arXiv:1203.1806v2 [math.0A] 15 May 2012

SOME ANALYSIS ON AMALGAMATED FREE PRODUCTS OF
VON NEUMANN ALGEBRAS IN NON-TRACIAL SETTING

YOSHIMICHI UEDA

ABSTRACT. Several techniques together with some partial answers are given to the questions
of factoriality, type classification and fullness for amalgamated free product von Neumann
algebras.

1. INTRODUCTION

It was quite recent that the complete answers were given in [27], 28] to the questions of
factoriality, type classification, fullness and Sd- and 7-invariants for arbitrary free product von
Neumann algebras. It is natural as a next project to consider the same questions for more
general amalgamated free product von Neumann algebras. Such attempts were already made
by us [21], 24] 23] almost 10 years ago for amalgamated free products over Cartan subalgebras.
However the results there are far from satisfactory as compared to those on plain free prod-
uct von Neumann algebras. The aim of this paper is to take a still very first step towards
‘satisfactory’ answers to those questions for amalgamated free product von Neumann algebras.
As simple consequences we will give partial answers at least when amalgamated free products
are taken over type I von Neumann algebras, which are improvements of our previous works
[21, 24, [23, 25 26,

The proofs in [27], 28] are divided into analytical and combinatorial parts in essence. Combi-
natorial parts are completed by some ‘induction arguments’, whose essential idea originates in
several works due to Dykema, especially [6]. On the other hand, analytical parts are devoted
to proving several inequalities involving the Hilbert space norms arising from some states of
particular form (instead of so-called free product states themselves), whose essential ideas ap-
parently go back to the ICC argument for factoriality of group von Neumann algebras and the
so-called 14 e-argument both due to Murray and von Neumann. However our problems are of
the nature of type III von Neumann algebras, and thus the lack of trace causes main difficulties.
Hence the key is to overcome such difficulties. Here we will take up such analytical aspects
in the general amalgamated free product setup, and indeed improve the analytical results in
[27, 28] with new techniques from the recent amazing development on type II; factors opened
by several breakthroughs due to Popa. We hope that the technical facts provided in this paper
are sufficient as analytical parts in future ‘best-possible’ answers to the questions mentioned
above at least in the case where amalgamated free products are taken over type I von Neumann
subalgebras.

The organization of this paper is as follows. Section 2 is preliminaries on amalgamated
free product von Neumann algebras. In section 3 we provide a non-tracial version of one of
the results in Toana—Peterson—Popa’s article [0, Theorem 1.1]. In relation to it we provide a
non-tracial adaptation of the so-called intertwining-by-bimidule criterion due to Popa, which
may be of independent interest as future reference. In the same section we also generalize
our previous results of controlling central sequences [27, Proposition 3.5],[28, Proposition 3.1]
to the amalgamated free product setting. In section 4, we give several partial answers to
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the questions mentioned above by utilizing technologies developed in §3. Those include an
answer to the factoriality and non-amenability questions of a given amalgamated free product
(M,E) = (M, E1) x5 (M2, E5) when M, is ‘diffuse relative to N’, Ms ‘non-trivial relative to
N’ and N of type L.

Standard notation rule here follows our previous papers [27, 28]; for example, the center,
the unitary group and the set of projections of a given von Neumann algebra M are denoted
by Z(M), M* and MP, respectively, and also the central support of e € MP? in M by cM.
Notations and facts concerning amalgamated free products of von Neumann algebras will be
summarized in next section 2.

2. AMALGAMATED FREE PRODUCT VON NEUMANN ALGEBRAS

Let M; © N C Ms be o-finite von Neumann algebras, and faithful normal conditional
expectations E; : M7 — N, Ey : My — N be given. Their amalgamated free product
(M, E) = (M, E1) N (Ma, Es) is a pair of von Neumann algebra M containing M; 2 N C M,
and faithful normal conditional expectation £ : M — N satisfying (i) M = My V My, (ii)
E [m,= By (k = 1,2) and (iii) E [re(me mg)= 0, where A°(M7, M3) denotes the set of all
alternating words in M7y := Ker(E;) and M$ := Ker(Es). The construction of such a pair is
a bit complicated, but this simple formulation perfectly serves as a working definition. The
construction was introduced in the tracial setting in [I5] based on the C*-algebraic one [31].
Its modular theoretical treatment was given in [21I], and will be reviewed below.

Let x be a faithful normal semifinite weight on V. Then the modular automorphism U,?‘OE,
t € R, is simply computed as
o I = o (k=1,2), (2.1)

see [2Il Theorem 2.6]. This formula together with famous Takesaki’s criterion shows that
for each k = 1,2 there is a unique faithful normal conditional expectation Eps : M — M;
characterized by

EJ]\/[,C [A°(M1°,M2°)\M§E 0. (22)
This fact is easily confirmed in the exactly same way as in [27, Lemma 2.1]. It is clear that
E o Ey,, = E holds. Consider the natural inclusion of the so-called continuous cores:

M =M X on R D My =My X ror, R (k=1,2) DN :=N xx R, (2.3)

which is independent of the choice of y thanks to Connes’s Radon-Nikodym cocycle theorem.
The canonical liftings (still being faithful normal conditional expectations) E : M — N, Ej, :
My, — N (k =1,2) are constructed by

E = E@IdB(Lz(R)) [MxvonR, Ek = Ek®IdB(L2(]R)) erXUXOEkR . (24)

Remark that the original ' and Ej are recovered as the restrictions of E and Ek to M and
My, via the canonical embeddings M — M and My — Mk, respectively. Here is a simple but
important fact [2I, Theorem 5.1] that Ml and Mg are freely independent with amalgamation
over N with respect to E’, and moreover M = Ml \Y Mg. Consequently the following natural
formula holds: o L L

(M, E) = (M1, Er) x5 (M2, Es). (2.5)
The canonical faithful normal semifinite traces Try7, Tva,c (k=1,2) and Trg on M , Mk and
N, respectively, (see [20, Theorem XII.1.1]) must satisfy Try; = Trg o E and Try; =Trgo Ep
(see e.g. [14] §4]).
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Let M“ D My (k=1,2) D N¥ be the ultraproducts of M D M (k =1,2) O N. Here
the inclusion relation is guaranteed by the existence of conditional expectations, and E and
Ei (k = 1,2) can be lifted up to B : M¥ — N and EY : M} — N*, respectively. All
the necessary facts on ultraproducts of von Neumann algebras are summarized in [27), §§2.2].
Remark that M} and M5’ are freely independent with amalgamation over N“ with respect to
E¥, see [23], Proposition 4]. However it is hopeless due to [I8, Lemma 2.2] that M« = M{'V MY
holds.

3. TECHNICAL RESULTS

3.1. A non-tracial adaptation of Popa’s intertwining-by-bimodule criterion. Let M
be an arbitrary o-finite (possibly type III) von Neumann algebra, and A, B be its (possibly non-
unital) von Neumann subalgebras with units 14, 15, respectively. Suppose that B is semifinite
with a faithful normal semifinite trace Trp and furthermore that there is a faithful normal
conditional expectation EFp : 1gM1lp — B.

Proposition 3.1. The following are equivalent:

(i) There is no net uy of unitaries in A which satisfies Eg(y*uyx) — 0 o-strongly for
any x,y € U{1aMp|p € BP; Try(p) < +00}.
(ii) There are a mormal (possibly non-unital) x-homomorphism p : A — M,(C)®B with
finite n € N and a non-zero partial isometry w € M, (C)@M such that
— (Tra@Trp)(p(14)) < +5,
— ww* <e; ®1la and ww < p(la), and
— (e11 ® a)w = wp(a) for all a € A.
(iii) There are non-zero projections e € A, f € B, a normal unital x-isomorphism 0 : eAe —
fBf and a non-zero partial isometry v € M such that
— the central support ¢ is finite in A and Trp(f) < 400,
—vw* <eandviv < f, and
— zv =v0(x) for all x € eAe.

Suppose further that M has an almost periodic weight v such that both A and B sit inside the
centralizer My, 1 [ is still semifinite, and the Ep is the unique v [1,m1,-preserving one.
Then the w in (ii) and the v in (iil) can be chosen in such a way that there is a common
eigenvalue \ of Ay so that (id, &ol)(w) = Xtw and of (v) = Ao for dall t € R.

As usual let us write A <) B (with Ep and Trp) if the above equivalent conditions (i)—(iii)
hold. Remark that no assumption on A is necessary. The proof is of course modeled after Popa’s
original one for finite von Neumann algebras, but some cares are necessary. Indeed we observed
this fact with B finite several years ago, through our attempt to get better understanding of the
fundamental articles [16], 17] due to Popa. Houdayer and Vaes informed us that they have also
observed it with B finite independently (see |8, Theorem 2.3]), and moreover Vaes corrected our
misunderstanding on some argument in [4, §2]. The proof below is just a combination and/or
a reformulation of several existing proofs of Popa’s criterion [16, Appendix],[I7, §2] (also see
[2, Appendix F],[29, Appendix C] for its exposition) and its variants [T, §3],[4), §2],[7, §4], etc.
The same idea as in e.g. the proof of (1) = (4) in [29] Proposition C.1] perfectly works for (ii)
= (i). (Note that the proof of (4) = (1) in [2| Theorem F.12] does not work at this point due
to the lack of finite trace. Thus we could not prove (iii) = (i) directly.) Hence the main parts
below are (ii) < (iii) and (i) = (ii).

Proof of (ii) = (i): We may assume that p(1a) = > _, exr @ pr with py € BP thanks
to [11, Corollary 3.20]. Since (Tr,®Trp)(p(la)) < 400, one has w = >_;_, e ® wy with
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wy = wrpr € U {1AMp|p € BP;Try(p) < +oo}. On contrary, suppose that (i) is not true.
One can find a net uy in A* in such a way that Eg(wusw;) — 0 o-strongly for all 4, j,
and hence p(uy)(id@Eg)(w*w) = 7', €ij @ Ep(wjusw;) — 0 o-strongly. Therefore,
|id, @ Ep)(w*w) |1y, e1rp = llp(ur)(dn®ER)(w*w)p(1a)| 1,61y — 0, a contradiction to
w # 0. O

Proof of (iil) = (ii): Since v*v € 6(eAe)’, one can find a non-zero z € Z(eAde)? = (Z(A)e)?
in such a way that the normal *-homomorphism z € zAz = (eAe)z — 6(x)v*v is injective.
Since ¢4 is finite in A, by [12, Proposition 8.2.1] one can find non-zero, mutually orthogonal

and equivalent (in A) e1,...,e, € AP in such a way that e; < z and Y ;_, ex = c;f‘l. We
have ejvv* # 0, since 8(eq)v*v = v*(e;vv*)v by the choice of z and e; < z. Then one gets
partial isometries v1 := eq,v2,...,v, € A so that vivy = e; and vgv) = e (k = 2,...,n).

