arXiv:1207.1269v1 [math.OA] 5 Jul 2012

NORM-CONTROLLED INVERSION IN SMOOTH BANACH ALGEBRAS, I
KARLHEINZ GROCHENIG AND ANDREAS KLOTZ

ABSTRACT. Every differential subalgebra of a unital C*-algebra is spectrally invariant.
We derive a quantitative version of this well-known fact and show that a minimal amount
of smoothness, as given by a differential norm, already implies norm control. We obtain
an explicit estimate for the differential norm of an invertible element a. This estimate
depends only on the condition number of a and the ratio of two norms.

1. INTRODUCTION

In many contexts one encounters the problem of inversion of smooth elements in a
Banach algebra. Often the smoothness is preserved under inversion, and one is chal-
lenged to control the smoothness norm of the inverse. This is the quantitative problem
of norm-controlled inversion.

The standard example of norm-controlled inversion occurs already in calculus under
the name of the quotient rule. Let C!(T) be the algebra of continuously differentiable
functions on the torus T and C(T) be the algebra of all continuous functions on the torus
with the norms || || = ||/l = max,er | £(1)] and || f[|1 = | £]l-+ |l/]|-. The quotient
rule (1/f) = —f'/f? leads to an obvious estimate for the C'-norm of 1/ £, namely,

() 14ller < W4+ 1 1=l 312 = (Al 13l + 1) 1l

In other words, we can control the norm of the inverse of f in the subalgebra C!(T) by
the norm of f in C'(T) and the norm of 1/f in C(T). This is the phenomenon of norm
control in a nutshell. Can we obtain quantiative estimates for the norm of the inverse
in a subalgebra, when we have access to information about the inverse in an ambient
algebra? Usually invertibility and norm bounds are easier to obtain in the large algebra.

In applied mathematics this problem is underlying the regularity of solutions of linear
systems in infinite-dimensional spaces. If a matrix possesses off-diagonal decay and is
invertible on ¢, then its inverse possesses the same quality of off-diagonal decay [3,
4,20,23]. As a consequence the solution of the linear equation Ax = b with an input
vector b of a certain decay possesses a solution x with the same decay. This principle
has numerous and often fundamental applications in numerical analysis [9, 21, 27], the
theory of pseudodifferential operators [16,32], in frame theory [2,15], in time-frequency
analysis [19], and in sampling theory [15,35].
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In non-commutative geometry smooth subalgebras and their spectral invariance are an
important technical tool for the computation of the K-group of an algebra. The density
theorem asserts that the K-groups of a smooth subalgebra coincide with the K-groups of
the original C*-algebra [6].

A general theory of abstract smoothness and an axiomatic construction of inverse-
closed subalgebras was developed in [17,25]. With a minimum amount of natural struc-
tures on a given Banach algebra, namely unbounded derivations or commutative auto-
morphism groups, one can construct subalgebras of smooth elements where the smooth-
ness mimicks the Besov regularity or the Holder-Lipschitz continuity of functions on
R?. This theory establishes a new link between methods of approximation theory and
the theory of operator algebras. So far, this construction of smooth subalgebras and their
inverse-closed is a purely qualitative theory: if an element is smooth, then its inverse
possesses the same quality of smoothness.

The obvious next step is to develop quantitative statements. What is the “size” (norm)
of the inverse element in the smooth subalgebra? This is the problem of norm-controlled
inversion. The quantification is of utmost importance in applied or numerical construc-
tions, where the control of the constants decides the success or failure of a method.
Naturally, these problems have been investigated first in the context of the off-diagonal
decay of infinite matrices, see [3]. It has been known for a long time that an invertible
matrix with exponential decay off the diagonal has an inverse again with exponential
off-diagonal decay [10], the question of the precise constants involved turned out to be
fundamental for many applications. For polynomial off-diagonal decay Baskakov has
studied a subtle version of norm-control [4].

The term “norm control” is due to Nikolskii [28]. He studied “the invisible spectrum”
in the algebra of absolutely convergent Fourier series and obtained estimates for the
norms of inverses in this algebra. Interestingly enough, the Fourier algebra is one of few
examples so far, for which the lack of norm control is known. As soon as one passes to
absolutely convergent weighted Fourier series, one can prove norm control [13, 14].

In an abstract context one may say that smoothness implies inverse-closedness. The
topic of this paper is the much stronger statement that smoothness implies norm control.

