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Spectral bounds on closed hyperbolic 3-manifolds

Nina White

Abstract

Fixing constants ε and c, we consider the class of all closed ε-thick hyperbolic 3-manifolds M
such that π1(M) can be generated by c elements. For all k, we prove that λk(M) ∼ vol−2(M) up
to a multiplicative constant depending only on ε, c, and k, where λk(M) is the kth eigenvalue
of the Laplace–Beltrami operator.

1. Introduction

Recall that the Laplace–Beltrami operator Δ = −div∇ on a closed Riemannian manifold M is
a self-adjoint linear operator defined onH2(M), the Sobolev space of twice weakly differentiable
L2-integrable functions on M . The set of values λ satisfying Δf = λf is positive, discrete, and
unbounded and can be ordered

0 = λ0 < λ1 � λ2 � · · · .
The main result of this paper relates the kth eigenvalue value of the Laplace–Beltrami operator
of certain closed hyperbolic 3-manifolds to their volume. Biringer and Souto proved in [3] that,
given ε, c, δ > 0, there exist only finitely many isometry classes of hyperbolic 3-manifolds M
with inj(M) � ε, rank(π1(M)) � c, and λ1 > δ. In light of Wang’s Finiteness Theorem for ε-
thick hyperbolic 3-manifolds, this is equivalent to saying that, with injectivity radius and rank
bounds in place, λ1(M) → 0 as vol(M) → ∞. The following theorem implies their result and
additionally provides a precise asymptotic statement.

Theorem 1. For every ε > 0, c, k ∈ N, there exists Ω(ε, c, k) such that, if M is a closed,
ε-thick hyperbolic 3-manifold with rank(π1(M)) < c, then

1
Ωvol2(M)

� λk(M) � Ω
vol2(M)

,

where λk(M) is the kth positive eigenvalue of the Laplace operator on M .

Recall that the rank of a group is the minimal number of elements in a generating set. The
injectivity radius of a closed hyperbolic manifold M is half the length of the smallest essential
closed curve in M . If the injectivity radius of a manifold M is greater than ε, then we say that
the manifold is ε-thick.

Since we will refer to the hypotheses of Theorem 1 repeatedly, from now on we will say that,
Given ε and c, a closed hyperbolic 3-manifold M satisfies (∗) if the following
holds:

(∗) inj(M) � ε and rank(π1(M)) � c
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This notation represses ε and c, but will always be used in the context of fixed ε and c. Note
that for suitable choices of ε and c, there are infinitely many examples of manifolds satisfying
the (∗); think, for instance, of cyclic covers of a manifold fibering over the circle.

We discuss briefly the role of the various constants in the hypotheses of the theorem. The
lower bound in the theorem was proved by Schoen [15] and depends neither on k, c, nor
ε. Further, Schoen’s result holds more generally for Riemannian 3-manifolds with pinched
negative sectional curvature. The upper bound, however, definitively depends on c: Long–
Lubotzky–Reid showed in [13] that every closed hyperbolic 3-manifold has a co-final family of
covers {Mi} with Property τ . For any such family, vol(Mi) → ∞ and lim inf λ1(Mi) > 0. The
upper bound also definitively depends on k because λk(M) → ∞ as k → ∞. The proof of the
upper bound we present certainly depends on the injectivity radius bound ε, and the author
highly suspects that it is necessary for the theorem to hold. Lastly, the proof given also heavily
relies on the structure provided by hyperbolicity. In general, some kind of curvature bound is
necessary because Colbois and Dodziuk proved that every compact manifold Mn with n � 3
admits metrics g of volume 1 with arbitrarily large λ1(Mg) (see [9]). See [5, 7, 10] for similar
upper and lower bounds on λ1(M) in terms of volume in the case that M is non-compact.

To prove the upper bound in Theorem 1, we use the ‘max’ part of the Minimax theorem.
Loosely speaking, we can bound λk from above by constructing test functions with bounded
Rayleigh quotient. With the end of constructing these functions, we discuss a theorem of
Biringer and Souto that gives us (1) a topological decomposition of our manifold into pieces
including large-diameter product regions, and (2) a point-wise geometric statement about these
product regions. We strengthen their geometric statement, showing that these product regions
can be fibered by surfaces of bounded geometry. Finally, using this fact, construct step-like
test functions with bounded Rayleigh quotients.

2. Preliminaries

We recall some well-known facts and definitions about the Laplacian, hyperbolic geometry,
and 3-manifold topology. For more in-depth treatment of these subjects see, for example,
[1, 6, 11, 14, 16].

2.1. Minimax theorem

To bound λk from above, we use the ‘max’ half of the Minimax theorem, namely:

Minimax theorem. Let h0, . . . , hk ∈ C∞(M) be positive functions satisfying

τ vol(supphi ∩ supphj) = 0,

for every 0 � i < j � k. Then

λk(M) � max
0�j�k

R(hj),

where R(hj) is the Rayleigh quotient:

R(hj) =

∫
M

||∇hj ||2 dM∫
M
h2

j dM
.

See [6] for a proof.
Using the Rayleigh quotient is a common tool for bounding eigenvalues of the Laplacian.

See, for example, Canary’s result on bounds for λ0 for infinite-volume hyperbolic manifolds [7],
Cheeger’s inequality [8], and Huber’s result on λ1 for Riemann surfaces [12].
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2.2. Geometric convergence

To prove Theorem 1, we will often work with geometrically convergent sequences of pointed
hyperbolic 3-manifolds.

