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PICARD GROUPS OF CERTAIN STABLY PROJECTIONLESS

C∗-ALGEBRAS

NORIO NAWATA

Abstract. We compute Picard groups of several nuclear and non-nuclear sim-
ple stably projectionless C∗-algebras. In particular, the Picard group of the
Razak-Jacelon algebra W2 is isomorphic to a semidirect product of Out(W2)

with R
×

+
. Moreover, for any separable simple nuclear stably projectionless

C∗-algebra with a finite dimensional lattice of densely defined lower semicon-
tinuous traces, we show that Z-stability and strict comparison are equivalent.
(This is essentially based on the result of Matui and Sato, and Kirchberg’s
central sequence algebras.) This shows if A is a separable simple nuclear sta-
bly projectionless C∗-algebra with a unique tracial state (and no unbounded
trace) and has strict comparison, the following sequence is exact:

1 −−−−−→ Out(A) −−−−−→ Pic(A) −−−−−→ F(A) −−−−−→ 1

where F(A) is the fundamental group of A.

1. Introduction

Let A be a C∗-algebra. Brown, Green and Rieffel introduced the Picard group
Pic(A) of A in [5]. We say that an automorphism α of A is inner if there exists
a unitary element u in the multiplier algebra M(A) of A such that α(a) = uau∗

for any a ∈ A. Let Inn(A) denote the set of inner automorphisms of A, and
let Out(A) = Aut(A)/Inn(A). They showed that if A is σ-unital, then Pic(A)
is isomorphic to Out(A ⊗ K). Kodaka computed Picard groups of several unital
C∗-algebras in [21], [22] and [23]. In particular he computed the Picard groups of
the irrational rotation algebras Aθ. If θ is not quadratic irrational number, then
Pic(A) is isomorphic to Out(Aθ) and if θ is a quadratic number, then Pic(Aθ) is
isomorphic to Out(Aθ)⋊ Z. Kodaka considered the following set

FP/ ∼= {[p] | p is a full projection in A⊗K such that p(A⊗K)p ∼= A}

where [p] is the Murray-von Neumann equivalence class of p and showed that if
Out(A) is a normal subgroup of Out(A ⊗ K) and A is unital, then FP/ ∼ has a
suitable group structure and the following sequence is exact:

1 −−−−→ Out(A) −−−−→ Pic(A) −−−−→ FP/ ∼ −−−−→ 1.

Note that there exists a simple unital AF algebra B with a unique tracial state
such that FP/ ∼ of B does not have any suitable group structure. If A is unital,
K-theoretical method enables us to show that Out(A) is a normal subgroup of
Out(A⊗K) (see [21, Proposition 1.5]).

The set of FP/ ∼ is similar to the fundamental group F(M) of a II1 factor
M introduced by Murray and von Neumann in [28]. Watatani and the author
introduced the fundamental group F(A) of a simple unital C∗-algebra A with a
unique tracial state τ based on Kodaka’s results. The fundamental group F(A)
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is defined as the set of the numbers τ ⊗ Tr(p) for some projection p ∈ Mn(A)
such that pMn(A)p is isomorphic to A. We showed that F(A) is a multiplicative
subgroup of R×

+ and computed fundamental groups of several C∗-algebras in [31].

Moreover we showed that any countable subgroup of R×
+ can be realized as the

fundamental group of a separable simple unital C∗-algebra with a unique tracial
state in [32]. Note that the fundamental groups of separable simple unital C∗-
algebras are countable. Furthermore the author introduced the fundamental group
of a simple stably projectionless C∗-algebra with unique (up to scalar multiple)
densely defined lower semicontinuous trace τ in [29]. If τ is a tracial state and
A is σ-unital, then the fundamental group of F(A) of A is defined as the set of

the numbers dτ (h) for some positive element h ∈ A ⊗ K such that h(A⊗K)h
is isomorphic to A where dτ is the dimension function defined by τ . Note that
if A is unital, then this definition coincides with the previous definition and there
exist separable simple stably projectionless C∗-algebras such that their fundamental
groups are equal to R

×
+. The fundamental group of a II1 factor M is equal to the

set of trace-scaling constants for automorphisms of a II∞ factor M ⊗ B(H). This
characterization shows that the fundamental groups of II1 factors are related to the
structure theorem for type IIIλ factors where 0 < λ ≤ 1 (see [43] and [44]). We
have a similar characterization, that is, if A is σ-unital, then the fundamental group
of A is equal to the set of trace scaling constants for automorphisms of A⊗K.

We denote by Z the Jiang-Su algebra constructed in [14]. The Jiang-Su algebra
Z is a unital separable simple infinite-dimensional nuclear C∗-algebra whose K-
theoretic invariant is isomorphic to that of complex numbers. We may regard Z as
the stably finite analogue of the Cuntz algebra O∞. We say that a C∗-algebra A is
Z-stable if A is isomorphic to A ⊗ Z. It has recently become important to study
regularity properties in Elliott’s classification program for nuclear C∗-algebras. In
particular, Toms and Winter conjectured that for simple separable nuclear non-type
I unital C∗-algebras, the properties of (i) finite nuclear dimension, (ii) Z-stability
and (iii) strict comparison of positive elements are equivalent (see, for example [46]
and [49]). It is known that (i) implies (ii) and (ii) implies (iii) due to work of
Winter [49] and Rørdam [40] respectively. Recently, Matui and Sato showed that
(iii) implies (ii) in the case of finitely many extremal tracial states in [25].

In this paper we shall compute Picard groups of several nuclear and non-nuclear
simple stably projectionless C∗-algebras. In the case of stably projectionless C∗-
algebras, the theory of the Cuntz semigroup enables us to compute Picard groups
of several examples. We shall show that if A is a separable simple exact Z-stable
stably projectionless C∗-algebra with a unique tracial state τ and no unbounded
trace, then the following sequence is exact:

1 −−−−→ Out(A) −−−−→ Pic(A) −−−−→ F(A) −−−−→ 1.

Since there exists a unital simple Z-stable algebra A with a unique tracial state
such that Out(A) is not a normal subgroup of Pic(A), Z-stable stably projectionless
C∗-algebras are in this sense more well-behaved than unital stably finite Z-stable
C∗-algebras. Let W2 be the Razak-Jacelon algebra studied in [13], [37], which has
trivial K-groups and a unique tracial state and no unbounded trace. Then W2 is
Z-stable, and hence the sequence above is exact in this case. Moreover we shall
show that the exact sequence above splits. Therefore Pic(W2) is isomorphic to
Out(W2)⋊R

×
+.

Based on the result of Matui and Sato, and Kirchberg’s central sequence algebras,
for any separable simple infinite-dimensional non-type I nuclear C∗-algebra with a
finite dimensional lattice of densely defined lower semicontinuous traces, we shall
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show that Z-stability and strict comparison are equivalent. (It is important to
consider property (SI).)

In particular, if A is a simple C∗-algebra with a finite dimensional lattice of
densely defined lower semicontinuous traces in the class of Robert’s classification
theorem ([37, Corollary 6.2.4]), then A is Z-stable. Moreover we see that there are
many examples that the sequence above is exact. But we do not know whether the
exact sequence above splits in this case. This question is related to the existence
of a one parameter trace scaling automorphism group of A ⊗ K. In the final part
of this paper we shall give some remarks and a reason of the notation of W2. Some
results show every separable simple Z-stable stably projectionless C∗-algebra A
with a unique tracial state has similar properties of (McDuff) II1 factors.

2. The Picard group

In this section we shall review basic facts on the Picard groups of C∗-algebras
introduced by Brown, Green and Rieffel in [5] and some results in [29].

