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Abstract

We study the ratio ergodic theorem (RET) of Hopf for group actions. Under a

certain technical condition, if a sequence of sets {Fn} in a group satisfy the RET,

then there is a finite set E such that {EFn} satisfies the Besicovitch covering

property. Consequently for the abelian group G = ⊕∞

n=1
Z there is no sequence

Fn ⊆ G along which the RET holds, and in many finitely generated groups,

including the discrete Heisenberg group and the free group on ≥ 2 generators,

there is no (sub)sequence of balls, in the standard generators, along which the

RET holds.

On the other hand, in groups with polynomial growth (including the Heisen-

berg group, to which our negative results apply) there always exists a sequence of

balls along which the RET holds if convergence is understood as a.e. convergence

in density (i.e. omitting a sequence of density zero).

1 Introduction

Let G be a countable group acting from the left by measure-preserving transformations

on a measure space (X,B, µ), with the action of g ∈ G on x ∈ X written x 7→ T gx.

We assume the action is ergodic. For a finite set F ⊆ G and ϕ : X → R let

SF (ϕ) =
∑

g∈F

ϕ ◦ T g

The asymptotic behavior of SFn(ϕ) as Fn exhausts the group, in some sense, is the

subject of the ergodic theorem. In this paper we are interested in the situation when µ

is an infinite (without loss of generality σ-finite) measure, in which case the appropriate

quantity to consider are the ratios

RF (ϕ,ψ) =
SF (ϕ)

SF (ψ)
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One says that G satisfies a ratio ergodic theorem along {Fn} if for every ergodic

measure-preserving action of G on a non-atomic measure space, and every ϕ,ψ ∈ L1(µ)

with
´

ψdµ 6= 0, we have

Rn(ϕ,ψ) →
´

ϕdµ
´

ψdµ
µ-a.e.

For G = Z and Fn = [1, n] ∩ Z the ratio ergodic theorem was proved by Hopf

in 1937, only a few years after the ergodic theorems of von Neumann and Birkhoff.

Unlike the latter theorems, however, which have been extended to very general classes

of groups (see [10] for a recent survey), extensions of Hopf’s theorem have been slow

to appear. Part of the reason is that, for a time, it was believed that no extension is

possible, due to an example of Brunel and Krengel [8], who showed for Zd, d ≥ 2, that

ratio ergodic theorem fails along Fn = [0, n]d. Nevertheless there is a ratio ergodic

theorem for actions of Zd along symmetric cubes Fn = [−n, n]d ∩ Z
d. This was first

proved by Feldman under additional assumptions on the dynamics of the action [4],

and we proved the general case in [7] (also for some more general sequences Fn).
1

The prospects for groups other than Z
d has remained unclear. A pertinent fact

from [7] is that a certain maximal inequality, which is central to most existing proofs,

is actually equivalent, in the present context, to {Fn} satisfying the (right) Besicovitch

covering property (Definition 2.1 below). Sufficiency of this property was observed

earlier by Becker [2] (see also [11, 9]). The Besicovitch property is quite rare, and its

failure puts into question the validity of the ratio ergodic theorem for many groups.

But, on the other hand, as far as we know the maximal inequality and the ratio ergodic

theorem are not equivalent. Indeed for Zd it took several decades to prove the latter

once the former became available.

In this paper we present two main results. The first shows that, indeed, the ra-

tio ergodic theorem is quite rare, and is closely linked to the Besicovitch property.

The second, on the other hand, shows that a certain weakening of it does hold more

generally, including in groups where the strong version above fails.

We begin with main negative result, which requires the following definition. Let us

say that {Fn} is almost central if for every g ∈ G there is a finite set E with Fng ⊆ EFn

for all n (here and throughout we write AB = {ab : a ∈ A , b ∈ B}, etc.). This holds

trivially in abelian groups, and also for balls in any finitely generated group.

Theorem 1.1. If {Fn} is almost central and satisfies the ratio ergodic theorem, then

there is a finite set E such that {EFn} is Besicovitch.

1Bowen and Nevo have also recently obtained a variant of the ratio ergodic theorem for free groups,
but with some additional randomization which makes the problem somewhat different.
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For a marginally stronger statement see Theorem 2.7. It seems possible that the

Besicovitch property is necessary in general for a ratio ergodic theorem, but this re-

mains open.

We give two main applications. First,

Theorem 1.2. Let Z
∞ = ⊕∞

n=1Z. Then the ratio ergodic theorem fails along every

sequence Fn ⊆ Z
∞.

The group Z
∞ is extremely “nice” – it is abelian, amenable and residually finite.

As such it is quite surprising that the ratio ergodic theorem should fail. However one

might object that it is “infinite-dimensional”. So suppose now that G is generated by

a finite symmetric set A and let Bn = An be the associated “balls”.

Theorem 1.3. Let G be finitely generated and {Bn} the sequence of balls with respect

to some finite generating set. Suppose that no sequence of balls has the Besicovitch

property. Then the ratio ergodic theorem fails along every sub-sequence Fi = Bn(i).

In particular, in the discrete Heisenberg group with the standard generator set

there is no sequence of balls which satisfies the ratio ergodic theorem (see Section 2.3).

The same holds for free groups on ≥ 2 generators. In these examples we cannot yet

rule out the existence of some other sequence along which it does hold, and one should

note that there are finitely generated groups, such as the lamplighter groups, for which

balls are not the right averaging sets to consider. But for groups of polynomial growth

all known ergodic theorems do hold along balls, and it would be quite surprising if

some other good sequence exists.

We turn now to our positive result which shows that, if one accepts a slightly weaker

notion of convergence, then there is a version of the ratio ergodic theorem which holds

in greater generality. Recall that a group G has polynomial growth if the balls Bn

satisfy |Bn| ≤ c′nc for constants c, c′. Define the (upper) density of a set I ⊆ N of

integers by

d(I) = lim sup
N→∞

1

N
|I ∩ [1, N ]|

A sequence an converges to a in density if

d(n : |a− an| > ε) = 0 for every ε > 0

We denote this limit by an
d−→ a or d̄-lim an = a. This operator satisfies all the usual

properties of limits.

Theorem 1.4. Let G be a group of polynomial growth and Bn as above. Then there

3



is a subsequence Fi = Bn(i) along which the ratio ergodic theorem holds in density, i.e.