Recall that a sequence of framed manifolds {(Mi, ωi)} converges geometrically to (M,ω) if
there exist sequences {Ri} → ∞ and {Li} → 1, such that for each i there is an Li-bi-Lipschitz
embedding NRi

(x) →Mi taking ω �→ ωi, where NRi
(xi) is the Ri-neighborhood of xi, ωi an

orthonormal frame for Txi
Mi. This is sometimes called Gromov–Hausdorff convergence. We

often repress {Ri} and {Li} and describe this colloquially by saying that the Mi approximate
M for large enough i. (Recall that this is equivalent to convergence of the groups of covering
transformations with respect to the Chabauty topology.)

In many cases, it will be sufficient to forget about the baseframe and talk about convergence
of pointed manifolds (this time without baseframe): {(Mi, xi)}, xi ∈Mi.

When we have lower bounds on injectivity radius, we have the following useful
theorem.

Proposition 2 (see [1] for a proof). If a sequence of pointed hyperbolic 3-manifolds
(Mi, xi) has a positive lower bound on the injectivity radii at the basepoints xi, then some
subsequence converges geometrically.

This means that as long as basepoints are chosen in the thick part, sequences will always
converge up to subsequence.

A consequence of the above proposition and Mostow’s Rigidity Theorem is Wang’s finiteness
theorem. In three dimensions, the theorem is the following.

Theorem 3 (Wang’s finiteness theorem for dimension 3 [17]). Given ε, V > 0, there exist
only finitely many closed hyperbolic 3-manifolds with injectivity radius greater than ε and
volume less than V .

This will be important in the proof of Theorem 1 because it allows us to restrict our attention
to large-volume manifolds. This is also why Theorem 1 implies Biringer and Souto’s finiteness
theorem [3].

There is another notion of geometric convergence, smooth geometric convergence, in which we
require the embeddings NRi

(x) →Mi to be smooth and to converge smoothly to an isometric
embedding. Although this sounds a priori stronger than Gromov–Hausdorff convergence, they
are actually equivalent. See [1, Theorem E.1.13] for a precise definition of smooth convergence
and for the proof that it is equivalent to the Chabauty topology.

2.3. Doubly degenerate manifolds

An important lemma in the proof of Theorem 1 describes sequences of finite-volume hyperbolic
3-manifolds whose geometric limits are doubly degenerate. Recall that a doubly degenerate
manifold (of genus g) is a hyperbolic 3-manifold without parabolics homeomorphic to Σg × R

with two simply degenerate ends, where Σg is a closed surface of genus g. Recall that, in
the absence of cusps, an end of a hyperbolic 3-manifold is simply degenerate if there exists a
sequence of essential simple closed curves exiting the end. See [4] for a detailed discussion of
ends of hyperbolic 3-manifolds.

See [2] for a sketch of the proof of the following well-known fact.
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Fact 4. Let Mg,ε be the set of ε-thick, doubly degenerate pointed manifolds homeomorphic
to Σg × R, where Σg is a closed surface of genus g. Then Mg,ε is compact with respect to
geometric convergence.

2.4. Product regions

Lastly, we discuss a few topological facts we will need about product regions. These definitions
and facts will certainly be known to the expert, but we include them here for completeness.

Recall that an open (respectively, closed) product region is a 3-manifold homeomorphic to
Σ × (0, 1) (respectively, Σ × [0, 1]), where Σ is a closed orientable surface.

Any embedded surface in a product region homotopic to a boundary component will be called
a fiber. We say that an embedded surface in a product region is separating if its complement is
disconnected. A separating surface either bounds a compact region not meeting the boundary,
or it separates the boundary components. That is, the boundary components lie in distinct
components of its complement. Equivalently, any arc connecting the boundary components
necessarily meets the surface.

If a compact 3-manifold M has boundary ∂M such that ∂M contains no 2-spheres, but does
contain a compact connected surface F such that the canonical inclusion i∗ : π1(F ) → π1(M)
is an isomorphism, then M is a product region [11, 10.2]. Therefore, given a product region
M , a boundary component of M and any embedded fiber of M not touching that boundary
component together bound a product region. Iterating this fact gives us a useful statement we
will use repeatedly.

Fact 5. Two disjoint embedded fibers in a product region themselves bound a product
region.

Now, let T = Σ × I be a product region of genus g. Let Σ′ be a closed embedded surface
in T . We can view Σ′ as an element of H2(T ; Q). Recall that there exists a non-degenerate
bilinear pairing H1(T, ∂T ; Q) ×H2(T ; Q) given by linear extension of intersection number.
Because dimH1(T, ∂T ; Q) = dimH2(T ; Q) = 1, the following dichotomy holds: either Σ′ has
non-zero algebraic intersection number with the arc {x} × [0, 1], for some x ∈ Σ, in which case
it separates the boundary components of T , or Σ is null-homologous, in which case it bounds
a compact region not meeting the boundary. In particular, we have the following fact.

Fact 6. There are no embedded, non-separating surfaces in T .

Continuing with the same notation, let p be the projection:

p : T = Σ × I −→ Σ given by (x, t) �−→ x.

If Σ′ has genus less than g, then the restriction p|Σ′ cannot be π1-injective. In other words, Σ′

is compressible in T (see [11]) and by repeatedly compressing, we reduce genus and end up
with a sphere, which must be null-homologous because the universal cover of T is contractible.
Being null-homologous, Σ′ bounds a compact region not meeting the boundary. In summary,
we have the following fact.