Let A be a C∗-algebra and X a right Hilbert A-module, and let H(A) denote
the set of isomorphic classes [X ] of countably generated right Hilbert A-modules.
We denote by LA(X ) the algebra of the adjointable operators on X . For ξ, η ∈
X , a ”rank one operator” Θξ,η is defined by Θξ,η(ζ) = ξ〈η, ζ〉A for ζ ∈ X . We
denote by KA(X ) the closure of the linear span of ”rank one operators” Θξ,η and
by K the C∗-algebra of compact operators on an infinite-dimensional separable
Hilbert space. Let XA be a right Hilbert A-module A with the obvious right A-
action and 〈a, b〉A = a∗b for a, b ∈ A. Then there exists a natural isomorphism of
KA(XA) to A, where A acts on XA by left multiplication. Hence if A is unital, then
KA(XA) = LA(XA). A multiplier algebra, denote by M(A), of a C∗-algebra A is
the largest unital C∗-algebra that contains A as an essential ideal. It is unique up
to isomorphism over A and isomorphic to LA(XA). Let HA denote the standard
Hilbert module {(xn)n∈N | xn ∈ A,

∑
x∗nxn converges in A} with an A-valued inner

product 〈(xn)n∈N, (yn)n∈N〉 =
∑
x∗nyn. Then there exists a natural isomorphism of

A⊗K to KA(HA).
Let A and B be C∗-algebras. An A-B-equivalence bimodule is an A-B-bimodule

F which is simultaneously a full left Hilbert A-module under a left A-valued inner
product A〈·, ·〉 and a full right Hilbert B-module under a right B-valued inner
product 〈·, ·〉B , satisfying A〈ξ, η〉ζ = ξ〈η, ζ〉B for any ξ, η, ζ ∈ F . We say that
A is Morita equivalent to B if there exists an A-B-equivalence bimodule. There
exists an isomorphism ϕ of A to KB(F) such that ϕ(A〈ξ, η〉) = Θξ,η for any ξ, η ∈
F . The standard Hilbert module HA can be regard as an A ⊗ K-A-equivalence
bimodule. A dual module F∗ of an A-B-equivalence bimodule F is a set {ξ∗; ξ ∈ F}

with the operations such that ξ∗ + η∗ = (ξ + η)∗, λξ∗ = (λξ)∗, bξ∗a = (a∗ξb∗)∗,

B〈ξ
∗, η∗〉 = 〈η, ξ〉B and 〈ξ∗, η∗〉A = A〈η, ξ〉. The bimodule F∗ is a B-A-equivalence

bimodule. We refer the reader to [35] and [36] for the basic facts on equivalence
bimodules and Morita equivalence. For A-A-equivalence bimodules E1 and E2, we
say that E1 is isomorphic to E2 as an equivalence bimodule if there exists a C-linear
one-to-one map Φ of E1 onto E2 with the properties such that Φ(aξb) = aΦ(ξ)b,

A〈Φ(ξ),Φ(η)〉 = A〈ξ, η〉 and 〈Φ(ξ),Φ(η)〉A = 〈ξ, η〉A for a, b ∈ A, ξ, η ∈ E1. The
set of isomorphic classes [E ] of the A-A-equivalence bimodules E forms a group
under the product defined by [E1][E2] = [E1 ⊗A E2]. We call it the Picard group of
A and denote it by Pic(A). The identity of Pic(A) is given by the A-A-bimodule
E := A with A〈a1, a2〉 = a1a

∗
2 and 〈a1, a2〉A = a∗1a2 for a1, a2 ∈ A. The inverse

element of [E ] in the Picard group of A is the dual module [E∗]. Let α be an
automorphism of A, and let EA

α = A with the obvious left A-action and the obvious
A-valued inner product. We define the right A-action on EA

α by ξ · a = ξα(a) for
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any ξ ∈ EA
α and a ∈ A, and the right A-valued inner product by 〈ξ, η〉A = α−1(ξ∗η)

for any ξ, η ∈ EA
α . Then EA

α is an A-A-equivalence bimodule. For α, β ∈ Aut(A),
EA
α is isomorphic to EA

β if and only if there exists a unitary u ∈ M(A) such that

α = ad u ◦ β. Moreover, EA
α ⊗ EA

β is isomorphic to EA
α◦β . Hence we obtain an

homomorphism ρA of Out(A) to Pic(A). Note that for any α ∈ Aut(A), EA
α is

isomorphic to XA as a right Hilbert A-module. Conversely we have the following
proposition.

Proposition 2.1. Let E be an A-A-equivalence bimodule such that E is isomorphic
to XA as a right Hilbert A-module. Then there exists an automorphism α of A such
that E is isomorphic to EA

α as an A-A-equivalence bimodule.

Proof. Let Φ be a right Hilbert A-module isomorphism of XA to E , and let ψ be
an isomorphism of KA(E) to KA(XA) induced by Φ. Since KA(XA) is naturally
isomorphic to A, we may regard ψ as an isomorphism of KA(E) to A. There exists
an isomorphism ϕ of A to KA(E) such that ϕ(A〈ξ, η〉) = Θξ,η for any ξ, η ∈ E
because E is an A-A-equivalence bimodule.

Put α := (ψ ◦ ϕ)−1, and define a map F of E to EA
α by F (Φ(a)) := α(a) for any

a ∈ A. Note that we have

A〈Φ(a),Φ(b)〉 = ϕ−1(ΘΦ(a),Φ(b)) = ϕ−1 ◦ ψ−1(ab∗) = α(ab∗)

and

a · Φ(b) = ϕ(a)Φ(b) = Φ(ψ ◦ ϕ(a)b) = Φ(α−1(a)b)

for any a, b ∈ A. Therefore it can easily be checked that F is an A-A-equivalence
bimodule isomorphism. �

An A-B-equivalence bimodule F induces an isomorphism Ψ of Pic(A) to Pic(B)
by Ψ([E ]) = [F∗ ⊗ E ⊗ F ] for [E ] ∈ Pic(A). Therefore if A is Morita equivalent
to B, then Pic(A) is isomorphic to Pic(B). Brown, Green and Rieffel showed that
if A is σ-unital, then Pic(A) is isomorphic to Out(A ⊗ K) (see [5, Theorem 3.4
and Corollary 3.5]). Indeed a homomorphism ρA⊗K of Aut(A ⊗ K) to Pic(A ⊗ K)
induces an isomorphism of Out(A⊗K) onto Pic(A⊗K).

A sequence {ξi}iN of a right Hilbert A-module X is called countable basis of
X if η =

∑∞

i=1 ξi〈ξi, η〉A in norm for any η ∈ X . If KA(X ) is σ-unital, then
X has a countable basis. A sequence {ξi}iN is a countable basis if and only if

{
∑N

i=1 Θξi,ξi}N∈N is an approximate unit for KA(X ). See [15], [16], [29] and [50]
for details of bases of Hilbert modules. We denote by T (A) the set of densely
defined lower semicontinuous traces on A and T1(A) the set of tracial states on A.
We have the following proposition.

Proposition 2.2. ([29, Proposition 2.4])
Let A be a simple σ-unital C∗-algebra and X a countably generated Hilbert A-
module, and let τ be a densely defined lower semicontinuous trace on A. For
x ∈ KA(X )+, define

TrXτ (x) :=

∞∑

i=1

τ(〈ξi, xξi〉A)

where {ξi}
∞
i=1 is a countable basis of X . Then TrXτ does not depend on the choice of

basis and is a densely defined (resp. strictly densely defined) lower semicontinuous
trace on KA(X ) (resp. LA(X )).

The following proposition is [29, Remark 2.5]. Moreover it is well-known (see for
example [6]). But we include the proof for completeness.
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Proposition 2.3. Let A be a simple σ-unital C∗-algebra and X a countably gener-
ated Hilbert A-module. Then there exists a bijective correspondence between T (A)
and T (KA(X )).

Proof. Since a right Hilbert A-module X is a KA(X )-A-equivalence bimodule, X ∗

is an A-KA(X )-equivalence bimodule. Let {ξj}j∈N be a countable basis of X and
{η∗i }i∈N a countable basis of X ∗. For any a ∈ A+ and τ ∈ T (A), we have

TrX
∗

TrXτ
(a) = lim

n→∞

n∑

i=1

TrXτ (〈η∗i , aη
∗
i 〉KA(X ))

= lim
n→∞

n∑

i=1

TrXτ (KA(X )〈ηia
1

2 , ηia
1

2 〉)

= lim
n→∞

n∑

i=1

TrXτ (Θ
ηia

1

2 ,ηia
1

2

)

= lim
n→∞

n∑

i=1

∞∑

j=1

τ(〈ξj , ηia
1

2 〈ηia
1

2 , ξj〉A〉A)

= lim
n→∞

n∑

i=1

∞∑

j=1

τ(〈ξj , ηia
1

2 〉A〈ηia
1

2 , ξj〉A)

= lim
n→∞

n∑

i=1

∞∑

j=1

τ(〈ηia
1

2 , ξj〉A〈ξj , ηia
1

2 〉A)

= lim
n→∞

n∑

i=1

∞∑

j=1

τ(〈ηia
1

2 , ξj〈ξj , ηia
1

2 〉A〉A).