RFi
(ϕ,ψ)

d−→
´

ϕdµ
´

ψdµ
µ-a.e. (1)

for any ergodic measure-preserving action of G and any ϕ,ψ ∈ L1(µ) with
´

ψdµ 6= 0.

The proof is given in Section 3. Thus there are cases, such as the discrete Heisenberg

group, where no sequence of balls satisfied the ratio ergodic theorem, but there exist

sequences along for which the density version is valid. Our arguments are special

to groups of polynomial growth but some parts carry over also to groups of sub-

exponential growth (groups with |Bn| = o(cn) for all c > 1). We do not know if and

when similar modifications of the ratio ergodic theorem hold in more general groups.

There are other possible weakenings of the ratio ergodic theorem. One possibility is

to require a.e. pointwise convergence of the ratios to other limit functions. This

phenomenon has been recently observed in certain algebraic settings involving “large”

groups acting on infinite measure spaces, see e.g. the introduction of [3].2 However,

our negative results exclude this as well; in the proofs we construct actions for which

the ratios diverge.

The rest of the paper is divided into two sections: In Section 2 we develop the

necessary combinatorics and prove Theorems 1.3, 1.2 and 1.1. We prove Theorem 1.4

in Section 3.

2 Besicovitch is necessary

2.1 Combinatorial preliminaries

In this section {Fn} denotes a sequence of finite subsets of G, all containing the identity

element 1G. We begin with some combinatorial definitions.

A collection {Ei}i∈I of subset of G is said to have multiplicity k at a point g if g

belongs to k of the sets. The multiplicity of {Ei} is the smallest k such that all points

have multiplicity ≤ k. The following definition is classical in analysis where, instead of

translates of sets in a group, one considers balls in a metric space.

Definition 2.1. {Fn} satisfies the Besicovitch covering property (or, more concisely,

{Fn} is Besicovitch) if there is a constant C such that, for every finite A ⊆ G and any

family of sets of the form {Fn(g)g}g∈A there is a subset A′ ⊆ A such that {Fn(g)g}g∈A′

2I am grateful to Amos Nevo for drawing my attention to this phenomenon.

4



covers A and has multiplicity ≤ C; equivalently,

1A ≤
∑

g∈A′

1Fn(g)g ≤ C

It is easy to see that any finite sequence {Fn}Nn=1 is Besicovitch and that {Fn}∞n=1 is

Besicovitch if and only if {Fn}∞n=n0
is Besicovitch for every n0. In this section we rely

primarily on the following characterization of the Besicovitch property. Define a (right)

incremental sequence to be a finite sequence (Fn(i)gi)
k
i=1 such that gj /∈ ⋃

i<j Fn(i)gi

and n(1) ≥ n(2) ≥ . . . ≥ n(k).

Proposition 2.2. If {Fn} is not Besicovitch then for every k there is an incremental

sequence of multiplicity k (equivalently, with 1G belonging k members of the sequence).

If in addition Fn are symmetric and increasing, the converse holds.

Proof. We include the standard proof for completeness. If {Fn} is not Besicovitch then,

given k, there is a family {Fn(i)gi}ℓi=1 such that any sub-collection covering all the gi

is of multiplicity k. We may assume n(i) are non-increasing. Choose an incremental

subsequence {Fn(im)gim} greedily: let i1 = 1, and if i1, . . . , im are defined take im+1 to

be the minimal i > im satisfying gi /∈
⋃

j≤m Fn(ij )gij . The resulting sequence covers all

the gi (here we use 1G ∈ Fn), thus has multiplicity k. We can assume the multiplicity

is realized at 1G by applying an appropriate right translation to the sets.

In the other direction, given k let {Fn(i)gi} be an incremental sequence of multi-

plicity k. Thus gi /∈ Fn(j)gj for all i > j; by symmetry gj /∈ F−1
n(j)gi = Fn(j)gi. Since

n(j) ≥ n(i) this shows that gj /∈ Fn(i)gi also for i < j. Thus this holds for all i 6= j,

and the only sub-collection of {Fn(i)gi} that covers all the gi is the full sequence, whose

multiplicity is k. Since k was arbitrary, {Fn} is not Besicovitch.

Our main interest is in sequences for which the Besicovitch property fails. We

require a slightly stronger property:

Definition 2.3. {Fn} is strongly non-Besicovitch if for every finite E ⊆ G there is a

finite set E ⊆ Ẽ ⊆ G with 1G ∈ Ẽ such that {ẼFn} is not Besicovitch.

We note two situations where this property holds: first, when no sequence F ′
n ⊇ Fn

is Besicovitch (take Ẽ = E∪{1G}). Second, if G is finitely generated, Bn are balls, and

no sub-sequence of balls {Bn(i)}∞i=1 is Besicovitch then every sub-sequence is strongly

non-Besicovitch; indeed given a finite set E take Ẽ = Bm, so that ẼBn = Bn+m.

The sets we consider later will also satisfy the following property, which was already

mentioned in the introduction:
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Definition 2.4. {Fn} is almost central if for every g ∈ G there is a finite set E ⊆ G

with Fng ⊆ EFn for all n.

The two primary examples are when G is abelian, in which case we can take

E = {g}; and when Fn = Bk(n) are balls, since then if g ∈ Bm then Fng ⊆ BmFn.

The latter example shows that this property does not actually have any connection

to abelianness of the group, since it holds for balls in any finitely generated group. It

is clear that the definition is equivalent to the statement that for every finite E ⊆ G

there is a finite E′ ⊆ G with FnE ⊆ E′Fn for all n.

We now derive some properties of strongly non-Besicovitch and almost-central se-

quences.

Lemma 2.5. Suppose that {Fn} is strongly non-Besicovitch. For every finite E ⊆ G

there is a finite Ẽ ⊆ G containing E, and such that for every finite H ⊆ G there are

arbitrarily long incremental sequences {Fn(i)gi}ℓi=1 satisfying

(a) Egi ∩ Fn(j)gj = ∅ and Egi ∩ Egj = ∅ for i > j.

(b) Egi ∩H = ∅ for all i.

(c) Ẽ−1 ∩ Fn(i)gi 6= ∅ for all i.