Since e;Ae; C eAe, we can construct a normal s-homomorphism p : A — M, (C)®B by
pla) := szzl eij @ O(viav;), a € A. Set w := >} e1x ® vpv with v in (iii), which defines
a non-zero partial isometry, since v*vivjv = d;;0*e1v and v*eqv = 0(e1)v*v # 0 as remarked
before. Since Y ., v;vf = cfl = Cé4k for all K = 2,...,n, we have wp(a) = EZ]‘,I@:I eriejr @
vivﬁ(v;favk) = szzl €1:€ik QUUFaVEY = Y p_; €15 @ cfkavkv = (e11 ®a)w for all a € A. Since
p(14) <1, ® f, one has (Tr,®Trg)(p(14)) < +oo. O

Proof of (ii) = (iii): As in (ii) = (i) we may and do assume that p(14) = >} _; €xr ® Dk
with Trp-finite pr € BP. Note that any union of finite number of Trp-finite projections is
again Trp-finite thanks to the Kaplansky formula [I2, Theorem 6.1.7]. Thus p = \/;_, pi is
Trp-finite, and replacing B by pBp (if necessary) we may and do assume that Trp(1p) < +oo.
Notice that A must be of the form A = Ay & Ker(p(—)w*w) with Ay finite, since p(A) is finite.
Note here that w*w € p(A)’, and thus p(—)w*w is a normal *-homomorphism.

Let us first assume that Ag has a type II; direct summand. By [12] Lemma 6.5.6] one can find
nonzero, mutually orthogonal and equivalent (in Ag) e1,..., e, € A whose sum is the unit of
the type II; direct summand. With the center-valued trace 7 : M,,(C)®B — C1®Z(B) we have
nt(pler)) < 7(1®1p) = n7(e11 ® 1g), implying that there is a partial isometry v; € M, (C)@B
such that viv; = p(e1) and vivf < e;; ® 1. Since vip(er)vy = vivf < e ® 1p, we can
construct a normal unital *-isomorphism 6 : eAe — fBf with e :=ej, f := 0(e) in such a way
that e;1 ® 8(z) = vip(z)v] for z € ede. Since w*w € p(A)' N p(lA)(Mn((C)®M)p(1A) and
ww* € (Ceu@A)/ N(e11 ® 1A)(Mn(C)®M) (e11 ® 14), it is easy to see that wvj is a non-zero
partial isometry whose left and right support projections are less than e;; ® e and e;; ® f,
respectively, and hence wv = e1; ® v for some non-zero partial isometry v € eM f. Then one
has e11 ® 2v = (e11 ® )wv] = wp(z)vy = wvjvip(z)vy = e11 @ vh(z) for © € ede.

We next consider the case that Ay is of type I, that is, there is an abelian (in A) e € A}
with ¢4 = 14,. With a MASA A between p(eAe) @ Cp(e)* € M, (C)®@B one can choose, by
[, Theorem 3.18], mutually orthogonal and equivalent (in M, (C)&B) projections g, ..., gn
from 2 with >°;'_; gx = 1, ® 1p. Then one immediately observes (by looking at their center-
valued traces) that every ¢ is equivalent to e1; ® 1p in M, (C)®B. Since p(e)w*w # 0, some
q = qr must satisfy gp(e)w*w # 0. In this way, we can choose a non-zero partial isometry
v1 € M, (C)®B in such a way vivi = gp(e)(< p(e)), n1v] < e11 ® 1p, and thus vivi € p(ede)’
and wv} # 0 (since gp(e)w*w # 0). Then we can construct a unital normal *-homomorphism
0 :ede — fBf with f :=60(e) by e11 ® 6(x) = vip(x)v] for € ede and a non-zero y € eM f
by e11 ® y = wvy. Moreover we have e1; ® zy = (€11 ® z)wvy = wp(z)vy = woi(vip(z)vy) =
e11 @ yb(z) for x € eAe, since viv; € p(ede)’. Hence xy = yb(zx) for x € eAe. Replacing e by
suitable z € Z(eAe)P (if necessary) we can make 6 injective with keeping both 6(e) = f and
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y = eyf. With the polar decomposition y = v|y| we get vv* < e, v*v < f and zv = v8(z) for
x € eAe. O

We have two ways for completing the final part of the proof of (i) = (ii) below; one is the
use of Haagerup’s LP-space technologies and the other that of standard forms due to Araki,
Connes and Haagerup. Here we use the latter as easy way. In what follows (M ~ H, Jas, ’I?EV[)
denotes a standard form of M, see [20] Definition IX.1.13].

Proof of (i) = (ii): Note that Fp(y*uxz) — 0 o-strongly if and only if || Eg(y*urx)||m, —
0forany z,y € | J{1aMp|p € BP; Trg(p) < 400}. Thus therearee > 0and F € |J{1aMp|p €
BP; Trp(p) < 400} so that

Zz yer 1EB( ua)llne, > & forallu e A™. (3.1)

Each z € F has a Trp-finite p, € BP with x = xp,, and p := \/zefpm must be Trp-finite as
remarked in (ii) = (iii). Thus, replacing B by pBp (if necessary) we may and do assume that
Trp is a finite trace, that is, Trp(1p) < +o0.

Choose a faithful normal state pg on 15M1%, and set B := B @ Clg and Eg:zeMw
Ep(1pxlp) + ¢o(1521%5)1% giving a faithful normal conditional expectation from the whole
M onto B. Clearly B is still finite (since we have assumed that Trp is a finite trace), and the
mapping b+ aly € B+ Trp(b) + a € C defines a faithful normal trace (not weight !) Tr on
B. Set ¢ = TrgoEp, a faithful normal positive linear functional on M, and let &y € ‘ﬁt}w be its
unique representing vector. It is standard, by a usual exhaustion argument like e.g. the proof
of [I9] Theorem IV.5.5], to see that there is a family of vectors {&;}icr in H so that &y is in the
family (thus 0 is regarded as a distinguished element in I) and moreover H = Z?; I BInE).
Therefore, one can construct an isometry U : H — £2(I) @ L?(B) satisfying Uy = o ® Ar (1)
and U(Jyz*Jy) = (1@ Jx* J)U for x € B, where L?(B) is the usual standard Hilbert space
constructed out of Trg, A1y, the canonical embedding of B to L*(B) and J 5 the canonical
unitary conjugation on L2(B). By the construction we observe that P := UU* € B(¢*(I))&B
and moreover that the pair P(B(KQ(I))Q@B)P and Pgs, ® 1 with the rank 1 projection P,
onto Cdp is nothing but a concrete realization, modulo the unitary equivalence by U, of the
basic extension (M, E> and the Jones projection ey associated with E5. Then

Tr 5,5y (=) = (Trpe) ©Trg) (U (=)U7) (3.2)

with the usual trace Trp(e(y) on B(¢3(I)) gives a faithful normal semifinite trace on the
basic exten_sion (M,B). For = € B one ?as UzegU* = Prs, @ x and hence Tr /g (vep) =
(Trpe2)®@Trg)(Uze gU*) = (Trpz(1))@Trg)(Pes, ® ) = Trg(x). Therefore, we get

Tr a5y (@epy) = Tryp ) (epyae) = Try gy (Eg(yz)ep) = plyz), =,y€ M. (3.3)

Let d =37 cryepy” € (M, B)*, and then Tr ;/ p,(d) = 3° c 7 ¢(y*y) < +oo by B3). In
the exactly same way as in the proof of (1) = (2) of [2 Theorem F.12] we see, by using B.1I),
that the o-weakly closed convex hull € of {u*du|u € A"} does not contain 0. Moreover, it
is plain to see that Jy;1gJyd = d. Since 1g € Z(B) and hence Jy1gJy € Z((M,B>), we
conclude that € sits in (1aJp1pJ0) (M, B}(lAJMngM). Since d > 0 and Tr<Mﬁé> (d) < 400,
¢ is embedded, as a closed convex set, into L2((M, B>, Tr<M’B>), the usual GNS Hilbert space
associated with Tr (M,B)" Hence one can choose a unique minimal point dy € € with respect to

the Hilbert space norm || — || 1y which in turn falls in (14 Jy15J0 ) (M, B>(1AJM13JM)QA’

(M,B)’
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and satisfies Tr (M, B) (do) < +00. Choosing a suitable spectral projection of dy we get a nonzero
projection e € (M, B> N A’ such that e < 14Jp15Jp and Tr<MJ;,> (e) < +o0.

The projection e apparently gives an A-B bimodule K := eH with left and right (unital)
actions a - £ - b := aJyb*Jy€ for a € A, £ € K, b € B. The GNS representation of B
associated with Trp is simply given by the restriction B ~ L?(B) := 1pL?(B) with the
canonical embedding A, = ATrB [ B, and moreover the canonical unitary conjugation Jp is
also just the restriction of Jp to L?(B). Thus we get the right B-module embedding Uy :=
Ulk: K = CIRLAB)p (S (1 @ 15)(L2(I1)&LA(B)), and UgU; € B(2(I))®B satisfies
(Trp(e2(1))@TrB) (UoUg) = Tr(y; 3,(€) < +o00 by [B.2). By the same reason as in the beginning
of the proof of [2, Proposition F.10] or by [29) Lemma A.1] there are n € N and a nonzero
z € Z(B)? such that Iy := JprzJpK is still a non-trivial A-B bimodule and (Up [y, 270k
)(UO rJAIZJA[)C)* = (1 & JBZJB)UoUg(l ® JBZJB) = (1 & Z)UYOUVE)k j Pn ® z in 3(62(1))@)3 =
(C1®JpBJg)', where P, is a rank n projection in B(¢%(I)). Choose a partial isometry v €
(C1®JpBJg) with v*v = (Ug |1y z0mk)Uo 1iyziuk)® and vo* < P, ® z, and then we can
define a right B-module embedding V : Ko < C"®L?(B) by V = v(Up |1y 20u) With a
fixed identification P,¢?(I) = C". The embedding V gives the normal (possibly non-unital)
*-homomorphism p:a € A — VaV* € M, (C)RB.