Since {ξj}j∈N is a countable basis of X , we see that

〈ηia
1

2 ,

m∑

j=1

ξj〈ξj , ηia
1

2 〉A〉A ր 〈ηia
1

2 , ηia
1

2 〉A (m → ∞).

Hence

lim
n→∞

n∑

i=1

∞∑

j=1

τ(〈ηia
1

2 , ξj〈ξj , ηia
1

2 〉A〉A) = lim
n→∞

n∑

i=1

τ(〈ηia
1

2 , ηia
1

2 〉A)

by the lower semicontinuity of τ . Since Θη∗
i ,η

∗
i
is corresponding to 〈ηi, ηi〉A, we see

that {
∑n

i=1〈ηi, ηi〉A}n∈N is an approximate unit for A. Therefore we have

lim
n→∞

n∑

i=1

τ(〈ηia
1

2 , ηia
1

2 〉A) = lim
n→∞

τ(a
1

2 (

n∑

i=1

〈ηi, ηi〉A)a
1

2 ) = τ(a)

by the lower semicontinuity of τ . Consequently TrX
∗

TrXτ
= τ .

Since (X ∗)∗ is naturally isomorphic to X as a KA(X )-A-equivalence bimodule,
we see that TrX

TrX∗

τ

= τ for any τ ∈ T (KA(X )) as above. Hence we obtain the

conclusion. �

The following Corollary is folklore.

Corollary 2.4. Let A be a simple σ-unital C∗-algebra and h be a non-zero positive
element in A. Then every densely defined lower semicontinuous trace on hAh is a
restriction of some densely defined lower semicontinuous trace on A.

Proof. Put X = hA. Since KA(hA) is naturally isomorphic to hAh, it is enough to
show that TrXτ (τ) = τ |hAh for any τ ∈ T (A) by Proposition 2.3. Let {an}n∈N be
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a countable basis of hA. (Note that the norm of Hilbert A-module hA is equal to

the norm of C∗-algebra A.) Since τ(a∗nxan) = τ(x
1

2 ana
∗
nx

1

2 ) for any x ∈ hAh+ and

τ ∈ T (A), we have
∑N

n=1 τ(a
∗
nxan) ≤

∑N+1
n=1 τ(a

∗
nxan) for any N ∈ N. Therefore

we see that TrXτ (x) = τ(x) by the lower semicontinuity of τ . �

For τ ∈ T (A), define a map T̂τ of H(A) to [0,∞] by

T̂τ ([X ]) :=

∞∑

n=1

τ(〈ξn, ξn〉A)

where {ξn}n∈N is a countable basis of X . This map is well-defined map and does not

depend on the choice of basis. Moreover we have T̂τ (X ) = TrXτ (1LA(X )) = ‖TrXτ ‖.

Put dτ (h) = limn→∞ τ ⊗ Tr(h
1

n ) for h ∈ (A ⊗ K)+. Then dτ is a dimension
function. We have the following proposition.

Proposition 2.5. [29, Proposition 3.1]
Let A be a simple σ-unital C∗-algebra with unique (up to scalar multiple) densely
defined lower semicontinuous trace τ and h a positive element in A ⊗ K. Then
T̂τ (hHA) = dτ (h).

The following proposition is an immediate corollary of [29, Proposition 3.3]

Proposition 2.6. Let A be a simple σ-unital C∗-algebra with a unique tracial
state τ and no unbounded trace. Then for every right Hilbert A-module X and
every A-A-equivalence bimodule E ,

T̂τ ([X ⊗ E ]) = T̂τ ([X ])T̂τ ([E ]).

If A is σ-unital, then for any A-A-equivalence bimodule E there exists a positive
element h in A⊗K such that E is isomorphic to hHA as a right Hilbert A-module.
Note that h(A⊗K)h is isomorphic to A and hHA has a suitable structure as an
A-A-equivalence bimodule in this case. (See, for example, [29, Proposition 2.3].)
The following proposition is a key proposition in this paper.

Proposition 2.7. Let A be a simple σ-unital C∗-algebra with a unique tracial state
τ and no unbounded trace. Define a map T of Pic(A) to R

×
+ by T ([hHA]) = dτ (h).

Then T is a well-defined multiplicative map and T ([EA
α ]) = 1 for any α ∈ Aut(A).

Moreover Im(T ) is equal to the set

{dτ (h) ∈ R
×
+ | h is a positive element in A⊗K such that A ∼= h(A⊗K)h}.

Proof. Let [hHA] ∈ Pic(A). Then dτ (h) = T̂τ (hHA) = ‖TrhHA
τ ‖ by Proposition

2.5. Since KA(hHA) ∼= A has no unbounded trace, dτ (h) = ‖TrhHA
τ ‖ < ∞. Hence

we see that T is well-defined map and Im(T ) is equal to the set

{dτ (h) ∈ R
×
+ | h is a positive element in A⊗K such that A ∼= h(A⊗K)h}

by an argument above. Proposition 2.6 implies that T is a multiplicative map. It is
easy to see that EA

α is isomorphic to sA = A as a right Hilbert A-module where s is
a strictly positive element in A. Since τ is a tracial state, T ([EA

α ]) = dτ (s) = 1. �

Put F(A) = Im(T ). We call F(A) the fundamental group of A, which is a
multiplicative subgroup of R×

+ by the proposition above.
Let A a simple C∗-algebra with unique (up to scalar multiple) densely defined

lower semicontinuous trace τ . For any α ∈ Aut(A ⊗ K), τ ⊗ Tr ◦ α is a densely
defined lower semicontinuous trace on A⊗K. Hence there exists a positive number
λ such that τ⊗Tr◦α = λτ⊗Tr. Define a map S of Out(A⊗K) to R

×
+ by S([α]) = λ
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where τ ⊗Tr ◦α = λτ ⊗Tr. Then S is a well-defined multiplicative map and Im(S)
is equal to the set

S(A) := {λ ∈ R
×
+ | τ ⊗ Tr ◦ α = λτ ⊗ Tr for some α ∈ Aut(A⊗K) }.

The following proposition is a strengthened version of [29, Proposition 4.20].

Proposition 2.8. Let A be a simple σ-unital C∗-algebra with a unique tracial state
τ and no unbounded trace. Then there exists an isomorphism Ψ of Out(A ⊗ K)
to Pic(A) such that S([α])−1 = T ◦ Ψ([α]) for any [α] ∈ Out(A ⊗ K), and hence
F(A) = S(A).

Proof. Define Ψ([α]) := [(HA)
∗⊗EA⊗K

α ⊗HA]. Since HA is an A⊗K-A-equivalence
bimodule and ρA⊗K induces an isomorphism of Out(A ⊗ K) to Pic(A ⊗ K) by [5,
Corollary 3.5], Ψ is an isomorphism of Out(A ⊗ K) to Pic(A). Note that (HA)

∗

is naturally isomorphic to (s⊗ e11)(A ⊗K) as an A-A ⊗ K-equivalence bimodule
where s is a strictly positive element in A and e11 is a rank one projection in K. It
is easy to see that for any element ζ in an algebraic tensor product (s ⊗ e11)(A ⊗
K)⊙ EA⊗K

α ⊙HA, there exists an element ξ in HA such that

ζ = (s
1

2 ⊗ e11)⊗ (s
1

4 ⊗ e11)⊗ α−1(s
1

4 ⊗ e11)ξ.