In this paper and a subsequent paper we will study the concept of norm control in
smooth subalgebras in a systematic manner. (a) What is smoothness in an abstract Ba-
nach algebra? (b) Which forms of smoothness are preserved under inversion? (c) Which
forms of smoothness admit norm-control? The first two questions were studied and
answered (at least partially) in [17], the third question will be the central topic of this
paper.

In our main result we derive explicit norm-controlled inversion for subalgebras de-
fined by an extremely weak condition of smoothness that is expressed by a differential
(semi) norm. This type of smoothness has been used heavily in operator theory and
non-commutative geometry [7,24,31] and arises naturally in approximation theory [11].

Theorem 1.1. Assume that B is a C*-algebra and A C B is a x-subalgebra with a
common unit and a norm satisfying the inequality

2) lablla < C(llallallblis +[1b].allalls)
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for all a,b € A. Then there exist constants Y; depending only the structure constant C,
such that the following norm control estimates hold:
Ifa € A and a is invertible in B with condition number x(a) = ||a||||a~ || > 5, then

2

y lalla s o lalla 7 (123)

3) o~ la < max {15t e R Ly fB
a2 a2

This result requires several commments.

(1) In Theorem 4.1 we will derive explicit expressions for the constants ;.

(ii) Observe in particular that for a € A and a invertible in B, the inverse a~ ! is already
in A. We say that A is inverse-closed in B.

(ii1)) Though Theorem 1.1 is a result in operator theory, the proof requires methods
from approximation theory and the asymptotics of certain special functions.

(iv) The case distinction in (3) leads to an important insight: the norm of ¢~ ! in A
does not only depend on the condition number x(a) in B and ||a|| 4, as one might have
expected from Nikolski’s work [28], but also on the embedding ratio ||al||4/||a||. This
phenomenon occurs already in the commutative case for C'(T).

(v) A norm on a subalgebra satisfying (2) is called a differential norm. This prop-
erty can be considered a weak form of smoothness in B. In [31] Rieffel defined a
strong Leibniz norm as a differential (semi)norm satisfying the norm control ||a~!||4 <
C|lal|l4lla~!||% and asked whether every differential seminorm is a strong Leibniz norm.
The example of n-times continuously differentiable functions on the torus C"(T) for
n > 1 shows that this guess cannot be true in general, nevertheless Theorem 1.1 states
that a differential (semi)norm admits norm control in a weaker sense. For applications
in operator theory and non-commutative analysis, e.g. for quantitative versions of the
holomorphic functional calculus, Theorem 1.1 might be strong enough.

(vi) Theorem 1.1 applies in particular to approximation algebras; these are subalgebras
of a given algebra that are defined by the approximation properties with respect to a so-
called approximation scheme or a filtration of subalgebras.

(vii) Note that (3) implies that ||a~[ 4 < O(x(a)¢™*(@) for k — co. This means that
la='|| 4, as a function of the condition number, grows faster than every polynomial. In
the sequel [18] to this paper we will develop results for stronger concepts of smoothness,
namely for subalgebras of a given Banach algebra with smoothness of Besov-Holder-
Lipschitz type of [17,25]. These Banach algebras admit a generalized quotient rule, and
we will prove much stronger statements about norm-control with polynomial growth
la=!|4 < O(k(a)V) in the style of (1). Since the methods are completely different, we
prefer to split our study of norm control into two parts.

The paper is organized as follows: In Section 2 we explain the abstract concept of
norm control and give some equivalent definitions. In Section 3 we prove that Ba-
nach algebras with a differential norm admit norm-controlled inversion. Surprisingly,
a standard construction of approximation theory always yields Banach algebras that ad-
mit norm-controlled inversion. In Section 4 we derive the asymptotic estimate for the
norm-controlling function of Theorem 1.1. In the last section we will briefly discuss
other possible concepts of norm control and the failure of norm-controlled inversion. At
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this time the main example without norm control is the pair (A(T),C(T)) of absolutely
convergent Fourier series and of continuous functions on the torus [28].

2. WHAT 1S NORM-CONTROLLED INVERSION?
In this section we will explore some facets of the abstract notion of norm control.

Definition 2.1. Let A C B be Banach algebras with common unit.

(i) We say that A is inverse-closed in B, if every element a € A that is invertible in B
is already invertible in A, in short,a € A,a~' € B = a~ ! € A.

(i) We say that A admits norm-controlled inversion in B, if there is a function 4 :
(0,00)2 — (0,0) that satisfies

la™"|la < A(llalla, lla™"l5).-

Clearly, norm control is a stronger property than inverse-closedness. If A admits
norm control in B, then, in particular, A is inverse-closed in B. Inverse-closedness is a
qualitative property, norm control is a quantitative property. The function % provides an
estimate for the norm of a~! in the smaller algebra as a function of the norm of a in the
small algebra and the norm of ¢! in the large algebra.