Proof. Let E be given and assume without loss of generality that 1G ∈ E. Let Ẽ be

associated to E−1E as in Definition 2.3. Let H ⊆ G be finite, let k = ℓ+ |E−1H|, and,
using Proposition 2.2, choose an incremental sequence {ẼFn(j)gj}ℓj=1 for {ẼFn} with

1G ∈ ⋂
ẼFn(j)gj .

For j < i we have gi /∈ ẼFn(j)gj . Since 1G ∈ Ẽ this implies gi /∈ Fn(j)gj , hence

{Fn(j)gj}ℓj=1 is incremental.

For (a), let i > j. Then gi /∈ ẼFn(j)gj and E−1 ⊆ Ẽ imply Egi ∩ Fn(j)gj =

∅; similarly gi /∈ ẼFn(j)gj and 1G ∈ Fn(i), together with the definition of Ẽ, give

Egi ∩ Egj = ∅.
For (b), note that since 1G ∈ Fn, by the incremental property, all the gj are distinct.

Egj ∩ H 6= ∅ implies gj ∈ E−1H, so after removing at most |E−1H| elements of the

sequence we are left with an incremental sequence of length ℓ which, in addition to the

above, satisfies (b).

(c) follows from 1G ∈ ẼFn(i)gi.

Lemma 2.6. Suppose that {Fn} is strongly non-Besicovitch and almost central. Then

for every finite D,E ⊆ G there exists a finite H ⊆ G, with D ⊆ H, satisfying the

following property: for every ℓ there is an incremental sequence {Fn(i)gi}ℓi=1 such that

(i) Egi ∩ Fn(j)egj = ∅ and Egi ∩ Egj = ∅ for all i 6= j and e ∈ E.

6



(ii) Egi ∩H = ∅ for all i.

(iii) Fn(i)egi ∩H 6= ∅ for every i and e ∈ E.

Proof. Let D,E be given, without loss of generality 1G ∈ D ∩ E. Using almost cen-

trality let E′ be such that E′Fn ⊇ Fn(E ∪ E−1), and assume 1G ∈ E′ (otherwise just

add 1G to it). Let E′′ = (E′)−1E, let Ẽ′′ be as in the previous lemma, and apply

the previous lemma to H = D(E′)−1(Ẽ′′)−1. We obtain arbitrarily long incremental

sequences {Fn(i)gi} satisfying (a)–(c). Property (ii) is just (b).

For (i), we already know that E′′gi ∩ Fn(j)gj = ∅ for i > j. Using the definition of

E′′ this gives Egi ∩ Fn(i)Egj = ∅ for i > j. This is the same as F−1
n(i)Egi ∩ Egj = ∅

for i > j, which, by symmetry of Fn(i), is just Fn(i)Egi ∩ Egj = ∅ for i > j. Thus this

relation holds for all i 6= j. (i) follows using 1G ∈ E ∩ Fn(i).

For (iii), by choice of E′ for every e ∈ E we have Fn(i)e
−1 ⊆ E′Fn(i), hence

Fn(i) ⊆ E′Fn(i)e. Combined with (c) this implies that (Ẽ′′)−1 ∩ E′Fn(i)egi 6= ∅, hence
(E′)−1(Ẽ′′)−1 ∩ Fn(i)egi 6= ∅. (iii) follows since H ⊇ (E′)−1(̃E′′)−1.

2.2 Necessity

In this section we add the assumption that the sets Fn are symmetric, and continue

to assume 1G ∈ Fn. It will be convenient to write SF (ϕ, x) and RF (ϕ,ψ, x) instead of

SF (ϕ)(x), RF (ϕ,ψ)(x).

Theorem 2.7. If {Fn} is strongly non-Besicovitch and almost central then there is an

ergodic measure-preserving action of G on a non-atomic measures space (X,B, µ), and
functions ϕ,ψ ∈ L1(µ) with

´

ψ 6= 0, such that RFn(ϕ,ψ) diverges a.e. as n→ ∞.

Theorem 1.1 is then a formal consequence of Theorem 2.7, since if {Fn} is not

strongly non-Besicovitch then {EFn} is Besicovitch for some finite set E.

The construction that is the proof of Theorem 2.7 proceeds by cutting and stacking.

We give full details below, but let us first give an informal overview for readers familiar

with the method. Suppose we have defined a large “stack” whose shape a finite set E ⊆
G, and a pair of real-valued functions ϕ,ψ > 0 with ‖ϕ‖1 , ‖ψ‖1 < ∞, corresponding

to an R-coloring of G0. Applying the corollary to E and D = E we obtain a set

H ⊇ E, and, fixing a largeN , an incremental sequence {Fm(i)γi}Ni=1 with the associated

properties. Now, cut the original stack into N copies of equal mass, and translate them

to Eγi, i = 1, . . . , N , which by the corollary are pairwise disjoint and disjoint from

H. Add new mass to the sites corresponding to H (which is empty) in the new stack,

and on it define ϕ to take very large negative value v, and define ψ to be zero there.

Also add new mass where necessary in
⋃N

i=1 Fm(i)Eγi, defining ϕ,ψ to be 0 there. If

v is negative enough in a manner depending only on the original stack, this forces the

7



ratios over Fn(i)eγi for e ∈ E to be ≤ −1; but the total change to ‖ϕ‖ is |H|v/N ,

which can be made arbitrarily small by choosing N large. Iterating this procedure, we

can cause the ratios at the points corresponding to the original E to fluctuate between

≥ 1 and ≤ −1, and in the limit we obtain the desired counterexample.

We now carry this plan out in more detail. First we describe the cutting-and-

stacking scheme in the group context. Fix in advance the measure space (R, Lebesgue).

We will define a compatible sequence of partial actions Tn. By this we mean that: (i)

for every g we define a sequence of maps T g
n , n = 1, 2, . . . with increasing domains

Xn,g ⊆ R and which extend each other in the sense that T g
n+1|Xn,g = T g

n ; (ii) for

x ∈ X, if both the expressions T h
n (T

g
nx) and T

hg
n x are well defined (that is, if x ∈ Xn,g,

T g
nx ∈ Xn,h, and x ∈ Xn,hg), then they are equal; and (iii) writing Xn =

⋃
g∈GXn,g,

for every x ∈ Xn and every g ∈ G we have x ∈ Xm,g for some m ≥ n. It is clear that

this defines in the limit an action of G on X =
⋃

nXn given by T gx = limn→∞ T g
nx. At

the same time, we will define ϕn, ψn : Xn → X in a compatible way, giving functions

ϕ,ψ : X → R in the limit.