Therefore it can easily be checked that (HA)
∗ ⊗ EA⊗K

α ⊗ HA is isomorphic to

α−1(s⊗ e11)HA as a right Hilbert A-module. We have

dτ (α
−1(s⊗ e11)) = lim

n→∞
τ ⊗ Tr(α−1((s⊗ e11)

1

n )) = S([α])−1

since τ is a tracial state on A. Hence we obtain the conclusion. �

3. The Cuntz semigroup

In this section we shall review basic facts of the Cuntz semigroup and some
results in [7], [10], [38] and [40]. See, for example, [2] for details of the Cuntz
semigroup. Let A be a C∗-algebra. For positive elements a, b ∈ A we say that a is
Cuntz smaller than b, written a - b, if there exists a sequence {xn}n∈N of A such
that ‖x∗nbxn − a‖ → 0. Positive elements a and b are said to be Cuntz equivalent,
written a ∼ b, if a - b and b - a. Define the Cuntz semigroup Cu(A) as the set
of Cuntz equivalence classes of positive elements in A⊗K endowed with the order
[a] ≤ [b] if a is Cuntz smaller than b, and the addition [a] + [b] = [a′ + b′] where
a ∼ a′, b ∼ b′ and a′b′ = 0. Note that this definition is different from the original
definition W(A) in [8]. (We have Cu(A) = W(A ⊗ K).) The Cuntz semigroup
Cu(A) is also defined using right Hilbert A-modules (see [7]). For positive elements
a, b ∈ A⊗ K we say that a is compactly contained in b, written a ≪ b if whenever
[b] ≤ supn∈N[bn] for an increasing sequence {[bn]}n∈N, then there exists a natural
number n such that [a] ≤ [bn]. Coward, Elliott and Ivanescu [7] showed that Cu(A)
has the following properties:
(1) every increasing sequence in Cu(A) has a supremum,
(2) for any element [a] in Cu(A) there exists an increasing sequence {[an]}n∈N of
Cu(A) such that [an] ≪ [an+1] for any n ∈ N and [a] = sup[an],
(3) the operation of passing to the supremum of an increasing sequence and the
relation ≪ are compatible with addition.

Moreover they showed that Cu(A) is a functor which is continuous with respect
to inductive limits ([7, Theorem 2]). For a positive element a ∈ A⊗K and ǫ > 0 we
denote by (a− ǫ)+ the element f(a) in A⊗K where f(t) = max{0, t− ǫ}, t ∈ σ(a).
Then we have (a− ǫ)+ ≪ a.

Following the definition in [40], the Cuntz semigroup Cu(A) is said to be almost
unperforated if (k + 1)[a] ≤ k[b] for some k ∈ N implies that [a] ≤ [b]. Rørdam
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showed that if A is Z-stable, then Cu(A) is almost unperforated (see [40, Theorem
4.5]). If A is a simple exact C∗-algebra with traces, then Cu(A) is almost unper-
forated if and only if A has strict comparison, that is, if a, b ∈ (A ⊗ K)+ with
dτ (a) < dτ (b) < ∞ for any τ ∈ T (A), then [a] ≤ [b]. (See [10, Proposition 4.2,
Remark 4.3 and Proposition 6.2] and [40, Proposition 3.2 and Corollary 4.6].)

Lemma 3.1. Let A be a simple C∗-algebra and a a non-zero positive element in
A⊗K. Then for any positive element b in A⊗K, [b] ≤ supn∈N n[a].

Proof. Let B := (a+ b)(A⊗K)(a+ b). Then B is a σ-unital hereditary subalgebra
of A ⊗ K. By a variant of Brown’s theorem (see for example [27, Theorem 1.9]),

aHB
∞

is isomorphic toHB as a right Hilbert module. Since bHB ⊆ HB, we see that
[b] ≤ supn∈N n[a] in Cu(B). We obtain the conclusion because B is a hereditary
subalgebra of A⊗K. �

The following proposition is an immediate corollary of [10, Theorem 6.6]. (Note
that they considered the more general case.) But we shall give a self-contained
proof based on their arguments (see also [10, Proposition 6.4]).

Proposition 3.2. Let A be a simple exact C∗-algebra, and let a and b be posi-
tive elements in A ⊗ K. Assume that Cu(A) is almost unperforated and 0 is an
accumulation point of the spectrum σ(a) of a. Then if dτ (a) ≤ dτ (b) < ∞ for any
τ ∈ T (A), then a is Cuntz smaller than b.

Proof. Let a and b be positive elements in A ⊗ K such that dτ (a) ≤ dτ (b) for any
τ ∈ T (A). We may assume that ‖a‖ = ‖b‖ = 1. For any k ∈ N we have

dτ (diag(

k︷ ︸︸ ︷
a, .., a)) = kdτ (a) ≤ kdτ (b) < (k + 1)dτ (b) = dτ (diag(

k+1︷ ︸︸ ︷
b, .., b)).

Hence k[a] ≤ (k + 1)[b] for any k ∈ N because A has strict comparison. Let ǫ > 0,
and choose a positive function cǫ on σ(a) such that cǫ(t) > 0 on t ∈ (0, ǫ) and
cǫ(t) = 0 on σ(a) \ (0, ǫ). Then we have [cǫ(a)] + [(a − ǫ)+] ≤ [a]. Note that for
any ǫ > 0, cǫ(a) is a nonzero positive element because 0 is an accumulation point
of σ(a). Hence we have 2[a] ≤ supn∈N n[cǫ] by Lemma 3.1. There exists a natural
number m such that 2[(a− ǫ)+] ≤ m[cǫ(a)] since 2[(a− ǫ)+] ≪ 2[a]. Therefore we
have

(m+ 2)[(a− ǫ)+] ≤ m[(a− ǫ)+] +m[cǫ(a)] ≤ m[a] ≤ (m+ 1)[b].

By the assumption that Cu(A) is almost unperforated, we see that [(a− ǫ)+] ≤ [b]
for any ǫ > 0, and hence we have [a] ≤ [b]. �

Corollary 3.3. Let A be a simple exact stably projectionless C∗-algebra, and let
a and b be positive elements in A⊗K. Assume that Cu(A) is almost unperforated.
Then if dτ (a) = dτ (b) <∞ for any τ ∈ T (A), then a is Cuntz equivalent to b.

Proof. For any nonzero positive element a in A⊗K, 0 is an accumulation point of
σ(a) because A is a stably projectionless C∗-algebra. Hence we obtain the conclu-
sion by Proposition 3.2. �

Based on the result in [38], we say that a C∗-algebra A has almost stable rank one

if for every σ-unital hereditary subalgebra B ⊆ A⊗K we have B ⊆ GL(B̃). Robert
showed that if A is a simple Z-stable stably projectionless C∗-algebra, then A has
almost stable rank one (see [38, Corollary 4.5] and [40]). The following proposition
is [38, Proposition 4.7]. See [7, Theorem 3] for the proof.

Proposition 3.4. Let A be a simple σ-unital C∗-algebra such that A has almost
stable rank one and a and b positive elements in A ⊗ K. Then a is Cuntz smaller
than b if and only if there exists a right Hilbert A-module X ⊆ bHA such that X
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is isomorphic to aHA as a right Hilbert A-module, and a is Cuntz equivalent to b
if and only if aHA is isomorphic to bHA as a right Hilbert A-module.

Corollary 3.3 and Proposition 3.4 are important in the proof of our main result.
These propositions show that every separable simple Z-stable stably projection-
less C∗-algebra A with a unique tracial state has similar properties of II1 factors
(Murray-von Neumann comparison theory). Moreover we have the following propo-
sition.

Proposition 3.5. Let A be a simple exact σ-unital stably projectionless C∗-algebra
with a unique tracial state τ and no unbounded trace. Assume that Cu(A) is almost
unperforated, A has almost stable rank one and F(A) = R

×
+. Then every nonzero

hereditary subalgebra of A is isomorphic to A.

Proof. Let B be a non-zero hereditary subalgebra of A. Then B is isomorphic to
h0Ah0 for some non-zero positive element h0 in A. Since dτ (h0) ∈ R

×
+ = F(A),

there exists a positive element h in A⊗K such that dτ (h) = dτ (h0) and h(A⊗K)h

is isomorphic to A. But then h ∼ h0 by Corollary 3.3 and so hHA is isomorphic
to (h0 ⊗ e11)HA by Proposition 3.4. Hence A ∼= KA(hHA) ∼= KA((h0 ⊗ e11)HA) ∼=
B. �

4. Main result

The following theorem is the main result in this paper. See [21, Corollary 4.8]
and [31, Proposition 3.26] for the unital case.

