unital ∗-isomorphism θ : eAe→
fBf and a non-zero partial isometry v ∈M such that

– the central support cAe is finite in A and TrB(f) < +∞,

– vv∗ ≤ e and v∗v ≤ f , and
– xv = vθ(x) for all x ∈ eAe.

Suppose further that M has an almost periodic weight ψ such that both A and B sit inside the

centralizer Mψ, ψ ↾B is still semifinite, and the EB is the unique ψ ↾1BM1B -preserving one.

Then the w in (ii) and the v in (iii) can be chosen in such a way that there is a common

eigenvalue λ of ∆ψ so that (idn ⊗̄σψt )(w) = λitw and σψt (v) = λitv for all t ∈ R.

As usual let us write A �M B (with EB and TrB) if the above equivalent conditions (i)–(iii)
hold. Remark that no assumption on A is necessary. The proof is of course modeled after Popa’s
original one for finite von Neumann algebras, but some cares are necessary. Indeed we observed
this fact with B finite several years ago, through our attempt to get better understanding of the
fundamental articles [16, 17] due to Popa. Houdayer and Vaes informed us that they have also
observed it with B finite independently (see [8, Theorem 2.3]), and moreover Vaes corrected our
misunderstanding on some argument in [4, §2]. The proof below is just a combination and/or
a reformulation of several existing proofs of Popa’s criterion [16, Appendix],[17, §2] (also see
[2, Appendix F],[29, Appendix C] for its exposition) and its variants [1, §3],[4, §2],[7, §4], etc.
The same idea as in e.g. the proof of (1) ⇒ (4) in [29, Proposition C.1] perfectly works for (ii)
⇒ (i). (Note that the proof of (4) ⇒ (1) in [2, Theorem F.12] does not work at this point due
to the lack of finite trace. Thus we could not prove (iii) ⇒ (i) directly.) Hence the main parts
below are (ii) ⇔ (iii) and (i) ⇒ (ii).

Proof of (ii) ⇒ (i): We may assume that ρ(1A) =
∑n
k=1 ekk ⊗ pk with pk ∈ Bp thanks

to [11, Corollary 3.20]. Since (Trn⊗̄TrB)(ρ(1A)) < +∞, one has w =
∑n

k=1 e1k ⊗ wk with
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wk = wkpk ∈
⋃{

1AMp | p ∈ Bp; TrN (p) < +∞}. On contrary, suppose that (i) is not true.
One can find a net uλ in Au in such a way that EB(w

∗
i uλwj) −→ 0 σ-strongly for all i, j,

and hence ρ(uλ)(id⊗̄EB)(w∗w) =
∑n

i,j=1 eij ⊗ EB(w
∗
i uλwj) −→ 0 σ-strongly. Therefore,

‖(idn⊗̄EB)(w∗w)‖Trn⊗̄TrB = ‖ρ(uλ)(idn⊗̄EB)(w∗w)ρ(1A)‖Trn⊗̄TrB −→ 0, a contradiction to
w 6= 0. �

Proof of (iii) ⇒ (ii): Since v∗v ∈ θ(eAe)′, one can find a non-zero z ∈ Z(eAe)p = (Z(A)e)p
in such a way that the normal ∗-homomorphism x ∈ zAz = (eAe)z 7→ θ(x)v∗v is injective.
Since cAe is finite in A, by [12, Proposition 8.2.1] one can find non-zero, mutually orthogonal
and equivalent (in A) e1, . . . , en ∈ Ap in such a way that e1 ≤ z and

∑n
k=1 ek = cAe1 . We

have e1vv
∗ 6= 0, since θ(e1)v

∗v = v∗(e1vv
∗)v by the choice of z and e1 ≤ z. Then one gets

partial isometries v1 := e1, v2, . . . , vn ∈ A so that v∗kvk = e1 and vkv
∗
k = ek (k = 2, . . . , n).

Since e1Ae1 ⊆ eAe, we can construct a normal ∗-homomorphism ρ : A → Mn(C)⊗̄B by
ρ(a) :=

∑n
i,j=1 eij ⊗ θ(v∗i avj), a ∈ A. Set w :=

∑n
k=1 e1k ⊗ vkv with v in (iii), which defines

a non-zero partial isometry, since v∗v∗i vjv = δijv
∗e1v and v∗e1v = θ(e1)v

∗v 6= 0 as remarked
before. Since

∑n
i=1 viv

∗
i = cAe1 = cAek for all k = 2, . . . , n, we have wρ(a) =

∑n
i,j,k=1 e1iejk ⊗

vivθ(v
∗
j avk) =

∑n
i,k=1 e1ieik⊗ viv∗i avkv =

∑n
k=1 e1k⊗ cAekavkv = (e11⊗ a)w for all a ∈ A. Since

ρ(1A) ≤ 1n ⊗ f , one has (Trn⊗̄TrB)(ρ(1A)) < +∞. �

Proof of (ii) ⇒ (iii): As in (ii) ⇒ (i) we may and do assume that ρ(1A) =
∑n

k=1 ekk ⊗ pk
with TrB-finite pk ∈ Bp. Note that any union of finite number of TrB-finite projections is
again TrB-finite thanks to the Kaplansky formula [12, Theorem 6.1.7]. Thus p =

∨n
k=1 pk is

TrB-finite, and replacing B by pBp (if necessary) we may and do assume that TrB(1B) < +∞.
Notice that A must be of the form A = A0⊕Ker(ρ(−)w∗w) with A0 finite, since ρ(A) is finite.
Note here that w∗w ∈ ρ(A)′, and thus ρ(−)w∗w is a normal ∗-homomorphism.

Let us first assume that A0 has a type II1 direct summand. By [12, Lemma 6.5.6] one can find
nonzero, mutually orthogonal and equivalent (in A0) e1, . . . , en ∈ Ap0 whose sum is the unit of
the type II1 direct summand. With the center-valued trace τ : Mn(C)⊗̄B → C1⊗̄Z(B) we have
nτ(ρ(e1)) ≤ τ(1⊗1B) = nτ(e11⊗1B), implying that there is a partial isometry v1 ∈Mn(C)⊗̄B
such that v∗1v1 = ρ(e1) and v1v

∗
1 ≤ e11 ⊗ 1B. Since v1ρ(e1)v

∗
1 = v1v

∗
1 ≤ e11 ⊗ 1B, we can

construct a normal unital ∗-isomorphism θ : eAe→ fBf with e := e1, f := θ(e) in such a way
that e11 ⊗ θ(x) = v1ρ(x)v

∗
1 for x ∈ eAe. Since w∗w ∈ ρ(A)′ ∩ ρ(1A)

(
Mn(C)⊗̄M

)
ρ(1A) and

ww∗ ∈
(
Ce11⊗̄A

)′ ∩ (e11 ⊗ 1A)
(
Mn(C)⊗̄M

)
(e11 ⊗ 1A), it is easy to see that wv∗1 is a non-zero

partial isometry whose left and right support projections are less than e11 ⊗ e and e11 ⊗ f ,
respectively, and hence wv∗1 = e11 ⊗ v for some non-zero partial isometry v ∈ eMf . Then one
has e11 ⊗ xv = (e11 ⊗ x)wv∗1 = wρ(x)v∗1 = wv∗1v1ρ(x)v

∗
1 = e11 ⊗ vθ(x) for x ∈ eAe.

We next consider the case that A0 is of type I, that is, there is an abelian (in A) e ∈ Ap0
with cAe = 1A0 . With a MASA A between ρ(eAe) ⊕ Cρ(e)⊥ ⊆ Mn(C)⊗̄B one can choose, by
[11, Theorem 3.18], mutually orthogonal and equivalent (in Mn(C)⊗̄B) projections q1, . . . , qn
from A with

∑n
k=1 qk = 1n ⊗ 1B. Then one immediately observes (by looking at their center-

valued traces) that every qk is equivalent to e11 ⊗ 1B in Mn(C)⊗̄B. Since ρ(e)w∗w 6= 0, some
q := qk must satisfy qρ(e)w∗w 6= 0. In this way, we can choose a non-zero partial isometry
v1 ∈Mn(C)⊗̄B in such a way v∗1v1 = qρ(e)(≤ ρ(e)), v1v

∗
1 ≤ e11 ⊗ 1B, and thus v∗1v1 ∈ ρ(eAe)′

and wv∗1 6= 0 (since qρ(e)w∗w 6= 0). Then we can construct a unital normal ∗-homomorphism
θ : eAe → fBf with f := θ(e) by e11 ⊗ θ(x) = v1ρ(x)v

∗
1 for x ∈ eAe and a non-zero y ∈ eMf

by e11 ⊗ y = wv∗1 . Moreover we have e11 ⊗ xy = (e11 ⊗ x)wv∗1 = wρ(x)v∗1 = wv∗1(v1ρ(x)v
∗
1 ) =

e11 ⊗ yθ(x) for x ∈ eAe, since v∗1v1 ∈ ρ(eAe)′. Hence xy = yθ(x) for x ∈ eAe. Replacing e by
suitable z ∈ Z(eAe)p (if necessary) we can make θ injective with keeping both θ(e) = f and
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y = eyf . With the polar decomposition y = v|y| we get vv∗ ≤ e, v∗v ≤ f and xv = vθ(x) for
x ∈ eAe. �

We have two ways for completing the final part of the proof of (i) ⇒ (ii) below; one is the
use of Haagerup’s Lp-space technologies and the other that of standard forms due to Araki,

Connes and Haagerup. Here we use the latter as easy way. In what follows (M y H, JM ,P♮
M )

denotes a standard form of M , see [20, Definition IX.1.13].

Proof of (i)⇒ (ii): Note that EB(y
∗uλx) −→ 0 σ-strongly if and only if ‖EB(y∗uλx)‖TrB −→

0 for any x, y ∈ ⋃{1AMp | p ∈ Bp; TrB(p) < +∞}. Thus there are ε > 0 and F ⋐
⋃{1AMp | p ∈

Bp; TrB(p) < +∞} so that
∑

x,y∈F
‖EB(y∗ux)‖TrB ≥ ε for all u ∈ Au. (3.1)

Each x ∈ F has a TrB-finite px ∈ Bp with x = xpx, and p :=
∨
x∈F px must be TrB-finite as

remarked in (ii) ⇒ (iii). Thus, replacing B by pBp (if necessary) we may and do assume that
TrB is a finite trace, that is, TrB(1B) < +∞.

Choose a faithful normal state ϕ0 on 1⊥BM1⊥B, and set B̂ := B ⊕ C1⊥B and EB̂ : x ∈ M 7→
EB(1Bx1B) + ϕ0(1

⊥
Bx1

⊥
B)1

⊥
B giving a faithful normal conditional expectation from the whole

M onto B̂. Clearly B̂ is still finite (since we have assumed that TrB is a finite trace), and the

mapping b+ α1⊥B ∈ B̂ 7→ TrB(b) + α ∈ C defines a faithful normal trace (not weight !) TrB̂ on

B̂. Set ϕ := TrB̂ ◦EB̂, a faithful normal positive linear functional on M , and let ξ0 ∈ P
♮
M be its

unique representing vector. It is standard, by a usual exhaustion argument like e.g. the proof
of [19, Theorem IV.5.5], to see that there is a family of vectors {ξi}i∈I in H so that ξ0 is in the

family (thus 0 is regarded as a distinguished element in I) and moreover H =
∑⊕

i∈I [JM B̂JMξi].