Let §; (1 < ¢ < n) be a standard basis of C", and set & = V*(6; ® An,(1B)) € Ko
(1 <i<n). Forae A, write p(a) = 377, eij @ p(a)i; with the matrix units e;; associated
with the J;, and then

atj = Zi:l Jup(a)fjIué, 1<j<n. (3.4)

Consider M := M,,11(C)®M ~ L*(M) := M,4+1(C)@H (by left matrix-multiplication) with
the canonical unitary conjugation Jiy defined by Ju(e;; ®€) = ej; ®@ (Jpr€) for e;; @ € € L*(M).
The natural cone determined by (M ~ L%(M), Jyr) is denoted by 9%, Set € :== Sr_ eor ©
& € L2(M), and define a normal (possibly non-unital) s-homomorphism p : A < M by
pla) = eqo @ a+ >0, e @ pla); for a € A. Here a standard matrix unit system e;;
in M, 41(C) is indexed by 0,1,...,n. By @) one has p(a)é = Jyp(a)*Jué for a € A. A
standard fact on polar decomposition in standard forms (c.f. |20, Exercise IX.1.2],[I, Lemma
3.1]) guarantees the existence of a vector |£| € &BFW and a partial isometry w € M satisfying that
€] = €, v = MIE]], ww* = [M/E] and pa)w = wp(a) for a € A. Since (ego ® 14)€ = &,
one has (ego ® 14)[M'é] = [M'€], and thus wi* < ego ® 14. Here (p(4) C) M, (C)@M is
naturally regarded as a corner of M by the numbering of the matrix units e;;’s. Then one has,
by B4) again, Jyup(1a)Jué = &, and hence Jyp(14)Julé| = |€]. By Julé] = |€] € ‘Bluw we get
p(14)[M]€]] = [M|€]] so that w*w < p(1a) < Sp_, exk ® 15. Therefore, w = S1_, e, @ wy,
with wy € 1aM1p. Letting w = (e10 ® 1a) = Y ,_,e1x @ wp, € M, (C)QM we have
w*w < p(la), ww* <e;; ®1y and (611 ® a)w = (€10 ® 14)p(a)w = (e10 ® 1a)wp(a) = wp(a)
for a € A. We have assumed (by cutting by a projection in B) that Trp(1p) < 400, and hence
(Tr,®Trp)(p(la)) < +o0 is now trivial. Hence we are done. O

Proof of the second part of the assertion: Only the proof of (i) = (ii) needs small modification
to prove this. Let us explain this in what follows. The standard form (M ~ H,J M,‘ﬁgw) is
constructed from 1 so that JyAyJy = A;l. The Trp is given by ¢ [p. We need an extra
argument in relation to the dy € (1aJy1pJp) (M, B)(lAJMngM) N A’. By the assumption
here the modular operator A, has a diagonalization Ay, = > )\>0)\ef and satisfies Alf €

(M,B)N A’ for all t € R. Hence all the ey’s fall in (M,B) N A’. Thus eqf d(l)/2 with some

A defines a non-zero element in (M, B) N A’. Since ef commutes with 14Jy15Jy and since
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Trar 5y (eq){’ do ef) =Tr 5 (dé/zeqfdéﬂ) < Tr 5 py(do) < +00, we may and do assume dy =
el)/f do ei’. Hence the A-B bimodule Ky can be chosen as a subspace of el)/f ‘H. Therefore, the é €
L*(M) = M, 11 (C)®H satisfies that (I, ,,)® Aﬁ;)é = XNit¢ for all t € R. Since Iy, ,, )@ Ay
is the modular operator of Tr,1® 1 on M, (Ip, ., ()@ Aj/f)|é| still falls in ’I?Iuw, see [20, Lemma
IX.1.4]. Remark here that Jy there is nothing but the one constructed from Tr,;1® ). Hence,
by the uniqueness of polar decomposition (id@ay )(w) = X4 and (Iyy, ., )@ Afj)|§| = [£| hold
for every t € R. These modifications are enough to complete the proof. O

Remark 3.2. Let 5 and ¢ = Trgz o E5 be as in the proof of (i) = (ii) above. Let E; :
(M, BY — M be the dual operator-valued weight associated with Ey in the sense of [13, §§1.2].
It is known that the modular operator A, and Connes’s spacial derivative (d(gpo@))/(d(TrB o
AdJa((—)*))) must coincide, see e.g. the proof of [10, Proposition 2.2]. Moreover A,, is affiliated
with (M, B ), since ¢ = Trz 0 E5. With these two facts one can prove that the modular operator
A, is the Radon—Nikodym derivative of ¢ o E/’;, i.€., pO E; = TeryB%qu in the sense of [20),
Lemma VIII.2.8]. This explains, in full generality, the relationship that was pointed out in [I7,
Eq.(1.3.1)] in the almost periodic case.

3.2. A non-tracial version of Ioana—Peterson—Popa’s theorem. Let us investigate an
amalgamated free product (M, E) = (My, E1) xn (M2, E2).

Proposition 3.3. Let A be a (unital) von Neumann subalgebra of the centralizer (M), of a
certain faithful normal state ¢, and My be a (possibly non-unital) dense (in any von Neumann
algebra topology) *-subalgebra of My with E1(9) C 9My. Suppose that there is a net vy of
unitaries in A such that E1(y*vyz) — 0 o-strongly for all x,y € My. Then any unitary u € M
with wAu* C My must fall in My. In particular, Na(A) = Na, (A) and AN M = A' N M.
Here Np(Q) denotes the set of unitaries u € P with uQu* = Q for a given unital inclusion
P D Q of von Neumann algebras.

This is nothing but a non-tracial version of [9, Theorem 1.1] due to Ioana, Peterson and Popa.
Although the proof below is modeled after their proof, we need to overcome some difficulties
due to the lack of trace by utilizing modular theoretic technologies.

Proof. Let (M ~ H, JMfB?\/[) be a standard form of M, and & € ‘ﬁ?w be the unique repre-
senting vector of ¢ o Eyy, . Let eps, be the so-called Jones projection associated with Eyy, , i.e.,
em, x&o = E, ()& for & € M, and the basic extension (M, M) is defined to be M V{ea, }' =
JuM{Jy ~ H. Counsider the projection p := [AJyMiJyu*éo] € A’ N (JpuMiJy) =
A’ N (M, M;). Notice that aJyz* Jyu*éy = Jyz*Iyu*(uau*)E for a € A and = € M,
and moreover that uau® € M; can be approximated in any von Neumann algebra topology, by
analytic elements, say y», in M; with respect to the modular action o¥. Those altogether show
that

aJyr* Jyuéy = liin Jyx* Ippu*yréo = liin JMz*a;'}Q(yA)*JMu*go € [Jyu My Jpu*Eo]

thanks to UfOEMl v, = of (t € R) and [20, Lemma VIIL.3.18 (ii)]. Consequently we get
p < [JuMyJyu*éy] = u*epr,u, which and E/\Ml(eMl) = 1 imply ||E/’1\;1(p)||oo < 400, where
E/’J\z : (M, M) — M denotes the dual operator-valued weight of Fp,. See [13] §§1.2, Lemma
3.1]. We will prove (1 — epr, )p(1 — epr,) = 0. In fact, if this is the case, then p < ep, so
that u*&y = ep,u*&o = Eap (u*)&o, implying u = Ejpp, (u) € My since & is separating for
M ~ H. Since ||E/\]\/11(p)||oO < 400 and E/’J\Z(eMl) = 1 as before, any spectral projection f of
(1—ear,)p(1—ens,) corresponding to [, 1] with arbitrary § > 0 still satisfies || Epz, (f)]|se < 0.
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Therefore, it suffices to prove that any projection f € A’ N (M, M) satisfying both f < 1—epy,
and ||lf1\;1(f)||OO < 400 must be 0.

In what follows we denote by A the %-subalgebra of M consisting of all analytic elements
with respect to o#°FM1 | which is well-known to be dense in any von Neumann algebra topol-
ogy. Set ¢ = o Ep, o E/\Ml, a faithful normal semifinite weight on (M, M), and let
(M, My) ~ L*((M, M;),1) be the GNS representation with canonical embedding Ay : ny =
{z € (M, M) |(z*z) < +oo} — L*((M, M),1)) and norm || — ||, associated with the weight
. Remark that Ejpp, (A) C A (thanks to Epy o afOEMl = o/ o Epy, for all t € R) and thus
span(Aeys, A) becomes a dense (in any von Neumann algebra topology) #-subalgebra of ny, Ny,
and hence Ay (span(Aens.A)) is dense in L2((M, M;),) by [10, Lemma 2.1]. Thus one can
choose a sequence T,, € span(Aeps A) in such a way that ||Ay (T — f)l|ly — 0 as n — oo,
where note that f clearly falls in n,. Since f < 1 — ey, and of (ear,) = ear, (t € R) [I3,
Lemma 5.1], we also have ||Ay((1 — e, )T (1 —enr,) — f)lly — 0 as n — oo so that may and
do assume that T,, = (1 — epr, )Tn(1 — epr,) for all n.

On contrary, suppose f # 0, that is, v := [[Ay(f)|ly = 0. Then one can choose T := T, €
span(Aey, A) with some ng in such a way that

[Ap(T)lly <37/2, [[Ap(T = F)lle < /5. (3.5)

For any v € A we compute
7 = [p(T*0Tw")| < [P(fofo*) — (T vTv")|

< [0((f = T) ofo")| + [P(T u(f = T)v")|

<A (f = T)llpll Mg (vfo*)ly + A (Tl Ay (0(f = T)0")lly

< Ay (f = Tl Ay ()l + I8 (T [ A (f = Tl

<7*/2,
where the first, the third, the fourth and the fifth inequalities follow from f € A’ N (M, M),
the Cauchy-Schwarz inequality, v € (M), C (M, M)y, and ([B3), respectively. Therefore,

7?2 < 2|¢(T*vTv*)| holds for all v € A*. Since T = (1 — ep,)T(1 — epr,), we can write
T =31ty Thenm, yr with g, yp € ANKer(Eyy ). Thus, for every v € A* we have

m
7 < 22,67[:1 [ (ykern, rvzienn, yiv”))|
m
= 22,67[:1 v (yk B, (zi0zr)enr, yiv”)]
m
=2 Zk,l:l o © Enr, (yr B, (zpoz)yiv”)|

m OE .
- 2Zk,z:1 lp o Enr, (0" (y)v* yk Ena, (wjvm))|

<2 max |yl max [lo?"" ()] Zm [ By (202
= T 1<k<m <i<m Y © Lg=1 137k @

Here the third equality is due to E/’J\Z(eMl) = 1, the fourth one follows from v € (M), C
Mgop,, and y; € A with the so-called modular condition, and finally the last inequality is due
to the Cauchy—Schwarz inequality. Consequently we have chosen z1,...,z, € ANKer(Ey,)
and a universal constant C' > 0 so that

7% < Czk,zzl | Eas, (zfva)||,  for all v e A™ (3.6)