Theorem 4.1. Let A be a simple exact σ-unital stably projectionless C∗-algebra
with a unique traical state τ and no unbounded trace. Assume that Cu(A) is almost
unperforated and A has almost stable rank one. Then the following sequence is
exact:

1 −−−−→ Out(A)
ρA

−−−−→ Pic(A)
T

−−−−→ F(A) −−−−→ 1.

Proof. It is clear that T is onto by definition of F(A). We see that ρA is one-to-one
and Im(ρA) ⊆ Ker(T ) by [5, Corollary 3.2] and Proposition 2.7 respectively. We
shall show that Ker(T ) ⊆ Im(ρA). Let [E ] ∈ Ker(T ). Then Corollary 3.3 and

Proposition 3.4 imply E is isomorphic to (s⊗ e11)HA as a right Hilbert A-module
where s is a strict positive element in A and e11 is a rank one projection in K

because we have dτ (s ⊗ e11) = 1 by ‖τ‖ = 1. Since (s⊗ e11)HA is isomorphic
to XA as a right Hilbert A-module, there exists some automorphism α such that
[E ] = [EA

α ] by Proposition 2.1. Hence [E ] ∈ Im(ρA). �

Corollary 4.2. Let A be a simple exact separable Z-stable stably projectionless
C∗-algebra with a unique tracial state τ and no unbounded trace. Then the follow-
ing sequence is exact:

1 −−−−→ Out(A)
ρA

−−−−→ Pic(A)
T

−−−−→ F(A) −−−−→ 1.

Proof. This is an immediate consequence of [40, Theorem 4.5], [38, Corollary 4.5]
and Theorem 4.1. �

Remark 4.3. There exists a unital simple AF algebra A with a unique tracial
state such that Out(A) is not a normal subgroup of Pic(A). (See [30].) Of course A
is a unital stably finite Z-stable C∗-algebra. Therefore the corollary above shows
that Z-stable stably projectionless C∗-algebras are in this sense more well-behaved
than unital stably finite Z-stable C∗-algebras.
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We shall show some examples.
LetW2 be the Razak-Jacelon algebra studied in [13], [37] and [38], which has triv-

ial K-groups and a unique tracial state and no unbounded trace. The Razak-Jacelon
algebraW2 is constructed as an inductive limit C∗-algebra of Razak’s building block
in [34], that is,

A(n,m) =



f ∈ C([0, 1])⊗Mm(C) | f(0) = diag(

k︷ ︸︸ ︷
c, .., c, 0n), f(1) = diag(

k+1︷ ︸︸ ︷
c, .., c),

c ∈Mn(C)





where n and m are natural numbers with n|m and k := m
n − 1. Let O2 denote

the Cuntz algebra generated by 2 isometries S1 and S2. For every λ1, λ2 ∈ R

there exists by universality a one-parameter automorphism group α of O2 given by
αt(Sj) = eitλjSj . Kishimoto and Kumjian showed that if λ1 and λ2 are all nonzero
of the same sign and λ1 and λ2 generate R as a closed subgroup, then O2 ⋊αR is a
simple stable projectionless C∗-algebra with unique (up to scalar multiple) densely
defined lower semicontinuous trace in [19] and [20]. Moreover Robert [37] showed
that W2 ⊗ K is isomorphic to O2 ⋊α R for some λ1 and λ2. (See also [9].) In
particular, W2 ⊗ K has a one parameter trace scaling automorphism group σ (see
[19]).

Theorem 4.4. The Picard group of Razak-Jacelon algebra W2 is isomorphic to a
semidirect product of Out(W2) with R

×
+. Moreover if A is a simple exact σ-unital

C∗-algebra with a unique tracial state τ and no unbounded trace, then the Picard
group of A⊗W2 is isomorphic to a semidirect product of Out(A⊗W2) with R

×
+.

Proof. Note that we see that A ⊗ W2 is stably projectionless C∗-algebra because
A⊗W2 ⊗K has a one parameter trace scaling automorphism group id⊗ σ. Since
W2 is Z-stable, we have the following exact sequence:

1 −−−−→ Out(A⊗W2)
ρA

−−−−→ Pic(A⊗W2)
T

−−−−→ F(A⊗W2) −−−−→ 1

by Corollary 4.2. By Proposition 2.8, we see that F(A ⊗ W2) = R
×
+ and the

exact sequence above splits because A⊗W2 ⊗K has a one parameter trace scaling
automorphism group. Consequently Pic(A⊗W2) is isomorphic to Out(A⊗W2)⋊
R

×
+. �

Remark 4.5. (i) Note that we have

Out(W2 ⊗K) ∼= Out(W2)⋊R
×
+.

(ii) We do not assume that A is nuclear in the theorem above. Hence we have

Pic(W2 ⊗ C∗
r (Fn)) ∼= Out(W2 ⊗ C∗

r (Fn))⋊R
×
+

where Fn is a non-amenable free group with n generators. Moreover Proposition
3.5 shows that every nonzero hereditary subalgebra of W2 ⊗ C∗

r (Fn) is isomorphic
to W2 ⊗ C∗

r (Fn).
(iii) Let B be a simple unital AF algebra with two extremal tracial states. Then
W2⊗B is a simple stably projectionless C∗-algebra with two extremal tracial states
and in the class of Robert’s classification theorem [37]. It can be checked that
Out(W2 ⊗ B) is not a normal subgroup of Pic(W2 ⊗ B) by Robert’s classification
theorem and a similar proposition as [21, Proposition 1.5]. (We need to replace the
K0-groups with the trace spaces.)
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5. Z-stability of stably projectionless C∗-algebras

In this section we shall generalize the result of Matui and Sato in [25] to stably
projectionless C∗-algebras. Note that our arguments are essentially based on their
arguments.

We shall review some results of Kirchberg’s central sequence algebra in [17]. We

denote by Ã the unitization algebra of A. Note that we consider A = Ã when A is
unital. For a separable C∗-algebra A, set

c0(A) := {(an)n∈N ∈ ℓ∞(N, A) | lim
n→∞

‖an‖ = 0}, A∞ := ℓ∞(N, A)/c0(A).

Let B be a C∗-subalgebra of A. We identify A and B with the C∗-subalgebras of
A∞ consisting of equivalence classes of constant sequences. Put

A∞ := A∞ ∩ A′, Ann(B,A∞) := {(an)n ∈ A∞ ∩B′ | (an)nb = 0 for any b ∈ B}.

Then Ann(B,A∞) is an closed two-sided ideal of A∞ ∩B′, and define

F (A) := A∞/Ann(A,A
∞).

We call F (A) the central sequence algebra of A. A sequence (an)n is said to be
central if limn→∞ ‖ana − aan‖ = 0 for all a ∈ A. A central sequence is a rep-
resentative of an element in A∞. Since A is separable, A has a countable ap-
proximate unit {hn}n∈N. It is easy to see that [(hn)n] is a unit in F (A). If
A is unital, then F (A) = A∞. Moreover we see that F (A) is isomorphic to
M(A)∞ ∩ A′/Ann(A,M(A)∞) since for any (yn)n ∈ M(A)∞ ∩ A′, (ynhn)n is a
central sequence in A and [(yn)n] = [(ynhn)n] in M(A)∞ ∩ A′/Ann(A,M(A)∞).
Let {eij}i,j∈N be the standard matrix units of K. Define a map ϕ of F (A) to
F (A⊗K) by ϕ([(xn)n]) = [(xn⊗

∑n
i=1 eii)n]. Then it is easily seen that ϕ is a well-

defined injective homomorphism. A similar argument as above shows any element
in F (A⊗K) is equal to [(

∑n
i,j=1 xn,i,j ⊗ ei,j)n] for some sequence {xn,i,j}n∈N in A.

Using matrix units and the centrality of sequence, we can show that if i 6= j, then
limn→∞ xn,i,ja = 0 for any a ∈ A and limn→∞(xn,i,i − xn,j,j)a = 0 for any i, j ∈ N

and a ∈ A. Since M∞(A) is dense in A⊗K, it can be checked that ϕ is surjective.
Hence F (A) is isomorphic to F (A⊗K). (See [17, Proposition 1.9] for more general
cases.)