The control function /4 in Definition 2.1 is not unique. To obtain a well-defined control
function, we use a slightly different definition of norm control.

Lemma 2.2. Let A C B be Banach algebras with common unit element. Then A admits
norm control, if and only if there exists a function ¢ : (0,1) — (0,00), such that, for
ac A,

) lalla <1 and  la”'|lz <1/8
implies that a~' € A and

la="la < 9(5).
Explicitly, ¢(8) can be chosen to be
) ¢(8) =sup{fla”"[la: llalla < 1,lla™ |5 <1/8}.
The norm control function h is then
1 1
(©) h(llallaslla™ls) = 7——6 ) -
lalla (HaHAHa 1||93>

Proof. Given a € A with inverse a=! € B, we set b = m Then ||b||4 = 1 and

15~ |5 = ||al|a]la"||& = 1/8. Then by definition of ¢ we have
1 1

lallalla™ la = 1" 4 < 0(5) =90 () »

5 = allala T

and this is (6). |

The definition of norm control is adapted from Nikolski [28]. He studied inversion in
commutative Banach algebras A embedded in C(X), the space of continuous functions
on some compact set X. Then A is called d-visible for fixed 6 > 0, if there is a constant
¢(8) > 0, called the visibility constant, such that || f||4 < 1 and |f(x)| > 0 for all x € X
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implies that || f~!]|4 < ¢(8). Nikolskii determined the visibility constants explicitly for
the algebra of absolutely convergent Fourier series A(T). The visibility constants are
¢(8) =(28>—1)"!for § > 1/v/2 and ¢(8) = oo for § < 1/2, and seem to be unknown
for 1/2 < 8 < 1/+/2. Since Definition 2.1 requires ¢(8) to exist for every § > 0, the
Fourier algebra does not admit norm-controlled inversion. Related concepts were also
studied in [5, 30].

The following lemma contains several equivalent expressions for Nikolski’s visibility
constant.

Lemma 2.3.
9(8) = sup{lla™"|la: llalla <1, a5 =1/8}
= sup{[la”"|la: [lafa=1,]la" |5 < 1/8}
= sup{|lallalla|la: lallalla™ s < 1/8}
Proof. SetAg={ac A: ||lallg <1,|la"!||g =1/8}. Obviously,
sup{lla”"|l1: a € Ag} < 9(8).

For the reverse inequality choose a sequence a, € A, such that

lanlls <1/8, lanlla <1 and lim|a; .0 = ¢(8).

Set A, = 5Ha;1||£1 > 1and b, = A, 'a,. Then b, € Ag, because ||b,||4 < ||lan]la < 1,
165 |5 = Aulla; ||z = 1/8. Furthermore,

sup{lla™! L4+ a € Az} > liminf]b; " 4
.. -1 . 1
= timinf 2, /la 4 > lim a4 = §(8).

The second equality is proved with a similar argument. Set Bs = {a € A: ||a|lx =
1,|la||g < 1/8}. Then sup{|la'|l4: a € Bs} < ¢(5). Using again the sequence a,

defined above, we set @, = Upa,, where 1, = 8||a, '||s < 1. By construction, ||d@, !||s =
1/8, ||d@n|la < 1,and ||a@, |4 > ||a; |4, which implies lim,, o||@; !4 = ¢(5).
The last equality is a just a reformulation of the second line. |

Example 2.4. 1f B is a C*-algebra, then the parameter d can be interpreted as the smallest
singular value of an element ¢ € B. For instance, a Banach algebra A C B(¢?) admits
norm-controlled inversion in B(¢?), if every operator A € A that is onto and satisfies
|IAll4 < 1 and ||Ac||2 > 8||c||> for all ¢ € £2, satisfies also |A™!||4 < @(5).

Pseudospectrum. Recall that the d-pseudospectrum G(SB (a) of an element « in a unital
Banach algebra B is

(7) o3 (a)={1eC: |[(A-a) ||z >1/8}Uc®(a).