Set 99 := Py N M?. By the assumption on 9M; and by the Kaplansky density theorem any
element x € M7 can be approximated in any von Neumann algebra topology by a bounded net of
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elements z§ = xx — E1(xy) € M3 with zy € My, 25 — =. Thus My +span(A° (MY, Ms)\ M?)
is also dense in M in any von Neumann algebra topology so that the Kaplansky density theorem
enables us to approximate each zx (= x — En, (x)) by a net z, » in span(A° (99, Ms) \ M3);
namely || Zkalloo < 2||2k]|co and zx x — x o-*-strongly. Then we have, for every v € A",

| Eary (zpvzn) | < 1Eas (wg svzia)llo + | B (wpvz — 23 vz |l

< | Ewm, (@ o) lle + 1@k — 2i0) " v2) | poma, + 1Tk av(@ — 213) o,

oF
< N1 Bany (@i yvzin)lle + llofy ™ @)llsolleh = 2 allpomar, + 2l zkllooll2r = ziallpoma,

where we used, in the last line, that z; € A with 20, Lemma VIIL.3.18 (ii)] and v € (M;),,.
Let € > 0 be arbitrary chosen. Then some \ (being independent of v’s) satisfies that 2 <
e+ CY0 oy 1B (z yvzia) |l for all v € A*. Since any element in A°(OMF, Ms) \ MY is
written as azb with a,b € {1} U9MNY, z an alternating word in 99, M5 whose leftmost and
rightmost letters are chosen from MY, there are finitely many such words a( 9 (Z)b(l), i=1,2,
j=1,...,m/, and positive constants C; > 0, j = 1,...,m/, so that

m’ 1) _(1),(1 2), (2
Y <e+ ZFl Cj||EM1(G/§- )zj(- )bg- )va§ ) 2! )b ))||¢

m’ 1 1 1) (2 (2 .(2
=+ ijl Ojllast Eag, (287 E1 (08 0al?) 2P|,
for all v € A", where the equality comes from the free independence of M;, My and ([2:2]).
Applying the above estimate of 72 to the net v = vy in our hypothesis we get 42 < ¢ (at the

limit in \), a contradiction to v = 0, since € is arbitrary. O

Remark 3.4. It is worth while to note that the inequality (B:6) is a general fact. Let P O @
be o-finite von Neumann algebras with a faithful normal conditional expectation Eg : P — @
and A be a von Neumann subalgebra of the centralizer @), with some faithful normal state ¢.
The middle part of discussion above shows that for each projection f € A’ N (P, Q) satisfying
both f <1 —eg and ||E/’E)(f)||oO < +00 there are analytic (with respect to 0¥°F@) elements
Z1,...,Tm € P and a universal constant C' > 0 such that

18 o mgoio Do mgomy < czkl |Eq(zjva)|l, for all v e A™

3.3. A result for controlling central sequences in amalgamated free products. Let us
investigate central sequences in an amalgamated free product (M, E) = (M1, E1) *n (M2, Es).
The next result is an adaptation and/or an improvement of the methods of [27, Proposition
3.5] and [28, Proposition 3.1] to amalgamated free product von Neumann algebras. In this
subsection we use the notations and facts summarized in [27, §§2.2].

Proposition 3.5. Suppose that there is a faithful normal state @ on My satisfying the following
conditions:

(a) of (N)= N for allt € R.

(b) For every n € N with n > 2 there are unitaries uy = u,(cn),vk = v( " e € (Mi)y, 0 <
k <mn—1, such that El(uzlub) = E}f,(v;:lv;@) =0 for all0 < ky # k2 <n—1, where
EY, denotes the unique @-preserving conditional expectation from My onto N, whose
existence follows from (a) and Takesaki’s criterion.

Then, for any x € (My),, N M*, any y € M3 and any sequence (t,,)m of real numbers we have
1E2(y"y)'* (@ — (Ban ) @)l porar, )+ < 192 = 22l (poBas, )
with z = [(af:EMl (y))m] € M*.
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Remark here that any bounded sequence (UZ‘:EMI (x(m)))m with arbitrary (z(m))m, giving
an element in M* gives again an element in M¥, as shown in the proof of |28, Proposition 3.1].
A key fact behind this is that any modular action o satisfies 1) o Uf’ =1 for allt € R. In

particular, the element z in the statement above makes sense.

Proof. Write My := Ker(EY,). One can easily see, by using x € My — E;(z) + (z — E1(2)) €
N+ M7 or E§(z) + (x — Eg(z)) € N + MY, that span(A° (M7, Ms) \ My) coincides with the
linear span of the following sets of words:

MP - My My, My---Mg, Mg My My, Mg---M;.
——— ——

alternating alternating alternating alternating
Define four closed subspaces X1 := [Apomy, (M7 - MsMY)|, Xy := [Agop,,, (M7 --- Mg)],
Xy = [AgaoEMl (M5 - M;Mlv)}, Xy = [A%,(JEM1 (M3 --- M2°)] in H := L?*(M,p o Ey,), and
clearly
H = ANpop,, (M) X © X © X3 © Xy
Denote by P;, i = 1,2, 3,4, the projection from H onto X;. Remark that

(IH o Zj:l R) A‘pOEM1 (I) = AWOEMI (EMl (.I)), z € M. (37)

Let n € N with n > 2 be fixed. Define unitary operators S = S,(C"),Tk = T,g") (k =
0,...,n—1) onH by
SkA«POEMl () = A«POEMI (upzug), TkA«POEMl () = A«POEMI (vkzvy), €M,
with ug = uggn), v = v,(cn) € (M), C MS(,C,EM1 in our hypothesis. Here are simple claims.

(A) {SkX;}}Z, is an orthogonal family of closed subspaces, i = 3, 4.
(B) {TX2}}Z, is an orthogonal family of closed subspaces.

The proofs of those are essentially same, but (A) is easier than (B). Thus we prove only (B)
here and leave (A) to the reader. By using z — F;(x) + (x — E;(x)) € N+ M? (i = 1,2) again
and again we have

(o (MY -+ - M3 ), )" (vpy (MY - M3 vy, )
= Uk, (M2O T (MfUZQUkl Mf) T M;)Uzl - ’UkzN’UZl + Uszef(EMl)UZI-
The desired assertion immediately follows from that vy € (M1),; in fact, if k1 # ko, then
@o EMI (Uk2NU;;) = QD(NUZI vkz) = <P(NEzfr (UZI ng)) = {0}7
@ o EMI (Uk2Ker(EM1)UZI) = @(vszMl (Ker(EMl))’UZl) = {0}

Let us choose arbitrary = € (M), N M*“ with representative (x(m))n,. For each ¢ > 0 and
each n € N with n > 2 one can choose a neighborhood W = W, ,, in B(N) at w so that

[Apomar, ((m) —upz(m)up)ln <& [Apomy, (x(m) —vpz(m)vp)|n < e

forall0 <k <n-—1and m € WNN, where the u, = u,(cn),vk = v,(cn) are as above. For each
1t = 3,4 and every m € W NN we have, with the above S = S,(Cn),

||PiA900EMl (x(m))H?H
1 n—1
= Zk:o 15k PiApoBar, (z(m))13,

2 n—1 * *
<=3 {I8ePA ey, (@(m) = SPS{A oy, (@) + [ SePSEA pomy, (2(m) 3 }
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_2 Z"’l ||s,€p-s;AwEMl (upa(m)uj, — x(m))||3, + % Z:;; 18k PiSi A popa, (z(m) 13
<24 2 Z ISkPSEA o, (@(m)3,

<2+ EIIAMMI (2(m)[|7  (by the claim (A))

< 267 + 2| ((x(m))m 1%, /.

Similarly, using the claim (B) with Tén) instead of S’,(c") we have
1P2A oy, (2(m)7, < 26% +2[((z(m))m 15 /n

for every m € W N N. Since n and ¢ are arbitrary, for each 4 > 0 one can find a neighborhood
Ws in B(N) at w so that

122+ Pyt Pi)Agorsy, (a(m) 2 < 8 (3.8)
for all m € Ws N N.
In the standard embedding L?(M%, (o o Epr,)*) < HY we have, by (3.7) and [B.8),
| Aoy 0@ = (Bar)* (@) = (4P Aoty (@m))un] |
= lim [|Agop, (y(@(m) = Bx, ((m)))) = yPi Agor, (2(m))]|

- nl}glw ||y P2 + P3 + P4)A<,00EZ\/11 (I m

HH

< sup Hy (P2 + P34+ Py)Apor,,, (v ||H < [[yllo0d,
meWsNN
and hence
Agorn, )= (Y@ = (Ear)*(2))) = [(yPrAgomy, (2(m)))m) (3.9)

in H¥, since ¢ is arbitrary. Trivially, in H",
A(«poEMl)“’ (y(EMl )w (‘T) - (EMl)w(x)Z)
OE]M1
= [(Aporar, (WEM, (z(m)) = Ear, (x(m))og, " (y)))m].  (3.10)

Set
. /+oo O_‘POEM1 (y) e—t2/€ dt
0= —
—00 ! V éﬂ'
+o0 et/ gt
= [ 1Deo B s Dxo BT ) (Do B, Dxo Bl =

with a fixed faithful normal state y on N. Clearly y, falls in the o-weak (or o-strong) closure of
span(M; Ms M), since [Dp o En, : Dx o E|y = [Dy : Dx o E4], € My by [20, Corollary IX.4.22
(ii)] and 0°"(y) € Mg by &I). Set z; = [(Uf;EMl (ye))m] € M*, which is well-defined as
remarked just before the proof. Note that JWZMI (Uf;EMl (ye)) = UfOEMl (of?ZMl (ye)). For
each ¢ we have, by (81), (B.8)) as before and by [20, Lemma VIII.3.18 (ii)],

| Apomun = (@ = (Bae)*@)z0) = [(J075 5 (017 (40) TP gorn, (a(m)))un] |

= Tim [|Jo% 0" (02 (50)* T (Mg, (2(m) = Ear, (2(m)) = Pibgopy, (x(m)) |5,

m—w

< sup [[JoT S (0 f M () T (Pa + Ps + Pa) Aoy, (a(m)|],, < 07075 (o)

meWsNN
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with the modular conjugation J of M ~ H = L?(M, p o Eyy ). Hence, for each ¢,
Agoruy)= ((z = (Bar ) (2))2e)
= [(Jo*5 3 (0 F2 ™ (4e) T Pi Aoy, (2(m))m] (3.11)
in ‘H¥, since § is arbitrary. Note that
YP1Apo By, (xm)) € spanAgop,,, (MM - - MSMY).