We denote by I(k, k + 1) the prime dimension drop algebra

{f ∈ C([0, 1])⊗Mk(C)⊗Mk+1(C) | f(0) ∈Mk(C)⊗ idk+1, f(1) ∈ idk ⊗Mk+1(C)}

for k ∈ N. The Jiang-Su algebra Z is constructed as an inductive limit C∗-algebra
of prime dimension drop algebras in [14]. We shall show the following proposition
(which is based on [48, Proposition 2.2]) by a similar way as in [39, Theorem 7.2.2].
See [17, Proposition 4.11] for more general cases.

Proposition 5.1. Let A be a separable C∗-algebra. There exist a unital homo-
morphism of the prime dimension drop algebra I(k, k + 1) to F (A) for any k ∈ N

if and only if A is Z-stable.

Proof. Assume that there exist a unital homomorphism of the prime dimension
drop algebra I(k, k + 1) to F (A) for any k ∈ N. By a similar argument as in [48,
Proposition 2.2] and the construction of Z in [14], we see that there exists a unital
homomorphism α of Z to F (A).

Let ϕ be an injective homomorphism of A to A ⊗ Z defined by ϕ(a) = a⊗ 1Z ,
and put C := M(A⊗Z)∞ ∩ ϕ(A)′/Ann(ϕ(A),M(A ⊗Z)∞). Then we can regard
α as a unital homomorphism of Z to C since F (A) is isomorphic to M(A)∞ ∩
A′/Ann(A,M(A)∞). Define a unital homomorphism of β of Z to M(A ⊗ Z)∞ ∩
ϕ(A)′ by β(x) = (1M(A)⊗x)n, and let [β] : Z → C be the quotient homomorphism
of β. Then we see that C∗(α(Z), [β](Z)) in C is isomorphic to Z ⊗Z. Since Z has
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approximately inner flip and is K1-injective (see [47, Proposition 1.13]), there exists
a sequence {wm}m∈N of unitary elements in C such that limm→∞ w∗

m[β](x)wm =
α(x) for any x ∈ Z and wm is in the connected component of 1C in U(C) for any
m ∈ N. Since wm is in the connected component of 1C in U(C), there exists a
unitary element um in M(A ⊗ Z)∞ ∩ ϕ(A)′ such that [um] = wm for any m ∈ N.
For any a ∈ A, x ∈ Z and all y ∈ M(A ⊗ Z)∞ ∩ ϕ(A)′ such that [y] = α(x), we
have

yϕ(a) = lim
m→∞

u∗mβ(x)umϕ(a) = lim
m→∞

u∗mβ(x)ϕ(a)um = lim
m→∞

u∗m(a⊗ x)um

by [y] = limm→∞[u∗mβ(x)um] and the definition of Ann(ϕ(A),M(A⊗Z)∞). Since
[y] = α(x), we can take y ∈M(ϕ(A))∞ ∩ ϕ(A)′ ⊆M(A⊗Z)∞ ∩ ϕ(A)′. Hence we
see that limm→∞ u∗m(a⊗x)um is an element in ϕ(A)∞. Therefore for any z ∈ A⊗Z,
limm→∞ d(u∗mzum, ϕ(A)

∞) = 0. We see that A is Z-stable by a similar argument
as in [39, Proposition 2.3.5 and Proposition 7.2.1].

Conversely assume that A is Z-stable. Then A is isomorphic to A ⊗ (⊗∞
k=1Z).

Since M(A) is the largest unital C∗-algebra that contains A as an essential ideal,

Ã⊗(⊗∞
k=1Z) is a unital subalgebra ofM(A⊗(⊗∞

k=1Z)). Hence there exists a unital
homomorphism of Z to M(A)∞ ∩ A′. Therefore we see that there exists a unital
homomorphism of the prime dimension drop algebra I(k, k + 1) to F (A) for any
k ∈ N because F (A) is isomorphic to M(A)∞ ∩ A′/Ann(A,M(A)∞). �

We denote by Ped(A) the Pedersen ideal of A. The Pedersen ideal Ped(A) is a
minimal dense two-sided ideal of A. Hence every densely defined lower semicontin-
uous trace τ on A is finite on Ped(A) because τ is finite on a dense two-sided ideal.
Moreover for any positive element h in Ped(A), hAh is contained in Ped(A). We
refer the reader to [3, II 5.2.4] and [33, Section 5.6] for details of the Pedersen ideal.
If A is unital, every densely defined lower semicontinuous trace on A is bounded.
Hence if A is simple and A ⊗ K has a nonzero projection, then there exists a full
hereditary subalgebra B of A such that every densely defined lower semicontinuous
trace on B is bounded. In general, we have the following proposition.

Proposition 5.2. Let A be a σ-unital simple C∗-algebra. Then there exists a full
hereditary subalgebra B of A such that every densely defined lower semicontinuous
trace on B is bounded.

Proof. Let h be a nonzero positive element in Ped(A). Then any τ ∈ T (A) restricts
to a bounded trace on hAh because every positive liner functional is automatically
bounded. We obtain the conclusion by Corollary 2.4. �

If A is separable, then A is Z-stable if and only if some full hereditary subalgebra
is Z-stable by Proposition 5.1 and Brown’s theorem in [4] since F (A) is isomorphic
to F (A⊗ K). (See also [47].) Therefore we may assume that A has no unbounded
trace by the proposition above. Note that if A has strict comparison and no un-
bounded trace, then for any a, b ∈ A+ satisfying dτ (a) < dτ (b) for all τ ∈ T1(A),
we have a - b.

Proposition 5.3. Let A be a separable C∗-algebra such that T1(A) is a non-empty
compact set, and let {hm}m∈N be a countable approximate unit for A and ǫ > 0.
Then there exists a natural number N such that

max
τ∈T1(A)

|τ(fn)− τ(hmfn)| < ǫ

for any m ≥ N and for any sequence (fn)n∈N of positive contractions in A. In
particular, we have

lim
n→∞

max
τ∈T1(A)

|τ(hnfn)− τ(fn)| = 0.



PICARD GROUPS OF CERTAIN STABLY PROJECTIONLESS C∗-ALGEBRAS 13

Proof. For any τ ∈ T1(A), we have τ(hm) ≤ τ(hm+1) and lim τ(hm) = 1. By Dini’s
theorem, there exists a natural number N such that

max
τ∈T1(A)

|1− τ(hm)| < ǫ

for any m ≥ N . For any sequence (fn)n∈N of positive contractions in A,

max
τ∈T1(A)

|τ(fn)− τ(hmfn)| = max
τ∈T1(A)

|τ((1 − hm)1/2fn(1− hm)1/2)|

≤ max
τ∈T1(A)

|1− τ(hm)| < ǫ

for m ≥ N . �

We recall some definitions.

Definition 5.4. Let A be a separable C∗-algebra with no unbounded trace. Assume
that T1(A) is a non-empty compact set. We say that A has property (SI) if for any
central sequences (en)n and (fn)n of positive contractions in A satisfying

lim
n→∞

max
τ∈T1(A)

τ(en) = 0, lim
m→∞

lim inf
n→∞

min
τ∈T1(A)

τ(fm
n ) > 0,

there exists a central sequence (sn)n in A such that

lim
n→∞

‖s∗nsn − en‖ = 0, lim
n→∞

‖fnsn − sn‖ = 0.

For a completely positive map ϕ of Ã to Ã, we say that ϕ can be excised in small
central sequences in A if for any central sequences (en)n and (fn)n of positive
contractions in A satisfying the property above, there exists a sequence (sn)n∈N in
A such that

lim
n→∞

‖s∗nasn − ϕ(a)en‖ = 0 for any a ∈ Ã, lim
n→∞

‖fnsn − sn‖ = 0.

Remark 5.5. In the definition above, it is important that en and fn are elements
in A. We see that if idÃ can be excised in small central sequences in A, then A has
property (SI) (see [25, Proof of (iii)⇒(iv) of Theorem1.1]).

We shall generalize [24, Lemma 4.6] and [25, Lemma 2.4] to non-unital C∗-
algebras.

