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BOUNDARY CLUSTERED LAYERS NEAR THE HIGHER

CRITICAL EXPONENTS

NILS ACKERMANN, MÓNICA CLAPP, AND ANGELA PISTOIA

Abstract. We consider the supercritical problem

−∆u = |u|p−2 u in Ω, u = 0 on ∂Ω,

where Ω is a bounded smooth domain in RN and p smaller than the crit-

ical exponent 2∗
N,k

:= 2(N−k)
N−k−2

for the Sobolev embedding of H1(RN−k) in

Lq(RN−k), 1 ≤ k ≤ N − 3. We show that in some suitable domains Ω there
are positive and sign changing solutions with positive and negative layers which
concentrate along one or several k-dimensional submanifolds of ∂Ω as p ap-
proaches 2∗

N,k
from below.

Key words: Nonlinear elliptic boundary value problem; critical and su-
percritical exponents; existence of positive and sign changing solutions.
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1. Introduction

Consider the classical Lane-Emden-Fowler problem

(1) ∆v + |v|p−2v = 0 in D, v = 0 on ∂D,
where D is a bounded smooth domain in R

N and p > 2.
It is well known that when p is smaller than the critical Sobolev exponent 2∗ :=

2N
N−2 , compactness of the Sobolev embedding ensures the existence of at least one
positive solution and infinitely many sign changing solutions. In contrast, existence
of solutions to problem (1) when p ≥ 2∗ is a delicate issue. Pohozhaev’s identity [22]
implies that problem (1) does not have a nontrivial solution if the domain D is
strictly starshaped. On the other hand, Kazdan and Warner showed in [13] that if
the domain D is an annulus, problem (1) has infinitely many radial solutions.

For the critical case p = 2∗ Bahri and Coron [1] proved that a positive solution
of (1) exists if the domain D has nontrivial reduced homology with Z/2-coefficients.
Moreover, it was proved by Ge, Musso and Pistoia [11] and Musso and Pistoia [16]
that, if D has a small hole, problem (1) has many sign changing solutions, whose
number increases as the diameter of the hole decreases. Multiplicity results are
also available for domains which are not small perturbations of a given domain, but
have enough, possibly finite, symmetries, as proved by Clapp and Pacella [8] and
Clapp and Faya [6].

The almost critical case p = 2∗ ± ǫ, with ǫ positive and small enough, has
been widely studied. The slightly subcritical case p = 2∗ − ǫ was considered by
Bahri, Li and Rey [2] and Rey [23], who showed the existence of positive solutions
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which blow-up at one or more points of D as ǫ → 0. A large number of sign
changing solutions with simple or multiple positive and negative blow-up points
were constructed by Bartsch, Micheletti and Pistoia [3], Musso and Pistoia [17],
and Pistoia and Weth [21]. For the slightly supercritical case p = 2∗ + ǫ existence
and nonexistence of positive solutions with one or more blow-up points has been
established by Ben Ayed, El Mehdi, Grossi and Rey [9], Pistoia and Rey [20], and
del Pino, Felmer and Musso [5].

Unlike the critical case, in the supercritical case p > 2∗ the existence of a non-
trivial homology class in D does not guarantee the existence of a nontrivial solution
to (1). In fact, for each integer k such that 1 ≤ k ≤ N − 3, Passaseo [18, 19]
exhibited a bounded smooth domain in RN , homotopically equivalent to the k-
dimensional sphere, in which problem (1) does not have a nontrivial solution for

p ≥ 2∗N,k := 2(N−k)
N−k−2 . Note that 2∗N,k is the critical Sobolev exponent in dimension

N − k. Examples of domains with richer homology were recently given by Clapp,
Faya and Pistoia [7], where it was shown that for p > 2∗N,k there are bounded

smooth domains in RN whose cup-length is k + 1, in which problem (1) does not
have a nontrivial solution. On the other hand, for p = 2∗N,k existence of infinitely

many solutions in some domains has been recently established by Wei and Yan [25].
Further multiplicity results may be found in [7].

In [10] del Pino, Musso and Pacard considered the case p = 2∗N,1 − ǫ and proved
that for some suitable domains D, if ǫ is positive, small enough and different from
an explicit set of values, problem (1) has a positive solution which concentrates
along a 1-dimensional submanifold of the boundary ∂D. In the same paper, the
authors ask the question whether one can find solutions which concentrate at a
k-dimensional submanifold for p slightly below 2∗N,k. More precisely, they ask the
following:

Problem 1.1. Given 1 ≤ k ≤ N − 3, are there domains D in which problem (1)
has a positive solution vp for each p < 2∗N,k with the property that these solutions
concentrate along a k-dimensional submanifold of the boundary ∂D as p→ 2∗N,k?

Having in mind that when p approaches the first critical exponent 2∗ from below
a large number of sign changing solutions exist, another question arises naturally:

Problem 1.2. Given 1 ≤ k ≤ N−3, are there domains D in which problem (1) has
a sign changing solution vp for each p < 2∗N,k with the property that these solutions
concentrate along a k-dimensional submanifold of the boundary ∂D as p→ 2∗N,k?

In this paper, we give a positive answer to both questions. In particular, for
each set of positive integers k1, . . . , km with k := k1 + · · ·+ km ≤ N − 3 we exhibit
domains D in which problem (1) has a positive solution for each p < 2∗N,k and,
as p → 2∗N,k, these solutions concentrate along a k-dimensional submanifold M of

the boundary ∂D which is diffeomorphic to the product of spheres Sk1 × · · · × Skm .
Moreover, problem (1) has also a sign changing solution with a positive and a
negative layer, both of which concentrate along M as p → 2∗N,k. This follows from
our main results, which we next state.

Fix k1, . . . , km ∈ N with k := k1 + · · · + km ≤ N − 3 and a bounded smooth
domain Ω in RN−k such that

(2) Ω ⊂ {(x1, . . . , xm, x′) ∈ R
m × R

N−k−m : xi > 0, i = 1, . . . ,m}.
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Set
(3)
D := {(y1, . . . , ym, z) ∈ R

k1+1 × · · · × R
km+1 × R

N−k−m :
(∣∣y1

∣∣ , . . . , |ym| , z
)
∈ Ω}.

D is a bounded smooth domain in RN which is invariant under the action of the
group Γ := O(k1 + 1)× · · · ×O(km + 1) on R

N given by

(g1, . . . , gm)(y1, . . . , ym, z) := (g1y
1, . . . , gmy

m, z).

for every gi ∈ O(ki+1), yi ∈ Rki+1, z ∈ RN−k−m. Here, as usual, O(d) denotes the
group of all linear isometries of Rd. For p = 2∗N,k − ǫ we shall look for Γ-invariant

solutions to problem (1), i.e. solutions v of the form

(4) v(y1, . . . , ym, z) = u(
∣∣y1
∣∣ , . . . , |ym| , z).

A simple calculation shows that v solves problem (1) if and only if u solves

−∆u−
m∑

i=1

ki
xi

∂u

∂xi
= |u|p−2u in Ω, u = 0 on ∂Ω.

This problem can be rewritten as

−div(a(x)∇u) = a(x)|u|p−2u in Ω, u = 0 on ∂Ω,

where a(x1, . . . , xN−k) := xk1
1 · · ·xkm

m . Note that 2∗N,k is the critical exponent in
dimension n := N − k which is the dimension of Ω.