Expressing the definition of ¢ from (5) in terms of the pseudospectrum, we obtain the
following reformulation of norm-controlled inversion.
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Lemma 2.5. A Banach algebra A C B admits norm-controlled inversion if and only if
there is a function ¢ such that for all § € (0,1) and all a € A with ||a|| 4 =1

(8) 0¢ 658 (a) implies that 0 ¢ Glf}¢(5)(a)'

3. NORM-CONTROLLED INVERSION IN DIFFERENTIAL SUBALGEBRAS

3.1. Differential Seminorms. A general framework for describing smoothness in ab-
stract Banach algebras was introduced in an influential paper of Blackadar and Cuntz [7].
Assume that A C B are two Banach algebras with a common unit element. A differential
norm (of order 1) is a norm on A that satisfies

) lablla < C(llallallblis +[1b]lallalls)

for all a,b € A. In this case we call A a differential subalgebra of B.

Differential seminorms formalize a very general concept of smoothness. Similar con-
cepts were introduced by Kissin and Shulman [24] and Rieffel [31]. A norm satisfy-
ing (9) is also referred to as a Leibniz norm on A.

Let us recall a simple property of the constant occuring in differential norms. We
tacitly assume that the norms satisfy ||e||4 = ||e||s = 1.

Lemma 3.1. Assume that A C B are two Banach algebras with a common unit element
and let ||-|| 4 a differential norm on A. Then either the norms ||-|| 4 and ||-||5 are equiv-
alent (and A is a closed subalgebra of B) or the structure constant C in (9) is at least
1.

Proof. Equation (9) with b = e says that
laella < C(llallallells + llellallalls) = C(llalla+lalls)-

Consequently,

lals_, < c(y
Jal

W)_

lall.a

+

If ||-||.4 is not equivalent to ||-||3, then inf,c 4 HZ”i = 0 and thus

1< infc(l i W) —c.
lall.a

In most applications the ambient algebra B is a C*-algebra. In this case the constant
for the embedding A C B is also 1, i.e., ||a||3 < ||a||4 for all a € A.

As a warm-up we repeat Brandenburg’s trick which shows that a differential subal-
gebra is inverse-closed. For this property we only need that B is a symmetric Banach
algebra. This means that o5 (a*a) C [0,0) for all a € B.

Lemma 3.2 ( [7,8,17,24]). If B is a symmetric unital Banach algebra and A C B is a
differential subalgebra with the same unit, then A is inverse-closed in B.
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Proof. Applying (9) with a = b = ¢" yields
(10) " la < 2C Nl |alle" |-

Taking n-th roots and the limit n — oo yields the inequality of spectral radii ps(c) <
ps(c) for all ¢ € A. Since the reverse inequality is always true for A C B, we obtain the
equality of spectral radii. By a Lemma of Hulanicki [22] A is inverse-closed in B. W

The main step (10) above can be shaped into a quantitative statement. We obtain
the result that a differential subalgebra admits norm-controlled inversion. This is rather
remarkable, because the condition of a differential semi-norm is an extremely weak as-
sumption.

Theorem 3.3. If A is a differential x-subalgebra of a C*-algebra B, then A admits
norm-controlled inversion in B. For the norm of the inverse in A we obtain

Sy, < lala plally Ly
T H( ey (1-7-m _1“5) )

lall lal|7 |

where C is the constant of (9).

Proof. Equation (9) implies that, for arbitrary ¢ € A and k € N, we obtain
—1 k—1 _ k

(12) Il < 2™ alle® ™ fls < 2C®  flallell "

If we set
Bn = Bu(c) = lIc"|allcllg"

then B, is submultiplicative, and (12) says that B,« < 2CB—i. Induction on k implies
that

(13) Box < (20)*B; .

Writing this inequality as an inequality for the norms of ¢, we obtain that

2k ||C ||A k.2
Now letn =Y7 £.2F be the dyadic expansion of n with digits & € {0,1}. Let F be
the set of all sequences € = (&) € {0,1}" that contain only finitely many 1’s, then the

dyadic expansion is a bijection from N onto F. We now use the submultiplicativity of 3,
and this bijection to derive an estimate of ||¢"|| 4 for arbitrary n, namely

le"la =TT " *lla < HHC 1%

k=0

(15) f[(” U e el

k=0
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By summing up, we obtain

’gllc”ll ZH(HCHA O lel3) ™

ecFk=

el k
(16) II@+Hraonw@.