Lemma 5.6. Let c be a positive element in a separable C∗-algebra A such that
T1(A) is a non-empty compact set, and let θ ∈ R. For any central sequence (fn)n
of positive contractions in A, we have

lim sup
n→∞

max
τ∈T1(A)

|τ(cfn)− θτ(fn)| ≤ 2 max
τ∈T1(A)

|τ(c) − θ|.

Proof. Let {hm}m∈N be a countable approximate unit for A. Replacing fn and θ in
[24, Lemma 4.6] with hmfn and θhm respectively, the same argument in the proof
of [24, Lemma 4.6] shows that

lim sup
n→∞

max
τ∈T1(A)

|τ(cfn)− θτ(hmfn)| ≤ 2 max
τ∈T1(A)

|τ(c)− θτ(hm)|

for any m ∈ N. By Proposition 5.3, we have

lim sup
n→∞

max
τ∈T1(A)

|τ(cfn)− θτ(fn)| ≤ 2 max
τ∈T1(A)

|τ(c) − θ|.

�

Lemma 5.7. Let A be a separable simple C∗-algebra such that T1(A) is a non-

empty compact set, and let a be a nonzero positive element in Ã. If (fn)n is a
central sequence of positive contractions in A such that

lim
m→∞

lim inf
n→∞

min
τ∈T1(A)

τ(fm
n ) > 0,
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then

lim
m→∞

lim inf
n→∞

min
τ∈T1(A)

τ(fm/2
n afm/2

n ) > 0.

Proof. Put R := a1/2A. Since A is simple, R is a right ideal of A such that
R∗R = AaA is a dense ideal of A. Therefore there exists a sequence {vj}j∈N in A
such that {

∑n
j=1 v

∗
j avj}n∈N is an approximate unit for A by a similar argument as

in [4, Lemma 2.3]. By Proposition 5.3, there exists a natural number N such that

lim
m→∞

lim inf
n→∞

min
τ∈T1(A)

τ(

N∑

j=1

v∗j avjf
m
n ) > 0.

We have

lim
m→∞

lim inf
n→∞

min
τ
τ(

N∑

j=1

v∗j avjf
m
n ) = lim

m→∞
lim inf
n→∞

min
τ

N∑

j=1

τ(v∗j a
1/2fm

n a
1/2vj)

= lim
m→∞

lim inf
n→∞

min
τ

N∑

j=1

τ(fm/2
n a1/2vjv

∗
j a

1/2fm/2
n )

≤

N∑

j=1

‖vj‖
2 lim
m→∞

lim inf
n→∞

min
τ
τ(fm/2

n afm/2
n ).

Hence we obtain the conclusion. �

Let A be a separable simple C∗-algebra, and let τ be a tracial state on A.
Consider the GNS representation (πτ , Hτ , ξτ ) associated with τ . Then πτ (A)

′′ is a
finite von Neumann algebra and πτ (A) is strongly dense subalgebra of πτ (A)

′′ in
general. (Indeed, every approximate unit for πτ (A) is strongly convergent to 1Hτ

.)
In particular, Kaplansky density theorem shows that for any positive contraction
H ∈ πτ (A)

′′ there exists a sequence {an}n∈N of positive contractions in A such that
π(an) is strongly converge to H . We can identify C∗(πτ (A), 1Hτ

) in B(Hτ ) with

its unitization algebra Ã. Therefore the same proof as [42, Lemma 2.1] shows the
following lemma. See also [26, Proposition 3.5 and Theorem 4.3].

Lemma 5.8. ([42, Lemma 2.1])
Let A be a separable simple nuclear C∗-algebra, and let τ be a tracial state onA. For
any sequence {Hn}n∈N of positive contractions in πτ (A)

′′ such that ‖[Hn, x]‖τ → 0
for all x ∈ πτ (A)

′′, there exists a central sequence (cn)n of positive contractions in
A such that ‖cn −Hn‖τ → 0.

Maybe someone considers that [42, Lemma 2.1] depends on a unit for the ap-
plication of Haagerup’s theorem ([12, Theorem 3.1]); see for example [11, Theorem
2.1] for details. But we can check that the same proof of [42, Lemma 2.1] works

for non-unital C∗-algebras because A is a two-sided ideal of Ã and for any positive
contraction H ∈ πτ (A)

′′ there exists a sequence {an}n∈N of positive contractions
in A such that π(an) is strongly converge to H .

If τ is an extremal tracial state on a separable simple infinite-dimensional nuclear
C∗-algebra A, then πτ (A)

′′ is the AFD II1 factor in general. Therefore Lemma 5.8
and the same proof as [25, Lemma 3.3] show the following lemma.

Lemma 5.9. ([25, Lemma 3.3])
Let A be a separable simple infinite-dimensional nuclear C∗-algebra with finitely
many extremal tracial states. For any k ∈ N, there exist central sequences (ci,n)n in
A , i = 1, 2, .., k such that c1,n is a positive contraction for any n ∈ N, (ci,nc

∗
j,n)n =
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δi.j(c
2
1,n)n and

lim
n→∞

max
τ∈T1(A)

|τ(cm1,n)−
1

k
| = 0

for any m ∈ N.

Note that we need to consider unitaries in Ã in the proof above. But it is also
no problem because A is a two-sided ideal of Ã.

Let ω be a pure state on A. Then we can uniquely extend ω to a pure state ω̃ on
Ã. Moreover if A is a separable simple non-type I C∗-algebra, then πω(A)∩K(Hω) =
{0}. Therefore the same proof as [25, Lemma 3.1] shows that every completely

positive map of Ã to Ã can be approximated in the pointwise norm topology by
completely positive map ϕ of the form

ϕ(x) =

N∑

l=1

N∑

i,j=1

ω̃(d∗i xdj)c
∗
l,icl,j , x ∈ Ã

where cl,i, di ∈ Ã. For 1 ≤ l ≤ N , let ϕl(x) =
∑N

i,j=1 ω̃(d
∗
i xdj)c

∗
l,icl,j . Then

ϕ = ϕ1 + ... + ϕN . Using Lemma 5.7 instead of [25, Lemma 2.4], we can prove a
version of [25, Proposition 2.2], i.e. that each ϕl can be excised in small central
sequences in A. (See the proof of [25, Lemma 2.5], which is where [25, Lemma
2.4] gets used; note also this where we need strict comparison.) We can check that
[25, Lemma 3.4] holds without the assumption of a unit by using Lemma 5.6 and
Lemma 5.9 instead of [24, Lemma 4.6] and [25, Lemma 3.3] respectively. By this

lemma, we see that a sum of completely positive maps Ã → Ã, each of which can
be excised in small central sequences in A, can itself be excised in small central
sequences in A. Therefore we obtain the following theorem.

Theorem 5.10. Let A be a separable simple infinite-dimensional nuclear C∗-
algebra with finitely many extremal tracial states and no unbounded trace. If
A has a strict comparison, then any completely positive map of Ã to Ã can be
excised in small central sequences in A.

The following theorem is the main theorem in this section.

Theorem 5.11. Let A be a separable simple infinite-dimensional non-type I nu-
clear C∗-algebra with a finite dimensional lattice of densely defined lower semicon-
tinuous traces. Then A has strict comparison if and only if A is Z-stable.