On the other hand,
oFE
Agoba, (YEu, (2(m)) — B, (z(m))oy, ™ (y))

tm

€ spanl o, (Ms) @ spanl ok, (Ms M)
@© spanfgog,,, (M7 M3) © spanAyor,,, (M7 Mg M)’)

and

oF oF *
JoZ (0l () TP oy, (2(m))

E
c spanAonMl (Mf .. .MéDMlvao My (ye))

tm

- AapoEM1 (Ml) ©® SpanAonMl (]\410]\42O Ce )

Here the last fact follows from [20, Lemma VIII.3.18 (ii)] and that afnjEMl (ye) falls in the o-
strong closure of span(M;M3Mi). Therefore, we see, by B.9)-@.11), that Aom,,, )« (y(z —
(En, )¥(2))) is orthogonal to both A(,om,,, )« (Y(En,)* (2) — (B, )? (2)2) and A(gop,,, )~ (2 —

M x))z¢). Finally, letting & := |(o_ x(m)))ml|, y == |(0_ Y))m |, both of whic
B, )¥ Finally, letting 2 bl j bl both of which
fall in M“ as remarked just before the proof, we have

(A(@OEMl)w((x - (EM1 )w (fﬂ))zﬂA(@oEMl)“’ (y(fE - (EM1)“U($)))) (poEnry )*

( )
= lim (p oy, )*(( — (Ear)* ()5 G — (Ear)*
= lim (¢ 0 Enr, )*((z = (B, )

£—00
Ei{go (A(QDOEMl)w ((I - (EMl )w ($))ZE|A(S@OEMI)“’ (y(x - (EMI )w (I))))(V’OEMI)“’ =0.
Consequently we get [[y(z — (Err, ) ()| (porr, )« < 1y — 22| (poEp, )« We have, by (B.9),
ly(z = (Bar)* @) o, -
2
= | [P Aoy, (@m))] |
= %iinw(yplAsaoEMl (x(m))lypl A‘POEMl (‘T(m)))onMl
= tim { (B0 ) PiAgors, (2(m)) [P Aoy, (2(m)) o,
+ (W'Y = BE2(y"y) Pripory, (2(m)) | PLAgory, (2(m)))gora, }

in X3 orthogonal to X in Xq

= %iinw(EQ (y*y)PlAonMl (‘T(m)”PlASDOEMl (x(m)))SOOEMl

= | (Bt 2 Pib o (o)

2

He'
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As in showing (3.9) one has

[(Ba(y™9)"* Pibgoryy, (2(m))m] = il\(popas, )= (B2(y"y)"?(z — (Ear, ) (@),
and the proof is completed. O

4. SOME CONSEQUENCES

We first formulate that P is ‘non-trivial relative to @)’ for a given inclusion of von Neumann
algebras P O @, and then provide some technical facts.

Definition 4.1. A (unital) inclusion P O Q of von Neumann algebras is said to be entirely
non-trivial, if no non-zero direct summand of Q is a direct summand of P.

Let P O @ be an inclusion of von Neumann algebras with a faithful normal conditional
expectation Eg. If zP = Qz (as set) for some non-zero z € Z(Q)?, then Pz = Qz too by
taking adjoints, and thus for x € P one has zx = Eg(zx) = 2Eg(x) = Eg(x)z = Eg(xz) = zz,
implying z € Z(P). Hence @z is a direct summand of P. Therefore, P O @ is entirely non-
trivial if and only if Pz # Qz or equivalently zP # Qz for any non-zero projection z € Z(Q),
where Pz and zP denote the one-sided ideals of all zz and zz, respectively, with « € P.

The next simple lemma, especially (3) there, will frequently be used later.

Lemma 4.2. Let P O @ be an inclusion of von Neumann algebras with a faithful normal
conditional expectation Eg : P — Q.
(1) The following are equivalent:
(i) P 2 Q is entirely non-trivial.
(ii) Pe # Qe or equivalently eP # eQ for any non-zero projection e € Q.

(2) If P D Q is entirely non-trivial and f € Q a projection with c? =1, then fPf D fQf is
again entirely non-trivial.

(3) If P D Q is entirely non-trivial, then there is a family {y;}icr of elements in Ker(Eq)
so that ), ; s(Eq(yiyi)) = 1, where s(x) denotes the support projection of x = x*.

Proof. (1) By the discussion above (i) is equivalent to Pz # Qz or equivalently zP # Qz for
any non-zero z € Z(Q)P. Thus (ii) = (i) is trivial, and it suffices to show (i) = (ii). Suppose
that Pe = Qe for some non-zero e € QP. By a standard exhaustion argument based on the
comparison theorem we can choose an orthogonal family {e;};c; of projections in @ such that
e; Zein @ for all i € I and ceQ = Ziel e;. Choose a partial isometry v; € @ with viv; = e;
and v;v} < e, and then Pe; = Pvfv; C Pev; = Qev; C Qe;, implying Pe; = Qe; C (). For
x € Ponehas zc¥ =Y, we; =, Eg(x)e; = Eg(z)c¥, and therefore Pc® = Qcg.

(2) By (1) it suffices to prove that ePf # eQf for any non-zero e € QP with e < f. As in
(1) one can find an orthogonal family {f;}ics of projections in @ such that f; 3 f in @ for all
icland ) ., fi= c? = 1. On contrary, suppose that ePf = eQ f for some non-zero e € QP
with e < f. Then one has ePf; = eQf; in the same way as in (1). Hence, as in the above (1)
one can justify, by using Eq, the following computation: eP = 3., ePf; =3, ;eQfi = eQ,
a contradiction to the entire non-triviality of P O @ thanks to (1).

(3) Choose a maximal (with respect to set-inclusion) family {y; }ier of elements in Ker(Eq) so
that {s(Eq(y;¥yi)) yier is an orthogonal family of projections in Q. Suppose ), ; s(Eq(y; i) #
1. Set e :=1—3,;8(Eq(yjyi)) € QP \ {0}. Since P O Q is entirely non-trivial, one has
Pe # Qe by (1), and hence can choose x € P with ze ¢ Q. Hence ze — Eg(ze) # 0 and
set y := xe — Eg(ze) € Ker(Eg). Clearly, ye = y, and thus Eq(y*y) = eEqg(y*y)e, implying
s(Eq(y*y)) <e=1-=3,.;5(Eq(yfyi)), a contradiction to the maximality of {y;}ics. O
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Let (M, E) = (M1, E1) xn (Ma, E3) be an amalgamated free product throughout the rest of
this section.

Theorem 4.3. Assume that there is a faithful normal state @ on My such that one can find
a (possibly non-unital) dense (in any von Neumann algebra topology) *-subalgebra My of M,
with E1 (M) C My and a net vy of unitaries in the centralizer (Mi), in such a way that
Eq(y*vaz) — 0 o-strongly for all x,y € My. Assume also that Ma D N is entirely non-trivial.
Then we have:

(0) ((My),)' N M = ((My),) 1 M.

(1) Z(M) = Z(M;)N Z(Mz3)N Z(N).

(2) Let x be an arbitrary faithful normal semifinite weight on N. Then, if a unitary u
i M satisfies ai‘OE = Adu for some t € R, then u must fall in N. In particular,
T(M) = {t e R|o)}°"" = Adu = o)X°"* for some u € N*}.

(3) M is semifinite if and only if there is a faithful normal semifinite trace Try such that
boti/szrN o E,L and Trﬁ/o Es are_traces.

4) Z(M) =Z(M)NZ(Mz)N Z(N).

Proof. (0) is nothing but what Proposition B3] says.

(1) Let € Z(M) be arbitrary, and then x must be in My by (0). For any y € M3 one
has y(x — F1(2)) + yE1(z) = yx = 2y = E1(z)y + (v — E1(x))y, and thus {yE1(z), Br (z)y},
y(x — Eq1(z)) and (z — F4(x))y are orthogonal with respect to E due to the free independence
between M; and M. Thus y(x — Ei(x)) = 0 so that (by looking at the FE-value of the
product of its adjoint and itself) we get (x — Eq(z))*Ea(y*y)(x — E1(z)) = 0. Therefore,
E>(y*y)(x — Er(z)) = 0 for all y € M3. By taking its adjoint one can easily see that (z —
E1(2))* Iran(Bs(y=y)) = 0 s0 that (z — E1(x))*s(E2(y*y)) = 0 for all y € M3. By Lemma[£2] (3)
one can find a family {y;}ics of elements in M3 so that » ., s(E2(y;y:)) = 1, which implies
x = Eq(z) € N. The desired assertion is now immediate.

(2) One has UfOEMl = Ad([Dy : Dx o F1]; u) by Connes’s Radon—Nikodym cocycle theorem
and [20, Corollary 1X.4.20]. Since (M1), C Myog,,, , we have [Dy : Dy o Er]yu € My by
(0). In particular, u € M, since [Dy : Dx o E]; € M. For y € Mg we have o¥°% (y)(u —
E1(u) 4+ oX°F () Er(v) = of°F(y)u = uy = E1(w)y + (u — Fy(u))y, and as in (1) we get
(u—E) (u))y = 0, since 07°% (y) = 0X°2(y) € Mg by ZI). The same argument as in (1) again
shows u = Fj(u) € N. The T-set computation is straightforward.

(3) M is semifinite if and only if there is a 1-parameter unitary group u(t) in M so that
oX°F = Adu(t), t € R, for a fixed faithful normal state y on N. See [20, Theorem VIIL3.14].
Then u(t) € N by (2). By Stone’s theorem u(t) = H' with some positive non-singular, self-
adjoint H affiliated with N. Since o (u(t)) = oX°¥ (u(t)) = u(t), H must indeed be affiliated
with the centralizer N,. Hence, by [20, Lemma VIII.2.8] we can construct a faithful normal
semifinite weight y -1 on N, and by the construction we observe that xg-10FE = (xo E)g-1.
Moreover, by [20, Lemma VIIL.2.11] we have o, *°” = H=itgX°P(_)H* = id. Hence the
XHg-1 is a desired faithful normal semifinite trace on IV.

(4) By (0) together with the same argument as in [22], Corollary 4] we observe that ((M1),)'N
(M % _comp, R) = ((M1)g) N (M1 %0 R), where (M), C M1 C€ M < M X_eopy, R canonically
as in §2. It follows that (M 1)'N M=z (M 1), where we need Connes’s Radon-Nikodym cocycle

theorem together with [20, Theorem X.1.7]. Choose an arbitrary € Z(M). Then z must fall in
Z(M,) € M. Fory € M3 C M3 one has y(z—E(z))+yE(z) = yz = zy = E(z)y+(z—E(z))y,

and thus y(z — E(x)) = 0 since My, My are freely independent with respect to E as remarked
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in §2. In particular, we get Es(y*y)(z — E(z)) = 0 for all y € Mg as in (1). Therefore, using
Lemma 2 (3) as in (1) once again we can prove z = E(z) € N. Hence we are done. O

Let us illustrate how the above theorem is useful by giving next two corollaries. The first
corollary shows that Proposition[3.1lis useful to confirm the necessary hypothesis of the theorem.
The second one does that the theorem is still applicable beyond the case where N is semifinite.
Remark that the first one can be viewed as a simultaneous generalization of both [27, Theorem
3.4] and [21], §4].