We note that this product converges, if and only if

Y. (20) [lelly; <=,
k=0
which is the case, if and only if ||c|lg < 1.

Now assume that a € A is invertible in B and set b = W
invertible, and ||b||g = 1 and the spectrum oz (D) is contained in (0,1]. Consequently,
the spectrum of ¢ = e — b is contained in an interval o(e —b) C [0,1 — €] C [0,1), and
in particular, ||e —b|lg = 1 —¢& < 1. This implies that

Then b is hermitean,

(o) [ee]

bl = Z(e—b)kz ch

k=0 k=0
with convergence in B.
Consequently, the inverse of a is given by

1 bfl a*
la*alls
We now apply the estimate (16) to the element ¢ = e — b and obtain a first estimate for
the norm of a~! in A.

|m—W|._Jf;f’(21|ﬂr)

||a*a||‘B = “ ||
Finally we estimate the norm of ¢ = e — Taals = H directly by the norms of a and a~
Clearly
a1 lle—blla<llela+ ola <14 18%a oy lala yllalls
|a*al|z 2
HaHB ”aHg

On the other hand, since B is a C*-algebra and a*a is positive, we have ||(a*a)~! H%l =
min{A : A € 6(a*a)} = Apin. Consequently,

M.
le—blls = o
H“ aHB
(18) 1 1
—1— =l
[(a*a)~"||p|la*al|s la= 13 |al3

Inserting these estimates in (16), we obtain the norm control stated in (11). [ |
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Remarks. 1. The proof is a modification of an approach of Sun [33], the important
estimate (13) was derived earlier by Blackadar and Cuntz [7, Lemma 3.8] and Kissin
and Shulman [24]. Our main contribution is the representation of the geometric series
in (16) as an infinite product, which is amenable to a reasonable asymptotic analysis.

2. As ||a*a||a <2C||al| 4l|al|B, we can replace the inequality (17) by

le—blls < (1420)lella

lall5
If ||a||a/]|a|ls > 1/2+ C, one obtains a slightly better estimate in (11).

3.2. Application: General Approximation Spaces. In approximation theory differen-
tial (semi-) norms appear naturally in the definition of approximation spaces [11].

An approximation scheme on the Banach algebra A is a family (X,),cn, of closed
subspaces of A that satisfy Xo = {0}, X, C X,,, for n < m, and X,, - X, C Xyy-m, n,m €
Np. If A is a x-algebra, we assume that e € X; and X,, = X, for all n € Ny. The n-th
approximation error of a € Aby X, is E,(a) = infyex, ||a — x|| 4. For 1 <p <eandw a
weight on N the approximation space &},(A) consists of all a € A for which the norm

(19) laller = (¥ Ex(a)Pw(k)P)"/”
k=0

is finite (with the standard modification for p = o).

Algebra properties of approximation spaces are discussed in [1, 17]. The invertibility
of elements in an approximation space was investigated in [17]. In particular, we proved
the following result.

Proposition 3.4. If A is a symmetric Banach algebra with approximation scheme (X, )nen,
and w is a subadditive weight function on Ny, then EL,(A) is inverse-closed in A.

The decisive inequality in the proof of this proposition was
(20) labllepay < Culllallallbllercay + 1Lllallaller ay) -

In other words, the norm of &},(A) is a differential norm in A. (In [17] Proposition 3.4
was stated only for polynomial weights v(k) = k, the statement and proof is identical
for general subadditive weights.)

As a consequence of Theorem 3.3 we obtain the following statement, which came as
a surprise to us.

Corollary 3.5. Assume that A is a C*-algebra with an approximation scheme (X;,),en,
and that w is a subadditive weight on Ny. Then the approximation algebra EY,(A) admits
norm-controlled inversion.

Remarks. (1) In approximation theory one uses the polynomial weights w(k) = v, (k) =
k" for r > 0. In the literature, the resulting approximation space 85}.7 Up (A) is usually
denoted as &7 (A), in contrast to our notation.

(2) In many situations more structure is available, e.g., a derivation or an automor-
phism group on ‘B, and the approximation space £”(A) can be identified with a Besov

space or some other space, see [11,25,26].
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In this case the estimates for norm control can be improved significantly, even without
the assumption that the ambient algebra is a C*-algebra. This will be the topic of Part
I [18].

4. ASYMPTOTICS OF NORM-CONTROLLED INVERSION IN DIFFERENTIAL
SUBALGEBRAS

In principle, the estimate in (11) yields a norm-controlling funcion 4, but the expres-
sion is too cumbersome to decode any useful information. Our main effort is to derive
a clean asymptotic expression for the norm controlling function. The following theorem
offers a norm controlling function in which all constants are explicit and depend only on
the structure parameter of the differential norm.

Theorem 4.1. Assume that B is a C*-algebra and A C B is a differential x-subalgebra
with a common unit and a differential norm satisfying (9) with the structure constant
u="2C.