Therefore, one can construct an isometry U : H → ℓ2(I)⊗L2(B̂) satisfying Uξ0 = δ0⊗ΛTrB̂
(1)

and U(JMx
∗JM ) = (1⊗JB̂x∗JB̂)U for x ∈ B̂, where L2(B̂) is the usual standard Hilbert space

constructed out of TrB̂, ΛTrB̂
the canonical embedding of B̂ to L2(B̂) and JB̂ the canonical

unitary conjugation on L2(B̂). By the construction we observe that P := UU∗ ∈ B(ℓ2(I))⊗̄B̂
and moreover that the pair P

(
B(ℓ2(I))⊗̄B̂

)
P and PCδ0 ⊗ 1 with the rank 1 projection PCδ0

onto Cδ0 is nothing but a concrete realization, modulo the unitary equivalence by U , of the
basic extension 〈M, B̂〉 and the Jones projection eB̂ associated with EB̂. Then

Tr〈M,B̂〉(−) := (TrB(ℓ2(I))⊗̄TrB̂)(U(−)U∗) (3.2)

with the usual trace TrB(ℓ2(I)) on B(ℓ2(I)) gives a faithful normal semifinite trace on the

basic extension 〈M, B̂〉. For x ∈ B̂ one has UxeB̂U
∗ = PCδ0 ⊗ x and hence Tr〈M,B̂〉(xeB̂) =

(TrB(ℓ2(I))⊗̄TrB̂)(UxeB̂U∗) = (TrB(ℓ2(I))⊗̄TrB̂)(PCδ0 ⊗ x) = TrB̂(x). Therefore, we get

Tr〈M,B̂〉(xeB̂y) = Tr〈M,B̂〉(eB̂yxeB̂) = Tr〈M,B̂〉(ÊB(yx)eB̂) = ϕ(yx), x, y ∈M. (3.3)

Let d :=
∑
y∈F yeB̂y

∗ ∈ 〈M, B̂〉+, and then Tr〈M,B̂〉(d) =
∑
y∈F ϕ(y

∗y) < +∞ by (3.3). In

the exactly same way as in the proof of (1) ⇒ (2) of [2, Theorem F.12] we see, by using (3.1),
that the σ-weakly closed convex hull C of {u∗du |u ∈ Au} does not contain 0. Moreover, it

is plain to see that JM1BJMd = d. Since 1B ∈ Z(B̂) and hence JM1BJM ∈ Z(〈M, B̂〉), we
conclude that C sits in (1AJM1BJM )〈M, B̂〉(1AJM1BJM ). Since d ≥ 0 and Tr〈M,B̂〉(d) < +∞,

C is embedded, as a closed convex set, into L2(〈M, B̂〉,Tr〈M,B̂〉), the usual GNS Hilbert space

associated with Tr〈M,B̂〉. Hence one can choose a unique minimal point d0 ∈ C with respect to

the Hilbert space norm ‖−‖Tr〈M,B̂〉
, which in turn falls in (1AJM1BJM )〈M, B̂〉(1AJM1BJM )∩A′
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and satisfies Tr〈M,B̂〉(d0) < +∞. Choosing a suitable spectral projection of d0 we get a nonzero

projection e ∈ 〈M, B̂〉 ∩ A′ such that e ≤ 1AJM1BJM and Tr〈M,B̂〉(e) < +∞.

The projection e apparently gives an A–B bimodule K := eH with left and right (unital)
actions a · ξ · b := aJM b

∗JMξ for a ∈ A, ξ ∈ K, b ∈ B. The GNS representation of B
associated with TrB is simply given by the restriction B y L2(B) := 1BL

2(B̂) with the
canonical embedding ΛTrB := ΛTrB̂

↾B, and moreover the canonical unitary conjugation JB is

also just the restriction of JB̂ to L2(B). Thus we get the right B-module embedding U0 :=

U ↾K: K →֒ ℓ2(I)⊗̄L2(B)B (⊆ (1 ⊗ 1B)(ℓ
2(I)⊗̄L2(B̂)), and U0U

∗
0 ∈ B(ℓ2(I))⊗̄B satisfies

(TrB(ℓ2(I))⊗̄TrB)(U0U
∗
0 ) = Tr〈M,B̂〉(e) < +∞ by (3.2). By the same reason as in the beginning

of the proof of [2, Proposition F.10] or by [29, Lemma A.1] there are n ∈ N and a nonzero
z ∈ Z(B)p such that K0 := JMzJMK is still a non-trivial A–B bimodule and (U0 ↾JMzJMK

)(U0 ↾JMzJMK)
∗ = (1 ⊗ JBzJB)U0U

∗
0 (1 ⊗ JBzJB) = (1 ⊗ z)U0U

∗
0 - Pn ⊗ z in B(ℓ2(I))⊗̄B =

(C1⊗̄JBBJB)′, where Pn is a rank n projection in B(ℓ2(I)). Choose a partial isometry v ∈
(C1⊗̄JBBJB)′ with v∗v = (U0 ↾JMzJMK)(U0 ↾JMzJMK)

∗ and vv∗ ≤ Pn ⊗ z, and then we can
define a right B-module embedding V : K0 →֒ Cn⊗̄L2(B) by V := v(U0 ↾JMzJMK) with a
fixed identification Pnℓ

2(I) = Cn. The embedding V gives the normal (possibly non-unital)
∗-homomorphism ρ : a ∈ A 7→ V aV ∗ ∈Mn(C)⊗̄B.

Let δi (1 ≤ i ≤ n) be a standard basis of Cn, and set ξi := V ∗(δi ⊗ ΛTrB (1B)) ∈ K0

(1 ≤ i ≤ n). For a ∈ A, write ρ(a) = ∑n
i,j=1 eij ⊗ ρ(a)ij with the matrix units eij associated

with the δi, and then

aξj =
∑n

i=1
JMρ(a)

∗
ijJMξi, 1 ≤ j ≤ n. (3.4)

Consider M := Mn+1(C)⊗̄M y L2(M) := Mn+1(C)⊗̄H (by left matrix-multiplication) with
the canonical unitary conjugation JM defined by JM(eij⊗ ξ) := eji⊗ (JMξ) for eij⊗ ξ ∈ L2(M).

The natural cone determined by (M y L2(M), JM) is denoted by P
♮
M. Set ξ̂ :=

∑n
k=1 e0k ⊗

ξk ∈ L2(M), and define a normal (possibly non-unital) ∗-homomorphism ρ̂ : A →֒ M by
ρ̂(a) := e00 ⊗ a +

∑n
i,j=1 eij ⊗ ρ(a)ij for a ∈ A. Here a standard matrix unit system eij

in Mn+1(C) is indexed by 0, 1, . . . , n. By (3.4) one has ρ̂(a)ξ̂ = JMρ̂(a)
∗JMξ̂ for a ∈ A. A

standard fact on polar decomposition in standard forms (c.f. [20, Exercise IX.1.2],[1, Lemma

3.1]) guarantees the existence of a vector |ξ̂| ∈ P
♮
M and a partial isometry ŵ ∈M satisfying that

ŵ|ξ̂| = ξ̂, ŵ∗ŵ = [M′|ξ̂|], ŵŵ∗ = [M′ξ̂] and ρ̂(a)ŵ = ŵρ̂(a) for a ∈ A. Since (e00 ⊗ 1A)ξ̂ = ξ̂,

one has (e00 ⊗ 1A)[M′ξ̂] = [M′ξ̂], and thus ŵŵ∗ ≤ e00 ⊗ 1A. Here (ρ(A) ⊆) Mn(C)⊗̄M is
naturally regarded as a corner of M by the numbering of the matrix units eij ’s. Then one has,

by (3.4) again, JMρ(1A)JMξ̂ = ξ̂, and hence JMρ(1A)JM|ξ̂| = |ξ̂|. By JM|ξ̂| = |ξ̂| ∈ P
♮
M we get

ρ(1A)[M′|ξ̂|] = [M′|ξ̂|] so that ŵ∗ŵ ≤ ρ(1A) ≤
∑n
k=1 ekk ⊗ 1B. Therefore, ŵ =

∑n
k=1 e0k ⊗ wk

with wk ∈ 1AM1B. Letting w := (e10 ⊗ 1A)ŵ =
∑n

k=1 e1k ⊗ wk ∈ Mn(C)⊗̄M we have
w∗w ≤ ρ(1A), ww

∗ ≤ e11 ⊗ 1A and (e11 ⊗ a)w = (e10 ⊗ 1A)ρ̂(a)ŵ = (e10 ⊗ 1A)ŵρ̂(a) = wρ(a)
for a ∈ A. We have assumed (by cutting by a projection in B) that TrB(1B) < +∞, and hence
(Trn⊗̄TrB)(ρ(1A)) < +∞ is now trivial. Hence we are done. �

Proof of the second part of the assertion: Only the proof of (i)⇒ (ii) needs small modification

to prove this. Let us explain this in what follows. The standard form (M y H, JM ,P♮
M ) is

constructed from ψ so that JM∆ψJM = ∆−1
ψ . The TrB is given by ψ ↾B. We need an extra

argument in relation to the d0 ∈ (1AJM1BJM )〈M, B̂〉(1AJM1BJM ) ∩ A′. By the assumption

here the modular operator ∆ψ has a diagonalization ∆ψ =
∑

λ>0 λ e
ψ
λ and satisfies ∆it

ψ ∈
〈M, B̂〉 ∩ A′ for all t ∈ R. Hence all the eψλ ’s fall in 〈M, B̂〉 ∩ A′. Thus eψλ d

1/2
0 with some

λ defines a non-zero element in 〈M, B̂〉 ∩ A′. Since eψλ commutes with 1AJM1BJM and since
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Tr〈M,B̂〉(e
ψ
λ d0 e

ψ
λ ) = Tr〈M,B̂〉(d

1/2
0 eψλd

1/2
0 ) ≤ Tr〈M,B̂〉(d0) < +∞, we may and do assume d0 =

eψλ d0 e
ψ
λ . Hence the A–B bimodule K0 can be chosen as a subspace of eψλ H. Therefore, the ξ̂ ∈

L2(M) =Mn+1(C)⊗̄H satisfies that (IMn+1(C)⊗̄∆it
ψ)ξ̂ = λitξ̂ for all t ∈ R. Since IMn+1(C)⊗̄∆ψ

is the modular operator of Trn+1⊗̄ψ on M, (IMn+1(C)⊗̄∆it
ψ)|ξ̂| still falls in P

♮
M, see [20, Lemma

IX.1.4]. Remark here that JM there is nothing but the one constructed from Trn+1⊗̄ψ. Hence,
by the uniqueness of polar decomposition (id⊗̄σψt )(ŵ) = λitŵ and (IMn+1(C)⊗̄∆it

ψ)|ξ̂| = |ξ̂| hold
for every t ∈ R. These modifications are enough to complete the proof. �

Remark 3.2. Let EB̂ and ϕ = TrB̂ ◦ EB̂ be as in the proof of (i) ⇒ (ii) above. Let ÊB̂ :

〈M, B̂〉 →M be the dual operator-valued weight associated with EB̂ in the sense of [13, §§1.2].
It is known that the modular operator ∆ϕ and Connes’s spacial derivative (d(ϕ◦ ÊB̂))/(d(TrB̂ ◦
AdJM ((−)∗))) must coincide, see e.g. the proof of [10, Proposition 2.2]. Moreover ∆ϕ is affiliated

with 〈M, B̂〉, since ϕ = TrB̂ ◦EB̂. With these two facts one can prove that the modular operator

∆ϕ is the Radon–Nikodym derivative of ϕ ◦ ÊB̂ , i.e., ϕ ◦ ÊB̂ = Tr〈M,B̂〉,∆ϕ
in the sense of [20,

Lemma VIII.2.8]. This explains, in full generality, the relationship that was pointed out in [17,
Eq.(1.3.1)] in the almost periodic case.

3.2. A non-tracial version of Ioana–Peterson–Popa’s theorem. Let us investigate an
amalgamated free product (M,E) = (M1, E1) ⋆N (M2, E2).

Proposition 3.3. Let A be a (unital) von Neumann subalgebra of the centralizer (M1)ϕ of a

certain faithful normal state ϕ, and M1 be a (possibly non-unital) dense (in any von Neumann

algebra topology) ∗-subalgebra of M1 with E1(M1) ⊆ M1. Suppose that there is a net vλ of

unitaries in A such that E1(y
∗vλx) −→ 0 σ-strongly for all x, y ∈M1. Then any unitary u ∈M

with uAu∗ ⊆ M1 must fall in M1. In particular, NM (A) = NM1(A) and A′ ∩M = A′ ∩M1.

Here NP (Q) denotes the set of unitaries u ∈ P with uQu∗ = Q for a given unital inclusion

P ⊇ Q of von Neumann algebras.

This is nothing but a non-tracial version of [9, Theorem 1.1] due to Ioana, Peterson and Popa.
Although the proof below is modeled after their proof, we need to overcome some difficulties
due to the lack of trace by utilizing modular theoretic technologies.