Thus, we are lead to study the more general almost critical problem

(5) − div(a(x)∇u) = a(x) |u|
4

n−2−ǫ
u in Ω, u = 0 on ∂Ω,

where Ω is a bounded smooth domain in R
n, n ≥ 3, ǫ is a positive parameter, and

a ∈ C2(Ω) is strictly positive on Ω.
This is a subcritical problem, so standard variational methods yield one positive

and infinitely many sign changing solutions to problem (5) for every ǫ ∈ (0, 4
n−2 ),

cf. Proposition 4.1 in [7]. Our goal is to construct solutions uǫ with positive and
negative bubbles which accumulate at some points ξ1, . . . , ξκ of ∂Ω as ǫ→ 0. They
correspond, via (4), to Γ-invariant solutions vǫ of problem (1) with positive and
negative layers which accumulate along the k-dimensional submanifolds

Mj := {(y1, . . . , ym, z) ∈ R
k1+1×· · ·×R

km+1×R
N−k−m :

(∣∣y1
∣∣ , . . . , |ym| , z

)
= ξj}

of the boundary of D as ǫ→ 0. Note that eachMj is diffeomorphic to Sk1×· · ·×Skm

where Sd is the unit sphere in Rd+1.
We will assume one of the following conditions.

(a1) There exist κ nondegenerate critical points ξ1, . . . , ξκ ∈ ∂Ω of the restriction
of a to ∂Ω such that

〈∇a(ξi), ν(ξi)〉 > 0 ∀i = 1, . . . , κ,

where ν(ξi) is the inward pointing unit normal to ∂Ω at ξi.
(a2) There exists a critical point ξ0 ∈ ∂Ω of the restriction of a to ∂Ω such

that 〈∇a(ξ0), ν(ξ0)〉 > 0, and vectors τ1, . . . , τn−1 ∈ Rn such that the set
{ν(ξ0), τ1, . . . , τn−1} is orthonormal and Ω and a are invariant with respect
to the reflection ̺i on each of the hyperplanes ξ0 + {τi = 0}, i.e.

̺i(x) ∈ Ω and a(̺i(x)) = a(x) ∀x ∈ Ω,
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i = 1, ..., n− 1, where

̺i(ξ0 + 〈x, ν〉 ν + 〈x, τ1〉 τ1 + · · ·+ 〈x, τi〉 τi + · · ·+ 〈x, τn−1〉 τn−1)

= ξ0 + 〈x, ν〉 ν + 〈x, τ1〉 τ1 + · · · − 〈x, τi〉 τi + · · ·+ 〈x, τn−1〉 τn−1.

and ν := ν(ξ0) is the inward pointing unit normal to ∂Ω at ξ0.

For each δ > 0, ξ ∈ Rn, we consider the standard bubble

Uδ,ξ(x) := [n(n− 2)]
n−2
4

δ
n−2
2

(δ2 + |x− ξ|2)
n−2
2

.

We prove the following results.

Theorem 1.3. Assume that (a1) holds true. Then there exists ǫ0 > 0 such that,
for each λ1, . . . , λκ ∈ {0, 1} and ǫ ∈ (0, ǫ0), problem (5) has a solution uǫ which
satisfies

uǫ(x) =

κ∑

i=1

(−1)λiUδi,ǫ,ξi,ǫ(x) + o(1) in D1,2(Ω),

with
ǫ−

n−1
n−2 δi,ǫ → di > 0 and ξi,ǫ → ξi ∈ ∂Ω,

for each i = 1, . . . , κ, as ǫ→ 0.

Theorem 1.4. Assume that (a2) holds true. Then there exists ǫ0 > 0 such that,
for each ǫ ∈ (0, ǫ0), problem (5) has a sign changing solution uǫ which is invariant
with respect to each reflection ̺i, i = 1, ..., n− 1, and satisfies

uǫ(x) = Uδ1,ǫ,ξ1,ǫ(x) − Uδ2,ǫ,ξ2,ǫ(x) + o(1) in D1,2(Ω),

with
ǫ−

n−1
n−2 δi,ǫ → di > 0, ξi,ǫ = ξ0 + ǫti,ǫν(ξ0) and ti,ǫ → ti > 0,

for each i = 1, 2, as ǫ→ 0.

Theorem 1.4 states the existence of a sign changing solution whose two blow-up
points (one positive and one negative) collapse to the same point ξ0 of the boundary
of Ω under the symmetry assumption (a2).

Some interesting questions arise:

Problem 1.5. Is it possible to find sign changing solutions with k ≥ 3 blow-up
points with alternating sign which collapse to the point ξ0?

Problem 1.6. Is it possible to find a sign changing solution with one positive
and one negative blow-up point which collapse to the point ξ0 in the more general
case when ξ0 is a nondegenerate critical point of a constrained to ∂Ω such that
〈∇a(ξ0), ν(ξ0)〉 > 0, without any symmetry assumption?

The reason for including the symmetry assumption (a2) in Theorem 1.4 is that
it allows to simplify the computations considerably (see Remark 2.6).

In the following two theorems we assume we are given k1, . . . , km ∈ N with
k := k1 + · · · + km ≤ N − 3 and a bounded smooth domain Ω in RN−k which
satisfies (2). We set a(x1, . . . , xN−k) := xk1

1 · · ·xkm
m , D as in (3), p = 2∗N,k − ǫ,

Γ := O(k1 + 1)× · · · ×O(km + 1) and

Ũδ,ξ(y
1, . . . , ym, z) := Uδ,ξ(

∣∣y1
∣∣ , . . . , |ym| , z)

for δ > 0, ξ ∈ R
N−k.
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Theorem 1.7. Assume that (a1) holds true for a and Ω as above. Then there
exists ǫ0 > 0 such that, for each λ1, . . . , λκ ∈ {0, 1} and ǫ ∈ (0, ǫ0), problem (1) has
a Γ-invariant solution vǫ which satisfies

vǫ(x) =
κ∑

i=1

(−1)λiŨδi,ǫ,ξi,ǫ(x) + o(1) in D1,2(D),

with
ǫ−

n−1
n−2 δi,ǫ → di > 0 and ξi,ǫ → ξi ∈ ∂Ω,

for each i = 1, . . . , κ, as ǫ→ 0.

Theorem 1.8. Assume that (a2) holds true for a and Ω as above. Then there
exists ǫ0 > 0 such that, for each ǫ ∈ (0, ǫ0), problem (1) has a Γ-invariant sign
changing solution vǫ which satisfies

vǫ(x) = Ũδ1,ǫ,ξ1,ǫ(x) − Ũδ2,ǫ,ξ2,ǫ(x) + o(1) in D1,2(D),

with
ǫ−

n−1
n−2 δi,ǫ → di > 0, ξi,ǫ = ξ0 + ǫti,ǫν(ξ0) and ti,ǫ → ti > 0,

for each i = 1, 2, as ǫ→ 0.

By the previous discussion Theorems 1.7 and 1.8 follow immediately from The-
orems 1.3 and 1.4. The proof of Theorems 1.3 and 1.4 relies on a very well known
Ljapunov-Schmidt reduction procedure. We shall omit many details on this proce-
dure because they can be found, up to some minor modifications, in the literature.
We only compute what cannot be deduced from known results.

The outline of the paper is as follows: In Section 2 we write the approximate
solution, sketch the Ljapunov-Schmidt procedure and use it to prove Theorems 1.3
and 1.4. In Appendix B we compute the rate of the error term and in Appendix C
we estimate the reduced energy. In Appendix A we give some important estimates
on the Green function close to the boundary.

2. The variational setting

We take

(u, v) :=

∫

Ω

a(x)∇u · ∇v dx, ‖u‖ :=

(∫

Ω

a(x) |∇u|2 dx
)1/2

,

as the inner product in H1
0(Ω) and its corresponding norm. Since a is strictly

positive and bounded in Ω they are well defined and equivalent to the standard
ones. Similarly, for each r ∈ [1,∞),

‖u‖r :=

(∫

Ω

a(x) |u|r dx
)1/r

is a norm in Lr(Ω) which is equivalent to the standard one.