Fact 7. If Σ′ is a closed embedded orientable surface in T with genus smaller than g, then
Σ′ bounds a compact region. Conversely, if Σ′ separates the boundary components of T , then
the genus of Σ′ is greater than or equal to that of T .
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If Σ′ is an embedded surface of genus equal to g (the genus of the product region) and
separates the boundary components of T, then Σ′ is non-trivial in H2(T ; Q). As such, p|Σ′ must
be π1-injective, otherwise Σ′ would be homologous to a smaller-genus surface and therefore
null-homologous by Fact 7. Because p|Σ′ is π1-injective, it is homotopic to a covering map and,
since the genera are the same, homotopic to a homeomorphism. In other words, we have the
following fact.

Fact 8. If Σ′ and T have the same genus and Σ′ separates the boundary components of T ,
then Σ′ is a fiber in T .

3. A decomposition theorem

The proof of Theorem 1 follows quite easily once we establish a useful decomposition theorem
for manifolds satisfying (∗). We start by introducing a theorem of Biringer and Souto which
gives us a decomposition of M satisfying (∗) into pieces including large-diameter product
regions. The bulk of the work in this chapter is proving a stronger version of their theorem,
Theorem 10, which shows that those product regions can be fibered by surfaces of bounded
geometry. From there, the decomposition theorem, Corollary 15, follows immediately.

3.1. Biringer–Souto theorem

In their forthcoming paper, Biringer and Souto (‘Thick 3-manifolds with bounded rank’) proved
the following theorem:

Theorem 9 (Biringer–Souto). For every ε, c > 0, there exists a finite set {Q1, . . . , Qs} of
compact Riemannian 3-manifolds (perhaps with boundary) and L, r > 1 such that if M is a
closed hyperbolic 3-manifold with

(∗) inj(M) � ε and rank(π1(M)) � c,

then M contains a compact submanifold M with the following properties.

(1) The compact submanifoldM has at most r components, each one of them L-bi-Lipschitz
equivalent to one of the Qi.

(2) Each component of M −M is homeomorphic to Σg × R, where Σg is a closed orientable
surface of some genus g.

Further, given any pairwise distinct pointed sequence (Mi, xi) such that each Mi satisfies (∗)
and d(xi,Mi) → ∞, some subsequence converges geometrically to (M∞, x∞), where M∞ is an
ε-thick doubly degenerate manifold.

We refer to M as the tiny manifold because the volume of M is bounded above by a constant
depending only on ε and c. The first part of the theorem tells us that components of the
complement of the tiny manifold are all product regions, a purely topological statement. A
helpful picture to illustrate the theorem is shown in Figure 1.

Let us point out what we do not know immediately from Theorem 9. The first part of the
theorem is purely topological, and does not give geometric information about the product
regions. The second part of the theorem is geometric, but is only a pointwise statement. A
neighborhood of a point far enough away from the tiny manifold will look like a product region
neighborhood in a doubly degenerate manifold of genus g, but a priori this local structure may
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Figure 1. A picture illustrating the Biringer–Souto theorem. The ‘tiny manifold’ M is shown in
gray. The white parts are product regions.

not be compatible with the topological structure of the larger product region component, in
particular, a priori it may not be the same genus.

3.2. A stronger version

We improve this loose point-wise geometric statement by showing that we can actually fiber
these product regions with surfaces of uniformly bounded geometry. To this end, we frequently
refer to a fixed metric family of ‘canonical’ product regions {Sg × [−1, 1] |Sg ∈ S} endowed
with the product metric, where S = {Sg}∞g=2 is a fixed family of hyperbolic structures, one for
each genus g � 2.

The main result of this section is the following theorem.

Theorem 10. For every ε, c > 0, there exists a finite set {Q1, . . . , Qs} of compact
Riemannian 3-manifolds (perhaps with boundary) and L, r,G > 1 such that if M is a closed
hyperbolic 3-manifold with

(∗) inj(M) � ε and rankπ1(M) � c,

then M contains a compact submanifold M̃ with the following properties.

(1) The compact submanifold M̃ has at most r components, each one of them L-bi-Lipschitz
equivalent to one of the Qi.

(2) Each component T of M − M̃ is homeomorphic to Σg × R, where Σg is a closed
orientable surface of genus g < G.

(3) Further, there is a foliation of T by genus-g surfaces compatible with the product
structure such that for any point x ∈ T, there is a leaf-preserving L-bi-Lipschitz embedding

Sg × [−1, 1] −→M, Sg ∈ S,
with x in the image of the 0-fiber.

3.3. Proof of Theorem 10

We start by showing the existence of G in the statement of Theorem 10.



SPECTRAL BOUNDS ON CLOSED HYPERBOLIC 3-MANIFOLDS 843

Figure 2. As g → ∞, the diameter of gK must also go to ∞.

Lemma 11. There exists G such that given Mi satisfying (∗) and xi ∈Mi with d(Mi, xi) →
∞, then the doubly degenerate geometric limit M∞ guaranteed by Theorem 9 has genus at
most G.

Proof. Suppose that no such bound on genus existed. Then for infinitely many g ∈ N, there
exists a sequence of pointed manifolds (gM i,

g xi) satisfying (∗) with d(gM i,
g x) → ∞ and

converging to a doubly degenerate manifold (gM∞,g x∞) of genus g. Because each gM∞ is
ε-thick, we can assume that up to subsequence (gM∞,g x∞) converges to some (M∞, x∞).
Note that (M∞, x∞) is also the geometric limit of some diagonal sequence (gM i,

g xi), and, as
such, is an ε-thick doubly degenerate manifold of some genus G by Theorem 9.