Proof. Let (M y H, JM ,P♮
M ) be a standard form of M , and ξ0 ∈ P

♮
M be the unique repre-

senting vector of ϕ ◦EM1 . Let eM1 be the so-called Jones projection associated with EM1 , i.e.,
eM1xξ0 = EM1(x)ξ0 for x ∈M , and the basic extension 〈M,M1〉 is defined to be M ∨{eM1}′′ =
JMM

′
1JM y H. Consider the projection p := [AJMM1JMu

∗ξ0] ∈ A′ ∩ (JMM1JM )′ =
A′ ∩ 〈M,M1〉. Notice that aJMx

∗JMu
∗ξ0 = JMx

∗JMu
∗(uau∗)ξ0 for a ∈ A and x ∈ M1,

and moreover that uau∗ ∈M1 can be approximated in any von Neumann algebra topology, by
analytic elements, say yλ, in M1 with respect to the modular action σϕ. Those altogether show
that

aJMx
∗JMu

∗ξ0 = lim
λ
JMx

∗JMu
∗yλξ0 = lim

λ
JMx

∗σϕi/2(yλ)
∗JMu

∗ξ0 ∈ [JMM1JMu
∗ξ0]

thanks to σ
ϕ◦EM1
t ↾M1= σϕt (t ∈ R) and [20, Lemma VIII.3.18 (ii)]. Consequently we get

p ≤ [JMM1JMu
∗ξ0] = u∗eM1u, which and ÊM1(eM1) = 1 imply ‖ÊM1(p)‖∞ < +∞, where

ÊM1 : 〈M,M1〉 → M denotes the dual operator-valued weight of EM1 . See [13, §§1.2, Lemma
3.1]. We will prove (1 − eM1)p(1 − eM1) = 0. In fact, if this is the case, then p ≤ eM1 so
that u∗ξ0 = eM1u

∗ξ0 = EM1(u
∗)ξ0, implying u = EM1(u) ∈ M1 since ξ0 is separating for

M y H. Since ‖ÊM1(p)‖∞ < +∞ and ÊM1(eM1) = 1 as before, any spectral projection f of

(1−eM1)p(1−eM1) corresponding to [δ, 1] with arbitrary δ > 0 still satisfies ‖ÊM1(f)‖∞ < +∞.
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Therefore, it suffices to prove that any projection f ∈ A′∩〈M,M1〉 satisfying both f ≤ 1− eM1

and ‖ÊM1(f)‖∞ < +∞ must be 0.
In what follows we denote by A the ∗-subalgebra of M consisting of all analytic elements

with respect to σϕ◦EM1 , which is well-known to be dense in any von Neumann algebra topol-

ogy. Set ψ := ϕ ◦ EM1 ◦ ÊM1 , a faithful normal semifinite weight on 〈M,M1〉, and let
〈M,M1〉 y L2(〈M,M1〉, ψ) be the GNS representation with canonical embedding Λψ : nψ :=
{x ∈ 〈M,M1〉 |ψ(x∗x) < +∞} → L2(〈M,M1〉, ψ) and norm ‖ − ‖ψ associated with the weight

ψ. Remark that EM1(A) ⊆ A (thanks to EM1 ◦ σ
ϕ◦EM1
t = σϕt ◦ EM1 for all t ∈ R) and thus

span(AeM1A) becomes a dense (in any von Neumann algebra topology) ∗-subalgebra of n∗ψ∩nψ ,
and hence Λψ(span(A eM1A)) is dense in L2(〈M,M1〉, ψ) by [10, Lemma 2.1]. Thus one can
choose a sequence Tn ∈ span(A eM1A) in such a way that ‖Λψ(Tn − f)‖ψ −→ 0 as n → ∞,

where note that f clearly falls in nψ. Since f ≤ 1 − eM1 and σψt (eM1) = eM1 (t ∈ R) [13,
Lemma 5.1], we also have ‖Λψ((1− eM1)Tn(1− eM1)− f)‖ψ −→ 0 as n→∞ so that may and
do assume that Tn = (1 − eM1)Tn(1− eM1) for all n.

On contrary, suppose f 6= 0, that is, γ := ‖Λψ(f)‖ψ 	 0. Then one can choose T := Tn0 ∈
span(AeM1A) with some n0 in such a way that

‖Λψ(T )‖ψ ≤ 3γ/2, ‖Λψ(T − f)‖ψ ≤ γ/5. (3.5)

For any v ∈ Au we compute

γ2 − |ψ(T ∗vTv∗)| ≤ |ψ(fvfv∗)− ψ(T ∗vTv∗)|
≤ |ψ((f − T )∗vfv∗)|+ |ψ(T ∗v(f − T )v∗)|
≤ ‖Λψ(f − T )‖ψ‖Λψ(vfv∗)‖ψ + ‖Λψ(T )‖ψ‖Λψ(v(f − T )v∗)‖ψ
≤ ‖Λψ(f − T )‖ψ‖Λψ(f)‖ψ + ‖Λψ(T )‖ψ‖Λψ(f − T )‖ψ
≤ γ2/2,

where the first, the third, the fourth and the fifth inequalities follow from f ∈ A′ ∩ 〈M,M1〉,
the Cauchy–Schwarz inequality, v ∈ (M1)ϕ ⊂ 〈M,M1〉ψ, and (3.5), respectively. Therefore,
γ2 ≤ 2|ψ(T ∗vTv∗)| holds for all v ∈ Au. Since T = (1 − eM1)T (1 − eM1), we can write
T =

∑m
k=1 xkeM1yk with xk, yk ∈ A ∩Ker(EM1). Thus, for every v ∈ Au we have

γ2 ≤ 2
∑m

k,l=1
|ψ(y∗keM1x

∗
kvxleM1ylv

∗)|

= 2
∑m

k,l=1
|ψ(y∗kEM1(x

∗
kvxl)eM1ylv

∗)|

= 2
∑m

k,l=1
|ϕ ◦ EM1(y

∗
kEM1 (x

∗
kvxl)ylv

∗)|

= 2
∑m

k,l=1
|ϕ ◦ EM1(σ

ϕ◦EM1

i (yl)v
∗y∗kEM1 (x

∗
kvxl))|

≤ 2 max
1≤k≤m

‖yk‖∞ max
1≤l≤m

‖σϕ◦EM1

i (yl)‖∞
∑m

k,l=1
‖EM1(x

∗
kvxl)‖ϕ.

Here the third equality is due to ÊM1(eM1) = 1, the fourth one follows from v ∈ (M1)ϕ ⊆
Mϕ◦EM1

and yl ∈ A with the so-called modular condition, and finally the last inequality is due

to the Cauchy–Schwarz inequality. Consequently we have chosen x1, . . . , xm ∈ A ∩ Ker(EM1 )
and a universal constant C > 0 so that

γ2 ≤ C
∑m

k,l=1
‖EM1(x

∗
kvxl)‖ϕ for all v ∈ Au. (3.6)

Set M◦
1 := M1 ∩M◦

1 . By the assumption on M1 and by the Kaplansky density theorem any
element x ∈M◦

1 can be approximated in any von Neumann algebra topology by a bounded net of
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elements x◦λ = xλ−E1(xλ) ∈M◦
1 with xλ ∈M1, xλ −→ x. Thus M1+span(Λ◦(M◦

1,M
◦
2 )\M◦

1)
is also dense inM in any von Neumann algebra topology so that the Kaplansky density theorem
enables us to approximate each xk (= xk −EM1(xk)) by a net xk,λ in span(Λ◦(M◦

1,M
◦
2 ) \M◦

1);
namely ‖xk,λ‖∞ ≤ 2‖xk‖∞ and xk,λ −→ xk σ-∗-strongly. Then we have, for every v ∈ Au,
‖EM1(x

∗
kvxl)‖ϕ ≤ ‖EM1(x

∗
k,λvxl,λ)‖ϕ + ‖EM1(x

∗
kvxl − x∗k,λvxl,λ)‖ϕ

≤ ‖EM1(x
∗
k,λvxl,λ)‖ϕ + ‖(xk − xk,λ)∗vxl)‖ϕ◦EM1

+ ‖xk,λv(xl − xl,λ)‖ϕ◦EM1

≤ ‖EM1(x
∗
k,λvxl,λ)‖ϕ + ‖σϕ◦EM1

i/2 (xl)‖∞‖x∗k − x∗k,λ‖ϕ◦EM1
+ 2‖xk‖∞‖xl − xl,λ‖ϕ◦EM1

,

where we used, in the last line, that xl ∈ A with [20, Lemma VIII.3.18 (ii)] and v ∈ (M1)ϕ.
Let ε > 0 be arbitrary chosen. Then some λ (being independent of v’s) satisfies that γ2 ≤
ε + C

∑m
k,l=1 ‖EM1(x

∗
k,λvxl,λ)‖ϕ for all v ∈ Au. Since any element in Λ◦(M◦

1,M
◦
2 ) \M◦

1 is

written as azb with a, b ∈ {1} ∪M◦
1, z an alternating word in M◦

1,M
◦
2 whose leftmost and

rightmost letters are chosen from M◦
2 , there are finitely many such words a

(i)
j z

(i)
j b

(i)
j , i = 1, 2,

j = 1, . . . ,m′, and positive constants Cj > 0, j = 1, . . . ,m′, so that

γ2 ≤ ε+
∑m′

j=1
Cj‖EM1(a

(1)
j z

(1)
j b

(1)
j va

(2)
j z

(2)
j b

(2)
j )‖ϕ

= ε+
∑m′

j=1
Cj‖a(1)j EM1(z

(1)
j E1(b

(1)
j va

(2)
j )z

(2)
j )b

(2)
j ‖ϕ

for all v ∈ Au, where the equality comes from the free independence of M1,M2 and (2.2).
Applying the above estimate of γ2 to the net v = vλ in our hypothesis we get γ2 ≤ ε (at the
limit in λ), a contradiction to γ 	 0, since ε is arbitrary. �

Remark 3.4. It is worth while to note that the inequality (3.6) is a general fact. Let P ⊇ Q
be σ-finite von Neumann algebras with a faithful normal conditional expectation EQ : P → Q
and A be a von Neumann subalgebra of the centralizer Qϕ with some faithful normal state ϕ.
The middle part of discussion above shows that for each projection f ∈ A′ ∩ 〈P,Q〉 satisfying
both f ≤ 1 − eQ and ‖ÊQ(f)‖∞ < +∞ there are analytic (with respect to σϕ◦EQ) elements
x1, . . . , xm ∈ P and a universal constant C > 0 such that

‖Λϕ◦EQ◦ÊQ
(f)‖2

ϕ◦EQ◦ÊQ
≤ C

∑m

k,l=1
‖EQ(x∗kvxl)‖ϕ for all v ∈ Au.

3.3. A result for controlling central sequences in amalgamated free products. Let us
investigate central sequences in an amalgamated free product (M,E) = (M1, E1) ⋆N (M2, E2).
The next result is an adaptation and/or an improvement of the methods of [27, Proposition
3.5] and [28, Proposition 3.1] to amalgamated free product von Neumann algebras. In this
subsection we use the notations and facts summarized in [27, §§2.2].
Proposition 3.5. Suppose that there is a faithful normal state ϕ on M1 satisfying the following

conditions:

(a) σϕt (N) = N for all t ∈ R.
(b) For every n ∈ N with n ≥ 2 there are unitaries uk = u

(n)
k , vk = v

(n)
k ∈ (M1)ϕ, 0 ≤

k ≤ n− 1, such that E1(u
∗
k1
uk2) = EϕN (v∗k1vk2) = 0 for all 0 ≤ k1 6= k2 ≤ n− 1, where

EϕN denotes the unique ϕ-preserving conditional expectation from M1 onto N , whose

existence follows from (a) and Takesaki’s criterion.

Then, for any x ∈ (M1)
′
ϕ ∩Mω, any y ∈M◦

2 and any sequence (tm)m of real numbers we have

‖E2(y
∗y)1/2(x− (EM1 )

ω(x))‖(ϕ◦EM1 )
ω ≤ ‖yx− xz‖(ϕ◦EM1)

ω ,

with z :=
[
(σ
ϕ◦EM1
tm (y))m

]
∈Mω.
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Remark here that any bounded sequence (σ
ϕ◦EM1
tm (x(m)))m with arbitrary (x(m))m giving

an element in Mω gives again an element in Mω, as shown in the proof of [28, Proposition 3.1].

A key fact behind this is that any modular action σψ satisfies ψ ◦ σψt = ψ for all t ∈ R. In
particular, the element z in the statement above makes sense.

Proof. Write M▽
1 := Ker(EϕN ). One can easily see, by using x ∈ M1 7→ E1(x) + (x − E1(x)) ∈

N +M◦
1 or EϕN (x) + (x−EϕN (x)) ∈ N +M▽

1 , that span(Λ
◦(M◦

1 ,M
◦
2 ) \M◦

1 ) coincides with the
linear span of the following sets of words:

M◦
1 · · ·M◦

2︸ ︷︷ ︸
alternating

M▽
1 , M◦

1 · · ·M◦
2︸ ︷︷ ︸

alternating

, M◦
2 · · ·M◦

2︸ ︷︷ ︸
alternating

M▽
1 , M◦

2 · · ·M◦
2︸ ︷︷ ︸

alternating

.