The formulation above is somewhat unwieldy and the construction itself will take

the following form. At each stage n we will have defined a finite set Gn ⊆ G and to

each g ∈ G associated an interval In,g = [an,g, bn,g) ⊆ R of length rn > 0, independent

of g, and with In,g ∩ In,h = ∅ for g 6= h. For x ∈ In,g the map T h
n is defined if hg ∈ Gn,

in which case T h
nx ∈ In,hg is the point an,hg,+(an,g−x) that occupies the same position

in In,hg as x occupies in In,g. Thus Xn =
⋃

g∈Gn
In,g and Xn,h = {x ∈ Xn : x ∈ In,g

and hg ∈ Xn}. What we have said so far ensures that (ii) is satisfied. To ensure

properties (i) and (iii) we first describe the transition from stage n to n + 1, which is

by “cutting and translating”. Given Gn, {In,g}g∈Gn for some n, we first choose a large

N and choose elements γ1, . . . , γN of G such that the sets Gnγi are pairwise disjoint.

Now partition each interval In,g into N intervals of equal length

rn+1 = rn/N

Ordering these intervals from left to right, set In+1,gγi to be the i-th sub-interval.

We have so far defined intervals for g ∈ G′
n+1 =

⋃N
i=1Giγi, and one may verify that

the compatibility condition (i) holds. To ensure (iii), fix a sequence Γn ⊆ G of finite

subsets increasing to G with 1 ∈ Γ1, and define Gn+1 to be any finite set containing

ΓnG
′
n+1; to the new points g ∈ Gn+1 \G′

n+1 assign arbitrary pairwise disjoint intervals

In+1,g ⊆ R \Xn.

We will define by induction Gn, {In,g}g∈Gn as above with associated partial action

Tn, and bounded functions ϕ,ψ : Xn → R with ‖ϕ‖1 , ‖ψ‖1 < 2. Furthermore we will

have bounded functions in : Xn−1 → N such that for every x ∈ [0, 1] the maps T g
nx are

8



defined for all g ∈ Fin(x), and

Rin(x)(ϕ,ψ, x)

{
≥ 1 n odd

≤ −1 n even

where we define Rn(ϕ,ψ) as before in terms of the partial action Tn. We also will

ensure that in(x) → ∞ for x ∈∞
k=1

⋃
Xk. Assuming all this, it is clear that, for the

action T defined in the limit, for every k the ratios Rn(ϕ,ψ, x) diverges for x ∈ Xk,

and hence diverge everywhere on X =
⋃
Xn. One point we have not touched on is

ergodicity of the limit action, we will come back to this below.

It remains to describe the construction. At the first step we set G1 = {1G},
I1,1G = [0, 1], so X1 = [0, 1]; define ϕ,ψ and i1 to be identically 1. Then all the

requisite properties hold.

Now suppose for some n we have defined Gn, {In,g}g∈Gn , rn, ϕ,ψ, and in as

above. For simplicity we assume n is even, the odd case being the same. Let

i∗n = supx∈Xn−1
in(x) <∞ and

Φn = sup
x∈[0,1]

|SFin(x)
(ϕ, x)|

Ψn = sup
x∈[0,1]

|SFin(x)
(ψ, x)|

and choose

v = Φn +Ψn

so that (v − Φn)/Ψn = 1.

Let H be the set associated to D = E = Gn in Lemma 2.5. Choose N large enough

that

|H| · v · rn/N < 2−
ˆ

Xn

ϕ

Applying the lemma, choose elements γ1, . . . , γN and indices k1, . . . , kN > i∗n such that

H ∩ Fkjgγj 6= ∅ for all j and g ∈ Gn (2)

H ∩Gnγj = ∅ for all j (3)

Gnγj ∩ Fkj′
gγj′ = ∅ for j 6= j′ and g ∈ Gn (4)

Gnγj ∩Gnγj′ = ∅ for j 6= j′ (5)

Let

Gn+1 = Γn+1


(

N⋃

j=1

FkjGn−1γi) ∪H




9



Assign intervals of length rn+1 = rn/N to the elements of Gn+1 as follows: First

partition each In,g into N intervals of length rn+1 and for g ∈ Gn assign to h =

gγj the j-th sub-interval of In,g, which we call In+1,h. So far there are no conflicts

by (5) and the assignment consists of disjoint intervals. To the remaining elements

h ∈ Gn+1 \
⋃N

j=1Gnγj associate arbitrary pairwise disjoint intervals In+1,h ⊆ R \Xn,

ensuring that the entire family {In+1,g}g∈Gn+1 is pairwise disjoint. This can easily be

done since Xn ⊆ R is bounded.

For x ∈ Xn∩In,gγj for some g ∈ Gn, define in+1(x) = kj . Again, this is well defined

by (5).

On
⋃

h∈H In+1,h set ψ ≡ 0 and ϕ ≡ v. There are no conflicts with previous

definitions because of (3).

On the remaining mass, define ϕ ≡ ψ ≡ 0 for h ∈ H. There are no conflicts by (4).

Finally, in order to verify that Rin+1(x)(ϕ,ψ, x) ≥ 1 for x ∈ Xn−1, note that, by

(4), if x ∈ In,gγj for g ∈ Gn then

SFin+1(x)
(ϕ, x) = SFin(x)

(ϕ, x) + v · |H ∩ Fin+1(x)gγj |
SFin+1(x)

(ψ, x) = SFin(x)
(ψ, x)

hence, by choice of v and (2), we have RFin+1(x)
(ϕ,ψ, x) ≥ 1.

While this construction ensures that the ratios diverge on a positive fraction of

the mass of a positive fraction of the ergodic component of the action, these ergodic

components may, a-priori, be atomic, whereas we require divergence of the ratios on a

non-atomic space. The easiest solution is to introduce an intermediate step between

the stages of the construction, during which we create a large stack with disjoint but

very randomly placed copies of the previous stacks. It is standard to show that the

resulting action is ergodic, and the new intermediate steps do not interfere with the

construction above. We omit the details.