Fix an embedded fiber Σ ⊂M∞ through x∞. For g > G large enough, we have a
2-bi-Lipschitz map from a domain containing Σ ⊂M∞ to gM∞. From now on, we will describe
this situation by saying ‘for g large enough we can approximate Σ ⊂M∞ by gΣ ⊂g M∞’.
Because gΣ has genus G and gM∞ has genus g > G, gΣ bounds a compact region gK ⊂g M∞
by Fact 7. Note that diam(gK) → ∞ because otherwise gK would lie entirely in a local
approximation of M∞, which is impossible; see Figure 2.

Similarly, for each g, we can choose index i(g) large enough to approximate gK ⊂g M∞ by
gKi(g) ⊂g M i(g). Note also that diam(gKi(g)) → ∞.

We are now ready to shed this elaborate notation: rename the sequence (gM i(g),
g xi(g)) with

one index j. Likewise, let Kj =g Ki(g) and let Σj = ∂Kj .
Let x′j ∈ Kj be a point furthest from Σj . Note that d(Mj , x

′
j) → ∞ so Theorem 9 applies

and up to subsequence we have limit (Mj , x
′
j) → (M ′

∞, x
′
∞), where M ′

∞ is doubly degenerate
of some genus G′.

Fix an embedded fiber Σ′ ⊂M ′
∞ through x′∞. Also fix an infinite arc γ : R →M ′

∞ exiting
both ends. Note that γ necessarily has algebraic intersection number 1 with Σ′.

Let Σ′
j ⊂Mj be the approximation of Σ′ that exists for large enough j. We briefly outline

the rest of the proof: working in the approximations Mj , we use approximations of γ to find
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Figure 3. The closed surface Σ′
j is an embedded non-separating surface, a contradiction.

closed curves intersecting Σ′
j exactly once, a contradiction, since Σ′

j must have disconnected
complement by Fact 6.

The closed curves will come from concatenating the γ-approximations with geodesic segments
connecting to Σj = ∂Kj , such segments cannot backtrack and go back through Σ′

j because the
regions of approximation have very large diameters and x′j is the furthest point from Σj = ∂Kj .

To help with the following nitty-gritty details, see Figure 3. We have increasingly large
approximations Nj ⊂Mj of M ′

∞. Because diam(Kj) → ∞, large enough j allow us to impose
the simultaneous restrictions: diam(Nj) 
 diam(Σ′

j) and Nj ⊂ Kj .
Note that Nj may have more than two boundary components, but that the boundary

components fall into two classes depending on which component of Nj − Σ′
j they belong to.

The distance between these two classes of boundary components is at least dj , where

dj = diam(Nj)/2 − diam(Σ′
j),

and thus limj→∞ dj = ∞.
We are now ready to construct our closed curve intersecting Σ′

j exactly once. Let γj : [a, b] →
Nj be the unique component of the approximation of γ with image intersecting Σ′

j . (We need
to specify a particular component because we may have other small segments near ∂Nj .)
Concatenate γj with geodesics segments [γj(a), yj ], [γj(b), zj ], such that yj , zj ∈ Σj are the
points closest to γj(a) and γj(b), respectively, recalling that Σj = ∂Kj . Finally, concatenate
with any arc in Σj connecting yj to zj . See Figure 3 for an illustration. We claim that this
closed curve still intersects Σ′

j exactly once, showing that the complement to Σ′
j is connected,

contradicting Fact 6.
We have only to show that [γj(a), yj ] and [γj(b), zj ] do not intersect Σ′

j . This is easy,
for recall that dj 
 diam(Σ′

j). Without loss of generality, suppose that [γ(a), yj ] inter-
sected Σ′

j , then by the triangle inequality d(γj(a),Σj) > d(x′j ,Σj), contradicting our initial
choice of x′j .

From now on, let G be the constant provided by Lemma 11.
Note that in the course of the above proof, we showed the following fact.
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Fact 12. If a sequence of metric product regions (Ti, xi) converge geometrically to a doubly
degenerate manifold (M∞, x∞), then given a fiber ofM∞ through x∞, the approximating image
of the fiber in Ti separates the boundary components of Ti for all sufficiently large i.

Recall that the space of ε-thick doubly degenerate manifolds of genus g is compact
with respect to geometric convergence (cf. Fact 4). It follows that the space of ε-thick
doubly degenerate manifolds of genus g � G is also compact with respect to geometric
convergence. Recall that we fixed a family of hyperbolic surfaces S = {Sg}∞g=2. Compactness
yields uniformity in the following sense:

(DD1) Given ε > 0, G � 2, there exists L = L(ε,G) such that if E is ε-thick and doubly
degenerate of genus g � G, and x ∈ E, then there exists an L-bi-Lipschitz embedding
ϕ : Sg × [−1, 1] → E, Sg ∈ S, such that x ∈ ϕ(Sg × {0}).

The next statement follows easily from the preceding statement by letting

D(ε,G) = L(ε,G) max
2�g�G

{diam(Sg) |Sg ∈ S},

but we will frequently need this specific formulation.

(DD2) Given ε > 0, G � 2, there exists D = D(ε,G) such that if E is ε-thick and doubly
degenerate of genus g � G, and x ∈ E, then there is an embedded fiber through x of
diameter less than D.

If E is ε-thick and doubly degenerate of genus g � G, then (DD2), Fact 5, and the triangle
inequality combine to give the following obvious (but useful) statement:

(DD3) Let B be a ball of radius R in E. Then B contains a product region of width w �
2R− 4D(ε,G). That is, large-radius balls in E contain comparably large-width product
regions.