Next, we rewrite problem (5) in a different way. Let i∗ : L
2n

n+2 (Ω) → H1
0(Ω) be

the adjoint operator to the embedding i : H1
0(Ω) →֒ L

2n
n−2 (Ω), i.e. i∗(u) = v if and

only if

(v, ϕ) =

∫

Ω

a(x)u(x)ϕ(x)dx for all ϕ ∈ C∞
c (Ω)

if and only if

− div(a(x)∇v) = a(x)u in Ω, v = 0 on ∂Ω.
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Clearly, there exists a positive constant c such that

‖i∗(u)‖ ≤ c ‖u‖ 2n
n+2

∀ u ∈ L
2n

n+2 (Ω).

Setting p := 2n
n−2 and fǫ(s) := |s|p−2−ǫ

s, problem (5) turns out to be equivalent to

(6) u = i∗ (fǫ(u)) , u ∈ H1
0(Ω).

Set f(s) := f0(s) and αn := [n(n− 2)]
n−2
4 . Let

Uδ,ξ := αn
δ

n−2
2

(δ2 + |x− ξ|2)n−2
2

, δ > 0, ξ ∈ R
n,

be the positive solutions to the limit problem

−∆u = f(u), u ∈ H1(Rn).

Set

ψ0
δ,ξ(x) :=

∂Uδ,ξ

∂δ
= αn

n− 2

2
δ

n−4
2

|x− ξ|2 − δ2

(δ2 + |x− ξ|2)n/2
and, for each j = 1, . . . , n,

ψj
δ,ξ(x) :=

∂Uδ,ξ

∂ξj
= αn(n− 2)δ

n−2
2

xj − ξj
(δ2 + |x− ξ|2)n/2 .

Recall that the space spanned by the (n + 1) functions ψj
δ,ξ is the set of solutions

to the linearized problem

−∆ψ = (p− 1)Up−2
δ,ξ ψ in R

n.

Let PW denote the projection of the function W ∈ D1,2(Rn) onto H1
0(Ω), i.e.

∆PW = ∆W in Ω, PW = 0 on ∂Ω.

We look for two different types of solutions to problem (5). The solutions found
in Theorem 1.3 are of the form

(7) uǫ =

κ∑

i=1

(−1)λiPUδi,ǫ,ξi,ǫ + φ,

for fixed λi ∈ {0, 1}, where the concentration parameters satisfy

(8) δi,ǫ = ǫ
n−1
n−2 di for some di > 0,

and the concentration points satisfy

(9) ξi,ǫ = si + ηiν(si) where si ∈ ∂Ω and ηi = ǫti for some ti > 0.

Here and in the following ν(si) denotes the inward unit normal to the boundary
∂Ω at the point si.

On the other hand, the solutions found in Theorem 1.4 are of the form

(10) uǫ =

ℓ∑

i=1

(−1)i+1PUδi,ǫ,ξi,ǫ + φ,

where the concentration parameters satisfy (8), while the concentration points are
aligned on the line L := {ξ0 + rν(ξ0) : r ∈ R}, namely

(11) ξi,ǫ = ξ0 + ηiν(ξ0) where ηi = ǫti for some 0 < t1 < · · · < tℓ.
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Next, we introduce the configuration space Λ where concentration parameters
and concentration points lie. For solutions of type (7) we set s = (s1, . . . , sκ) ∈
(∂Ω)κ, d = (d1, . . . , dκ) ∈ (0,+∞)κ, and t = (t1, . . . , tκ) ∈ (0,+∞)κ, and so

Λ := {(s,d, t) ∈ (∂Ω)κ × (0,+∞)κ × (0,+∞)κ : si 6= sj if i 6= j} ,
while for solutions of type (10), we fix s = (ξ0, . . . , ξ0) and we set d = (d1, . . . , dℓ) ∈
(0,+∞)ℓ, and t = (t1, . . . , tℓ) ∈ (0,+∞)ℓ, and so

Λ :=
{
(d, t) ∈ (0,+∞)ℓ × (0,+∞)ℓ : t1 < · · · < tℓ

}
.

In each of these cases we write

Vs,d,t :=

κ∑

i=1

(−1)λiPUδi,ξi and Vs,d,t = Vd,t :=

ℓ∑

i=1

(−1)i+1PUδi,ξi

respectively.
The rest term φ belongs to a suitable space which we now define. For simplicity

we write ψj
i := ψj

δi,ǫ,ξi,ǫ
with δi,ǫ as in (8) and ξi,ǫ as in (9) or (11).

For solutions of type (7) we introduce the spaces

Ks,d,t := span{Pψj
i : i = 1, . . . , κ, j = 0, 1, . . . , n},

K⊥
s,d,t :=

{
φ ∈ H1

0(Ω) : (φ, Pψ
j
i ) = 0, i = 1, . . . , κ, j = 0, 1, . . . , n

}
.

Note that for ξi,ǫ as in (11) the functions Pψj
i are invariant with respect to

the reflections ̺i given in (a2). So for solutions of type (10) we define the space
Ks,d,t as above and K

⊥
s,d,t as the orthogonal complement of Ks,d,t in the subspace

of all functions in H1
0(Ω) which are invariant with respect to ̺1, . . . , ̺n−1. Then

we introduce the orthogonal projection operators Πs,d,t and Π⊥
s,d,t in H1

0 (Ω) with

ranges Ks,d,t and K
⊥
s,d,t, respectively.

As usual, our approach to solve problem (6) will be to find a (s,d, t) ∈ Λ and a
function φ ∈ K⊥

s,d,t such that

(12) Π⊥
s,d,t (Vs,d,t + φ− i∗ [fǫ(Vs,d,t + φ)]) = 0

and

(13) Πs,d,t (Vs,d,t + φ− i∗ [fǫ(Vs,d,t + φ)]) = 0.

First we shall find, for each (s,d, t) ∈ Λ and small ǫ, a function φ ∈ K⊥
s,d,t such

that (12) holds. To this aim we define a linear operator Ls,d,t : K
⊥
s,d,t → K⊥

s,d,t by

Ls,d,tφ := φ−Π⊥
s,d,ti

∗ [f ′(Vs,d,t)φ] .

The following statement holds true.

Proposition 2.1. For any compact subset C of Λ there exist ǫ0 > 0 and c > 0
such that for each ǫ ∈ (0, ǫ0) and (s,d, t) ∈ C the operator Ls,d,t is invertible and

‖Ls,d,tφ‖ ≥ c ‖φ‖ ∀ φ ∈ K⊥
s,d,t.

Proof. We argue as in Lemma 1.7 of [15]. �

Now we are in position to solve equation (12).
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Proposition 2.2. For any compact subset C of Λ there exist ǫ0, c, σ > 0 such that
for each ǫ ∈ (0, ǫ0) and (s,d, t) ∈ C there exists a unique φǫ

s,d,t ∈ K⊥
s,d,t such that

(12) holds and

(14)
∥∥φǫ

s,d,t

∥∥ ≤ cǫ
1
2+σ.

Proof. We estimate the rate of the error term

(15) Rs,d,t := Π⊥
s,d,t (Vs,d,t − i∗ [fǫ(Vs,d,t)])

in Appendix B. Then we argue exactly as in Proposition 2.3 of [3]. �

The critical points of the energy functional Jǫ : H
1
0(Ω) → R defined by

Jǫ(u) :=
1

2

∫

Ω

a(x)|∇u|2dx− 1

p− ǫ

∫

Ω

a(x)|u|p−ǫdx

are the solutions to problem (5). We define the reduced energy functional J̃ǫ : Λ →
R by

J̃ǫ(s,d, t) := Jǫ(Vs,d,t + φǫs,d,t)

The critical points of J̃ǫ are the solutions to problem (13).