2.3 Balls in finitely generated groups.

Let G be a finitely generated and Bn balls with respect to some symmetric generating

set. These are symmetric and contain the identity and, as noted in the introduction,

{Bn} are almost central. As noted in Section 2.1, if no infinite subsequence {Bn(i)}∞i=1

is Besicovitch then every such subsequence is strongly non-Besicovitch. This and

Theorem Theorem 1.3.

The application to the Heisenberg group mentioned after Theorem 1.3 follows from:
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Proposition 2.8. Let

G =








1 k m

0 1 n

0 0 1




∣∣∣∣∣∣∣
k,m, n ∈ Z





denote the discrete Heisenberg group with generating set

{a±, b±} =








1 ±1 0

0 1 0

0 0 1


 ,




1 0 0

0 1 ±1

0 0 1








Let {Bn} be the associated sequence of balls. Then every infinite subsequence {Bn(k)}
is non-Besicovitch.

Proof. Let

c = b−1a−1ba =




1 0 −1

0 1 0

0 0 1




and

{cn}n∈Z =








1 0 m

0 1 0

0 0 1




∣∣∣∣∣∣∣
m ∈ Z





is the center of G. Using the commutation relation [b, a] = c−1 it is elementary to show

that the setMr = {m : cm ∈ B4r} contains gaps that grow arbitrarily large as r → ∞.

Thus we can choose 0 ≤ sr, tr ∈ Mr such that (sr, tr) ∩Mr = ∅ and tr − sr → ∞.

If a sequence r(i) that grows quickly enough (e.g. if tr(i+1) − sr(i+1) > r(i)2), then

{Br(i)c
sr(i)−tr(i)} is an incremental sequence whose elements all contain 1G. This proves

the claim.

Theorems 1.3 can be slightly strengthened using the following version of Theorem

2.7:

Theorem 2.9. In Theorem 2.7, if in addition Fn = Bk(n) are balls in a group, then

in the conclusion we may also assume that ϕ,ψ ∈ L∞(µ).

Proof. In the n-th stage of the construction, instead of setting ϕ = v only on the

intervals associated to h ∈ H, choose an appropriate m and set ϕ = v/|Bm/3| on the

intervals associated to h ∈ Bm. This m is chosen before N and the γi, and we can

ensure that Gnγi ∩Bm = ∅ as in Lemma 2.6 by simply choosing an a-priori larger N

and discarding some of its elements, so this does not interfere with the construction.

11



By choosing N large relative to m, the L1-norm of ϕ still increases arbitrarily little.

Now, since H ∩ Fn(i)gγi 6= ∅ for g ∈ Gn and we can assume that m is large enough

that H ⊆ Bm/3, there is a ball Bm/3γ
′
i ⊆ Bm ∩ Fkiγi for some γ′i (take γ

′
i to be the

point on the midpoint geodesic from γi to some element of H ∩ Fn(i)gγj). The proof

now carries through.

Finally, for finitely generated non-abelian free groups it is elementary that no se-

quence of balls in the standard generator set is Besicovitch. We omit the proof. We

do not know if this is true for every generating set, though it seems very likely that it

is.

2.4 Some general reductions

We give here some simple reductions that will be used later. Write L1
+(µ) = {f ∈

L1(µ) : f ≥ 0}.

Lemma 2.10. Let Fn ⊆ G. The ratio ergodic theorem holds along {Fn} if and only if

for every action of G there is a 0 6= ψ ∈ L1
+, such that RFn(ϕ,ψ) →

´

ϕ/
´

ψ for all

ϕ ∈ L1
+.

Proof. One direction is obvious. For the other fix an action and suppose that there is

a ψ as above. Convergence of RFn(ϕ,ψ) for ϕ ∈ L1
+ implies it for all ϕ ∈ L1, since

the operators RFn(·, ψ) are linear and one can break an arbitrary L1 function into a

difference of non-negative ones. Now for any ϕ, θ ∈ L1 with
´

θ 6= 0, the conclusion

follows by passing to the limit in the identity RFn(ϕ, θ) = RFn(ϕ,ψ)/RFn (θ, ψ).

Lemma 2.11. There exists a sequence Fn ⊆ G along which the ratio ergodic theorem

holds if and only if there exists such a sequence with, in addition, 1G ∈ Fn for all n.

Proof. Only the “only if” direction must be proved. Suppose the ratio ergodic theorem

holds along {Fn}. First suppose some element g ∈ G belongs to infinitely many Fn.

Let Fn(i) be the infinite subsequence of sets containing g and write F ′
i = Fn(i)g

−1,

so that 1G ∈ F ′
i , and ratio ergodic theorem holds along {F ′

i} because of the identity

RF ′

i
(ϕ,ψ) = RFn(i)

(ϕ,ψ) ◦ T−g.

It remains to deal with the case that no g is in infinitely many Fn. In this case,

by passing to a subsequence, we can assume that the sets Fn are pairwise disjoint.

We shall show that the ratio ergodic theorem holds along En =
⋃

i≤n Fi. Since any

g ∈ E1 belongs to all of the En, this brings us back tot he first case that was already

established.

12



Thus, consider an action of G on a non-atomic measure space (X,B, µ) and ϕ,ψ ∈
L1
+(µ). Since {Fn} are pairwise disjoint, SEk

(ψ) =
∑n

k=1 SFk
(ψ), hence

REn(ϕ,ψ) =

n∑

k=1

SFk
(ψ)

SEn(ψ)
RFk

(ϕ,ψ)

Since RFk
(ϕ,ψ) →

´

ϕ/
´

ψ, we will be done if we show that SEn(ψ) → ∞. To see

this choose A ⊆ X and ε > 0 with µ(A) > 0 and ψ ≥ ε1A. Choose another set B ⊆ X

with µ(B)/µ(A) irrational. Then RFn(1B , 1A) are rational and converge a.e. to the

irrational number µ(B)µ(A), so their denominators, which are SFn(1A), a.s. tend to

∞ with k. Hence SFn(ψ) ≥ εSFn(1A) → ∞, concluding the proof.

We note that if
⋃
Fn = G then SEn(ψ) → ∞ follows directly from conservativity.