Set
K=(In2—1/2)"'~5.1774,

(8lnuln2(lnu)> p 161nu
—eeXxp| ———— an = )
n P2 7 22

8In’K 4

Y3 = eexp ( ) and Ya=—

Inu Inu

If k(a) > 5, then

lal
lalla i e ., lalla wm? <2u16HaH§>
Y
lall5 all%
In2/Inu

Q1) lla= Y|4 Smax{yl

If k(a)* > (Inu)~'(10]|al%/|lal|3) , then always

lalla 2 (ay?
lall3

The following corollary provides a simpler description and an explicit norm control-
ling function /4 in the sense of Definition 2.1.

I

la " la<m

Corollary 4.2. If A is a differential x-subalgebra of a unital C*-algebra B with a com-
mon unit, then there exist constants C1,Cy > 0 such that

_ _ 2 -1
la=" a4 < Cilal|alla" || e Uellalle™ i)

Thus the controlling function may be taken to be

h(x,y) = Cixy?e2™ ()
Proof. The norm control estimates in Theorem 4.1 depends on the three parameters
a4, ||lal|s and ||a~!||. We eliminate ||a||3 by using the embedding inequality ||a||s <
|lall4 and the Banach algebra inequality k(a) = ||a||s|la'||s > 1, whence [al|5' <
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la=!||5. Then both k(a) < |la|alla'|s and % < ||allalla="||%. After adapting the

[all
constants in (21), we obtain the stated inequality. [ |

Remark. The case distinction in (21) reveals an important and completely new aspect of
norm-controlled inversion. The norm of a~! in the smaller algebra A may depend on

both the condition number x(a) in the larger algebra B and on the embedding parameter

lall.a
llall

In the extreme case of a unitary element in B we have a~! = a*, so that k(a) = 1 and

la='||.4 = ||al|4 depends only on the embedding ratio HGHA

, whichever number dominates.

As a second example we look at the algebra A = C'(T) of continuously differentiable
functions on the torus embedded in B = C(T). Consider the sequence

ap(t) =1+ %cosZﬂ:nt.
Then 1/2 < ay,(t) <3/2 and k(a) = 3, whereas
lanllcr  3+427n
lanllc 3

In this case the norm of a,; ! in C! is of order

laz et > 27,

and is completely determined by the ratio H” "HHCl and not by the condition number of a,

in C(T).

The remainder of this section is devoted to proving the asymptotics. In view of (11)
we introduce the function

(o)

(22) fu,v,c) = H(l —I—cukvzk).

k=0
We are interested in the asymptotic behavior of f as v tends to 1 for fixed u and want to
express the constants in terms of u as explicitly as possible. Setting

1 lall% 1 -1
u=2C, v=1- . andc=2 [ —
K(a)? ||a||%( ||a||%||all|%)

Ly < lalla
la~!la < g f(uwe).

We will prove the following estimate for f(u,v,c).

Theorem 3.3 says that

Proposition 4.3. Assume that Inu/Inv=' > 16 and set K = (In2 — 1/2)~'. Then
(23)

e exp (%222(1“)) exp (?1313; In* (1)) if Inu/Inv=" > (Kc)in2/nu
fluve) <
eexp (SIn K) exp (h?u In? c) if Inu/Inv=! < (Kc)ln2/lnu.
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Proof of Theorem 4.1. Our main theorem follows from Proposition 4.3 by substitution.
We keep in mind that u = 2C > 2 is the structure constant of the differential algebra and
v=1—k(a)~? < 1. In particular the principal parameter (Inv—!')~! satisfies
1 1

24 = < k(a)?, forall k(a) > 1

24) T~ in(l = x(a)2) = K@) forall k(a) 2 1,

and limy ()0 —In(1 — k(a)~?)x(a)*> = 1. The restriction k(a) > 5 comes from the
assumption Inu/Inv~! > 16 in Proposition 4.3. Solving for k(a) yields

k(a) > (1—u~19) " ~ 4 857,

and since u = 2C > 2, we may take k(a) > 5 > (1 —271/16)=1/2,
Note that
lally 1
lal|3 1= x(a)=> =
depends on a, but not on the index k in the infinite product (22).
The restriction for the special case follows from making the condition Inu/In vl >
(Kc)m2/nu in (23) explicit. We have

2 2

1 In2/Inu In2/Inu

> (21(”“”? _2> > (10”“”?) .
lal|3 1 —K(a) lall3

c=2

2
Inu >
K(a) Inu > -

We carry out the proof of Proposition 4.3 in several steps with intermediate lemmas.
Step 1. Determine the maximum of 1+ cufv?.