Proposition 2.3. The function Vs,d,t + φǫ
s,d,t is a critical point of the functional

Jǫ if and only if the point (s,d, t) is a critical point of the function J̃ǫ.

Proof. We argue as in Proposition 1 of [2]. �

The problem is thus reduced to the search for critical points of J̃ǫ, so it is

necessary to compute the asymptotic expansion of J̃ǫ.

Proposition 2.4. In case (7) it holds true that

J̃ǫ(s,d, t) = (c1 + c2ǫ log ǫ)

κ∑

i=1

a(si)

(16)

+ ǫ

κ∑

i=1

[
c3a(si) + c4〈∇a(si), ν(si)〉ti + c5a(si)

(
di
2ti

)n−2

− c6a(si) log di

]
+ o(ǫ),

C1-uniformly on compact sets of Λ. Here the ci’s are constants and c4, c5, c6 are
positive.

Proof. The proof is postponed to Appendix C. �

Proposition 2.5. In case (10) it holds true that

(17) J̃ǫ(s,d, t) = J̃ǫ(d, t) = a(ξ0) [c1 + c2ǫ log ǫ + c3ǫ] + ǫΨ(d, t) + o(ǫ),
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C0-uniformly on compact sets of Λ. Here

(18) Ψ(d, t) := c4〈∇a(ξ0), ν(ξ0)〉
ℓ∑

i=1

ti + c5a(ξ0)×

×
{

ℓ∑

i=1

(
di
2ti

)n−2

+

ℓ∑

i,j=1
i6=j

(−1)i+j+1(didj)
n−2
2

[
1

|ti − tj |n−2
− 1

|ti + tj |n−2

]}

− c6a(ξ0)
ℓ∑

i=1

log di

where the ci’s are constants and c4, c5, c6 are positive.

Proof. The proof is postponed to Appendix C. �

Proof of Theorem 1.3. Firstly, by Proposition 2.4, we get

J̃ǫ(s,d, t) = (c1 + c2ǫ log ǫ)

κ∑

i=1

a(si) +O(ǫ),

C1-uniformly on compact sets of Λ. Then, since ξ1, . . . , ξκ are non degenerate critical
points of a constrained to the boundary of Ω, if ǫ is small enough there exist

sǫ := (s1,ǫ, . . . , sκ,ǫ) such that each si,ǫ → ξi as ǫ goes to zero, and∇sJ̃ǫ(sǫ,d, t) = 0.
Secondly, by Proposition 2.4, we also get

J̃ǫ(sǫ,d, t)− (c1 + c2ǫ log ǫ)
κ∑

i=1

a(si,ǫ)

= ǫ

κ∑

i=1

[
c3a(si,ǫ) + c4〈∇a(si,ǫ), ν(si,ǫ)〉ti

+ c5a(si,ǫ)

(
di
2ti

)n−2

− c6a(si,ǫ) log di

]
+ o(ǫ)

= ǫ

κ∑

i=1

[
c3a(ξi) + c4〈∇a(ξi), ν(ξi)〉ti

+ c5a(ξi)

(
di
2ti

)n−2

− c6a(ξi) log di

]
+ o(ǫ).

It is easy to verify that the function

(d, t) →
κ∑

i=1

[
c4〈∇a(ξi), ν(ξi)〉ti + c5a(ξi)

(
di
2ti

)n−2

− c6a(ξi) log di

]

has a minimum point which is stable under C0-perturbations. Therefore, there

exists a point (dǫ, tǫ) such that ∇(d,t)J̃ǫ(sǫ,dǫ, tǫ) = 0. Thus, the function J̃ǫ has
a critical point and the claim follows from Proposition 2.3. �
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Proof of Theorem 1.4. In this case ℓ = 2 and function Ψ defined in (18) reduces to

Ψ(d, t) = c4〈a(ξ0), ν(ξ0)〉(t1 + t2)

+ c5a(ξ0)

{(
d1
2t1

)n−2

+

(
d2
2t2

)n−2

+ 2(d1d2)
n−2
2

[
1

|ti − tj |n−2
− 1

|ti + tj |n−2

]}

− c6a(ξ0)(log d1 + log d2).

It is easy to verify that it has minimum point which is stable under C0-
perturbations. Therefore, from Proposition 2.5 we deduce that, if ǫ is small enough,

the function J̃ǫ has a critical point. Now the claim follows from Proposition 2.3. �

Remark 2.6. The symmetry assumption (a2) allows to overcome some technical
difficulties which arise when looking for a solution whose bubbles collapse to the
same point. Indeed, the problem arises when we study the reduced energy and we
have to compute the contribution of each peak and the interaction among the peaks.
The contribution of each peak is clear: it is given by the distance from the peak
to the boundary as in (64) and by the value of the function a at the projection
of the peak onto the boundary as in (58). On the other hand, to compute the
interaction among the peaks (see (65)) it is important to compare the geodesic
distance d(si, sj) between the projections of the peaks onto the boundary with the
distance |ηiν(si)− ηjν(sj)| between the normal components of the peaks. To have
a good expansion the distance d(si, sj) should be negligible with respect to the
distance |ηiν(si)− ηjν(sj)|. But then, in order to find a criticality in the points si,
we need to go further in the expansion and computations become too tedious. If
the domain Ω and the function a are symmetric, we can overcome this difficulty
just by assuming that the peaks satisfy (11), so that d(si, sj) = 0. In this case the
interaction among the peaks is clear and it is given in terms of the Green function
of the Laplace operator on the half-space (see (65)).

Appendix A. Boundary estimates of the Green function

In this section we establish the technical estimates we used in the previous part.
We denote by G(x, y) the Green function of the Laplacian with Dirichlet boundary
condition and by H(x, y) its regular part, i.e.

G(x, y) =
1

n(n− 2)ωn|x− y|n−2
−H(x, y),

where ωn is the volume of the unit ball in Rn.
First of all, we need an accurate estimate of H(x, y) when the points x and y

are close to the boundary. Let us introduce some notation. For η > 0 we write
Ωη := {x ∈ Ω : dist(x, ∂Ω) ≤ η}. We fix η small enough so that the orthogonal
projection p : Ω2η → ∂Ω onto the boundary is well defined, i.e. so that for each
x ∈ Ω2η there is a unique point p(x) ∈ ∂Ω with dist(x, ∂Ω) = |p(x) − x|. Set
dx := dist(x, ∂Ω), px := p(x), and νx := ν(x), where as before ν(x) denotes the
inward normal to ∂Ω at x. For x ∈ Ω2η we define x̄ := px − dxνx = x − 2dxνx.
Thus, x̄ is the reflection of x on ∂Ω.



BOUNDARY CLUSTERED LAYERS NEAR THE HIGHER CRITICAL EXPONENTS 11

Lemma A.1. There exists C > 0 such that∣∣∣∣H(x, y)− 1

|x̄− y|n−2

∣∣∣∣ ≤
Cdx

|x̄− y|n−2
(19)

∣∣∣∣∇x

(
H(x, y)− 1

|x̄− y|n−2

)∣∣∣∣ ≤
C

|x̄− y|n−2
(20)

for all x ∈ Ωη and y ∈ Ω. In particular, there exists C > 0 such that

(21) 0 ≤ H(x, y) ≤ C

|x̄− y|n−2
, x ∈ Ωη, y ∈ Ω

and

(22) |∇xH(x, y)| ≤ C

|x− y|n−1
x, y ∈ Ω.