Note that if we only assume the ratios to converge a.e. but not necessarily to to

the limit
´

ψ/
´

ϕ, then the argument above still works assuming that SEn(ψ) → ∞
for 0 6= ψ ∈ L1

+. This is the case if
⋃
Fn = G, for example, because ergodicity on a

non-atomic space is the same as conservativity.

We say that {Fn} is generating if
⋃
Fn generates G as a group.

Lemma 2.12. If {Fn} does not generate then the ratio ergodic theorem fails along

{Fn}.

Proof. Suppose Fn lie in a proper subgroup H < G and consider an ergodic action

of G whose restriction to H is non-ergodic (e.g. a product measures on {0, 1}G with

the shift action). Let I be the σ-algebra of H-invariant sets and choose functions

ϕ,ψ ∈ L1 that are constant on the atoms of I but E(ϕ|I)/E(ψ|I) is not constant.

Clearly RFn(ϕ,ψ) = E(ϕ|I)/E(ψ|I) for all n, so RFn(ϕ,ψ) 6→
´

ϕ/
´

ψ.

2.5 The group Z
∞

We now turn to G = Z
∞ and the proof of Theorem 1.2, switching to additive nota-

tion. The main ingredient is Proposition 2.7 from [6]. In that paper the Besicovitch

property is called incompressiblity ([6, Definition 1.9]), the two notions are the same

by Proposition 2.2.

Proposition 2.13. If Fn ⊆ Z
∞ are finite sets and {Fn} generates, then {Fn} is not

Besicovitch.

Combined with the fact that any sequence in an abelian group is almost central,

the proposition above and Theorem 2.7 immediately implies that the ratio ergodic

13



theorem fails along every generating symmetric sequence Fn ⊆ Z
∞ with 0G ∈ Fn. We

now show that the symmetry assumption is not necessary:

Proposition 2.14. The ratio ergodic theorem fails along any generating sequence

Fn ⊆ Z
∞ with 0G ∈ Fn.

Proof. Suppose that {Fn} satisfies the ratio ergodic theorem and 1G ∈ Fn. Then the

same is true for {−Fn}. To see this, given an action {T g}g∈Z∞ define an action T̃ g =

T−g (this is an action because Z∞ is abelian). Then
∑

g∈−Fn
ϕ(T gx) =

∑
g∈Fn

ϕ(T̃ gx),

and so the ratios over −Fn with respect to T are the same as the ratios over Fn with

respect to T , and so converge as required.

Now let En = Fn ∪ (−Fn), which is a symmetric sequence with 0G ∈ En. Define a

probability measures νn on En by

νn =
1

2|Fn|
∑

g∈±Fn

δg

For a finitely supported probability measure ν on G, let

Sν(ϕ) =

ˆ

ϕ(T gx) dν(g)

and define Rν(ϕ,ψ) = Sν(ϕ)/Sν(ψ). Then for any action and ϕ,ψ as in the ratio

ergodic theorem,

Rνn(ϕ,ψ) =
1

2
(RFn(ϕ,ψ) +R−Fn(ϕ,ψ)) →

ˆ

ϕ/

ˆ

ψ µ-a.s.

While Rνn 6= REn , on non-negative functions the two differ by at most a multiplicative

constant of 4, since νn is equivalent to the uniform measure un on En with Radon-

Nikodym derivative between 1 and 2, and REn = Run . Thus, if there is an action

and functions ϕ,ψ ∈ L1
+,
´

ψ 6= 0, such that REn(ϕ,ψ) fluctuates wildly enough (e.g.

lim sup / lim inf > 4), then we have a contradiction to the convergence of Rνn . Since

{En} is symmetric, contains 1G, and is almost central and strongly non-Besicovitch

(see discussion preceding this proposition), such an action and pair of functions can be

constructed using exactly the same scheme as in the proof of Theorem 2.7. We omit

the details.

Now, we have already seen that if there is some sequence along which the ratio

ergodic theorem holds then there is also such a sequence that contains 0G (Lemma

2.11) and generates (2.12). With these facts in hand, the proposition above proves

Theorem 1.2.
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3 Groups of polynomial growth

In this section we prove the ratio ergodic theorem “in density” for groups of poly-

nomial growth (Theorem 1.4). After defining the sequence Fn ⊆ G in Section 3.1,

the proof follows the standard two-step scheme: in Section 3.2 we prove, for fixed ψ,

that RFn(ϕ,ψ) converges to the proper limit on a dense family of functions ϕ ∈ L1 (a

“Chacon-Ornstein lemma”), and in Section 3.3 we extend to all ϕ ∈ L1 using a suitable

maximal inequality. Both parts use growth properties of G in an essential way.

3.1 The averaging sequence

Let G be a group of polynomial growth and Bn = An the balls with respect to some

symmetric generating set A. By Gromov’s theorem [5], G is virtually nilpotent, and

a theorem of Bass [1] implies that there are constants c1, c2, c (moreover, with c ∈ N)

such that

c1n
c ≤ |Bn| ≤ c2n

c

Define the k-boundary of Bn to be

∂kBn = Bn+k \Bn−k

We remark that it is easy to show that {Bn} is a Følner sequence, but we will not use

this fact.

We now define the subsequence Fi = Bn(i) for which we will prove Theorem 1.4

(the construction below can be perturbed in many ways to get a large class other such

sequences). Let

Jm = [2m−1, 2m) ∩ Z

We define the index sequence n(i) for i ∈ Jm, recursively in m = 1, 2, 3 . . .. For m = 1

set n(1) = 1. Now assume we have defined ni for i ∈
⋃

k<m Jk. Let

N(m) = n(2m−1 − 1)

which is the largest value of n(i) defined so far, and set {n(i)}i∈Jm to be the arithmetic

sequence with |Jm| terms and gap 3N(m), starting at

L(m) = |Jm| · 3N(m)

Thus n(2m−1 + i) = L(m) + i · 3N(m) for 0 ≤ i < 2m.