Recall that the width of a product region is the shortest distance between its boundary
components.

We now give a slightly refined version of the geometric content of Theorem 9 incorporating
the genus bound we just proved.

Corollary 13. For every ε, c > 0, R, L > 1, there exists δ(ε, c, R, L) such that if M
satisfies (∗) and x ∈M such that d(x,M) > δ, then there is a product region Tx ⊂M −M
such that

(i) NR(x) ⊂ Tx;
(ii) there exists an L-bi-Lipschitz embedding fx : Tx → E, where E is doubly degenerate of

genus g � G(ε, c), such that f is homotopic to a fiber in E;
(iii) Tx separates the boundary components of Px, where Px is the product-region component

of M −M containing x.

Proof. Suppose that no such δ exists. Then there exists a sequence of closed hyperbolic
3-manifolds (Mi, xi) satisfying (∗) with d(Mi, xi) → ∞ such that for all i no such fxi

approximation exists. However, by Theorem 9, there is doubly degenerate manifold M∞ such
that (Mi, xi) → (M∞, x∞). By the definition of geometric convergence, there exist Li → 1 and
Ri → ∞ and Li-bi-Lipschitz maps gxi

: (NRi
(x∞), x∞) → (Mi, xi). By (DD3), we can restrict

the inverse to comparably large-width product regions Txi
⊂Mi and get maps fxi

: Txi
→M∞.
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For large enough i, these approximations satisfy the hypotheses of the theorem, contradicting
what we assumed.

By Fact 12, the Txi
eventually separate, showing (iii).

At this point, we would like to improve Corollary 13 in two ways. First, the above corollary
describes only local behavior; we would like to have compatibility of the embeddings described
above. That is, we want to know that the embeddings Tx → E and Tx′ → E are homotopic
for different points x and x′ in the same component of M −M (far enough away from M).
Second, we would like to compare the product regions Tx with concrete product regions instead
of some doubly degenerate manifold E.

Recall that we fixed a family of hyperbolic surfaces S = {Sg}∞g=2 and associated product
regions {Sg × [−1, 1] |Sg ∈ S} endowed with the product metric. We say that a metric product
region T in an ambient manifoldM is locally fibered by genus-g surfaces of L-bounded geometry
if for every x ∈ T there exists an L-bi-Lipschitz embedding gx : Sg × [−1, 1] →M homotopic
to a fiber in T such that x lies in the image of the 0-fiber.

Lemma 14. Given ε and c, let M satisfy (∗). Then there exists w,G, δ > 0, L > 1 such that,
given a component P ⊂M −M of width greater than w, there exists a submanifold T ⊂ P
with P ⊂ Nδ(T ) such that T is a product region of some genus g � G and T is locally fibered
by genus-g surfaces of L-bounded geometry.

That is, all but a boundedly finite neighborhood of ∂P is locally fibered by surfaces of
bounded geometry.

Proof. LetG be as in Lemma 11. Roughly speaking, we choose a finite set of points {xi} ⊂ P
far enough away from ∂P to use Corollary 13 and find associated large-diameter product
regions Txi

with union T =
⋃

i Txi
⊂ P . We then use topological facts to show that the Txi

are
all homotopic and their union T is a product region. Lastly, we show that T is locally fibered
by surfaces of bounded geometry.

Step 1: Consider any component P ⊂M −M of width w > 2δ(ε, c, R, 1.5), where R =
3(L(ε,G) +D(ε,G)) and δ = δ(ε, c, R, 1.5) comes from Corollary 13. Let γ : [0, w] → P be a
geodesic segment parameterized by arc length with endpoints in distinct components of ∂P . Let
t1 = δ and let x1 = γ(t1). Let Tx1 be a product region associated to x1 given by Corollary 13.
For i � 2, define ti, xi and Txi

inductively by

ti = max
t∈[ti−1,w−δ]

{t | γ(t) ∩ Txi−1 �= ∅},
xi = γ(ti),
Ti is a product region associated to xi given by Corollary 13.

Let T =
⋃

i Txi
. Note that the proof of Corollary 13, (DD2), and (DD3) allow us to assume

that the diameters of the components of ∂Txi
are uniformly bounded above by 1.5D(ε,G).

Thus, by our choice of R, the boundary surfaces of all the Txi
are pairwise disjoint. Also note

that P ⊂ Nδ+d(T ), where d is the maximum possible diameter of any boundary component of
the tiny manifold ∂N over all N satisfying (∗); this number is finite because the components
of the tiny manifold come from a finite family of L-bi-Lipschitz classes.

Step 2: We claim that Tx1 ∪ Tx2 is a product region. Note that all fibers in Tx1 and Tx2

separate the components of ∂P by Corollary 13. We do not include the details here, but it is
not hard to see that some fiber in Tx2 separates the components of ∂Tx1 and some fiber in
Tx2 separates the components of ∂Tx1 . Facts 7 and 8 combine to show that the fibers of Tx1

and Tx2 have the same genus and are thus homotopic. By Fact 5 and the easy to see fact that
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This region locally fibered via grey DD manifold
This region locally fibered via striped DD manifold

Figure 4. The product region T is locally fibered by surfaces of bounded geometry.

the concatenation of product regions is a product region, Tx1 ∪ Tx2 is a product region. By
induction, T is a product region.