Proof. For convenience we set

χ(x, y) := H(x, y)− 1

|x̄− y|n−2

for x ∈ Ωη and y ∈ Ω. Note that there is c > 0, only dependent on n and η, such

that |x̄− ξ̄| ≤ c|x− ξ| if x ∈ Ωη and ξ ∈ B(x, dx/2). If moreover y ∈ Ω, then

(23)
|x̄− y|
|ξ̄ − y| ≤

|x̄− ξ̄|+ |ξ̄ − y|
|ξ̄ − y| ≤ 1 +

cdx/2

|ξ̄ − y| ≤ 1 + c,

since y ∈ Ω and dist(ξ̄,Ω) ≥ dx/2.
The proof of (19) is analogous to the proof of Eq. (2.7) in [4], with obvious small

changes. Similarly, slight modifications of the proof of Eq. (2.8) in [4] yield

(24) |∆xχ(x, y)| ≤
C

dx|x̄− y|n−2

for all x ∈ Ωη and y ∈ Ω. Fix x, y, take r := 2
√
n and set

Q := {ξ ∈ R
n | |x− ξ|∞ ≤ dx/r}.

Note that if ξ ∈ Q then ξ ∈ B(x, dx/2) and therefore

(25) dx/2 ≤ dξ ≤ 3dx/2.

Hence we obtain for i ∈ {1, 2, . . . , n}

|∂xi
χ(x, y)| ≤ rn

dx
sup
ξ∈∂Q

|χ(ξ, y)|+ dx
2r

sup
ξ∈Q

|∆ξχ(ξ, y)| by [12, Eq. (3.15)]

≤ C

(
sup
ξ∈∂Q

dξ

dx|ξ̄ − y|n−2
+ sup

ξ∈Q

dx

dξ|ξ̄ − y|n−2

)
by (19) and (24)

≤ C sup
ξ∈Q

1

|ξ̄ − y|n−2
by (25)

≤ C

|x̄− y|n−2
by (23).

Summing up this inequality over i gives (20).
To prove (22), note first that there is C > 0 such that

(26) |∇xH(x, y)| ≤ C if x ∈ Ω\Ωη, y ∈ Ω.
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The case x ∈ Ωη relies on the estimate (20). Note that there is C > 0 such that

(27)
|x̄− y|
|x− y| ≥ C for all x ∈ Ωη, y ∈ Ω.

This implies that the term on the right of (20) is estimated by a constant multiple
of 1/|x− y|n−2 if x ∈ Ωη and y ∈ Ω. In view of (26) it therefore remains to show
that

(28)

∣∣∣∣∇x
1

|x̄− y|n−2

∣∣∣∣ ≤
C

|x− y|n−1
x ∈ Ωη, y ∈ Ω

for some constant C > 0.
Writing ∂i for ∂/∂xi we calculate as in [4] for any i ∈ {1, 2, . . . , n}:

(29) ∂i
1

|x̄− y|n−2
=

2− n

|x̄− y|n
n∑

j=1

(x̄j − yj)∂ix̄j .

Since x̄ := x− 2dxνx, we find

∂ix̄j = δij − 2νxiνxj − 2dx∂iνxj .

Using this representation in (29) yields
∣∣∣∣∂i

1

|x̄− y|n−2

∣∣∣∣ ≤
C

|x̄− y|n−1
(1 + dx|∂iνx|).

By our choice of η we have |dx| ≤ η and |∂iνx| ≤ C for all x ∈ Ωη. In view of (27)
we obtain (28) and finish the proof. �

Here and in the remaining appendices we employ the notation

|u|A,q :=

(∫

A

|u|q
)1/q

for measurable A ⊆ Rn and q ∈ [1,∞]. If A = Ω we omit it from the notation.

Lemma A.2. Let δ, δ1, δ2 ∈ (0, 1] and ξ, ξ1, ξ2 ∈ Ωη. Let ξ̄ be the reflection point
of ξ with respect to ∂Ω. There exists c > 0 such that

(30) 0 ≤ PUδ,ξ(x) ≤ Uδ,ξ(x)

and

(31) 0 ≤ Uδ,ξ(x) − PUδ,ξ(x) ≤ αnδ
n−2
2 H(x, ξ) ≤ c

δ
n−2
2

|x− ξ̄|n−2

for all x ∈ Ω. Moreover

Rδ,ξ(x) := PUδ,ξ(x) − Uδ,ξ(x) + αnδ
n−2
2 H(x, ξ)

satisfies

(32) |Rδ,ξ|Ω,∞ = O

(
δ

n+2
2

dist(ξ, ∂Ω)n

)
.

Finally, there is β > 0 such that
∫

Ω

|∇PUδ1,ξ1 |PUδ2,ξ2 =

(
δ1
δ2

)n−2
2

O

(
δ

n−2
n−1+β

2

)
(33)

|∇PUδ,ξ| 2n
n+2

= O
(
δ

n−2
2(n−1)

+β)(34)



BOUNDARY CLUSTERED LAYERS NEAR THE HIGHER CRITICAL EXPONENTS 13

as δ, δ1, δ2 → 0, independently of ξ, ξ1, and ξ2.

Proof. Estimates (30), (31), and (32) follow easily from the maximum principle and
Lemma A.1.

Note first that

|Uδ,ξ|q = O
(
δ

n
q
−n−2

2

)
if q >

n

n− 2
(35)

and

|U
n+2
n−2

δ,ξ |q = O
(
δ

n
q
−n+2

2

)
if q ≥ 1,(36)

as δ → 0, independently of ξ.
Recall that

(37) ∇PUδ,ξ(x) =

∫

Ω

∇x

(
1

n(n− 2)ωn|x− y|n−2
−H(x, y)

)
U

n+2
n−2

δ,ξ (y) dy

and note that

(38)

∣∣∣∣∇x
1

|x− y|n−2

∣∣∣∣ ≤
C

|x− y|n−1
.

By (37), (22), and (38), to show (33) it suffices to prove

(39)

∫

Ω

∫

Ω

Uδ2,ξ2(x)
1

|x − y|n−1
U

n+2
n−2

δ1,ξ1
(y) dy dx =

(
δ1
δ2

)n−2
2

O

(
δ

n−2
n−1+β

2

)
.

For simplicity, set V := U
n+2
n−2

δ1,ξ1
and g(x) := 1/|x|n−1. Set M := diam(Ω). Pick

r ∈
(

n(n− 1)

(n− 1)2 + 1
,

n

n− 1

)

and note that then r ≥ 1 and r′ > n, where r′ denotes the conjugate exponent of
r. Since 1

r′ +
1
r + 1 = 2 it follows as in the proof of [14, Theorem 4.2] that

∫

Ω

∫

Ω

Uδ2,ξ2(x)g(x − y)V (y) dy dx ≤ |Uδ2,ξ2 |r′ |g|B(0,M),r|V |1

= O

(
δ

n

r′
−n−2

2

2 δ
n−n+2

2
1

)
=

(
δ1
δ2

)n−2
2

O

(
δ
n(1− 1

r )
2

)
,

by (35) and (36). Here we have used that |g|B(0,M),r is finite since r < n/(n− 1).

On the other hand, r > n(n− 1)/((n− 1)2 + 1) implies that

n

(
1− 1

r

)
=
n− 2

n− 1
+ β

for some β > 0, proving (39) and hence (33).
To prove (34) we proceed similarly. This time we pick

s ∈
(
max

{
1,

2n

n+ 4

}
,

2n(n− 1)

n2 + 2n− 4

)

and define r by

(40)
1

r
+

1

s
= 1 +

n+ 2

2n
.
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Some basic calculations reveal that s is well defined and that

(41) r ∈
[
1,

n

n− 1

)
.