Define four closed subspaces X1 :=
[
Λϕ◦EM1

(M◦
1 · · ·M◦

2M
▽
1 )

]
, X2 :=

[
Λϕ◦EM1

(M◦
1 · · ·M◦

2 )
]
,

X3 :=
[
Λϕ◦EM1

(M◦
2 · · ·M◦

2M
▽
1 )

]
, X4 :=

[
Λϕ◦EM1

(M◦
2 · · ·M◦

2 )
]
in H := L2(M,ϕ ◦ EM1), and

clearly

H = Λϕ◦EM1
(M1)⊕X1 ⊕X2 ⊕X3 ⊕X4.

Denote by Pi, i = 1, 2, 3, 4, the projection from H onto Xi. Remark that(
IH −

∑4

i=1
Pi

)
Λϕ◦EM1

(x) = Λϕ◦EM1
(EM1 (x)), x ∈M. (3.7)

Let n ∈ N with n ≥ 2 be fixed. Define unitary operators Sk = S
(n)
k , Tk = T

(n)
k (k =

0, . . . , n− 1) on H by

SkΛϕ◦EM1
(x) := Λϕ◦EM1

(ukxu
∗
k), TkΛϕ◦EM1

(x) := Λϕ◦EM1
(vkxv

∗
k), x ∈M,

with uk = u
(n)
k , vk = v

(n)
k ∈ (M1)ϕ ⊆Mϕ◦EM1

in our hypothesis. Here are simple claims.

(A) {SkXi}n−1
k=0 is an orthogonal family of closed subspaces, i = 3, 4.

(B) {TkX2}n−1
k=0 is an orthogonal family of closed subspaces.

The proofs of those are essentially same, but (A) is easier than (B). Thus we prove only (B)
here and leave (A) to the reader. By using x 7→ Ei(x) + (x−Ei(x)) ∈ N +M◦

i (i = 1, 2) again
and again we have

(vk2(M
◦
1 · · ·M◦

2 )v
∗
k2 )

∗(vk1 (M
◦
1 · · ·M◦

2 )v
∗
k1)

= vk2(M
◦
2 · · · (M◦

1 v
∗
k2vk1M

◦
1 ) · · ·M◦

2 )v
∗
k1 ⊆ vk2Nv∗k1 + vk2Ker(EM1)v

∗
k1 .

The desired assertion immediately follows from that vk ∈ (M1)ϕ; in fact, if k1 6= k2, then

ϕ ◦ EM1 (vk2Nv
∗
k1) = ϕ(Nv∗k1vk2) = ϕ(NEϕN (v∗k1vk2)) = {0},

ϕ ◦ EM1 (vk2Ker(EM1)v
∗
k1 ) = ϕ(vk2EM1 (Ker(EM1))v

∗
k1 ) = {0}.

Let us choose arbitrary x ∈ (M1)
′
ϕ ∩Mω with representative (x(m))m. For each ε > 0 and

each n ∈ N with n ≥ 2 one can choose a neighborhood W =Wε,n in β(N) at ω so that

‖Λϕ◦EM1
(x(m) − ukx(m)u∗k)‖H < ε, ‖Λϕ◦EM1

(x(m) − vkx(m)v∗k)‖H < ε

for all 0 ≤ k ≤ n − 1 and m ∈ W ∩ N, where the uk = u
(n)
k , vk = v

(n)
k are as above. For each

i = 3, 4 and every m ∈W ∩ N we have, with the above Sk = S
(n)
k ,

‖PiΛϕ◦EM1
(x(m))‖2H

=
1

n

∑n−1

k=0
‖SkPiΛϕ◦EM1

(x(m))‖2H

≤ 2

n

∑n−1

k=0

{
‖SkPiΛϕ◦EM1

(x(m)) − SkPiS∗
kΛϕ◦EM1

(x(m))‖2H + ‖SkPiS∗
kΛϕ◦EM1

(x(m))‖2H
}
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=
2

n

∑n−1

k=1
‖SkPiS∗

kΛϕ◦EM1
(ukx(m)u∗k − x(m))‖2H +

2

n

∑n−1

k=0
‖SkPiS∗

kΛϕ◦EM1
(x(m))‖2H

< 2ε2 +
2

n

∑n−1

k=0
‖SkPiS∗

kΛϕ◦EM1
(x(m))‖2H

≤ 2ε2 +
2

n
‖Λϕ◦EM1

(x(m))‖2H (by the claim (A))

≤ 2ε2 + 2‖((x(m))m‖2∞/n.

Similarly, using the claim (B) with T
(n)
k instead of S

(n)
k we have

‖P2Λϕ◦EM1
(x(m))‖2H < 2ε2 + 2‖((x(m))m‖2∞/n

for every m ∈ W ∩ N. Since n and ε are arbitrary, for each δ > 0 one can find a neighborhood
Wδ in β(N) at ω so that

‖(P2 + P3 + P4)Λϕ◦EM1
(x(m))‖H < δ (3.8)

for all m ∈ Wδ ∩ N.
In the standard embedding L2(Mω, (ϕ ◦ EM1)

ω) →֒ Hω we have, by (3.7) and (3.8),
∥∥∥Λ(ϕ◦EM1)

ω(y(x− (EM1 )
ω(x))) −

[
(yP1Λϕ◦EM1

(x(m)))m
]∥∥∥

Hω

= lim
m→ω

∥∥Λϕ◦EM1
(y(x(m) − EM1(x(m)))) − yP1Λϕ◦EM1

(x(m))
∥∥
H

= lim
m→ω

∥∥y(P2 + P3 + P4)Λϕ◦EM1
(x(m))

∥∥
H

≤ sup
m∈Wδ∩N

∥∥y(P2 + P3 + P4)Λϕ◦EM1
(x(m))

∥∥
H
< ‖y‖∞δ,

and hence

Λ(ϕ◦EM1)
ω(y(x− (EM1)

ω(x))) =
[
(yP1Λϕ◦EM1

(x(m)))m
]

(3.9)

in Hω, since δ is arbitrary. Trivially, in Hω,
Λ(ϕ◦EM1)

ω(y(EM1 )
ω(x) − (EM1)

ω(x)z)

=
[
(Λϕ◦EM1

(yEM1(x(m)) − EM1(x(m))σ
ϕ◦EM1
tm (y)))m

]
. (3.10)

Set

yℓ :=

∫ +∞

−∞

σ
ϕ◦EM1
t (y)

e−t
2/ℓ dt√
ℓπ

=

∫ +∞

−∞

[Dϕ ◦EM1 : Dχ ◦ E]t σ
χ◦E
t (y) [Dϕ ◦ EM1 : Dχ ◦ E]∗t

e−t
2/ℓ dt√
ℓπ

with a fixed faithful normal state χ on N . Clearly yℓ falls in the σ-weak (or σ-strong) closure of
span(M1M

◦
2M1), since [Dϕ ◦EM1 : Dχ ◦E]t = [Dϕ : Dχ ◦E1]t ∈M1 by [20, Corollary IX.4.22

(ii)] and σχ◦Et (y) ∈ M◦
2 by (2.1). Set zℓ :=

[
(σ
ϕ◦EM1
tm (yℓ))m

]
∈ Mω, which is well-defined as

remarked just before the proof. Note that σ
ϕ◦EM1

−i/2 (σ
ϕ◦EM1
tm (yℓ)) = σ

ϕ◦EM1
tm (σ

ϕ◦EM1

−i/2 (yℓ)). For

each ℓ we have, by (3.7), (3.8) as before and by [20, Lemma VIII.3.18 (ii)],
∥∥∥Λ(ϕ◦EM1)

ω((x − (EM1)
ω(x))zℓ)−

[
(Jσ

ϕ◦EM1

−i/2 (σ
ϕ◦EM1
tm (yℓ))

∗JP1Λϕ◦EM1
(x(m)))m

]∥∥∥
Hω

= lim
m→ω

∥∥Jσϕ◦EM1

−i/2 (σ
ϕ◦EM1
tm (yℓ))

∗J
(
Λϕ◦EM1

(x(m) − EM1(x(m))) − P1Λϕ◦EM1
(x(m))

)∥∥
H

≤ sup
m∈Wδ∩N

∥∥Jσϕ◦EM1

−i/2 (σ
ϕ◦EM1
tm (yℓ))

∗J(P2 + P3 + P4)Λϕ◦EM1
(x(m))

∥∥
H
< ‖σϕ◦EM1

−i/2 (yℓ)‖∞δ
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with the modular conjugation J of M y H = L2(M,ϕ ◦ EM1). Hence, for each ℓ,

Λ(ϕ◦EM1)
ω ((x− (EM1 )

ω(x))zℓ)

=
[
(Jσ

ϕ◦EM1

−i/2 (σ
ϕ◦EM1
tm (yℓ))

∗JP1Λϕ◦EM1
(x(m)))m

]
(3.11)

in Hω, since δ is arbitrary. Note that

yP1Λϕ◦EM1
(xm)) ∈ spanΛϕ◦EM1

(M◦
2M

◦
1 · · ·M◦

2M
▽
1 ).

On the other hand,

Λϕ◦EM1
(yEM1(x(m)) − EM1 (x(m))σ

ϕ◦EM1
tm (y))

∈ spanΛϕ◦EM1
(M◦

2 )⊕ spanΛϕ◦EM1
(M◦

2M
▽
1 )

⊕ spanΛϕ◦EM1
(M◦

1M
◦
2 )⊕ spanΛϕ◦EM1

(M◦
1M

◦
2M

▽
1 )

and

Jσ
ϕ◦EM1

−i/2 (σ
ϕ◦EM1
tm (yℓ))

∗JP1Λϕ◦EM1
(x(m))

∈ spanΛϕ◦EM1
(M◦

1 · · ·M◦
2M

▽
1 σ

ϕ◦EM1
tm (yℓ))

⊆ Λϕ◦EM1
(M1)⊕ spanΛϕ◦EM1

(M◦
1M

◦
2 · · · ).

Here the last fact follows from [20, Lemma VIII.3.18 (ii)] and that σ
ϕ◦EM1
tm (yℓ) falls in the σ-

strong closure of span(M1M
◦
2M1). Therefore, we see, by (3.9)–(3.11), that Λ(ϕ◦EM1)

ω(y(x −
(EM1)

ω(x))) is orthogonal to both Λ(ϕ◦EM1)
ω(y(EM1)

ω(x)− (EM1)
ω(x)z) and Λ(ϕ◦EM1)

ω((x −
(EM1)

ω(x))zℓ). Finally, letting x̂ :=
[
(σ
ϕ◦EM1
−tm (x(m)))m

]
, ŷ :=

[
(σ
ϕ◦EM1
−tm (y))m

]
, both of which

fall in Mω as remarked just before the proof, we have
(
Λ(ϕ◦EM1)

ω ((x− (EM1 )
ω(x))z)|Λ(ϕ◦EM1 )

ω(y(x − (EM1)
ω(x)))

)
(ϕ◦EM1)

ω

= (ϕ ◦ EM1)
ω((x− (EM1 )

ω(x))∗y∗(x− (EM1 )
ω(x))z)

= (ϕ ◦ EM1)
ω((x̂− (EM1 )

ω(x̂))∗ŷ∗(x̂− (EM1 )
ω(x̂))y)

= lim
ℓ→∞

(ϕ ◦ EM1)
ω((x̂− (EM1 )

ω(x̂))∗ŷ∗(x̂ − (EM1)
ω(x̂))yℓ)

= lim
ℓ→∞

(ϕ ◦ EM1)
ω((x− (EM1 )

ω(x))∗y∗(x − (EM1)
ω(x))zℓ)

= lim
ℓ→∞

(
Λ(ϕ◦EM1)

ω ((x− (EM1)
ω(x))zℓ|Λ(ϕ◦EM1)

ω(y(x− (EM1 )
ω(x)))

)
(ϕ◦EM1)

ω = 0.

Consequently we get ‖y(x− (EM1)
ω(x))‖(ϕ◦EM1 )

ω ≤ ‖yx− xz‖(ϕ◦EM1)
ω . We have, by (3.9),

‖y(x− (EM1)
ω(x))‖2(ϕ◦EM1 )

ω

=
∥∥∥
[
(yP1Λϕ◦EM1

(x(m)))m
]∥∥∥

2

Hω

= lim
m→ω

(yP1Λϕ◦EM1
(x(m))|yP1Λϕ◦EM1

(x(m)))ϕ◦EM1

= lim
m→ω

{
(E2(y

∗y)P1Λϕ◦EM1
(x(m))|P1Λϕ◦EM1

(x(m)))ϕ◦EM1

+ ((y∗y − E2(y
∗y))P1Λϕ◦EM1

(x(m))
︸ ︷︷ ︸

in X3 orthogonal to X1

|P1Λϕ◦EM1
(x(m))

︸ ︷︷ ︸
in X1

)ϕ◦EM1

}

= lim
m→ω

(E2(y
∗y)P1Λϕ◦EM1

(x(m))|P1Λϕ◦EM1
(x(m)))ϕ◦EM1

=
∥∥∥
[
(E2(y

∗y)1/2P1Λϕ◦EM1
(x(m)))m

]∥∥∥
2

Hω
.
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As in showing (3.9) one has
[
(E2(y

∗y)1/2P1Λϕ◦EM1
(x(m)))m

]
= iΛ(ϕ◦EM1)

ω(E2(y
∗y)1/2(x− (EM1)

ω(x))),

and the proof is completed. �

4. Some Consequences

We first formulate that P is ‘non-trivial relative to Q’ for a given inclusion of von Neumann
algebras P ⊇ Q, and then provide some technical facts.