Note that {n(i)}i∈Jm ⊆ [L(m), 2L(m)), hence N(m) ≤ 2L(m − 1), and, since by
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the last equation L(m− 1) = 2m−1 · 3N(m− 1), we deduce that

N(m) ≤ (62m−1)m

Having defined Fi = Bn(i), for i ∈ Jm, set

F+
i = Bn(i)+N(m)

and

∂∗Fi = ∂N(m)Fi

Notice that F+
i−1 ∪ ∂∗Fi ⊆ F+

i and ∂∗Fi ∩ F+
i−1 = ∅.

3.2 Convergence on a dense subset of L1(µ)

For the rest of the section, fix an ergodic measure-preserving action of G on a σ-finite

measure space (X,B, µ). Given ϕ : X → [0,∞) write

ϕi(x) =

∑
g∈∂∗Fi

ϕ(T gx)
∑

g∈F+
i−1

ϕ(T gx)
(6)

Lemma 3.1. Let ϕ be as above and x ∈ X. Given ε, δ > 0 suppose that N ∈ Jm and

U ⊆ {1, . . . , N} are such that |U |/N ≥ δ and ϕi(x) > ε for i ∈ U . Then, assuming m

is large enough in a manner depending only on ε, δ,

SF+
N
(ϕ, x) ≥ |F+

N |2ϕ(x)

Proof. We suppress x in our notation. For i ∈ U we have by definition that S∂∗Fi
(ϕ) ≥

εSF+
i−1

(ϕ) and hence SF+
i
(ϕ) ≥ (1 + ε)SF+

i−1
(ϕ). Since ϕ ≥ 0, for any j < i we have

SF+
i
(ϕ) ≥ SF+

j
(ϕ). Starting from SF+

N
(ϕ) and applying this recursively to the elements

of U in reverse order, we have

SF+
N
(ϕ) ≥ (1 + ε)|U |−1SF+

1
(ϕ)

≥ (1 + ε)δN−1ϕ

≥ (1 + ε)δ2
m−1

ϕ

It remains to notice that

|F+
N | ≤ |B2n(N)| ≤ Cn(N)c ≤ CN(m+ 1)c ≤ C(2m)cm = C2cm

2

for some constant C depending only on c2, and that ifm is large in a manner depending
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on ε, δ then C22cm
2 ≤ (1 + ε)δ2

m−1
.

Theorem 3.2. Let ϕ ∈ L1(µ) with ϕ 6= 0 and ϕ ≥ 0. Then ϕi
d−→ 0 ν-a.e., where

dν = ϕdµ.

Proof. Fix ε > 0. It suffices to show that

d (i : ϕi(x) > ε) = 0 ν-a.e.

Fix δ > 0, which we suppress in our notation, and let

EN =

{
x ∈ X

∣∣∣∣∣
δ < ϕ(x) < δ−1 and ϕi(x) > ε for

at least a δ-fraction of 1 ≤ i ≤ N

}

It is enough to show, for every δ > 0, that ν-a.e. x belongs to only finitely many EN .

We establish the last claim. Assume, as we may, that m is large relative to ε, δ as

in the previous lemma. Let N ∈ Jm. By invariance of µ, we have

|FN | · ν(EN ) =

ˆ ∑

g∈FN

1EN
(T gx)ϕ(T gx) dµ(x)

=

ˆ

SFN
(ϕ · 1EN

) dµ(x) (7)

Suppose that g ∈ FN is such that T gx ∈ EN . By the previous lemma (applied to

ϕ ◦ T g) and the definition of EN ,

SF+
N
(ϕ)(T gx) ≥ |FN |2 · ϕ(T gx)

≥ |FN |2 · δ

Since hg ∈ (F+
N )2 for every h ∈ F+

N , we have shown that if N ∈ Jm then

SFN
(ϕ · 1EN

) > 0 =⇒ S(F+
N
)2(ϕ) > δ|FN |2

By definition of EN we have ϕ(T gy) < δ−1 if 1EN
(T gy) 6= 0. Therefore SFN

(ϕ ·1EN
) ≤

|FN | · δ−1 so, by the implication above,

SFN
(ϕ · 1EN

) ≤ |FN | · δ−1 · 1{S
(F+

N
)2
(ϕ)>δ|FN |2}
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Integrating this dµ and using (7) and Markov’s inequality,

|FN |ν(EN ) ≤ |FN | · δ−1 · µ
(
x : S(F+

N
)2(ϕ) > δ|FN |2

)

≤ |FN | · δ−2

(
|FN |−2 ·

ˆ

S(F+
N
)2(ϕ) dµ

)

= δ−2 · |FN |−2 · |(F+
N )2| ·

ˆ

ϕdµ

Now by polynomial growth and the fact that (F+
N )2 ⊆ B4n(N) we have

|(F+
N )2| ≤ C · |FN |

for a constant C depending on c1, c2, c, but not on m. Thus, we have shown

ν(EN ) ≤ C
´

ϕdµ

δ2|FN |2 ≤ C
´

ϕdµ

δ2N2

using the trivial bound |FN | ≥ N . This is summable, so by Borel-Cantelli, ν-a.e. x

belongs to finitely many EN .

Recall that a co-boundary is a function of the form ϕ = τ − τ g for some g ∈ G. It
is said to be an L1-co-boundary if τ ∈ L1(µ), and positive if τ ≥ 0. As a consequence

of the theorem above we obtain a Chacon-Ornstein type statement. Note that in what

follows, σ-finiteness ensures that statements about strictly positive L1-functions are

not vacuous.

Corollary 3.3. Let τ ∈ L1(µ) with τ > 0 and τ 6= 0. Then for every g ∈ G,

d̄-lim
i→∞

RFi
(τ − τ g, τ) = 0 µ-a.e.

Proof. There is an i0 such that g ∈ Fi0 , and for i > i0 we have

|RFi
(τ − τ g, τ)| ≤

∣∣∣∣
S∂∗Fi

(τ)

SFi
(τ)

∣∣∣∣ ≤
∣∣∣∣∣
S∂∗Fi

(τ)

SF+
i−1

(τ)

∣∣∣∣∣ = τi

where τi is defined as in (6), and we have used τ ≥ 0. From the theorem we conclude

that RFi
(τ − τ g, τ)

d−→ 0 at τdµ-a.e. point. Since τ > 0 the measures µ and τdµ are

equivalent, and the corollary follows.

The next conclusion is standard from the previous one.