Similarly to the proof of [14, Theorem 4.2], taking into account the Remark (2)
following the statement of that theorem, we obtain

|∇PUδ,ξ| 2n
n+2

≤ |g|B(0,M),r|V |s = O
(
δ

n
s
−n+2

2

)
.

Again we have used that r < n/(n− 1) implies that the r-norm of g in the ball of
radius M is finite. Since s < 2n(n− 1)/(n2 + 2n− 4), there is β > 0 such that

n

s
− n+ 2

2
=

n− 2

2(n− 1)
+ β,

proving (34). �

Appendix B. An estimate of the error

To simplify notation, from now on we write

δi := δi,ǫ, ξi := ξi,ǫ, Ui := Uδi,ξi .

Next, we estimate the error term defined in (15).

Lemma B.1. It holds true for some σ > 0 that

‖Rs,d,t‖ = O
(
ǫ

1
2+σ

)
.

Proof. We estimate Rs,d,t in case (10). The estimate in case (7) is easier and can
be obtained after minor modifications of this argument.

From the definition of i∗ we deduce that

(42)

‖Rs,d,t‖ = O
(
|−div (a(x)∇Vs,d,t)− a(x)fǫ (Vs,d,t)| 2n

n+2

)

= O
(
|−∇a∇Vs,d,t − a(x)∆Vs,d,t − a(x)fǫ (Vs,d,t)| 2n

n+2

)

= O

(
∑

i

|∇a∇PUi| 2n
n+2

)
+O

(
∑

i

|a(x) [f(Ui)− f(PUi)]| 2n
n+2

)

+O

(
|a(x)[

∑

i

f(PUi)− f(
∑

i

PUi)]| 2n
n+2

)

+O
(
|a(x) [f (Vs,d,t)− fǫ (Vs,d,t)]| 2n

n+2

)

=: I1 + I2 + I3 + I4.

To estimate I1 recall that δi = O
(
ǫ

n−1
n−2

)
on compact subsets of Λ. By (34) we

get, for some σ > 0,

(43) |∇a∇PUi| 2n
n+2

= O
(
ǫ

1
2+σ

)
.

Let us estimate I2. By (31) for some σ > 0 we obtain

(44) |a [f(Ui)− f(PUi)]| 2n
n+2

= O
(
|Up−2

i (PUi − Ui)| 2n
n+2

)
+O

(
||PUi − Ui|p−1| 2n

n+2

)
= O

(
ǫ

1
2+σ

)
,
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because by (31) (using also (48) with q = (n+ 2)/4)

(45) ||PUi − Ui|p−1| 2n
n+2

= |PUi − Ui|p−1
2n

n−2

= δ
n+2
2

i O

(∣∣∣∣
1

|x− ξ̄i|n−2

∣∣∣∣
p−1

2n
n−2

)
= O

(
δ

n+2
2

i ǫ−
n+2
2

)

and by Hölder’s inequality for some σ > 0 (using also (47) and (48) with q ∼ 1
when n ≤ 6 or q ∼ (n+ 2)/8 when n ≥ 7)

(46)

|Up−2
i (PUi − Ui)| 2n

n+2
= δ

n−2
2

i O

(
|Ui|p−2

8nq

(n−2)(n+2)

)
O

(∣∣∣∣
1

|x− ξ̄i|n−2

∣∣∣∣
2nq

(q−1)(n+2)

)

=






O

((
δi
ǫ

)n+2
2 −σ

)
if n ≥ 7

O

((
δi
ǫ

)n−2−σ
)

if n ≤ 6,

with

(47) |Ui|p−2
8nq

(n−2)(n+2)

=






O
(
δ2i
)

if n ≥ 7 and 1 < q < n+2
8 ,

O

(
δ

n+2
2q −2

i

)
if n ≤ 6 and q > n+2

8 .

and

(48)

∣∣∣∣
1

|x− ξ̄i|n−2

∣∣∣∣
2nq

(q−1)(n+2)

= O
(
ǫ−

n−6
2 −n+2

2q

)

if n ≥ 6 and q > 1 or n ≤ 5 and 1 < q <
n+ 2

6− n
.

Let us estimate I3. We set

(49) η := min

{
d(ξ1, ∂Ω), d(ξ2, ∂Ω),

|ξ1 − ξ2|
2

}
.

We have

(50)

∣∣∣∣a(x)
[∑

i

f(PUi)− f

(∑

i

PUi

)]∣∣∣∣
2n

n+2

= O

(∣∣∣∣
∑

i

f(PUi)− f

(∑

i

PUi

)∣∣∣∣
Ω\∪iB(ξi,η),

2n
n+2

)

+O

(
∑

i

∣∣∣∣f(PUi)− f

(∑

i

PUi

)∣∣∣∣
B(ξi,η),

2n
n+2

)

+O

(∑

i

∑

j 6=i

|f(PUj)|B(ξi,η),
2n

n+2

)
,
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because

(51)

∣∣∣∣
∑

i

f(PUi)− f

(∑

i

PUi

)∣∣∣∣
Ω\∪iB(ξi,η),

2n
n+2

= O

(∑

i

|Ui|p−1

Ω\B(ξi,η),
2n

n−2

)
= O

(
∑

i

(
δi
η

)n
)

and if j 6= i

|f(PUj)|B(ξi,η),
2n

n+2
= |Uj|p−1

B(ξi,η),
2n

n−2

= O
(
|Uj |p−1

Ω\B(ξj ,η),
2n

n−2

)
= O

((
δj
η

)n+2
2

)
.

(52)

Moreover∣∣∣∣f(PUi)− f

(∑

i

PUi

)∣∣∣∣
B(ξi,η),

2n
n+2

= O
(
|Up−2

i (PUi − Ui)|B(ξi,η),
2n

n+2

)
+O

(∑

j 6=i

|Up−2
i Uj |B(ξi,η),

2n
n+2

)

+O
(
||PUi − Ui|p−1|B(ξi,η),

2n
n+2

)
+O

(∑

j 6=i

|Up−1
j |B(ξi,η),

2n
n+2

)

and the first term is estimated in (46), the third term is estimated in (45), the
fourth term is estimated in (52). The second term is estimated using (47) and (48)
(with q ∼ 1 when n ≤ 6 or q ∼ (n+ 2)/8 when n ≥ 7) as follows

(53) |Up−2
i Uj |B(ξi,η),

2n
n+2

= δ
n−2
2

i O

(
|Ui|p−2

B(ξi,η),
8nq

(n−2)(n+2)

)
O

(∣∣∣∣
1

|x− ξj |n−2

∣∣∣∣
B(ξi,η),

2nq

(q−1)(n+2)

)

=





O

((
δi
ǫ

)n+2
2 −σ

)
if n ≥ 7

O

((
δi
ǫ

)n−2−σ
)

if n ≤ 6,

for some σ > 0.
Arguing exactly as in Proposition 2 of [24], we can estimate the last term I4 by

(54)
∣∣a(x) [f (Vs,d,t)− fǫ (Vs,d,t)]

∣∣
2n

n+2

= O (ǫ| ln ǫ|) .

�

Appendix C. An estimate of the energy

It is standard to prove that

J̃ǫ(s,d, t) = Jǫ (Vs,d,t) + h.o.t.

(see for example [3] or [2]), so the problem reduces to estimating the leading term
Jǫ (Vs,d,t) . We will estimate the leading term in case (10), because the expansion
of the leading term in case (7) is easier and can be deduced from that. We also
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assume ℓ = 2, because with some minor modifications we treat the general case.
Therefore, the estimate will be a direct consequence of Lemma (C.3) and Lemma
(C.4).