Definition 4.1. A (unital) inclusion P ⊇ Q of von Neumann algebras is said to be entirely

non-trivial, if no non-zero direct summand of Q is a direct summand of P .

Let P ⊇ Q be an inclusion of von Neumann algebras with a faithful normal conditional
expectation EQ. If zP = Qz (as set) for some non-zero z ∈ Z(Q)p, then Pz = Qz too by
taking adjoints, and thus for x ∈ P one has zx = EQ(zx) = zEQ(x) = EQ(x)z = EQ(xz) = xz,
implying z ∈ Z(P ). Hence Qz is a direct summand of P . Therefore, P ⊇ Q is entirely non-
trivial if and only if Pz 6= Qz or equivalently zP 6= Qz for any non-zero projection z ∈ Z(Q),
where Pz and zP denote the one-sided ideals of all xz and zx, respectively, with x ∈ P .

The next simple lemma, especially (3) there, will frequently be used later.

Lemma 4.2. Let P ⊇ Q be an inclusion of von Neumann algebras with a faithful normal

conditional expectation EQ : P → Q.

(1) The following are equivalent:

(i) P ⊇ Q is entirely non-trivial.

(ii) Pe 6= Qe or equivalently eP 6= eQ for any non-zero projection e ∈ Q.

(2) If P ⊇ Q is entirely non-trivial and f ∈ Q a projection with cQf = 1, then fPf ⊇ fQf is

again entirely non-trivial.

(3) If P ⊇ Q is entirely non-trivial, then there is a family {yi}i∈I of elements in Ker(EQ)
so that

∑
i∈I s(EQ(y

∗
i yi)) = 1, where s(x) denotes the support projection of x = x∗.

Proof. (1) By the discussion above (i) is equivalent to Pz 6= Qz or equivalently zP 6= Qz for
any non-zero z ∈ Z(Q)p. Thus (ii) ⇒ (i) is trivial, and it suffices to show (i) ⇒ (ii). Suppose
that Pe = Qe for some non-zero e ∈ Qp. By a standard exhaustion argument based on the
comparison theorem we can choose an orthogonal family {ei}i∈I of projections in Q such that
ei - e in Q for all i ∈ I and cQe =

∑
i∈I ei. Choose a partial isometry vi ∈ Q with v∗i vi = ei

and viv
∗
i ≤ e, and then Pei = Pv∗i vi ⊆ Pevi = Qevi ⊆ Qei, implying Pei = Qei ⊆ Q. For

x ∈ P one has xcQe =
∑

i∈I xei =
∑

i∈I EQ(x)ei = EQ(x)c
Q
e , and therefore PcQe = QcQe .

(2) By (1) it suffices to prove that ePf 6= eQf for any non-zero e ∈ Qp with e ≤ f . As in
(1) one can find an orthogonal family {fi}i∈I of projections in Q such that fi - f in Q for all

i ∈ I and
∑
i∈I fi = cQf = 1. On contrary, suppose that ePf = eQf for some non-zero e ∈ Qp

with e ≤ f . Then one has ePfi = eQfi in the same way as in (1). Hence, as in the above (1)
one can justify, by using EQ, the following computation: eP =

∑
i∈I ePfi =

∑
i∈I eQfi = eQ,

a contradiction to the entire non-triviality of P ⊇ Q thanks to (1).
(3) Choose a maximal (with respect to set-inclusion) family {yi}i∈I of elements in Ker(EQ) so

that {s(EQ(y∗i yi))}i∈I is an orthogonal family of projections in Q. Suppose
∑
i∈I s(EQ(y

∗
i yi)) 6=

1. Set e := 1 −∑
i∈I s(EQ(y

∗
i yi)) ∈ Qp \ {0}. Since P ⊇ Q is entirely non-trivial, one has

Pe 6= Qe by (1), and hence can choose x ∈ P with xe 6∈ Q. Hence xe − EQ(xe) 6= 0 and
set y := xe − EQ(xe) ∈ Ker(EQ). Clearly, ye = y, and thus EQ(y

∗y) = eEQ(y
∗y)e, implying

s(EQ(y
∗y)) ≤ e = 1−∑

i∈I s(EQ(y
∗
i yi)), a contradiction to the maximality of {yi}i∈I . �
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Let (M,E) = (M1, E1) ⋆N (M2, E2) be an amalgamated free product throughout the rest of
this section.

Theorem 4.3. Assume that there is a faithful normal state ϕ on M1 such that one can find

a (possibly non-unital) dense (in any von Neumann algebra topology) ∗-subalgebra M1 of M1

with E1(M1) ⊆ M1 and a net vλ of unitaries in the centralizer (M1)ϕ in such a way that

E1(y
∗vλx) −→ 0 σ-strongly for all x, y ∈M1. Assume also that M2 ⊇ N is entirely non-trivial.

Then we have:

(0) ((M1)ϕ)
′ ∩M = ((M1)ϕ)

′ ∩M1.

(1) Z(M) = Z(M1) ∩ Z(M2) ∩ Z(N).
(2) Let χ be an arbitrary faithful normal semifinite weight on N . Then, if a unitary u

in M satisfies σχ◦Et = Adu for some t ∈ R, then u must fall in N . In particular,

T (M) = {t ∈ R |σχ◦E1

t = Adu = σχ◦E2

t for some u ∈ Nu}.
(3) M is semifinite if and only if there is a faithful normal semifinite trace TrN such that

both TrN ◦ E1 and TrN ◦ E2 are traces.

(4) Z(M̃) = Z(M̃1) ∩ Z(M̃2) ∩ Z(Ñ).

Proof. (0) is nothing but what Proposition 3.3 says.
(1) Let x ∈ Z(M) be arbitrary, and then x must be in M1 by (0). For any y ∈ M◦

2 one
has y(x − E1(x)) + yE1(x) = yx = xy = E1(x)y + (x − E1(x))y, and thus {yE1(x), E1(x)y},
y(x− E1(x)) and (x − E1(x))y are orthogonal with respect to E due to the free independence
between M1 and M2. Thus y(x − E1(x)) = 0 so that (by looking at the E-value of the
product of its adjoint and itself) we get (x − E1(x))

∗E2(y
∗y)(x − E1(x)) = 0. Therefore,

E2(y
∗y)(x − E1(x)) = 0 for all y ∈ M◦

2 . By taking its adjoint one can easily see that (x −
E1(x))

∗ ↾ran(E2(y∗y))≡ 0 so that (x−E1(x))
∗s(E2(y

∗y)) = 0 for all y ∈M◦
2 . By Lemma 4.2 (3)

one can find a family {yi}i∈I of elements in M◦
2 so that

∑
i∈I s(E2(y

∗
i yi)) = 1, which implies

x = E1(x) ∈ N . The desired assertion is now immediate.

(2) One has σ
ϕ◦EM1
t = Ad([Dϕ : Dχ ◦E1]t u) by Connes’s Radon–Nikodym cocycle theorem

and [20, Corollary IX.4.20]. Since (M1)ϕ ⊆ Mϕ◦EM1
, we have [Dϕ : Dχ ◦ E1]t u ∈ M1 by

(0). In particular, u ∈ M1, since [Dϕ : Dχ ◦ E1]t ∈ Mu
1 . For y ∈ M◦

2 we have σχ◦Et (y)(u −
E1(u)) + σχ◦Et (y)E1(u) = σχ◦Et (y)u = uy = E1(u)y + (u − E1(u))y, and as in (1) we get

(u−E1(u))y = 0, since σχ◦Et (y) = σχ◦E2

t (y) ∈M◦
2 by (2.1). The same argument as in (1) again

shows u = E1(u) ∈ N . The T-set computation is straightforward.
(3) M is semifinite if and only if there is a 1-parameter unitary group u(t) in M so that

σχ◦Et = Adu(t), t ∈ R, for a fixed faithful normal state χ on N . See [20, Theorem VIII.3.14].
Then u(t) ∈ N by (2). By Stone’s theorem u(t) = Hit with some positive non-singular, self-

adjoint H affiliated with N . Since σχt (u(t)) = σχ◦Et (u(t)) = u(t), H must indeed be affiliated
with the centralizer Nχ. Hence, by [20, Lemma VIII.2.8] we can construct a faithful normal
semifinite weight χH−1 on N , and by the construction we observe that χH−1 ◦E = (χ ◦E)H−1 .

Moreover, by [20, Lemma VIII.2.11] we have σ
χ
H−1◦E

t = H−itσχ◦Et (−)Hit = id. Hence the
χH−1 is a desired faithful normal semifinite trace on N .

(4) By (0) together with the same argument as in [22, Corollary 4] we observe that ((M1)ϕ)
′∩

(M⋊
σ
ϕ◦EM1

R) = ((M1)ϕ)
′∩(M1⋊σϕR), where (M1)ϕ ⊂M1 ⊆M →֒M⋊

σ
ϕ◦EM1

R canonically

as in §2. It follows that (M̃1)
′ ∩M̃ = Z(M̃1), where we need Connes’s Radon–Nikodym cocycle

theorem together with [20, Theorem X.1.7]. Choose an arbitrary x ∈ Z(M̃). Then xmust fall in

Z(M̃1) ⊆ M̃1. For y ∈M◦
2 ⊂ M̃◦

2 one has y(x−Ẽ(x))+yẼ(x) = yx = xy = Ẽ(x)y+(x−Ẽ(x))y,

and thus y(x− Ẽ(x)) = 0 since M̃1, M̃2 are freely independent with respect to Ẽ as remarked
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in §2. In particular, we get E2(y
∗y)(x − Ẽ(x)) = 0 for all y ∈ M◦

2 as in (1). Therefore, using

Lemma 4.2 (3) as in (1) once again we can prove x = Ẽ(x) ∈ Ñ . Hence we are done. �

Let us illustrate how the above theorem is useful by giving next two corollaries. The first
corollary shows that Proposition 3.1 is useful to confirm the necessary hypothesis of the theorem.
The second one does that the theorem is still applicable beyond the case where N is semifinite.
Remark that the first one can be viewed as a simultaneous generalization of both [27, Theorem
3.4] and [21, §4].
Corollary 4.4. Assume that M1 is diffuse, N of type I and M2 ⊇ N entirely non-trivial. Let

z ∈ Z(N) be the unique projection so that Nz is diffuse and Nz⊥ atomic, and assume further

that M1c
M1
z has no type I direct summand when z 6= 0 (i.e., this last assumption is fulfilled if

M1 has no type I direct summand). Then all the assertions of Theorem 4.3 holds with a certain

faithful normal state ϕ on M1.

Proof. Let us fix a faithful normal semifinite trace TrN on N . Write c := cM1
z for simplicity.