Proof. Rørdam showed that if A is Z-stable, then A has strict comparison (see
[40, Corollary 4.6]). We shall show the only if part. By Proposition 5.2, we may
assume that A has no unbounded trace. Hence A has property (SI) by Remark
5.5 and Theorem 5.10. For any k ∈ N, there exist central sequences (ci,n)n in A ,
i = 1, 2, .., k such that c1,n is a positive contraction , (ci,nc

∗
j,n)n = δi.j(c

2
1,n)n and

lim
n→∞

max
τ∈T1(A)

|τ(cm1,n)−
1

k
| = 0

for any m ∈ N by Lemma 5.9. Let {hn}n∈N be an approximate unit for A.
Taking a suitable subsequence of {hn}n∈N, we may assume that (hn)n(c1,n)n =
(c1,n)n(hn)n. Define central sequences (fi,n)n in A, i = 1, .., k by (fi,n)n :=

(ci,nh
1/2
n )n, and put (en)n := (hn −

∑k
i=1 f

∗
i,nfi,n)n. Then we may assume that

(en)n is a central sequence of positive contractions in A. Proposition 5.3 implies
limn→∞ maxτ |τ(f

∗
i,nfi,n − c∗i,nci,n)| = 0 for any 1 ≤ i ≤ k, and hence we have

lim
n→∞

max
τ∈T1(A)

τ(en) = 0.
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Note that (f1,n)n is a central sequence of positive contractions in A by the assump-

tion of (hn)n. Because {h
1/2
n }n∈N is also an approximate unit for A, we have

lim sup
n→∞

max
τ

‖c1,n − c
1/2
1,nh

1/2
n c

1/2
1,n‖

2
τ = lim sup

n→∞

max
τ

τ((c1,n − c
1/2
1,nh

1/2
n c

1/2
1,n )

2)

≤ lim sup
n→∞

max
τ

τ(c1,n − c
1/2
1,nh

1/2
n c

1/2
1,n )

= 0

by Proposition 5.3. Hence

lim sup
n→∞

max
τ

|τ(cm1,n)− τ(fm
1,n)| = lim sup

n→∞

max
τ

|τ(cm1,n − (c1,nh
1/2
n )m)|

= lim sup
n→∞

max
τ

|τ(cm1,n − (c
1/2
1,nh

1/2
n c

1/2
1,n )

m)|

≤ lim sup
n→∞

max
τ

‖cm1,n − (c
1/2
1,nh

1/2
n c

1/2
1,n )

m)‖τ = 0

for any m ∈ N. Therefore we have

lim
m→∞

lim inf
n→∞

min
τ∈T1(A)

τ(fm
1,n) = 1/k > 0.

Since A has property (SI), there exists a central sequence (sn)n in A such that

(s∗nsn +
∑k

i=1 f
∗
i,nfi,n)n = (hn)n and (f1,nsn)n = (sn)n. We have [(fi,nf

∗
j,n)n] =

δi.j [(f
2
1,n)n] and [(s∗nsn+

∑k
i=1 f

∗
i,nfi,n)n] = 1 in F (A) because [(h

1/2
n )n] is a unit in

F (A). It follows from [41, Proposition 2.1] that there exists a unital homomorphism
of I(k, k + 1) to F (A). Consequently A is Z-stable by Proposition 5.1. �

Remark 5.12. Let A be a separable simple infinite-dimensional non-type I nuclear
C∗-algebra with a finite dimensional lattice of densely defined lower semicontinuous
traces, that has strict comparison. Since A is Z-stable by the theorem above, there
exists a unital homomorphism of Z to M(A)∞ ∩ A′. But we do not know that we
could show this fact directly without using Kirchberg’s central sequence algebras.
Note that if A is non-unital, then there exists no unital homomorphism of Z to
(Ã)∞ ∩A′ because Ã is not Z-stable.

The following corollary is an immediate consequence of the theorem above and
Corollary 4.2.

Corollary 5.13. Let A be a separable simple nuclear stably projectionless C∗-
algebra with a unique tracial state and no unbounded trace. Assume that A has
strict comparison. Then we have the following exact sequence:

1 −−−−→ Out(A)
ρA

−−−−→ Pic(A)
T

−−−−→ F(A) −−−−→ 1.

We shall consider some examples. We refer the reader to [45] for details of slow
dimensional growth for nonunital C∗-algebras. Tikuisis showed that if A is a simple
separable approximately subhomogeneous C∗-algebra with slow dimension growth,
then Cu(A) is almost unperforated in [45, Corollary 5.9]. The following immediate
corollary of this result and Theorem 5.11 is suggested by the referee.

Corollary 5.14. Let A be a simple separable non-type I approximately subhomo-
geneous C∗-algebra with slow dimension growth and a finite dimensional lattice of
densely defined lower semicontinuous traces. Then A is Z-stable.
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We say that A is a 1-dimensional NCCW complex if A is a pullback C∗-algebra
of the form

A
π2−−−−→ E

yπ1

yρ

C([0, 1])⊗ F
δ0⊕δ1−−−−→ F ⊕ F

where E and F are finite-dimensional C∗-algebras and δi is the evaluation map at
i. Razak’s building block A(n,m) is a 1-dimensional NCCW complex. The Cuntz
semigroup of a 1-dimensional NCCW complex was computed in [1]. Every simple
inductive limit C∗-algebras of 1-dimensional NCCW complexes is approximately
subhomogeneous C∗-algebra with slow dimension growth. The following example
is also suggested by the referee.

Example 5.15. For n ≥ 2, let On denote the Cuntz algebra generated by n isome-
tries S1, ..., Sn. Given λ1, ..., λn ∈ R, there exists by universality a one-parameter
automorphism group α of On given by αt(Sj) = eitλjSj . Kishimoto and Kumjian
showed that if λj are all nonzero of the same sign and {λ1, ..., λn} generates R as
a closed subgroup, then On ⋊ R is a simple stable projectionless C∗-algebra with
unique (up to scalar multiple) densely defined lower semicontinuous trace in [19]
and [20]. In particular, On ⋊α R has a one parameter trace scaling automorphism
group. Dean showed that there exist many sets of numbers {λ1, .., λn} such that
On⋊αR can be expressed as an inductive limit C∗-algebra of 1-dimensional NCCW-
complexes in [9, Theorem 5.1]. Therefore for α defined by such a set of numbers
{λ1, .., λn}, On ⋊α R is Z-stable. Moreover it can be checked that for any positive

element h in Ped(On ⋊α R), Pic(h(On ⋊α R)h) is isomorphic to a semidirect prod-

uct of Out(h(On ⋊α R)h) with R
×
+ by the same argument of the proof in Theorem

4.4.

Robert classified inductive limit C∗-algebras of 1-dimensional NCCW complexes
with trivial K1-groups in [37].

Corollary 5.16. Let A be a simple stably projectionless C∗-algebra with a unique
tracial state and no unbounded trace, that is expressible as an inductive limit
C∗-algebra of 1-dimensional NCCW-complexes with trivial K1-groups and B a sep-
arable simple C∗-algebra with a unique tracial state and no unbounded trace. Then
we have the following exact sequence:

1 −−−−→ Out(A⊗B)
ρA⊗B
−−−−→ Pic(A⊗B)

T
−−−−→ R

×
+ −−−−→ 1.

Proof. For any r ∈ (0, 1) there exists a positive element h in A such that dτ (h) = r
because A has a positive element with a continuous spectrum. Note that the class
of C∗-algebras covered by Robert’s classification theorem in [37] is closed under
stable isomorphism (see [37, Theorem 1.0.1]). By [37, Proposition 3.1.7], we see
that a classifying invariant of the class of C∗-algebras which contains A and hAh
is equal to that of [37, Corollary 6.2.4]. Hence we see that A is isomorphic to hAh.
Therefore F(A) = R

×
+. Since F(A ⊗ B) = R

×
+ and A ⊗ B is separable, A ⊗ B is

a stably projectionless C∗-algebra by [29, Corollary 4.10]. Therefore we obtain the
conclusion by Corollary 4.2 and Corollary 5.14. �

We do not know whether the exact sequence above splits. This question is related
to the existence of a one parameter trace scaling automorphism group of A ⊗ K.
For any countable abelian groups G1 and G2, Kishimoto showed that there exists
a stable projectionless simple separable nuclear C∗-algebra A with unique (up to
scalar multiple) densely defined lower semicontinuous trace with K0(A) = G1 and
K1(A) = G2 in [18]. These stably projectionless C∗-algebras are constructed as
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the crossed products O ⋊α R by certain one parameter automorphism groups α of
Kirchberg algebras O and the dual actions of α are trace scaling actions of O⋊αR.
Hence it is natural to believe that there exists a kind of duality between Z-stable
stably projectionless C∗-algebras (with unique trace) and O∞-stable C∗-algebras.
From this view point, it seems to be possible to introduce the stably projectionless
C∗-algebra Wn for any n ≥ 3. Hence we denote by W2 the Razak-Jacelon algebra.
On the other hand, Tikuisis [45] constructed a simple separable nuclear stably
projectionless C∗-algebra whose Cuntz semigroup is not almost unperforated.
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