Step 3: Note that (DD1) says exactly that doubly degenerate ε-thick manifolds E are locally
fibered by surfaces of bounded geometry. Since each Txi

looks like a doubly degenerate manifold,
we would like to locally fiber T with surfaces of bounded geometry by simply composing
the appropriate maps. However, the Txi

are bi-Lipschitz equivalent to finite pieces of doubly
degenerate ε-thick manifolds, so we have to be a bit careful near the boundary.

Given i, let fi : Txi
→ Ei be a 1.5-bi-Lipschitz embedding from Corollary 13. Given

x ∈ Txi
, let x′ = fi(x) ∈ Ei. From (DD1), we have an L(ε,G)-bi-Lipschitz embedding ϕx′ :

Sg × [−1, 1] → Ei with x′ in the image of the 0-fiber. In particular, ϕx′(Sg × [−1, 1]) ⊂
NL(ε,G)+D(ε,G)(x′) ⊂ Ei. Therefore, if d(x, ∂Txi

) � 1.5(L(ε,G) +D(ε,G)), then the image of
ϕx′ will be contained in the image of fi. In particular, f−1

i ◦ ϕx′ : Sg × [−1, 1] → Txi
will be

well-defined. Recall that the Txi
were defined in such a way to ensure this sufficient overlap.

Thus, a desired 1.5L(ε,G)-bi-Lipschitz embedding exists for every point in T =
⋃

i Txi
. Figure 4

visualizes these overlaps.

Remark. We have used bi-Lipschitz equivalence in everything we have done so far. Recall
that the definition of geometric convergence actually allows us to assume everything we have
done is smooth.

We are now ready to prove Theorem 10. We recall the theorem here for reference.

Theorem 10. For every ε, c > 0, there exists a finite set {Q1, . . . , Qs} of compact
Riemannian 3-manifolds (perhaps with boundary) and L, r,G > 1 such that if M is a closed
hyperbolic 3-manifold with

(∗) inj(M) � ε and rankπ1(M) � c,

then M contains a compact submanifold M̃ with the following properties.

(1) The compact submanifold M̃ has at most r components, each one of them L-bi-Lipschitz
equivalent to one of the Qi.

(2) Each component T of M − M̃ is homeomorphic to Σg × R, where Σg is a closed
orientable surface of genus g < G.
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(3) Further, there is a foliation of T by genus-g surfaces compatible with the product
structure such that for any point x ∈ T, there is a leaf-preserving L-bi-Lipschitz embedding

Sg × [−1, 1] −→M, Sg ∈ S,

with x in the image of the 0-fiber.

Proof. To show part (3) of the statement, it is sufficient to show the existence of a
finite number of such leaf-preserving embeddings whose images cover T and intersect only
on boundary fibers. (Concatenating parts of such parts gives the general result.) We do this
by first showing that a ‘patchy’ foliation exists using Lemma 14. Then we use limits to fill in
missing pieces. Lastly, we change our choice of tiny manifold while keeping the components in
a finite family of L-bi-Lipschitz classes.

Step 1: Let w and L be as in Lemma 14, let P be any component of M of width larger than
w, and let T ⊂ P be a genus-g product region as in Lemma 14. (It is possible that no such P
exists, in which case, skip to Step 3.) We will cover T with a ‘patchy’ foliation. That is, we will
find a family of L-bi-Lipschitz embeddings as in Lemma 14 such that the distance between the
images of subsequent maps is bounded both above and below.

Let w′ be the width of T and let γ : [0, w′] → T be a geodesic connecting the boundary
components of T parameterized by arc length. Let

d = max{d(x, y) |x ∈ Sg × {−1}, y ∈ Sg × {1}},

that is, d is the greatest distance between points in opposite components of Sg × [−1, 1].
Let xi = γ(i(Ld+ 1)) for i = 0, 1, . . . , �w′/(Ld+ 1)�. By Lemma 14, for each i we have an

L-bi-Lipschitz embedding fi : Sg × [−1, 1] →M such that xi is in the image of the 0-fiber.
Note that we have spaced the xi so that the distance between the image of fi and fi+1 is at
least 1 and at most 2Ld+ 1. By Fact 5, the remaining components of T not in the image of
the fi are also product regions.

Step 2: Our goal now is to complete the patchy foliation above. Given subsequent maps fi

and fi+1 from Step 1, we fill in the gap by finding an embedding g : Sg × [−1, 1] → T such
that

(i) g is homotopic to fi;
(ii) im g ∪ im fi ∪ im fi+1 is a product region;
(iii) vol(im g ∩ im fi) = vol(im g ∩ im fi+1) = 0.

Given a particular gap, there exists some L′ such that we can fill in the gap with an
L′-bi-Lipschitz embedding Sg × [−1, 1] → T . At the cost of loosing the ‘extremities’ of T ,
suppose that there is no universal choice of δ′, L′ such that, when distance δ′ away from
∂T we can fill in gaps with L′-bi-Lipschitz embeddings. Then there exists a sequence (Mj),
with associated Tj ⊂ Pj from Lemma 14 with

(i) a gap distance δ′j from ∂Tj such that:
(ii) L′

j is the smallest bi-Lipschitz constant to fill that gap, and
(iii) L′

j , δ
′
j → ∞.

Let xj be any point in the gap in question and consider the limit (Mj , xj) → (M∞, x∞)
guaranteed by Theorem 9. The gap in the limit can be filled in with an L-bi-Lipschitz map
g : Sg × [−, 1, 1] →M∞ for some L. When composed with the approximating maps, this gives
us a contradiction.