The asymptotics of f(u,v,c) for v— 1 will depend on the value of u. In the following
we will often need the logarithmic ratio of u and v, and so we define the number & by

Inu
Inyv—! and & = log, <lnv_1> ’
where log,z = Inz/In2 is the logarithm with basis 2. We will need & > 4 and thus

28 > 16 in the proof. Note that since u = 2C > 2 and v < 1, { > 4 is well-defined and
that lim,_,; _ & = co. Furthermore

25) 2 _ Inu

¢ Inu _

26 2 _ <1 >: I
(26) % exp | Inv Iy u
Lemma4.4. Ifu>1andv < 1, then
27 1 +cukv2k <1 + cus Vk € N.
Proof. Let ¢, = cu*v?". Then

Chrl cuf 1,2 %
v e

and 1+ ¢ is decreasing, if and only if uvzk < 1. Thus 1+ ¢y is decreasing, if and only
if 2% > mlz—fl =25, Set K = [£]. Then 1 + ¢y is decreasing for k > K = [£], increasing
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for k < K, and the maximum of ¢ is taken at K. Writing K = [{] = & 4+ n for some
N €[0,1) and using (26), we find that

K E\on
uKy? = 5t (vz )

as claimed. (In fact 512" < 445091 [ |

Step 2. Split the infinite product (22) into a finite product Hﬁi o and a remainder
[1i_ss,1 and estimate the remainder first.

: . 00 k
We first determine a cut-off index M, so that [T, (1 +cufv?) <e.

Lemma 4.5. Let K = m and choose M, such that
In(K
(28) M+1§§+21n2(max(g, n( c))> <M+2.
nu
Then

[

H (1 +cukv2k) <e.

k=M+1

Proof. Using the estimate
1+ ek <exp (cukv2 )

the remainder term is bounded by

)

[T (14 )<exp( Y cukvzk)
k=M+1 k=M+1

By Step 1 the sequence k — ukvzk is decreasing for k > M > &£, and we estimate the
occurring sum by the integral

After the substitution y = 2*Inv~! ( precise details: x = log,(y/Inv~") and dx = ﬁ %,

. y log, u ) )
ut = <1nv_1) ) the integral turns into

x 1 1 oo
29 WV dx = —/ loga 1= gy,
(29) / Vo= In2 (lnv*l)logﬂ lenvfly ¢

The new integral is an incomplete Gamma-function defined as

F(a,X):/xwta_le_d <1+Z (a—1)(a— 2) A(a—7j)

For n > a — 1 the remainder R, satisfies the estimate R, (x,a) < W See [12
8.11(1)] or verify directly with integration by parts.

+Rn(x,a)> .
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In our case a = log,u+ 1 and x = Mny—1 > 2.251nv"! = 2Inu. If we choose
M>E+1andnsuchthatda—1<n<2a+1,then
O§|a—]|<a—1 log, u 1 1

< < e — 1
Y S x SOy T2 4

and consequently

1
— (In4)~1”’

1+'tl(a—1)(a—2)"'(“_j)+ (v,a) <1 i (In4)J

; <
j=1 X

which is a bound independent of x and a and n.
Combining these estimates, we find that

e 1
2 _ M -1
/Muxv dx = iy Ty (0824 1,2 Inv™)

- 1 (2M Iny~!)logu
~ In2(1—(In4)~1) (Iny—1)logu

= KuM exp ( — 2M1nv’1) .

exp (—ZMlnv_1>

-1 -1
Here we set K = (ln2(1 — (ln4)*1)> = <ln2— 1/2) =5.177 > 1. Now we choose
M > & + 1 so that

30) KcuMexp (— 2M1nv_1> <1.

Then

[}

H (1+cuv <exp( Z cuf k>Sexp(KcuMexp(—ZMlnvfl))Se.

k=M+1 k=M+1

For an explicit estimate of M we note that (30) is equivalent to the estimate

(31) 2MIny~! —MInu > In(Kc).
By writing M = £ + A and using 2° = Inu/Inv—!, we obtain that
In(K.
A _A>E4 n(Ke)
Inu

Again since & > 4, we may use

2% — 2> 25 > 2max (é, ln(KC))
Inu

' Inu

and we obtain that A > 2log, max <§ In(Ke) ) We find that

In(Kc)

nu

M—|—1§§+210g2<max(§, ))§M+2

1s a workable choice for M. ]
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Step 3. Estimate the finite part of Hﬁi o- We use Lemma 4.4 and the obvious estimate

M
H(l +cukv2k) < max (1 +cukvzk)M+1 < (1+cub)MHT,
=0 k=0,...M
Since the definition of M contains a max, we distinguish two cases.
Case 1. If & > lnl(n[ff) or, equivalently, K¢ < u5, then