Corollary 4.4. Assume that M, is diffuse, N of type I and Ms 2O N entirely non-trivial. Let
2z € Z(N) be the unique projection so that Nz is diffuse and Nz* atomic, and assume further
that MycM has no type I direct summand when z # 0 (i.e., this last assumption is fulfilled if
M has no type I direct summand). Then all the assertions of Theorem[{.3 holds with a certain
faithful normal state p on M.

Proof. Let us fix a faithful normal semifinite trace Try on N. Write ¢ := ¢M1 for simplicity.
Clearly U;HNOEI (¢) = cforall t € R, and thus Takesaki’s criterion shows that there is a Try o E-
preserving unique conditional expectation Er, : My — L := NV {c}/ = Nc® Nc¢t (2 N). In
particular, one observes that E; o Ej, = E; holds. As in the proof of [27, Theorem 3.4] one can
choose a faithful normal state ¢ on M;j such that (Mic)yy,,. . has no type I direct summand
and (Mch-)@Mch is just only diffuse. Then it is clear that (Myc)yy,,,. Zre Nc with EL [are
and Try o Eq [y and that (Mlcl)@Mlc
Nct = (Nzt)et is a reduced von Neumann algebra of the atomic part Nz*. Therefore, by

the equivalent condition (i) in Proposition 3] there are two nets vg\l) and v§2) of unitaries in

(Mi16)gy, . and (Mlcj-)g,[Mch, respectively, so that Ey, (yfvg\l)xl) — 0 and EL(y§v§2)x2) —0
o-strongly for all x1,y1 € U{Mip|p € (Ne)P; Try o E1(p) < +oo} and all zo,y2 € [ J{Mip|p €
(Nct)P; Try o Bi(p) < +oo}. Remark that Ep, = (Ep [ae) @ (Ep [ag,00) in My = Mic® Myct
and that Try(p) < +oo implies both Try o Ey(pc) < +oo and Try o Ej(pct) < +oo for
p € NP. Thus, letting vy := vg\l) ® v§2) € (M1€) gty @ (Mch)WMlCL = (M), one has, for all
z,y € U{Mip|p € NP;Trn(p) < 400}, Er(y*vaz) — 0 o-strongly and hence E;(y*vyz) =
Ey(Er(y*vaz)) — 0 o-strongly. Hence we can apply Theorem with the above ¢ and
My = U{pMip|p € NP; Try(p) < +o0}. Note here that 9; is indeed a x-algebra thanks to
the Kaplansky formula [12, Theorem 6.1.7] and dense in any von Neumann algebra topology
due to the semifiniteness of Try. O

Mic

. A er Net with Er [ar,e and Try o Ey [yt since

Corollary 4.5. Assume that (M, E71) is one of the following: (i) M1 = N X, G and F; is
the canonical conditional expectation from My = N X, G onto N, where v : G ~ N is an
infinite discrete group action preserving a faithful normal state ¢» on N. (ii) M1 = Q®N and
B = y®idy, where Q is a diffuse von Neumann algebra with a faithful normal state 1. Assume
also that My D N is entirely non-trivial. Then all the assertions of Theorem [{.3 holds with
p =1 oE in (1) and with ¢ = @o®x in (i), where Qy, is diffuse (such a state @y certainly
exists) and x arbitrary.

Proof. Case (i): Since v is invariant under the action «, the restriction (¢Y®idg2(ay)) [Nx.G
gives a faithful normal conditional expectation from Ey, : M7 = N x,G — L(G) = C1 x G, and
it is plain to see that ¢ o By := 7g o Ey, with the canonical tracial state 7¢ on L(G). Clearly
L(G) = C1 x G sits inside (N %o G)yor, and is diffuse (see e.g. [6, Proposition 5.1]). With
p:=1oE =171g0FE, and M = span{z)y |z € N,g € G} one can choose a net vy from
L(G) = C x G as in Theorem B3] since L(G) is diffuse and E1 [1(@y=c1xe= Ta(—)1.
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Case (ii): As in the proof of [27] Theorem 2.4] one can choose a faithful normal state ¢y on
@ in such a way that the centralizer Q, is diffuse. Set ¢ := po®yx with a faithful normal state
xon N and My :=Q O N =span{z @y |z € Q,y € N}. Then one can choose a net vy from
Qo ®@C1 as in Theorem 3] since Q, is diffuse. O

The next lemma seems well-known, but we do give it for the reader’s convenience as a
reference for the discussions below.

Lemma 4.6. Let (P, F) = (P1,F1) *q (P2, F2) be an amalgamated free product. If a projec-
tion f € Q has ¢f =1, then (FPf,F Iyps) = (FPLf.Fy [gpig) %1Qs (FP2f Fa lgpay) holds

canonically.

Proof. Clearly fPif and fP,f are freely independent with respect to F' [¢pf, and hence
it suffices to see that those generate fPf as von Neumann algebra. As in the proof of
Lemma one can find partial isometries {v;}scr in @ such that >, viv; = c? =1 and
vivy < f for all ¢ € I. For any alternating word z = z1---x, € A°(P?, Py) one has fzf =
Dirinyer(fr10})) (Vi 220],) -+ (Vi @5 f) o-strongly, which falls in the o-strong closure of
the linear span of A°((fPyf)°, (fP2f)°)). Since P is the o-strong closure of Q+spanA°(FPy, Ps),
the assertion is immediate. ]

Lemma 4.7. Let P O @Q be an inclusion of o-finite von Neumann algebras with a faithful
normal conditional expectation Eg : P — Q, and assume that ) is commutative.

(1) If P has no type I direct summand and a faithful normal semifinite trace Trp on P with
Trpo Eg = Trp, then there is a faithful normal state x on Q) so that for each n € N with n > 2
one can find a unitary u, € Pyop, in such a way that Equf)=0forall1<k<n-1,i.e.,
EQ(uﬁl*uff) =0 forall0<ky#kys<n-—1.

(2) If P is diffuse and Q is atomic, then there is a faithful normal state ¢ on P such that

(a) the centralizer P, contains @,

(b) there are two unitaries u,v € P, so that Eg(uf) = Eé(vk) = 0 as long as k # 0,
i.e., EquF*uk?) = EE(0F1*v*) = 0 for all ky # k. Here Ef denotes the unique
p-preserving conditional expectation from P onto @ whose existence follows from (a)
and Takesaki’s criterion.

(3) Let z € Z(P) be the central support projection of the type I direct summand of P. Assume
that P is diffuse and Qz atomic. Then there is a faithful normal state @ on the continuous core
P of P such that

(a) the centralizer (16)50 contains @, where @ =QXxR— pP=rpr X xorq R with a faithful
normal state or semifinite weight x on @,

(b) for each n € N with n > 2 one can find a unitary u, € (ﬁ)w in such a way that
Eo(uk) = Eg(uﬁ) =0 foralll<k<n—1,ie, Egub*uk) = Eg(vfbl* vk2) =0 for

all 0 < ky # ky <n—1. Here EQ = (Eq®idp(2(r))) [ 5, and Eg denotes the unique

p-preserving conditional expectation from P onto @ as in (2).

The same assertion also holds for P O Q with Eq themselves, if it is further assumed that P
is semifinite and Eq preserves a faithful normal semifinite trace Trp on P.

Proof. (1) By assumption Trp [¢ is semifinite, and thus one can choose an orthogonal sequence
{@m}m of projections in @ with Trp(gm) < +oo and ) ygm = 1. Consider the faithful

normal state x := ) m'ﬁp Qg O Q. (Remark here that @) is commutative.)

Clearly the centralizer Pyop, contains ZieN gmPam (2 ZieN Qam = Q) so that Pyog,
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must be of type II;. Choose a MASA 2 in Py.p, that contains Q. By [11, Corollary 3.16], for

each n € N with n > 2 there are n orthogonal eg,...,e,—1 € AP, all of which are equivalent
in Pyog,, and Zl o € = 1. Then one can construct a unitary u, € Pyog, such that u,eq =
€1Un, Un€l = €U, ..., Unn_1 = €oU,. Let Ey : P — A be the x o Eg-preserving conditional

expectation (whose existence follows from Takesaki’s criterion), and clearly Eg o Ey = Eq.
Then, for every 1 < k <n — 1 one has Ey(uf) =0 so that Eg(uf) = Eq(Ex(uf)) = 0.

(2) Write Q = deN Cgm. Clearly Eq factors as P EMP Q' NP = Q, where Q' N
P = EieN 4¢mPqm and Eqgnp(x) = >, cy@m®qm for © € P. Moreover ¥ is of the form
U enTm) = D omen Ym(Tm)@m for T, € ¢mPgm, with faithful normal states ¢y, on gm Pgm.
Since P is diffuse, so are all ¢, P¢,,; hence by the proof of [27, Theorem 3.4] there are faith-
ful normal states ¢, on ¢y, Pgm with (¢mPgm)e,, diffuse for all m. Define ®(} yTm) =
Y men Pm(Tm)qm for Ty € gmPgm, giving a faithful normal conditional expectation from Q'NP
onto Q. Set ¢ := x o ®o Egnp, a faithful normal state on P, with a faithful normal state x on
Q. Then Q'NP, = ZmeN(quqm)wm, a direct sum of diffuse von Neumann algebras. One can
choose, for each m, unitaries w,, v € (GmPgm)e,, 0 that m,(uk,) = 1, (vE) = 0 as long as
k # 0. (See the proof of [27, Theorem 3.7].) Then u := )"\ Um, v := > .yVUm are unitaries
in Q' N P,, and moreover Eg(u*) = ¥(uk) =0 and Eg(vk) = ®(v*) = 0 as long as k # 0.