In summary, given a large-enough-width product region component P , there is a subset T ,
which, up to bounded-diameter neighborhoods of the boundary components, can be foliated



SPECTRAL BOUNDS ON CLOSED HYPERBOLIC 3-MANIFOLDS 849

in the desired way. We will abuse notation and now use T to denote that part that can be
foliated.

Step 3 : In what follows, we will use M to refer to the tiny manifold from the statement of
Theorem 9 and M̃ for our prospective tiny manifold.

We now throw out the parts of P we were not able to foliate and tack them on to the tiny
manifold. That is, given M satisfying (∗), let A index the finite set {Pα}α∈A of sufficiently
large width product regions in M −M and let Tα ⊂ Pα, α ∈ A, be the product regions from
Step 2 that can be foliated by surfaces of bounded geometry. We want to show that there is
a finite set {Q′

1, . . . Q
′
s′} such that when M satisfies (∗), M̃ = M ∪ {Pα − Tα}α∈A satisfies the

conditions of being the tiny manifold. First note that because #π0(M −M) � #π0(M − M̃),
we have the same bound r on the number of components in M̃ .

Note that there exists a uniform diameter bound d on components of M . Thus, any
component of M̃ has diameter bounded by r(d+ 2δ), where δ is the largest diameter of a
component of any Pα − Tα.

Suppose, for contradiction, that there exist manifolds Mi satisfying (∗), each with some
component M0

i ⊂Mi ∪ {(Pi)α − (Ti)α}α∈A, which together make up an infinite collection of
distinct 2-bi-Lipschitz classes. Let xi ∈M0

i . Since each Mi is ε-thick, up to subsequence we
have a geometric limit (Mi, xi) → (M∞, x∞).

By taking the inverse of the maps, we get from the definition of geometric convergence, for
large enough i we have 2-bi-Lipschitz embeddings

ϕi : M0
i −→M∞,

but they do not necessarily have the same image, so we have yet to arrive at a contradiction.
We need to change the image of the above maps in a controlled way. Start by fixing a

particular boundary component in each M0
i and considering the sequence of maps:

Sgi

ιi−→ ∂M0
i

ϕi−→M∞,

where Sgi
∈ Sg�G. Up to subsequence, we can assume that the domains are the same: Sg

for some fixed g. Because all the maps are uniformly bi-Lipschitz with images in a compact
region, they converge to some uniformly bi-Lipschitz map ϕ∞ : Sg →M∞. Note that because
geometric convergence is actually smooth, we can assume that the maps ιi ◦ ϕi and their limit
ϕ∞ are all smooth. As such, note that for large enough i, im(ιi ◦ ϕi) lies in an arbitrarily small
neighborhood of im(ϕ∞) and is transverse to its normal bundle.

Thus, for large enough i we can find isotopies ψi : M∞ →M∞ taking im(ϕi ◦ ιi) to im(ϕ∞)
by locally stretching in the direction of the normal bundle of im(ϕ∞). By making sure such an
isotopy is supported on a slightly larger neighborhood, we can choose the isotopies to be 2-bi-
Lipschitz. When we compose the ϕi with associated 2-bi-Lipschitz isotopies described above,
we arrive at a sequence of 4-bi-Lipschitz maps on the tail of the sequence ϕi ◦ ϕi : M0

i →M∞,
whose images agree on one boundary component.

We iterate this process by next fixing an unused boundary component in each M0
i and

repeating the process. (We do not have to worry about distinct boundary components
converging in the limit because the Hausdorff distance between any two boundary components
of each M0

i is uniformly bounded from below.) We do this until we have, up to subsequence,
bijections M0

i →M0
∞ ⊂M∞, where M0

∞ is compact. This will happen after a finite number of
iterations because we have a uniform bound on the number of boundary components in each
M0

i . If the bound on the number of boundary components is b, the resulting maps will be
4b-bi-Lipschitz, meaning the M0

i fall into a finite number of 4b-bi-Lipschitz classes.

The next corollary follows almost immediately from Steps 1 and 2 in the proof of Theorem 10.
It is also the specific statement we will need to prove Theorem 1 in § 4.
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Corollary 15. Given ε, c > 0, there exist constants p,G, Vmin, Vmax > 0 and L > 1 such
that for all but finitely many hyperbolic 3-manifolds M satisfying (∗) there exists a submanifold
T ⊂M with the following properties:

(i) vol(T ) � p vol(M);
(ii) T is homeomorphic to a product region Σg × I and g � G;
(iii) T = T1 ∪ · · · ∪ Tn with disjoint interiors, where each Ti is L-bi-Lipschitz equivalent to

Sg × [−1, 1], Sg ∈ S;
(iv) in particular, there exist Vmin and Vmax such that Vmin � vol(Ti) � Vmax for every i.

Proof. Because there are only finitely many components of the tiny manifold M̃ , and they
come from a finite family of bi-Lipschitz classes, there is a bound on the number of components
of ∂M̃ . In particular, there is an upper bound on the possible number of components ofM − M̃ ,
call it t. Additionally, there is some upper bound on the volume of M̃ , call it V . Suppose volM �
2V . Then there exists some component T ⊂M − M̃ such that volT � volM/2t. As we have
noted before, there are only finitely many isometry classes of ε-thick hyperbolic 3-manifolds of
volume less than 2V .

The rest of the statements follow from the proof of Theorem 10.

4. Proof of Theorem 1

Recall our main result.

Theorem 1. For every ε > 0, c, k ∈ N, there exists Ω(ε, c, k) such that, if M is a closed,
ε-thick hyperbolic 3-manifold with rankπ1(M) < c, then

1
Ωvol(M)2

� λk(M) � Ω
vol2(M)

,

where λk(M) is the kth positive eigenvalue of the Laplace operator on M .