M+1<E&+42log, & <2&

and, since £ >4,c¢>1,and u > 2,
M+1 _ 2
cus  ~ cub

(1 +£>MH < exp <A/ET+51> <exp(l),

and, since K > 1 and In?(a/b) < 2(In>a+1n%h~1),

26\ M+1
(32) (cus M+ < (%) <u'®

Inu _ ,, Inu
< exp (42 )
_exp( In22 n (lnv_l)

81nuln(Inu) Slnu_ ,, 1
< exp (Blnutr () ! ).
—eXp( In?2 >eXp<1n22 ! <lnv—1)

Then

Thus the final estimate is

(1 —|—cu5>M+1 = (1 + ﬁ)MJrl(cué)A’[+1 < C(u)exp (i?; In? (lni—l ))

81nuln?(Inu)
In?2

Case 2. If & < lnl(nic) or equivalently, K¢ > ué, then

u
In(K. In(K.
M+1<E&+2log, nl( C)<2n( c).
nu

with the constant C(u) = eexp ( ) that depends only on u.

~  Inu
In this case we obtain similarly
(14 cus M < (1+ KM < (Kcz)zml(n'if) (14 é)z‘"ﬁ]’;”
c
In(K
<eexp <ln([(c2) 2 In(Kc) C)>
Inu

2
< —12K2)
—eeXp<lnun( <)
8
< Clwexp (i)
< C'(u)exp lnunc

41n*K
Inu

The proof of Proposition 4.3 is now finished. U

with a constant C' () = eexp (
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Remark. The proof shows that the asymptotic estimates in Theorem 4.1 are in fact

_ a 2 2
(33) la 4= o(% P Kla) ) for K (a) — oo.
B

In fact, in (32) we have given away a factor

K—M—l < K—g < K—21n1<(a)lnlnu‘

Taking this factor into account, we obtain the slightly stronger statement of (33).

5. RELATED CONCEPTS OF NORM CONTROL AND LACK OF NORM CONTROL

In our definition of norm-controlled inversion we have used only the two quantities
|a|l4 and ||a=!||p to control ||a~!|| 4. By adding more parameters, one is lead to alter-
native concepts of norm-controlled inversion.

(i) Sun [33,34] considers a nested pair of Banach algebras A C B with a modified
differential norm satisfying

(34) la*|l.4 < 2Cllall"llall5

for a fixed exponent 6,0 < 6 < 1. Versions of Lemma 3.2 and Theorem 3.3 hold for such
norms. In fact, our proof is a modification of [33]. Probably the asymptotic estimates of
Theorem 1.1 could also be adapted to this case. Norms satisfying (34) are important in
the study of algebras of infinite matrices with off-diagonal decay.

(i1) In algebras with an approximation scheme one may also include an approximation
parameter to control the norm ||a~!|| 4. This fundamental idea is used first in the deep
work of Baskakov on the inversion of matrices with off-diagonal decay [4]. To give
an explicit example we formulate Theorem 4 of [4] for the Wiener algebra A(T). Let
a(t) = Yyey axe?™* with norm ||al|4 = ¥y |ax| and define the tail function of a by

Va(k) = Y lajl.

lj1=>k

If a € A and a(r) # 0 everywhere, then

1
—1 —192
a < 64||a||le|la |2 ( )

In contrast to Definition 2.1 this estimate depends not only on the condition number
|@||so||@~ ]|, but also on the rate of approximation of a by trigonometric polynomials,
as expressed by the tail function y.

Similar estimates can be found in Tao’s quantitative version of Wiener’s Lemma [36].

Lack of Norm Control. Currently there are extremely few examples of Banach sub-
algebras without norm control. The fundamental example is the algebra A = A(T) of
absolutely convergent Fourier series as a subalgebra of the algebra C(T) of continuous
functions on the torus [28]. In his investigation of the corona problem Nikolski con-
structed further and rather sophisticated examples of multiplier algebras that lack norm
control [29].

The example A(T) C C(T) can be generalized to group algebras [28, 1.2.3]. Precisely,
let G be a discrete group that contains at least one torsion free element. We choose the
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¢'-algebra A = ¢'(G) with respect to convolution and B = C*(G) the enveloping C*-
algebra. Then £'(G) always lacks norm control in C*(G). Since Z is a subgroup of G,
¢Y(Z) ~ A(T) is a closed subalgebra of ¢!(G). Likewise, C(T) can be identified with a
closed subalgebra of C*(G). Consequently the lack of norm control follows immediately
from the example (A(T),C(T).
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