For future reference we define the constants

γ1 = αp
n

∫

Rn

1

(1 + |y|2)n dy,(55)

γ2 = αp
n

∫

Rn

1

(1 + |y|2)n+2
2

dy,(56)

γ3 = αp
n

∫

Rn

1

(1 + |y|2)n log
1

(1 + |y|2)n−2
2

dy.(57)

We start with the following key estimates.

Lemma C.1. The following estimate holds true:

(58)

∫

B(ξ1,η)

a(x)Up
1 dx = γ1a(s1) + 〈∇a(s1), ν(s1)〉 γ1t1ǫ+O

(
ǫ2
)
.

Here η is choosen as in (49).

Proof. We split the left-hand side as
∫

B(ξ1,η)

a(x)Up
1 dx =

∫

B(ξ1,η)

a(s1)U
p
1 dx+

∫

B(ξ1,η)

(a(x) − a(ξ1))U
p
1 dx.(59)

We deduce ∫

B(ξ1,η)

a(ξ1)U
p
1 dx = γ1a(ξ0) +O

(
δn1
ηn

)
.(60)

By the mean value theorem we get

(61)
a(δ1y + ξ1)− a(ξ1) = a(δ1y + η1ν(s1) + s1)− a(ξ0)

= 〈∇a(s1), ν(s1)〉 η1 + δ1 〈∇a(s1), y〉+R(y),

where R satisfies the uniform estimate

|R(y)| ≤ c
(
δ21 |y|2 + δ1η1|y|+ η21

)
for any y ∈ B(0, η/δ1).(62)

Therefore we conclude

(63)

∫

B(ξ1,η)

(a(x)− a(ξ1))U
p
1 dx

= αp
n

∫

B(0,η/δ1)

[a(δy + η1ν(s1) + s1)− a(s1)]
1

(1 + |y|2)n dy

= αp
n

∫

B(0,η/δ1)

[〈∇a(s1), ν(s1)〉 η1 + δ1 〈∇a(s1), y〉+R(y)]
1

(1 + |y|2)n dy

= 〈∇a(s1), ν(s1)〉 γ1η1 +O(η21).

�
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Lemma C.2. The following estimates hold true:

(64)

∫

B(ξ1,η)

a(x)Up−1
1 (PU1 − U1) dx = −γ2a(s1)ǫ

(
d1
2t1

)n−2

+O
(
ǫ1+σ

)

and

(65)

∫

B(ξ1,η)

a(x)Up−1
1 PU2dx

=





O
(
ǫ1+σ

)
ifs1 6= s2,

γ2a(ξ0)ǫ (d1d2)
n−2
2 ×

×
(

1

|t1 − t2|n−2
− 1

|t1 + t2|n−2

)
+O

(
ǫ1+σ

)
if s1 = s2 = ξ0,

for some σ > 0. Here η is choosen as in (49).

Proof. First we prove (64). By Lemma A.1 and Lemma A.2 we get

(66)

∫

B(ξ1,η)

a(x)Up−1
1 (PU1 − U1) dx

=

∫

B(ξ1,η)

a(x)Up−1
1

(
−αnδ

n−2
2

1 H(x, ξ1) +Rδ1,ξ1

)
dx

= −αp
nδ

n−2
1

∫

B(0,η/δ1)

a(δ1y + ξ1)H(δ1y + ξ1, ξ1)
1

(1 + |y|2)n+2
2

dy

+O

((
δ1
η1

)n)

= −αp
nδ

n−2
1

∫

B(0,η/δ1)

a(δ1y + ξ1)
1

|δ1y + ξ1 − ξ̄1|n−2

1

(1 + |y|2)n+2
2

dy

+O

((
δ1
η1

)n−2

η1

)
+O

((
δ1
η1

)n)

= −αp
n

(
δ1
2η1

)n−2

a(s1)

∫

Rn

1

(1 + |y|2)n+2
2

dy

+O

((
δ1
η1

)n−1
)

+O

((
δ1
η1

)n−2

η1

)
,

because

|δ1y + ξ1 − ξ̄1| = |δ1y + 2η1ν(s1)| ≥ 2η1 − |δ1y| ≥ η1 for any y ∈ B(0, η/δ1).

and by mean value theorem

a(δ1y + ξ1) = a(s1) +O (η1) and
1

|δ1y + ξ1 − ξ̄1|n−2
=

1

(2η1)n−2
+O

(
δ1|y|
ηn−1
1

)
.
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Next, we prove (65). By Lemma A.2

(67)

∫

B(ξ1,η)

a(x)Up−1
1 PU2dx

=

∫

B(ξ1,η)

a(x)Up−1
1

(
U2 − αnδ

n−2
2

2 H(x, ξ2) +Rδ2,ξ2

)
dx

= αp
n(δ1δ2)

n−2
2

∫

B(0,η/δ1)

a(δ1y + ξ1)
1

(1 + |y|2)n+2
2

×

×
(

1

(δ22 + |δ1y + ξ1 − ξ2|2)
n−2
2

dy −H(δ1y + ξ1, ξ2)

)
dy

+O

(
(δ1δ2)

n−2
2
δ

n+2
2

2

ηn2

)

= αp
n(δ1δ2)

n−2
2

∫

B(0,η/δ1)

a(δ1y + ξ1)
1

(1 + |y|2)n+2
2

×

×
(

1

(δ22 + |δ1y + ξ1 − ξ2|2)
n−2
2

− 1

|δ1y + ξ1 − ξ̄2|n−2

)
dy

+O

(
(δ1δ2)

n−2
2

ηn−2
η2

)
+O

(
(δ1δ2)

n−2
2
δ

n+2
2

2

ηn2

)

= αp
n(δ1δ2)

n−2
2 a(ξ0)

(
1

|η1 − η2|n−2
− 1

|η1 + η2|n−2

)∫

Rn

1

(1 + |y|2)n+2
2

dy

+O

(
(δ1δ2)

n−2
2

ηn−1

)
+O

(
(δ1δ2)

n−2
2

ηn−1
δ1

)
+O

(
(δ1δ2)

n−2
2
δ

n+2
2

2

ηn2

)
,

because for any y ∈ B(0, η/δ1) we have

|δ1y + ξ1 − ξ̄2| = |δ1y + (η1 + η2)ν(ξ0)| ≥ η1 + η2 − |δ1y| ≥ η

|δ1y + ξ1 − ξ2| ≥ |ξ1 − ξ2| − |δ1y| ≥ η

and by mean value theorem a(δ1y + ξ1) = a(ξ0) +O (η1) and

1

(δ22 + |δ1y + ξ1 − ξ2|2)
n−2
2

− 1

|δ1y + ξ1 − ξ̄2|n−2

=
1

|η1 − η2|n−2
− 1

|η1 + η2|n−2
+O

(
δ1|y|+ δ22
ηn−1

)
.

�
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Lemma C.3. The following estimate holds true:

J0 (Vs,d,t) =
2− p

2p
[2γ1a(ξ0) + γ1 〈∇a(ξ0), ν(ξ0)〉 ǫ(t1 + t2)] +

1

2
γ2a(ξ0)×

×
[(

d1
2t1

)n−2

+

(
d2
2t2

)n−2

+ 2 (d1d2)
n−2
2

(
1

|t1 − t2|n−2
− 1

|t1 + t2|n−2

)]
ǫ

+O
(
ǫ1+σ

)
,

for some σ > 0.

Proof.