Remark. We use Corollary 15 for the following proof. Recall that Corollary 15 holds for
all but finitely many M satisfying (∗). It suffices to prove the upper bound in the theorem
in this context because, for the finitely many M not covered by Corollary 15, we can always
find some Ω to satisfy the inequality by taking max{λk(Mα) vol2(Mα)} over a finite index set
α ∈ A.

Proof. As mentioned in § 1, the lower bound is due to Schoen [15], because λk � λ1.
To prove the upper bound, we use the ‘max’ half of the Minimax theorem. That is, for any

set of functions f0, . . . , fk : M → R whose supports pairwise intersect with on zero-volume sets,
we have λk � max{R(fi)}k

i=0, where R(f) =
∫

M
||∇f ||2/∫

M
f2. We will define test functions

piecewise on the decomposition T =
⋃n

i=1 Ti from Corollary 15.
Let ϕ : [−1, 1] → [0, 1] be a smooth function such that

(i) ϕ(−1) = 0;
(ii) ϕ(1) = 1; and
(iii) ϕ is constant in some neighborhood of −1 and 1.

Now define Φ : Sg × [−1, 1] → [0, 1] by Φ(x, t) = ϕ(t). From Corollary 15, we have L-bi-
Lipschitz embeddings Fi : Ti → Sg × [−1, 1]. Thus, we have maps Φ ◦ Fi : Ti → [0, 1].
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Figure 5. An example of gκ when m = 6.

Recall that ��� denotes ‘the integer part of �’. Let m = �n/2(k + 1)�, where n is the number
of pieces in T from Corollary 15. Note that T can be decomposed coarsely into k + 1 pieces
(which will be the supports of our k + 1 test functions), each consisting of 2m consecutive Ti,
that is,

P0 = T1 ∪ · · · ∪ T2m, . . . , Pk = T2km+1 ∪ · · · ∪ T2m(k+1),

and a possibly empty piece Pextra = T2m(k+1)+1 ∪ · · · ∪ Tn. We will describe functions gκ

supported on Pκ, 0 � κ � k, and then bound their Rayleigh quotients.
Roughly speaking, each gκ will grow to m and decrease back down to 0 by increasing (or

decreasing) by one on each Ti using an appropriate translation of Φ ◦ Fi. More precisely, for
0 � κ � k,

gκ(x) =

{
Φ ◦ F2 mκ+j(x) + j, x ∈ T2mκ+j , j ∈ [1,m],
−Φ ◦ F2mκ+j(x) + 2m− j + 1, x ∈ T2mκ+j , j ∈ [m+ 1, 2m].

To see an example of gκ when m = 6, refer to Figure 5. Also realize that all the gκ are ‘copies’
of g0 defined on the appropriate Pκ.

Recall that our goal is to bound R(gκ) =
∫

M
||∇gκ||2 dM

∫
M
g2

κ dM for each 0 � κ � k. On
the Ti where gκ is non-zero, the following holds by the chain rule:∫

Ti

||∇gκ||2 dM =
∫
Fi(Ti)

∣∣∣∣∇(gκ ◦ F−1
i )

∣∣∣∣2 (Fi∗ dTi)

=
∫
Sg×[−1,1]

||∇Φ||2 (Fi∗ dTi)

� L3

∫
Sg×[−1,1]

||∇Φ||2 d(Sg × [−1, 1]),

where L3 factor comes from the fact that each Fi is an L-bi-Lipschitz embedding and our
volume forms are 3-forms. Thus,∫

M

||∇gκ||2 dM =
∫
Pκ

||∇gκ||2 dM � 2mL3

∫
Sg×[−1,1]

||∇Φ||2 d(Sg × [−1, 1]).

Also note that
∫
M

g2
κ dM =

∫
T

g2
κ dM � 2Vmin

m∑
i=1

(m− 1)2 � Vminm
3/6,

by definition of gκ.
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Now we can calculate:

R(gκ) =

∫
M

||∇gκ||2 dM∫
M
g2

κ dM

�
2mL3

∫
Sg×[−1,1]

||∇Φ||2 d(Sg × [−1, 1])

Vminm3/6

� K ′

m2
,

where K ′ depends only on ε, k, and c. Lastly, note that m � n/2k, n � vol(T )/Vmax, and by
Corollary 15, there exists p such that vol(T ) � p vol(M). Thus,

m � p volM
2kVmax

.

With that, Theorem 1 is proved.
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Boston, Boston, MA, 2010). Reprint of the 1992 edition.
7. R. D. Canary, ‘On the Laplacian and the geometry of hyperbolic 3-manifolds’, J. Differential Geom. 36

(1992) 349–367.
8. J. Cheeger, ‘A lower bound for the smallest eigenvalue of the Laplacian’, Problems in analysis (Papers

dedicated to Salomon Bochner, 1969) (Princeton University Press, Princeton, NJ, 1970) 195–199.
9. B. Colbois and J. Dodziuk, ‘Riemannian metrics with large λ1,’ Proc. Amer. Math. Soc. 122 (1994)

905–906.
10. J. Dodziuk and B. Randol, ‘Lower bounds for λ1 on a finite-volume hyperbolic manifold’, J. Differential

Geom. 24 (1986) 133–139.
11. J. Hempel, ‘3-Manifolds’, Annals of Mathematics Studies 86 (Princeton University Press, Princeton, NJ,

1976).
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