(3) Consider P = Pz® Pzt D R:=QV {2z} = Qz® Qz+ 2 Q. Let x be an arbitrary
faithful normal state on Q). As in the proof of Corollary 4.4l one can show that there is a unique
faithful normal conditional expectation Er : P — R with Eg o Er = Eg. Then we have

~ Eqlr ~

- B
P=PxrgR D B=Rx womomR 2 Q=QxpR,

where ER = (ER®idB(L2(]R))) rls and EQ [R = ((EQ [ )®1dB(L2(]R))) r = EQ r . Since ER =
(Eglp.) ® (Eglp,.)in P = Pz @ Pz*, we have, by [20, Theorem X.1.7 (ii)],
ERrl

~ Egp ~ —~ ERrlp. — — pl ——
(P ) R) = (Pz ) Qz) & (le ) Qzl),

where the continuous cores and the conditional expectations in the right-hand side are defined

—

similarly as above. Since Pzt has no type I direct summand by the assumption here and [20,
Theorem XII.1.1] and since Eg [p.. preserves the canonical trace on Pzl seee. g. [I4, §4], we
can apply (1) to the second (PZJ- B) QZJ-) with Eg[p,. directly, and get a faithful normal

state p,1 on Pzt with 0,1 0 (FERrlp,t) = ¢, such that for each n € N with n > 2 one can
find a unitary u,. ,, € (Pz)g, . in such a way that ER(u 1) = (Erlpet )(uk, n) =0 for all

1<k<n-—1. Write Qz = meN Cepm, and Eg | p, factors as Pz (Qz)’ﬁPz (Qz)' NPz N Qz,
where (Qz) N Pz = j‘ieN em(Pz)em and EqQ.ynp:(T) = Y cnyemTem for x € Pz. More-
over, ¥ is of the form V(Y  _yTm) = > cny¥m(@m)em for z, € e, (Pz)e, with faithful
normal states ¥,, on e, (Pz)e,. By the assumption here Pz is diffuse and of type I, and
thus so are the e, (Pz)en; hence the centers of those must be diffuse, and so are all the
(em(Pz)em)y,,. In the same way as in (2), one can find a unitary u. € ((Qz)' N Pz)y,ow with
‘any’ faithful normal state x. on @z in such a way that U(uk) = 0 for all k # 0. Denote

by A(t) the generators of C x R in Pz = (Pz) X yxzotepipy R ( (Qz) Xox- R = Q= canoni-
cally), and set ¢, := 7o (ER [pz), a faithful normal state on Pz with a fixed faithful normal
tracial state 7 := Y.®7p on Qz = Qz®A(R)”. Note that A(t)u. = z‘zo(E’? PZ)( DA =
u A(t) for all ¢ € R. Thus, for any finite sum = = Y, zpA(tx) € Pz with z, € Pz we
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have wz(uzx> = Zk T(\p(qu(Qz)/ﬂPz(Ik)))‘(tk» = Zk XZ(\I/(UZE(QZ)’OPZ('IIC»)TO(/\(tk)) =
>k )iz/(\I/(E(QZ)/ﬂpz(:zrk)uz))To()\(tk)) =Y P (@ruA(tr)) = @z (xu;). It follows that u, falls

in (Pz),.. Clearly Er(u?) = (Eglp:)(uf) = Ep(u?) = (k) = 0 for all k # 0. Set

o(z) = 3(p2(22) + @1 (xzT)) for © € P, and then ¢ becomes a faithful normal state on P
and satisfies ¢ o Fr = ¢, implying the desired condition (a), since R is commutative. For
each n € N with n > 2 we define the unitary u, = u, ®u ., € Pz @ ]3;1 = f’, and thus
Er(uf) = (E/J;\[?z)(ulj) ® (E;TP/ZL)(u’;Lm) =0 forall 1 <k < n—1. Hence the desired
condition (b) is immediate as in (1) from the fact that EQ = EQ o Eg and ES = ES o Eg (the

latter follows from ¢ o Er = ). The final assertion is shown in the exactly same way (but
easier) as above. O

We will give two applications of Proposition[3.5l The latter is a straightforward generalization
of both [27, Theorem 3.7] and [28, Proposition 3.1]. Remark that the former reproves the
assertions (1), (4) in Corollary 4] without any use of the technologies provided in §§3.1-3.2.

Theorem 4.8. Assume that My diffuse, N of type I and My O N entirely non-trivial. Let
z € Z(N) be the unique projection such that Nz is diffuse and Nz* atomic, and assume further
that (My)cM has no type I direct summand when z # 0 (i.e., this last assumption is fulfilled if
M; has no type I direct summand). Then (M),, = (M)Iﬂ (M)w = (M)/QZ(N)W. In particular,
M and hence M itself are non-amenable. If M 1is additionally assumed to be semifinite, then
M,=MNM“=M NZ(N)* also holds.

After the completion of the main part of the present work we learned that Houdayer and
Vaes have also independently been obtained a similar (but not same) result as above under
different assumptions with different (and simpler) methods. See [8, Theorem 5.8]. More on this
will be discussed at the end of this section.

Proof. Note that (N D N) = (N@A(R)” O N&C1). Since N is of type I, one can choose an

abelian f € N? (C NP) with ¢y = 1. Let us first prove:
F(N)“f = Z(N)“ . (4.1)

For cach € N* with representative (z(m))m, one has fof = [(fz(m)f)m], and for every
m there is a unique z(m) € Z(N) with fz(m)f = z(m)f. By cjy = 1 the mapping =’ €
N’ 2/ f € N'f gives a bijective normal *-homomorphism (thus || — ||o-preserving), and hence
(2(m))m defines z € Z(N)¥. Consequently we get fzf = zf € Z(N)“ f.

By Lemma together with (2.5) we have the identification

(%,M,{) = (f/f\}ff,Emlf) *NF (m,Emf) (4.2)

Let ¢ € Z(M;) be the central support projection of the type I direct summand of M;. Then
e = cf is that of fM;f too, and fN fe = Z(N)fe must be atomic (or 0 if e = 0) by the
assumption here. In fact, if this was not the case, then Z(N)c) = Z(N)e = Z(N)fe is not
atomic, and hence zc¥ # 0, i.e., ze # 0, implying cMic > zc > ze # 0, a contradiction to that
MM has no type I direct summand. Therefore, by Lemma 7] (3) we can apply Proposition
BA to (£2) and thus any x € (f]\\i/f)/ N (JTJ\\J/f)w and any y € (fMgf)o must satisfy that

e~

(B2 Tima )W y) (@ — (B £)“ (2)) = 0, (4.3)
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where Efay, g I8 is the umque conditional expectation from fM f onto fM; f determined as (2.2)).

Note that fMQf 2 fo with Fy [¢arn, s contains fMof O fNf with Fy [fay,r canonically.
Hence, by Lemma 12 (2), (3) one can find a family {y;}icr in (fM2f)° in such a way that
Yicr S(Eg(y;‘yi)) = f (= 1yny). Therefore, it follows from (£3)) as in the proof of Theorem [4.3]

that x = (Efle)w(:v) € (fle)w. Consequently (fo)/ N (fo)w = (fo)/ N (fle)w.
In the same way as in the proof of Theorem [£3] we see, by using the above {y;}icsr again and
the free independence between (fle)w and (fMgf)w, that

(FMF) 0 (FMF)" = (FMF) 0 (FNF)”. (44)
Choose a faithful normal semifinite trace Try on N, and M D M (k=1,2) D N are realized
as M = M x omnen R D My, = My X _1iyor, RD N = N x o™~ R. Since anN"E(f) f for all

t e R, fo ) kaf O fNF are naturally identified with fo ) kaf ) fo Hence (&4
and (IH) imply that
(M) ff(M)“f=(M)fnfN“f=(M)fnZ(N)“f. (4.5)

Let 7¢ be the normal surjective *-homomorphism z € (M)IQ(M) —af € (M’ ( ) )f =
(M)/f N (f(M)wf) (c.f. [0, Lemma 4.1 (i)]), which is also injective due to ¢}’ =1 (and hence
¢}’ =1 too). By (&I) we have (M)/ N (M)w = w}l((N)/f N Z(N)wf). As in the proof
of Lemma 2] one can choose partial isometries {v;};cs in N so that D icr Vivi = cf =1
and viv} < f for all i € I. Then, if z = 2f € (M )fﬂZ( N)“f with z € Z(N)“, then
we have yz = Zzl isel “v“yzv vl2 = 211,1261 fl (’Ulfl\va)ftvzi = 21171261 i1 (vllyv;)viz =
>, i€l Zlv“zyv v, = zy fory € M, implying z € (M)/QZ(N)“’. Hence (M ) FAZN)f =

—~ / T\ W — A/ =7 A/
((1\{) N Z(N )A)/f Consequently ( lﬂ (Ml = W.fi((M) fQZ(N) f) = wlfl(((M) N
Z(N)*)f) = (M) nZ(N)=. Since (M) n (M)” = (M) N Z(N)* is commutative, it must
equal (M), as observed in [Z3, (8) in page 360].

The final assertion is also shown in the exactly same way as above by using the final assertion

in Lemma [£7] (3), since there is a faithful normal semifinite trace Try on N so that Try o Ej
(k =1,2) are traces again thanks to Corollary 4] (3). O

Remark 4.9. The same type argument as in Theorem [4.3] (3) works for constructing a faithful
normal state y on N with U%OE =1Id with T'= —2n/log A\, 0 < A < 1, when M is known to be
a factor of type III, under the same set of assumptions as in Theorem Hence the discrete
core of such M can also be written as an amalgamated free product von Neumann algebra of
the same form as the continuous core, and an analogous formula for its asymptotic centralizer
holds. In particular, the discrete core of such a factor of type Il is an oco-amplification of a
non-strongly stable type II; factor. Further and more detailed discussions related to this aspect
will be given elsewhere.

Theorem 4.10. If M, is diffuse, N of atomic type I and Ms O N entirely non-trivial, then
the following hold true:

(1) M,=M'NM*“=MnNZ(N) (= Z(M)). Hence M does never have no type IIly direct
summand (see [B, Theorem 2.12]), and becomes full in the sense of Connes [5] under
the separability of preduals.

(2) The Connes T-invariant (M) (see [5]) is determined under the separability of preduals
as follows. Let x be a faithful normal state on N. Then t,, — 0 in 7(M) as m — oo
if and only if there is a unitary w € N so that UXOE — Adw in Aut(M) as m — oo.
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Proof. (1) This is proved along the same line as in the proof of Theorem [£.§ by using only
Lemma [£7] (2) instead together with a well-known fact Z(N) = Z(N)* due to the assumption
that it is atomic.