Clearly σTrN◦E1
t (c) = c for all t ∈ R, and thus Takesaki’s criterion shows that there is a TrN ◦E1-

preserving unique conditional expectation EL : M1 → L := N ∨ {c}′′ = Nc ⊕Nc⊥ (⊇ N). In
particular, one observes that E1 ◦EL = E1 holds. As in the proof of [27, Theorem 3.4] one can
choose a faithful normal state ϕ on M1 such that (M1c)ϕ↾M1c

has no type I direct summand

and (M1c
⊥)ϕ↾M1c⊥

is just only diffuse. Then it is clear that (M1c)ϕ↾M1c
6�M1c Nc with EL ↾M1c

and TrN ◦ E1 ↾Nc and that (M1c
⊥)ϕ↾

M1c⊥
6�M1c⊥ Nc⊥ with EL ↾M1c and TrN ◦ E1 ↾Nc⊥ , since

Nc⊥ = (Nz⊥)c⊥ is a reduced von Neumann algebra of the atomic part Nz⊥. Therefore, by

the equivalent condition (i) in Proposition 3.1 there are two nets v
(1)
λ and v

(2)
λ of unitaries in

(M1c)ϕ↾M1c
and (M1c

⊥)ϕ↾
M1c⊥

, respectively, so that EL(y
∗
1v

(1)
λ x1) −→ 0 and EL(y

∗
2v

(2)
λ x2) −→ 0

σ-strongly for all x1, y1 ∈
⋃{M1p | p ∈ (Nc)p; TrN ◦E1(p) < +∞} and all x2, y2 ∈

⋃{M1p | p ∈
(Nc⊥)p; TrN ◦E1(p) < +∞}. Remark that EL = (EL ↾M1c)⊕ (EL ↾M1c⊥) in M1 =M1c⊕M1c

⊥

and that TrN (p) < +∞ implies both TrN ◦ E1(pc) < +∞ and TrN ◦ E1(pc
⊥) < +∞ for

p ∈ Np. Thus, letting vλ := v
(1)
λ ⊕ v

(2)
λ ∈ (M1c)ϕ↾M1c

⊕ (M1c
⊥)ϕ↾

M1c⊥
= (M1)ϕ one has, for all

x, y ∈ ⋃{M1p | p ∈ Np; TrN (p) < +∞}, EL(y∗vλx) −→ 0 σ-strongly and hence E1(y
∗vλx) =

E1(EL(y
∗vλx)) −→ 0 σ-strongly. Hence we can apply Theorem 4.3 with the above ϕ and

M1 :=
⋃{pM1p | p ∈ Np; TrN (p) < +∞}. Note here that M1 is indeed a ∗-algebra thanks to

the Kaplansky formula [12, Theorem 6.1.7] and dense in any von Neumann algebra topology
due to the semifiniteness of TrN . �

Corollary 4.5. Assume that (M1, E1) is one of the following: (i) M1 = N ⋊α G and E1 is

the canonical conditional expectation from M1 = N ⋊α G onto N , where α : G y N is an

infinite discrete group action preserving a faithful normal state ψ on N . (ii) M1 = Q⊗̄N and

E1 = ψ⊗̄idN , where Q is a diffuse von Neumann algebra with a faithful normal state ψ. Assume

also that M2 ⊇ N is entirely non-trivial. Then all the assertions of Theorem 4.3 holds with

ϕ = ψ ◦ E1 in (i) and with ϕ = ϕ0⊗̄χ in (ii), where Qϕ0 is diffuse (such a state ϕ0 certainly

exists) and χ arbitrary.

Proof. Case (i): Since ψ is invariant under the action α, the restriction (ψ⊗̄idB(ℓ2(G))) ↾N⋊αG

gives a faithful normal conditional expectation from Eψ :M1 = N⋊αG→ L(G) = C1⋊G, and
it is plain to see that ψ ◦ E1 := τG ◦ Eψ with the canonical tracial state τG on L(G). Clearly
L(G) = C1 ⋊ G sits inside (N ⋊α G)ψ◦E1 and is diffuse (see e.g. [6, Proposition 5.1]). With
ϕ := ψ ◦ E1 = τG ◦ Eψ and M1 := span{xλg |x ∈ N, g ∈ G} one can choose a net vλ from
L(G) = C⋊G as in Theorem 4.3, since L(G) is diffuse and E1 ↾L(G)=C1⋊G= τG(−)1.
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Case (ii): As in the proof of [27, Theorem 2.4] one can choose a faithful normal state ϕ0 on
Q in such a way that the centralizer Qϕ0 is diffuse. Set ϕ := ϕ0⊗̄χ with a faithful normal state
χ on N and M1 := Q ⊙N = span{x⊗ y |x ∈ Q, y ∈ N}. Then one can choose a net vλ from
Qϕ0⊗̄C1 as in Theorem 4.3, since Qϕ0 is diffuse. �

The next lemma seems well-known, but we do give it for the reader’s convenience as a
reference for the discussions below.

Lemma 4.6. Let (P, F ) = (P1, F1) ⋆Q (P2, F2) be an amalgamated free product. If a projec-

tion f ∈ Q has cQf = 1, then (fPf, F ↾fPf ) = (fP1f, F1 ↾fP1f ) ⋆fQf (fP2f, F2 ↾fP2f ) holds

canonically.

Proof. Clearly fP1f and fP2f are freely independent with respect to F ↾fPf , and hence
it suffices to see that those generate fPf as von Neumann algebra. As in the proof of

Lemma 4.2 one can find partial isometries {vi}i∈I in Q such that
∑

i∈I v
∗
i vi = cQf = 1 and

viv
∗
i ≤ f for all i ∈ I. For any alternating word x = x1 · · ·xn ∈ Λ◦(P ◦

1 , P
◦
2 ) one has fxf =∑

i1,...,in−1∈I
(fx1v

∗
i1
)(vi1x2v

∗
i2
) · · · (vin−1xnf) σ-strongly, which falls in the σ-strong closure of

the linear span of Λ◦((fP1f)
◦, (fP2f)

◦)). Since P is the σ-strong closure of Q+spanΛ◦(P ◦
1 , P

◦
2 ),

the assertion is immediate. �

Lemma 4.7. Let P ⊇ Q be an inclusion of σ-finite von Neumann algebras with a faithful

normal conditional expectation EQ : P → Q, and assume that Q is commutative.

(1) If P has no type I direct summand and a faithful normal semifinite trace TrP on P with

TrP ◦EQ = TrP , then there is a faithful normal state χ on Q so that for each n ∈ N with n ≥ 2
one can find a unitary un ∈ Pχ◦EQ

in such a way that EQ(u
k
n) = 0 for all 1 ≤ k ≤ n− 1, i.e.,

EQ(u
k1
n

∗ uk2n ) = 0 for all 0 ≤ k1 6= k2 ≤ n− 1.
(2) If P is diffuse and Q is atomic, then there is a faithful normal state ϕ on P such that

(a) the centralizer Pϕ contains Q,

(b) there are two unitaries u, v ∈ Pϕ so that EQ(u
k) = EϕQ(v

k) = 0 as long as k 6= 0,

i.e., EQ(u
k1∗ uk2) = EϕQ(v

k1∗ vk2) = 0 for all k1 6= k2. Here EϕQ denotes the unique

ϕ-preserving conditional expectation from P onto Q whose existence follows from (a)
and Takesaki’s criterion.

(3) Let z ∈ Z(P ) be the central support projection of the type I direct summand of P . Assume

that P is diffuse and Qz atomic. Then there is a faithful normal state ϕ on the continuous core

P̃ of P such that

(a) the centralizer (P̃ )ϕ contains Q̃, where Q̃ = Q⋊σχ R →֒ P̃ = P ⋊σχ◦EQ R with a faithful

normal state or semifinite weight χ on Q,

(b) for each n ∈ N with n ≥ 2 one can find a unitary un ∈ (P̃ )ϕ in such a way that

ẼQ(u
k
n) = Eϕ

Q̃
(ukn) = 0 for all 1 ≤ k ≤ n− 1, i.e., ẼQ(u

k1
n

∗ uk2n ) = Eϕ
Q̃
(vk1n

∗ vk2n ) = 0 for

all 0 ≤ k1 6= k2 ≤ n − 1. Here ẼQ = (EQ⊗̄idB(L2(R))) ↾P̃ , and E
ϕ

Q̃
denotes the unique

ϕ-preserving conditional expectation from P̃ onto Q̃ as in (2).

The same assertion also holds for P ⊇ Q with EQ themselves, if it is further assumed that P
is semifinite and EQ preserves a faithful normal semifinite trace TrP on P .

Proof. (1) By assumption TrP ↾Q is semifinite, and thus one can choose an orthogonal sequence
{qm}m of projections in Q with TrP (qm) < +∞ and

∑
m∈N qm = 1. Consider the faithful

normal state χ :=
∑

m∈N
1

2mTrP (qm)TrP ↾Qqm on Q. (Remark here that Q is commutative.)

Clearly the centralizer Pχ◦EQ
contains

∑⊕
m∈N qmPqm

(
⊇ ∑⊕

m∈NQqm = Q
)
so that Pχ◦EQ
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must be of type II1. Choose a MASA A in Pχ◦EQ
that contains Q. By [11, Corollary 3.16], for

each n ∈ N with n ≥ 2 there are n orthogonal e0, . . . , en−1 ∈ Ap, all of which are equivalent

in Pχ◦EQ
, and

∑n−1
i=0 ei = 1. Then one can construct a unitary un ∈ Pχ◦EQ

such that une0 =
e1un, une1 = e2un, . . . , unen−1 = e0un. Let EA : P → A be the χ ◦ EQ-preserving conditional
expectation (whose existence follows from Takesaki’s criterion), and clearly EQ ◦ EA = EQ.
Then, for every 1 ≤ k ≤ n− 1 one has EA(u

k
n) = 0 so that EQ(u

k
n) = EQ(EA(u

k
n)) = 0.

(2) Write Q =
∑⊕

m∈N Cqm. Clearly EQ factors as P
EQ′∩P−→ Q′ ∩ P Ψ−→ Q, where Q′ ∩

P =
∑⊕
m∈N qmPqm and EQ′∩P (x) =

∑
m∈N qmxqm for x ∈ P . Moreover Ψ is of the form

Ψ(
∑
m∈N xm) =

∑
m∈N ψm(xm)qm for xm ∈ qmPqm with faithful normal states ψm on qmPqm.

Since P is diffuse, so are all qmPqm; hence by the proof of [27, Theorem 3.4] there are faith-
ful normal states ϕm on qmPqm with (qmPqm)ϕm

diffuse for all m. Define Φ(
∑

m∈N xm) =∑
m∈N ϕm(xm)qm for xm ∈ qmPqm, giving a faithful normal conditional expectation fromQ′∩P

onto Q. Set ϕ := χ ◦Φ ◦EQ′∩P , a faithful normal state on P , with a faithful normal state χ on

Q. Then Q′∩Pϕ =
∑⊕

m∈N(qmPqm)ϕm
, a direct sum of diffuse von Neumann algebras. One can

choose, for each m, unitaries um, vm ∈ (qmPqm)ϕm
so that ϕm(ukm) = ψm(vkm) = 0 as long as

k 6= 0. (See the proof of [27, Theorem 3.7].) Then u :=
∑
m∈N um, v :=

∑
m∈N vm are unitaries

in Q′ ∩ Pϕ, and moreover EQ(u
k) = Ψ(uk) = 0 and EϕQ(v

k) = Φ(vk) = 0 as long as k 6= 0.

(3) Consider P = Pz ⊕ Pz⊥ ⊇ R := Q ∨ {z}′′ = Qz ⊕ Qz⊥ ⊇ Q. Let χ be an arbitrary
faithful normal state on Q. As in the proof of Corollary 4.4 one can show that there is a unique
faithful normal conditional expectation ER : P → R with EQ ◦ ER = EQ. Then we have

P̃ = P ⋊σχ◦EQ R
ẼR⊇ R̃ = R⋊

σχ◦(EQ↾R) R
ẼQ↾R

⊇ Q̃ = Q⋊σχ R,

where ẼR = (ER⊗̄idB(L2(R))) ↾P̃ and ẼQ ↾R = ((EQ ↾R)⊗̄idB(L2(R))) ↾R̃= ẼQ ↾R̃. Since ER =

(ER ↾Pz)⊕ (ER ↾Pz⊥) in P = Pz ⊕ Pz⊥, we have, by [20, Theorem X.1.7 (ii)],

(
P̃

ẼR⊇ R̃
)
∼=

(
P̃ z

ẼR↾Pz

⊇ Q̃z
)
⊕
(
P̃ z⊥

˜ER↾Pz⊥⊇ Q̃z⊥
)
,

where the continuous cores and the conditional expectations in the right-hand side are defined

similarly as above. Since P̃ z⊥ has no type I direct summand by the assumption here and [20,

Theorem XII.1.1] and since ẼR ↾Pz⊥ preserves the canonical trace on P̃ z⊥ see e.g. [14, §4], we
can apply (1) to the second

(
P̃ z⊥ ⊇ Q̃z⊥

)
with ˜ER ↾Pz⊥ directly, and get a faithful normal

state ϕz⊥ on P̃ z⊥ with ϕz⊥ ◦ (ẼR ↾Pz⊥) = ϕz⊥ such that for each n ∈ N with n ≥ 2 one can

find a unitary uz⊥,n ∈ (P̃ z)ϕ
z⊥

in such a way that ẼR(u
k
z⊥,n) = (ẼR ↾Pz⊥)(u

k
z⊥,n) = 0 for all

1 ≤ k ≤ n− 1. Write Qz =
∑⊕
m∈N Cem, and ER ↾Pz factors as Pz

E(Qz)′∩Pz−→ (Qz)′ ∩Pz Ψ−→ Qz,

where (Qz)′ ∩ Pz =
∑⊕

m∈N em(Pz)em and E(Qz)′∩Pz(x) =
∑
m∈N emxem for x ∈ Pz. More-

over, Ψ is of the form Ψ(
∑

m∈N xm) =
∑

m∈N ψm(xm)em for xm ∈ em(Pz)em with faithful
normal states ψm on em(Pz)em. By the assumption here Pz is diffuse and of type I, and
thus so are the em(Pz)em; hence the centers of those must be diffuse, and so are all the
(em(Pz)em)ψm