J0 (Vs,d,t) =
1

2

∫

Ω

a(x)|∇Vs,d,t|2dx− 1

p

∫

Ω

a(x)|Vs,d,t|pdx(68)

We estimate the first term at the R.H.S. of (68). We write

(69)

∫

Ω

a(x)|∇Vd,t|2dx

=

∫

Ω

a(x)|∇PU1|2dx+

∫

Ω

a(x)|∇PU2|2dx− 2

∫

Ω

a(x)∇PU1∇PU2dx

Let us estimate the first term in (69). The estimate of the second term is similar.
Let us choose η as in (49). We get

(70)

∫

Ω

a(x)|∇PU1|2dx = −
∫

Ω

div (a(x)∇PU1)PU1dx

= −
∫

Ω

(a(x)∆PU1)PU1dx−
∫

Ω

〈∇a,∇PU1〉PU1dx

=

∫

Ω

a(x)Up−1
1 PU1dx−

∫

Ω

〈∇a,∇PU1〉PU1dx

=

∫

B(ξ1,η)

a(x)Up−1
1 PU1dx+

∫

Ω\B(ξ1,η)

a(x)Up−1
1 PU1dx

−
∫

Ω

〈∇a,∇PU1〉PU1dx

By (33) we deduce for some β, σ > 0

(71)

∫

Ω

〈∇a,∇PU1〉PU1dx ≤ C

∫

Ω

|∇PU1|PU1dx = O

(
δ

n−2
n−1+β

1

)
= O

(
ǫ1+σ

)
.

By Lemma A.2 we also deduce

∫

Ω\B(ξ1,η)

a(x)Up−1
1 PU1dx = O

((
δ1
ǫ

)n)
(72)
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and

∫

B(ξ1,η)

a(x)Up−1
1 PU1dx =

∫

B(ξ1,η)

a(x)Up
1 dx+

∫

B(ξ1,η)

a(x)Up−1
1 (PU1 − U1) dx.

(73)

The first term is estimated in Lemma C.1 and the second term is estimated in (64)
of Lemma C.2.

It remains only to estimate the last term in (69).

(74)

∫

Ω

a(x)∇PU1∇PU2dx = −
∫

Ω

div (a∇PU1)PU2dx

= −
∫

Ω

(a∆PU1)PU2dx −
∫

Ω

〈∇a,∇PU1〉PU2dx

=

∫

Ω

a(x)Up−1
1 PU2dx−

∫

Ω

〈∇a,∇PU1〉PU2dx.

We have

∫

Ω

a(x)Up−1
1 PU2dx =

∫

B(ξ1,η)

· · ·+
∫

Ω\B(ξ1,η)

. . .(75)

and

(76)

∫

Ω\B(ξ1,η)

a(x)Up−1
1 PU2dx

= O


δ

n+2
2

1 δ
n−2
2

2

∫

Ω\B(ξ1,η)

1

|x− ξ1|n+2

1

|x− ξ2|n−2
dx




= O



δ

n+2
2

1 δ
n−2
2

2

ηn

∫

Rn\B(0,1)

1

|y|n+2

1

|y + ξ1−ξ2
η |n−2

dy




= O

(
δ

n+2
2

1 δ
n−2
2

2

ηn

)

The first term in (75) is estimated in (65) of Lemma C.2.
Finally, as in the proof of (71), from (33) we obtain

(77)

∫

Ω

〈∇a,∇PU2〉PU1dx = O
(
ǫ1+σ

)
,

since 0 < C1 ≤ δ2/δ1 ≤ C2 on compact subsets of Λ.
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We estimate the second term at the R.H.S. of (68). We write

(78)

∫

Ω

a(x)|Vd,t|pdx =

∫

Ω

a(x)|PU1 − PU2|pdx

=

∫

Ω

a(x) (|PU1 − PU2|p − |U1|p − |U2|p) dx

+

∫

Ω

a(x) (|U1|p + |U2|p) dx.

The last two terms in (78) are estimated in Lemma C.1. Let us choose η as in
(49).

We split the first integral as

(79)

∫

Ω

a(x) (|PU1 − PU2|p − |U1|p − |U2|p) dx

=

∫

B(ξ1,η)

· · ·+
∫

B(ξ2,η)

· · ·+
∫

Ω\(B(ξ1,η)∪B(ξ2,η))

. . .

From Lemma A.2 we deduce

(80)

∫

Ω\(B(ξ1,η)∪B(ξ2,η))

a(x) (|PU1 − PU2|p − |U1|p − |U2|p) dx

= O




∫

Ω\(B(ξ1,η)∪B(ξ2,η))

(Up
1 + Up

2 ) dx


 = O

(
δn1
ηn

+
δn2
ηn

)
.

We now estimate the integral over B(ξ1, η).

(81)

∫

B(ξ1,η)

a(x) (|PU1 − PU2|p − |U1|p − |U2|p) dx

= p

∫

B(ξ1,η)

a(x)Up−1
1 (PU1 − U1 − PU2) dx

+
(p− 1)p

2

∫

B(ξ1,η)

a(x)|U1 + θ (PU1 − U1 − PU2) |p−2 (PU1 − U1 − PU2)
2
dx

−
∫

B(ξ1,η)

a(x)|U2|pdx

= p

∫

B(ξ1,η)

a(x)Up−1
1 (PU1 − U1 − PU2) dx+ I,
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where I is defined and estimated as
(82)

I :=
(p− 1)p

2

∫

B(ξ1,η)

a(x)|U1 + θ (PU1 − U1 − PU2) |p−2 (PU1 − U1 − PU2)
2
dx

−
∫

B(ξ1,η)

a(x)|U2|pdx

= O




∫

B(ξ1,η)

Up−2
1 (PU1 − U1)

2
dx


+O




∫

B(ξ1,η)

Up−2
1 U2

2dx




+O




∫

B(ξ1,η)

|PU1 − U1|p


+ O




∫

B(ξ1,η)

|U2|pdx




= O
(
|Up−2

1 (PU1 − U1)|B(ξ1,η),
2n

n+2
|PU1 − U1|B(ξ1,η),

2n
n−2

)

+O
(
|Up−2

1 U2|B(ξ1,η),
2n

n+2
|U2|B(ξ1,η),

2n
n−2

)

+O
(
|PU1 − U1|pB(ξ1,η),

2n
n−2

)
+O

(
|U2|pB(ξ1,η),

2n
n−2

)

= O
(
ǫ1+σ

)
,

for some σ > 0, because of estimates (45), (46), (52) and (53).
The first term in (81) is estimated in (64) and (65) of Lemma C.2.
Finally, we estimate the integral over B(ξ2, η)

(83)∫

B(ξ2,η)

a(x) (|PU1 − PU2|p − |U1|p − |U2|p) dx

= −p
∫

B(ξ2,η)

a(x)Up−1
2 (−PU2 + U2 + PU1) dx

+
(p− 1)p

2

∫

B(ξ2,η)

a(x)|U1 + θ (−PU2 + U2 + PU1) |p−2 (−PU2 + U2 + PU1)
2
dx

−
∫

B(ξ2,η)

a(x)|U1|pdx

= p

∫

B(ξ2,η)

a(x)Up−1
2 (PU2 − U2 − PU1) dx+ J,

where J is estimated exactly as in (82), while the first term in (83) is estimated in
(64) and (65) of Lemma C.2.

We collect all the previous estimates and we get the claim. �
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Lemma C.4. The following estimate holds true:

(84)
1

p− ǫ

∫

Ω

a(x)|Vs,d,t|p−ǫdx =
1

p

∫

Ω

a(x)|Vs,d,t|pdx

+ ǫ



 1

p2

∫

Ω

a(x)|Vs,d,t|pdx− 1

p

∫

Ω

a(x)|Vs,d,t|p−1 log |Vs,d,t|dx



 + o(ǫ)

= [a(s1) + a(s2)]

(
γ1
p2

− γ1αn

p
− γ3

p

)
ǫ

+
n− 2

2p
γ1 [a(s1) log δ1 + a(s2) log δ2] ǫ+ o(ǫ).

Proof. We argue exactly as in the proof of Lemma 3.2 of [9]. �
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