(2) We can write N = Z?GI B(H;). Looking at this structure with the given x we can
choose a collection {e;}ics of abelian projections in N with »,_;e; = 1 such that for each
i € I there is a larger abelian f; € NP so that e¢; < f;, c§v =1 and o)f(f;) = fi (t € R).
Assume that t,, — 0 in 7(M) as m — oo. Then there is a sequence (u,)n, of unitaries
in M such that Adu,, o aé:E — id in Aut(M) as m — oco. As observed in the proof [28]
Proposition 3.1] the () defines a unitary v € MY, and clearly uf; = fiu for all i € I.
Hence f;u defines a unitary in f; M f; = (f;M f;)*, and we denote it by wu; for simplicity. Since
fiM f; is still diffuse, looking at f;M;f; 2 fiNf; = Z(N)f; one can choose a faithful normal
state @ on f;Mif; as in Lemma BT (2). Set ¢(x) = ¢(fixfi) + x o Ea(fitafi), x € My,
which becomes a faithful normal positive linear functional on M;j. Clearly f; € (M), and
thus fi[Dx o Erv : D@l = [Dx o E1 [f,m 5,0 Dole for all ¢ € R by the uniqueness part of
Connes’s Radon-Nikodym cocycle theorem. As observed in the proof of [28, Proposition 3.1]
again the sequence v, := [Dx o E1 : D], defines a unitary v € M{ and also the sequence

[ivm = v fi does a unitary v; € f; My fi = (fi M1 f;)*. Since ¢ o Eap, [g,0mp,= 00 (Eny Tgis,

, we have yu;v; = yuv = |[(YUmVm)m| = umvmowo(EMJf"M“) Y))m| = wvz = u;v;z for
tm
y € (fiMofi)° with z = [(of Pl )y 1 e (FMf)* = fiM“f; in the identification

(fiMfi, Efap) = (fiMyfi, By g 1) *gin g (fiMafi, B2 [ g, p,) provided by Lemma L6l
By Proposition B3 we get (E2 [ f,as7,) (Y™ y) (wivi — (En, [r,005,)” (wivi)) = 0 for y € (fidMz fi)°.
By using Lemma (2), (3) twice as in the proof of Theorem [A.§ we can prove firstly that
wv; € (fi My fi)* = fiM{ fi, secondly that u; € f; My f; (since v; € f; MY f;), and finally that
u; € fiN“fi = Z(N)“fi = Z(N)f;. Therefore, u =", ;eiu= . eifiu=>,.;eu; €N.
Letting w := u* € N* we have Adw* o aé:E — id in Aut(M) as m — co. O

The next proposition shows that Proposition is still useful beyond the case where N is
of type I or even semifinite. The proof goes along the same line as that of Theorem [4.8 but is
easier than it. Hence the proof is left to the reader.

Proposition 4.11. Assume that there is a faithful normal state @ on My satisfying the following
conditions:

(a) of (N)= N for allt € R.

(b) For every n € N with n > 2 there are unitaries uy = u,(c"),v;C = ’U](cn) € (Mi),, 0 <
k <n—1, such that Ey(uj, uk,) = EX (v§ vk,) = 0 for all 0 < ky # ky <n — 1, where
E% denotes the unique @-preserving conditional expectation from My onto N, whose
existence follows from (a) and Takesaki’s criterion.

Assume also that My D N is entirely non-trivial. Then M' N M®“ = M’ N N* holds. Moreover,
if it is further assumed that N is finite, then M, = M' N M*“ = M' N N,,,.

It is easy to confirm that the (M1, F1) in Corollary [L5]satisfies the assumption of Proposition
EIT Thus M’ N M* = M’ N N“ holds under the set of assumptions in Corollary .5

Assume that M; is a von Neumann algebra with separable predual and that N is a Cartan
subalgebra in M;. It was proved in [21I, Lemma 4.2] that if M is further assumed to be a
non-type I factor, then there are a faithful normal state ¢ on M; with po Fq = ¢ and a unitary
u € (M), such that E;(u*) = 0 as long as k # 0. The same assertion can indeed be proved
even when M is further assumed only to have no type I direct summand (i.e., without being
a factor). The proof is similar to [2I] Lemma 4.2] but tedious based on disintegration. Hence
such (M, E) satisfies the assumption of Proposition 111
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Remark 4.12. Almost all the results obtained above have appropriate ‘HNN variants’ thanks
to tricks given in [26]. Here it should be emphasized that our results so far essentially need
assumptions for only one free component. The notion of HNN extensions of von Neumann alge-
bras as well as their basic properties including their modular theoretic aspects were established
in [25].

In closing of this section we discuss one of Houdayer and Vaes’s results [8) Theorem 5.8].
This part of the present paper is added after receiving a draft of [8] in order to point out only
one consequence obtained from this and that papers without any new idea. Therefore, some
facts provided in [8] are necessary below. The original aim of the present work is to provide
amalgamated free product counterparts of the results in [27, §3]. One issue to do so is how to
formulate a suitable assumption saying that M; is ‘diffuse relative to N’ which corresponds to
that M is diffuse when N = C1. The requirement for M; 2 N in Theorem 3] seems to be
one strong form of them without any restriction on N, but it seems not so easy to check it in
general. Thus we propose the requirement for M7 O N in Corollary 4.4 and Theorem 4.8 as
such a candidate in the special case when N is of type I. However a more sophisticated one
in the special case seems to be that M; O N has no trivial corner, which is proposed in [8,
85] by a different motivation. In fact, Houdayer and Vaes [8, Theorem 5.8] give a factoriality
and non-amenability result under the set of assumptions that both My O N, k = 1,2, have no
trivial corner and that N is of type I, and establish their primeness result under the same set
of assumptions. Here an inclusion P O @ of von Neumann algebras is said to have no trivial
corner if pPp # @Qp for any non-zero projection p € Q' N P. Any exact general relationship
between theirs and ours is not immediately clear. However the proof of Theorem [£.§ and general
properties on inclusions without trivial corner provided in [8] §§5.1] altogether immediately give
an improvement of [8, Theorem 5.8], though it is not immediately clear whether the primeness
result in [8] Theorem E] holds or not under the new set of assumptions.

Theorem 4.13. If My O N has no trivial corner, N is of type I and My O N entirely non-
trivial, then the following hold true:

(1) Z(M) = Z(My) 1 Z(Ma) N Z(N).

(2) Z(M) = Z00) N Z(Ma) N Z(N).

3) (M), = (M) n(M)” = (M) nZ(N)~.
In particular, (3) explains that M does never become amenable.

Proof. Tt is trivial that (3) = (2) = (1), see e.g. the proof of [25, Theorem 5.2] for (3) = (2)
and [20, Theorem X.II.1.1] for (2) = (1). Thus it suffices to prove only (3). The line of the
proof below is exactly identical to that of Theorem [£.8] and thus we keep the notations there.
In fact, only one modification is sufficient. By [8, Lemma 5.2, Proposition 5.5] the inclusion

fMyf 2 ]‘/]\7? also has no trivial corner. Then it suffices to prove the exactly same assertion as
in Lemma .7 (1) with replacing the assumption that P has no type I direct summand by that
P D @ has no trivial corner. In fact, by using this new assertion instead of Lemma [£.7] (3) one
gets the same equation (43 and the rest of the proof there works well.

Let P O @ be an inclusion of von Neumann algebras without trivial corner. Assume that
Q@ is commutative, P has a faithful normal semifinite trace Trp and there is a faithful normal
conditional expectation Eq : P — @ satisfying Trp o Eg = Trp. As in the proof of Lemma 1]
(1) we choose the gn,’s and x. Then we apply [8, Lemma 5.4 (3)] (note that it holds without
assuming the separability of preduals, see Lemma .14 below) with ¢ = p := ¢,, and get a
unitary um,, € ¢mPgm satisfying that Eqg (uk)) = 0 as long as k # 0. Letting u := Y o men Um We
have u € Pyop, and EQ(uk) = 0 as long as k£ # 0. Hence we are done. O
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As remarked in [8, Lemma 5.3] the next lemma immediately follows from Rohlin’s general
theorem on Lebesgue spaces under the separability of preduals. Thus only the advantage of the
proof below is no use of disintegration; hence the separability of preduals is not necessary in [8,
Lemma 5.4]. Although it is a rather minor point, we do give it for the sake of completeness.

Lemma 4.14. Let B D A be (unital) inclusion of commutative o-finite von Neumann algebras
with a faithful normal conditional expectation E4 : B — A. If Bf # Af for any nonzero
projection f € B, then there is a unitary u € B such that E4(u*) =0 as long as k # 0.

Proof. Choose non-zero f € BP. Since Bf # Af, there is z € B such that z ¢ Af and
0 <z < f. Since Ex(x) < E4(f), one can choose a positive contraction ¢ € A so that
cEA(f) = Ea(z) (since A is commutative). Letting y := x — ¢f € Bf we have y = y* # 0 (due
tox € Af) and E4(y) = 0. Therefore, an idea given in the proof of [3| Lemma 2.1] enables
us to construct projections e, ...y € B,n €N, g € {1,2}, in such a way that Eler,mnen) =
C(er,end) T €er,en,2) a0d Eale, . o)) = %1. The proof is done by induction. Assume
that we have chosen up to n-th stage. Set A, := {x = 2* € Be|||z]|loc < 1, Ea(z) = 0} with
€ 1= €(cy,....e,)- 1t 18 @ o-weakly compact convex subset, and thus has sufficiently many extremal
points due to the Krein—-Milman theorem. Let a € A, be an extremal point. Then it suffices to
prove a = 2eg — e for some ey € BP with eg < e, since it clearly implies that Ea(eg) = 2 E4(e).
On contrary, suppose that it is not the case. By the spectral decomposition of a one can find
6 > 0 and non-zero f € BP in such a way that f < e and —(1—4)f < af < (1-94)f. By
what we have shown above, there is a non-zero y = y* € Bf such that —§f < y < §f and
Ea(y) =0, and hence a +y,a —y € Ac and a = 1(a +y) + 3(a — y), a contradiction. Thus
€(er,en,1) i= €0 and e(e, .. 2y := e — eg become desired ones in (n + 1)-th stage. Hence we
have proved the claim. Let (C,w) be the von Neumann algebraic infinite tensor product of
C & C with equal weights {1/2,1/2}. Once passing GNS representations one can construct an
injective normal *-homomorphism from C®A into B which intertwines w®id 4 and E4. Hence
the desired assertion follows, since (C,w) 2 (L(Z), 7z) thanks to [19, Theorem III1.1.22]. O

The entire non-triviality of an inclusion P 2 @ of von Neumann algebras is nothing but
just the non-triviality of P when Q = C1, and hence Theorem [£13] is no longer true under
assuming only that M; D N is entirely non-trivial instead. In fact, the plain free product
of two 2-dimensional algebras with suitable states provides a counter example, see [27] for
suitable references therein. Finally we conjecture that Corollary 4.4, especially a strong kind
of irreducibility ((M1),) N M C M; for some faithful normal state ¢, should also hold under
the same set of assumptions of Theorem I3l This is rather technical, but such a property
may have some potential in further analysis. We will consider it in future work beyond the case
where Z(M) = Z(M1) N Z(M3) N Z(N) need not hold.
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