. In the same way as in (2), one can find a unitary uz ∈ ((Qz)′ ∩ Pz)χz◦Ψ with
‘any’ faithful normal state χz on Qz in such a way that Ψ(ukz) = 0 for all k 6= 0. Denote

by λ(t) the generators of C ⋊ R in P̃ z = (Pz) ⋊σχz◦(ER↾Pz) R (←֓ (Qz) ⋊σχz R = Q̃z canoni-

cally), and set ϕz := τ ◦ (ẼR ↾Pz), a faithful normal state on P̃ z, with a fixed faithful normal

tracial state τ := χz⊗̄τ0 on Q̃z = Qz⊗̄λ(R)′′. Note that λ(t)uz = σ
χz◦(ER↾Pz)
t (uz)λ(t) =

uzλ(t) for all t ∈ R. Thus, for any finite sum x =
∑
k xkλ(tk) ∈ P̃ z with xk ∈ Pz we
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have ϕz(uzx) =
∑

k τ(Ψ(uzE(Qz)′∩Pz(xk))λ(tk)) =
∑

k χz(Ψ(uzE(Qz)′∩Pz(xk)))τ0(λ(tk)) =∑
k χz(Ψ(E(Qz)′∩Pz(xk)uz))τ0(λ(tk)) =

∑
k ϕz(xkuzλ(tk)) = ϕz(xuz). It follows that uz falls

in (P̃ z)ϕz
. Clearly ẼR(u

k
z) = (ẼR ↾Pz)(u

k
z) = ER(u

k
z) = Ψ(ukz) = 0 for all k 6= 0. Set

ϕ(x) := 1
2 (ϕz(xz) + ϕz⊥(xz

⊥)) for x ∈ P̃ , and then ϕ becomes a faithful normal state on P̃

and satisfies ϕ ◦ ẼR = ϕ, implying the desired condition (a), since R̃ is commutative. For

each n ∈ N with n ≥ 2 we define the unitary un := uz ⊕ uz⊥,n ∈ P̃ z ⊕ P̃ z⊥ = P̃ , and thus

ẼR(u
k
n) = (ẼR ↾Pz)(u

k
z) ⊕ ( ˜ER ↾Pz⊥)(u

k
z⊥,n) = 0 for all 1 ≤ k ≤ n − 1. Hence the desired

condition (b) is immediate as in (1) from the fact that ẼQ = ẼQ ◦ ẼR and Eϕ
Q̃
= Eϕ

Q̃
◦ ẼR (the

latter follows from ϕ ◦ ẼR = ϕ). The final assertion is shown in the exactly same way (but
easier) as above. �

We will give two applications of Proposition 3.5. The latter is a straightforward generalization
of both [27, Theorem 3.7] and [28, Proposition 3.1]. Remark that the former reproves the
assertions (1), (4) in Corollary 4.4 without any use of the technologies provided in §§3.1–3.2.

Theorem 4.8. Assume that M1 diffuse, N of type I and M2 ⊇ N entirely non-trivial. Let

z ∈ Z(N) be the unique projection such that Nz is diffuse and Nz⊥ atomic, and assume further

that (M1)c
M1
z has no type I direct summand when z 6= 0 (i.e., this last assumption is fulfilled if

M1 has no type I direct summand). Then (M̃)ω =
(
M̃

)′∩
(
M̃

)ω
=

(
M̃

)′∩Z(Ñ)ω. In particular,

M̃ and hence M itself are non-amenable. If M is additionally assumed to be semifinite, then

Mω =M ′ ∩Mω =M ′ ∩ Z(N)ω also holds.

After the completion of the main part of the present work we learned that Houdayer and
Vaes have also independently been obtained a similar (but not same) result as above under
different assumptions with different (and simpler) methods. See [8, Theorem 5.8]. More on this
will be discussed at the end of this section.

Proof. Note that (Ñ ⊇ N) ∼= (N⊗̄λ(R)′′ ⊇ N⊗̄C1). Since N is of type I, one can choose an

abelian f ∈ Np (⊂ Ñp) with cÑf = 1. Let us first prove:

f
(
Ñ
)ω
f = Z(Ñ)ωf. (4.1)

For each x ∈ Ñω with representative (x(m))m one has fxf = [(fx(m)f)m], and for every

m there is a unique z(m) ∈ Z(Ñ) with fx(m)f = z(m)f . By cÑf = 1 the mapping x′ ∈
Ñ ′ 7→ x′f ∈ Ñ ′f gives a bijective normal ∗-homomorphism (thus ‖−‖∞-preserving), and hence

(z(m))m defines z ∈ Z(Ñ)ω. Consequently we get fxf = zf ∈ Z(Ñ)ωf .
By Lemma 4.6 together with (2.5) we have the identification

(
f̃Mf, Ẽ ↾fMf

)
=

(
f̃M1f, ˜E1 ↾fM1f

)
⋆
f̃Nf

(
f̃M2f, ˜E2 ↾fM2f

)
. (4.2)

Let c ∈ Z(M1) be the central support projection of the type I direct summand of M1. Then
e = cf is that of fM1f too, and fNfe = Z(N)fe must be atomic (or 0 if e = 0) by the
assumption here. In fact, if this was not the case, then Z(N)cNe

∼= Z(N)e = Z(N)fe is not
atomic, and hence zcNe 6= 0, i.e., ze 6= 0, implying cM1

z c ≥ zc ≥ ze 6= 0, a contradiction to that
M1c

M1
z has no type I direct summand. Therefore, by Lemma 4.7 (3) we can apply Proposition

3.5 to (4.2) and thus any x ∈
(
f̃Mf

)′ ∩
(
f̃Mf

)ω
and any y ∈

(
f̃M2f

)◦
must satisfy that

( ˜E2 ↾fM2f )(y
∗y)(x− (ẼfM1f )

ω(x)) = 0, (4.3)
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where EfM1f is the unique conditional expectation from fMf onto fM1f determined as (2.2).

Note that f̃M2f ⊇ f̃Nf with ˜E2 ↾fM2f contains fM2f ⊇ fNf with E2 ↾fM2f canonically.
Hence, by Lemma 4.2 (2), (3) one can find a family {yi}i∈I in (fM2f)

◦ in such a way that∑
i∈I s(E2(y

∗
i yi)) = f (= 1fNf). Therefore, it follows from (4.3) as in the proof of Theorem 4.3

that x =
(
ẼfM1f

)ω
(x) ∈

(
f̃M1f

)ω
. Consequently

(
f̃Mf

)′ ∩
(
f̃Mf

)ω
=

(
f̃Mf

)′ ∩
(
f̃M1f

)ω
.

In the same way as in the proof of Theorem 4.3, we see, by using the above {yi}i∈I again and

the free independence between
(
f̃M1f

)ω
and

(
f̃M2f

)ω
, that

(
f̃Mf

)′ ∩
(
f̃Mf

)ω
=

(
f̃Mf

)′ ∩
(
f̃Nf

)ω
. (4.4)

Choose a faithful normal semifinite trace TrN on N , and M̃ ⊇ M̃k (k = 1, 2) ⊇ Ñ are realized

as M̃ =M ⋊σTrN◦E R ⊇ M̃k =Mk ⋊σTrN◦Ek R ⊇ Ñ = N ⋊σTrN R. Since σTrN◦E
t (f) = f for all

t ∈ R, fM̃f ⊇ fM̃kf ⊇ fÑf are naturally identified with f̃Mf ⊇ f̃Mkf ⊇ f̃Nf . Hence (4.4)
and (4.1) imply that

(
M̃

)′
f ∩ f

(
M̃

)ω
f =

(
M̃

)′
f ∩ fÑωf =

(
M̃

)′
f ∩ Z(Ñ)ωf. (4.5)

Let πf be the normal surjective ∗-homomorphism x ∈
(
M̃

)′∩
(
M̃

)ω 7→ xf ∈
(
M̃ ′∩

(
M̃

)ω)
f =(

M̃
)′
f ∩ (f

(
M̃

)ω
f) (c.f. [30, Lemma 4.1 (i)]), which is also injective due to cÑf = 1 (and hence

cM̃f = 1 too). By (4.5) we have
(
M̃

)′ ∩
(
M̃

)ω
= π−1

f

((
M̃

)′
f ∩ Z(Ñ)ωf

)
. As in the proof

of Lemma 4.2 one can choose partial isometries {vi}i∈I in Ñ so that
∑
i∈I v

∗
i vi = cÑf = 1

and viv
∗
i ≤ f for all i ∈ I. Then, if x = zf ∈

(
M̃

)′
f ∩ Z(Ñ)ωf with z ∈ Z(Ñ)ω, then

we have yz =
∑
i1,i2∈I

v∗i1vi1yzv
∗
i2
vi2 =

∑
i1,i2∈I

v∗i1 (vi1yv
∗
i2
)xvi2 =

∑
i1,i2∈I

v∗i1x(vi1yv
∗
i2
)vi2 =

∑
i1,i2∈I

v∗i1vi1zyv
∗
i2
vi2 = zy for y ∈ M̃ , implying z ∈

(
M̃

)′∩Z(Ñ )ω. Hence
(
M̃

)′
f∩Z(Ñ )ωf =((

M̃
)′ ∩ Z(Ñ)ω

)
f . Consequently

(
M̃

)′ ∩
(
M̃

)ω
= π−1

f

((
M̃

)′
f ∩ Z(Ñ)ωf

)
= π−1

f

(((
M̃

)′ ∩
Z(Ñ)ω

)
f
)
=

(
M̃

)′ ∩ Z(Ñ)ω. Since
(
M̃

)′ ∩
(
M̃

)ω
=

(
M̃

)′ ∩ Z(Ñ)ω is commutative, it must

equal (M̃)ω as observed in [23, (8) in page 360].
The final assertion is also shown in the exactly same way as above by using the final assertion

in Lemma 4.7 (3), since there is a faithful normal semifinite trace TrN on N so that TrN ◦ Ek
(k = 1, 2) are traces again thanks to Corollary 4.4 (3). �

Remark 4.9. The same type argument as in Theorem 4.3 (3) works for constructing a faithful

normal state χ on N with σχ◦ET = Id with T = −2π/ logλ, 0 < λ < 1, when M is known to be
a factor of type IIIλ under the same set of assumptions as in Theorem 4.8. Hence the discrete
core of such M can also be written as an amalgamated free product von Neumann algebra of
the same form as the continuous core, and an analogous formula for its asymptotic centralizer
holds. In particular, the discrete core of such a factor of type IIIλ is an ∞-amplification of a
non-strongly stable type II1 factor. Further and more detailed discussions related to this aspect
will be given elsewhere.

Theorem 4.10. If M1 is diffuse, N of atomic type I and M2 ⊇ N entirely non-trivial, then

the following hold true:

(1) Mω =M ′∩Mω =M ′∩Z(N) (= Z(M)). Hence M does never have no type III0 direct

summand (see [5, Theorem 2.12]), and becomes full in the sense of Connes [5] under
the separability of preduals.

(2) The Connes τ-invariant τ(M) (see [5]) is determined under the separability of preduals

as follows. Let χ be a faithful normal state on N . Then tm −→ 0 in τ(M) as m→∞
if and only if there is a unitary w ∈ N so that σχ◦Etm −→ Adw in Aut(M) as m→∞.
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Proof. (1) This is proved along the same line as in the proof of Theorem 4.8 by using only
Lemma 4.7 (2) instead together with a well-known fact Z(N) = Z(N)ω due to the assumption
that it is atomic.

(2) We can write N =
∑⊕

i∈I B(Hi). Looking at this structure with the given χ we can
choose a collection {ei}i∈I of abelian projections in N with

∑
i∈I ei = 1 such that for each

i ∈ I there is a larger abelian fi ∈ Np so that ei ≤ fi, c
N
fi

= 1 and σχt (fi) = fi (t ∈ R).
Assume that tm −→ 0 in τ(M) as m → ∞. Then there is a sequence (um)m of unitaries

in M such that Adum ◦ σχ◦Etm −→ id in Aut(M) as m → ∞. As observed in the proof [28,
Proposition 3.1] the (um)m defines a unitary u ∈ Mω, and clearly ufi = fiu for all i ∈ I.
Hence fiu defines a unitary in fiM

ωfi = (fiMfi)
ω, and we denote it by ui for simplicity. Since

fiM1fi is still diffuse, looking at fiM1fi ⊇ fiNfi = Z(N)fi one can choose a faithful normal
state ϕ on fiM1fi as in Lemma 4.7 (2). Set ϕ̂(x) := ϕ(fixfi) + χ ◦ E1(f

⊥
i xf

⊥
i ), x ∈ M1,

which becomes a faithful normal positive linear functional on M1. Clearly fi ∈ (M1)ϕ̂ and
thus fi[Dχ ◦ E1 : Dϕ̂]t = [Dχ ◦ E1 ↾fiM1fi : Dϕ]t for all t ∈ R by the uniqueness part of
Connes’s Radon-Nikodym cocycle theorem. As observed in the proof of [28, Proposition 3.1]
again the sequence vm := [Dχ ◦ E1 : Dϕ̂]tm defines a unitary v ∈ Mω

1 and also the sequence
fivm = vmfi does a unitary vi ∈ fiMω

1 fi = (fiM1fi)
ω . Since ϕ̂ ◦ EM1 ↾fiMfi= ϕ ◦ (EM1 ↾fiMfi

), we have yuivi = yuv =
[
(yumvm)m

]
=

[
(umvmσ

ϕ◦(EM1↾fiMfi
)

tm (y))m
]
= uvz = uiviz for

y ∈ (fiM2fi)
◦ with z =

[
(σ
ϕ◦(EM1↾fiMfi

)
tm (y))m

]
∈ (fiMfi)

ω = fiM
ωfi in the identification

(fiMfi, E ↾fiMfi ) = (fiM1fi, E1 ↾fiM1fi) ⋆fiNfi (fiM2fi, E2 ↾fiM2fi) provided by Lemma 4.6.
By Proposition 3.5 we get (E2 ↾fiM2fi)(y

∗y)(uivi − (EM1 ↾fiMfi)
ω(uivi)) = 0 for y ∈ (fiM2fi)

◦.
By using Lemma 4.2 (2), (3) twice as in the proof of Theorem 4.8 we can prove firstly that
uivi ∈ (fiM1fi)

ω = fiM
ω
1 fi, secondly that ui ∈ fiMω

1 fi (since vi ∈ fiMω
1 fi), and finally that

ui ∈ fiNωfi = Z(N)ωfi = Z(N)fi. Therefore, u =
∑

i∈I eiu =
∑
i∈I eifiu =

∑
i∈I eiui ∈ N .

Letting w := u∗ ∈ Nu we have Adw∗ ◦ σχ◦Etm −→ id in Aut(M) as m→∞. �

The next proposition shows that Proposition 3.5 is still useful beyond the case where N is
of type I or even semifinite. The proof goes along the same line as that of Theorem 4.8 but is
easier than it. Hence the proof is left to the reader.

Proposition 4.11. Assume that there is a faithful normal state ϕ onM1 satisfying the following

conditions:

(a) σϕt (N) = N for all t ∈ R.
(b) For every n ∈ N with n ≥ 2 there are unitaries uk = u

(n)
k , vk = v

(n)
k ∈ (M1)ϕ, 0 ≤

k ≤ n− 1, such that E1(u
∗
k1
uk2) = EϕN (v∗k1vk2) = 0 for all 0 ≤ k1 6= k2 ≤ n− 1, where

EϕN denotes the unique ϕ-preserving conditional expectation from M1 onto N , whose

existence follows from (a) and Takesaki’s criterion.

Assume also that M2 ⊇ N is entirely non-trivial. Then M ′ ∩Mω =M ′ ∩Nω holds. Moreover,

if it is further assumed that N is finite, then Mω =M ′ ∩Mω =M ′ ∩Nω.
It is easy to confirm that the (M1, E1) in Corollary 4.5 satisfies the assumption of Proposition

4.11. Thus M ′ ∩Mω =M ′ ∩Nω holds under the set of assumptions in Corollary 4.5.
Assume that M1 is a von Neumann algebra with separable predual and that N is a Cartan

subalgebra in M1. It was proved in [21, Lemma 4.2] that if M1 is further assumed to be a
non-type I factor, then there are a faithful normal state ϕ onM1 with ϕ◦E1 = ϕ and a unitary
u ∈ (M1)ϕ such that E1(u

k) = 0 as long as k 6= 0. The same assertion can indeed be proved
even when M1 is further assumed only to have no type I direct summand (i.e., without being
a factor). The proof is similar to [21, Lemma 4.2] but tedious based on disintegration. Hence
such (M1, E1) satisfies the assumption of Proposition 4.11.
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Remark 4.12. Almost all the results obtained above have appropriate ‘HNN variants’ thanks
to tricks given in [26]. Here it should be emphasized that our results so far essentially need
assumptions for only one free component. The notion of HNN extensions of von Neumann alge-
bras as well as their basic properties including their modular theoretic aspects were established
in [25].

In closing of this section we discuss one of Houdayer and Vaes’s results [8, Theorem 5.8].
This part of the present paper is added after receiving a draft of [8] in order to point out only
one consequence obtained from this and that papers without any new idea. Therefore, some
facts provided in [8] are necessary below. The original aim of the present work is to provide
amalgamated free product counterparts of the results in [27, §3]. One issue to do so is how to
formulate a suitable assumption saying that M1 is ‘diffuse relative to N ’ which corresponds to
that M1 is diffuse when N = C1. The requirement for M1 ⊇ N in Theorem 4.3 seems to be
one strong form of them without any restriction on N , but it seems not so easy to check it in
general. Thus we propose the requirement for M1 ⊇ N in Corollary 4.4 and Theorem 4.8 as
such a candidate in the special case when N is of type I. However a more sophisticated one
in the special case seems to be that M1 ⊇ N has no trivial corner, which is proposed in [8,
§5] by a different motivation. In fact, Houdayer and Vaes [8, Theorem 5.8] give a factoriality
and non-amenability result under the set of assumptions that both Mk ⊇ N , k = 1, 2, have no
trivial corner and that N is of type I, and establish their primeness result under the same set
of assumptions. Here an inclusion P ⊇ Q of von Neumann algebras is said to have no trivial
corner if pPp 6= Qp for any non-zero projection p ∈ Q′ ∩ P . Any exact general relationship
between theirs and ours is not immediately clear. However the proof of Theorem 4.8 and general
properties on inclusions without trivial corner provided in [8, §§5.1] altogether immediately give
an improvement of [8, Theorem 5.8], though it is not immediately clear whether the primeness
result in [8, Theorem E] holds or not under the new set of assumptions.

Theorem 4.13. If M1 ⊇ N has no trivial corner, N is of type I and M2 ⊇ N entirely non-

trivial, then the following hold true:

(1) Z(M) = Z(M1) ∩ Z(M2) ∩ Z(N).

(2) Z(M̃) = Z(M̃1) ∩ Z(M̃2) ∩ Z(Ñ).

(3) (M̃)ω =
(
M̃

)′ ∩
(
M̃

)ω
=

(
M̃

)′ ∩ Z(Ñ)ω.

In particular, (3) explains that M does never become amenable.

Proof. It is trivial that (3) ⇒ (2) ⇒ (1), see e.g. the proof of [25, Theorem 5.2] for (3) ⇒ (2)
and [20, Theorem X.II.1.1] for (2) ⇒ (1). Thus it suffices to prove only (3). The line of the
proof below is exactly identical to that of Theorem 4.8, and thus we keep the notations there.
In fact, only one modification is sufficient. By [8, Lemma 5.2, Proposition 5.5] the inclusion

f̃M1f ⊇ f̃Nf also has no trivial corner. Then it suffices to prove the exactly same assertion as
in Lemma 4.7 (1) with replacing the assumption that P has no type I direct summand by that
P ⊇ Q has no trivial corner. In fact, by using this new assertion instead of Lemma 4.7 (3) one
gets the same equation (4.3) and the rest of the proof there works well.

Let P ⊇ Q be an inclusion of von Neumann algebras without trivial corner. Assume that
Q is commutative, P has a faithful normal semifinite trace TrP and there is a faithful normal
conditional expectation EQ : P → Q satisfying TrP ◦EQ = TrP . As in the proof of Lemma 4.7
(1) we choose the qm’s and χ. Then we apply [8, Lemma 5.4 (3)] (note that it holds without
assuming the separability of preduals, see Lemma 4.14 below) with q = p := qm and get a
unitary um ∈ qmPqm satisfying that EQ(u

k
m) = 0 as long as k 6= 0. Letting u :=

∑
m∈N um we

have u ∈ Pχ◦EQ
and EQ(u

k) = 0 as long as k 6= 0. Hence we are done. �
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As remarked in [8, Lemma 5.3] the next lemma immediately follows from Rohlin’s general
theorem on Lebesgue spaces under the separability of preduals. Thus only the advantage of the
proof below is no use of disintegration; hence the separability of preduals is not necessary in [8,
Lemma 5.4]. Although it is a rather minor point, we do give it for the sake of completeness.

Lemma 4.14. Let B ⊇ A be (unital) inclusion of commutative σ-finite von Neumann algebras

with a faithful normal conditional expectation EA : B → A. If Bf 6= Af for any nonzero

projection f ∈ B, then there is a unitary u ∈ B such that EA(u
k) = 0 as long as k 6= 0.

Proof. Choose non-zero f ∈ Bp. Since Bf 6= Af , there is x ∈ B such that x 6∈ Af and
0 ≤ x ≤ f . Since EA(x) ≤ EA(f), one can choose a positive contraction c ∈ A so that
cEA(f) = EA(x) (since A is commutative). Letting y := x− cf ∈ Bf we have y = y∗ 6= 0 (due
to x 6∈ Af) and EA(y) = 0. Therefore, an idea given in the proof of [3, Lemma 2.1] enables
us to construct projections e(ε1,...,εn) ∈ B, n ∈ N, εk ∈ {1, 2}, in such a way that e(ε1,...,εn) =

e(ε1,...,εn,1) + e(ε1,...,εn,2) and EA(e(ε1,...,εn)) = 1
2n 1. The proof is done by induction. Assume

that we have chosen up to n-th stage. Set Λe := {x = x∗ ∈ Be | ‖x‖∞ ≤ 1, EA(x) = 0} with
e := e(ε1,...,εn). It is a σ-weakly compact convex subset, and thus has sufficiently many extremal
points due to the Krein–Milman theorem. Let a ∈ Λe be an extremal point. Then it suffices to
prove a = 2e0− e for some e0 ∈ Bp with e0 ≤ e, since it clearly implies that EA(e0) =

1
2EA(e).

On contrary, suppose that it is not the case. By the spectral decomposition of a one can find
δ > 0 and non-zero f ∈ Bp in such a way that f ≤ e and −(1 − δ)f ≤ af ≤ (1 − δ)f . By
what we have shown above, there is a non-zero y = y∗ ∈ Bf such that −δf ≤ y ≤ δf and
EA(y) = 0, and hence a + y, a − y ∈ Λe and a = 1

2 (a + y) + 1
2 (a − y), a contradiction. Thus

e(ε1,...,εn,1) := e0 and e(ε1,...,εn,2) := e − e0 become desired ones in (n + 1)-th stage. Hence we
have proved the claim. Let (C, ω) be the von Neumann algebraic infinite tensor product of
C⊕ C with equal weights {1/2, 1/2}. Once passing GNS representations one can construct an
injective normal ∗-homomorphism from C⊗̄A into B which intertwines ω⊗̄idA and EA. Hence
the desired assertion follows, since (C, ω) ∼= (L(Z), τZ) thanks to [19, Theorem III.1.22]. �

The entire non-triviality of an inclusion P ⊇ Q of von Neumann algebras is nothing but
just the non-triviality of P when Q = C1, and hence Theorem 4.13 is no longer true under
assuming only that M1 ⊇ N is entirely non-trivial instead. In fact, the plain free product
of two 2-dimensional algebras with suitable states provides a counter example, see [27] for
suitable references therein. Finally we conjecture that Corollary 4.4, especially a strong kind
of irreducibility ((M1)ϕ)

′ ∩M ⊆ M1 for some faithful normal state ϕ, should also hold under
the same set of assumptions of Theorem 4.13. This is rather technical, but such a property
may have some potential in further analysis. We will consider it in future work beyond the case
where Z(M) = Z(M1) ∩ Z(M2) ∩ Z(N) need not hold.
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