Proposition 3.4. Given 0 < ψ ∈ L1(µ), the set of ϕ ∈ L1(µ) such that RFi
(ϕ,ψ)

d−→
´

ϕ/
´

ψ a.e. is dense in L1.
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Proof. Let us say that τ ∈ L1 is ψ-dominated if 0 < τ < Mψ for someM =M(τ). We

claim, first that the convergence in the statement holds for ϕ = τ − τ g where g ∈ G

and τ ∈ L1 is ψ-dominated; and second, that the joint linear span of ψ and the set of

such ϕ is dense in L1. The two claims prove the proposition since the limit in question

holds trivially when ϕ = ψ and the operators RFi
(·, ψ) are linear.

For the first statement, let ϕ = τ − τ g with 0 < τ ≤ Mψ. Then |RFn(τ, ψ)| ≤ M ,

hence by the previous corollary,

RFi
(τ − τ g, ψ) = RFi

(τ − τ g, τ) ·RFi
(τ, ψ)

d−→ 0

For the second statement, observe that since ψ > 0, the set of differences of ψ-

dominated functions is dense in the positive cone of L1. It follows easily that the

linear span of the set of co boundaries ϕ = τ − τ g with τ a ψ-dominated function is

dense among all L1-co-boundaries (note that in general a co-boundary splits into the

difference of two positive co-boundaries). We now refer to the standard fact that, for

ergodic actions and assuming
´

ψ 6= 0, the linear span of ψ and the L1-co-boundaries

is dense subspace of L1(µ) (see e.g. [4]).

3.3 A density version of the maximal inequality

The next step is to prove a maximal-type inequality that will allow to go from the

d-convergence of RFi
(ϕ,ψ) on a dense set of ϕ ∈ L1(µ) to all of L1(µ). Define the

density-limsup by

d̄-limsup
n→∞

an = inf{t ∈ R : d(n : an > t) = 0}

Lemma 3.5. If an : X → R are measurable then a = d̄-limsup an is measurable.

Proof. It suffices to show that δt(x) = d(n : an(x) > t) is measurable for each fixed t,

and this is obvious since δt(x) = lim sup 1
N

∑N
n=1 1{an>t}(x).

Theorem 3.6. Let ϕ,ψ ∈ L1(µ) with ϕ,ψ ≥ 0 and
´

ψdµ 6= 0, and write dν = ψdµ.

Then

ν

(
d̄-limsup

n→∞
RFn(ϕ,ψ) > t

)
≤ C

´

ϕdµ

t

Before giving the proof of the maximal inequality, let us use it to complete the proof

of the ratio ergodic theorem. Fix 0 < ψ ∈ L1(µ); by Lemma 2.10 it suffices to prove

RFn(ϕ,ψ) →
´

ϕ/
´

ψ for ϕ ∈ L1(µ). Noting that RFn(ϕ − cψ, ψ) = RFn(ϕ,ψ) − c

and setting c =
´

ϕ/
´

ψ, we may further assume that
´

ϕdµ = 0. Let ε > 0 and let

ϕ′ ∈ L1(µ) be such that RFn(ϕ
′, ψ)

d−→ 0 and ‖ϕ− ϕ′‖1 < ε, as exists by the previous
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proposition. By Theorem 3.6,

ν

(
d̄-limsup

n→∞
RFn(|ϕ− ϕ′|, ψ) > 1

2

√
ε

)
< C

‖ϕ− ϕ′‖1√
ε

< C
√
ε

and by the triangle inequality and RFn(ϕ
′, ψ)

d−→ 0,

ν

(
d̄-limsup

n→∞
|RFn(ϕ,ψ)| >

√
ε

)
≤ ν

(
d̄-limsup

n→∞
|RFn(|ϕ − ϕ′|, ψ)| > √

ε

)
< C

√
ε

From this we conclude that

ν

(
d̄-limsup

n→∞
|RFn(ϕ,ψ)| > 0

)
= 0

Since ψ > 0 the measures ν and µ are equivalent, so this is the same as RFn(ϕ,ψ)
d−→ 0

µ-a.e., as desired.

Turning to the maximal inequality, we will use the following Besicovitch-type prop-

erty:

Lemma 3.7. There is a constant C such that for any k,N , if {Br(i)gi}ki=1 is an

incremental sequence such that r(i) ∈ [N, 2N ], then its multiplicity is at most C.

Proof. From the assumption B[r(i)/2]gi are pairwise disjoint sets of size≥ c1(N/2)
c. If

h ∈ ⋂
i∈I Br(i)gi for some I ⊆ {1, . . . k} then B[r(i)/2]gi ⊆ B3Nh for i ∈ I, and the

maximal number of such balls is therefore |B3Nh|/|B[N/2]|. Since |B3N | ≤ c2(3N)c we

have |I| ≤ 6cc2/c1.

Next we apply a variant of the Vitali covering argument.

Lemma 3.8. Let α > 0, let ϕ,ψ : X → [0,∞) and x ∈ X, let N be given and E ⊆ FN .

Suppose that for each g ∈ E there is an 1 ≤ i(g) ≤ N such that ϕj(g)(T
gx) < ε and

ψj(g)(T
gx) < ε, where ϕi, ψi are defined as in (6). Also suppose that Rj(g)(ϕ,ψ, T

gx) >

α. Then ∑

g∈E

ψ(T gx) ≤ C

(1− ε)α
SF 2

N
(ϕ, x)

Proof. Let Em = {g ∈ E : n(g) ∈ Jm}. Let M be the maximal value of m for which

Em 6= ∅. Define E′
m ⊆ Em recursively starting from m = M and working down to

n = 1: assuming we have defined E′
k for k > m, define E′

m = {gm,1, . . . , gm,ℓ(m)} to be

a maximal sequence satisfying the property in the hypothesis of the previous lemma

with respect to r(g) = n(i(g)), and also satisfying gi /∈
⋃

k>m

⋃ℓ(k)
i=1 Br(gk,i)gk,i.
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It is easily seen by induction that

Em ⊆
⋃

k≥m

ℓ(k)⋃

i=1

Fj(gk,i)gk,i

For h ∈ Em let

F ′
j(h)h = Fj(h)h \

⋃

k<m

ℓ(k)⋃

i=1

Fj(gk,i)gk,i

so that
⋃

h∈E F
′
j(h)h =

⋃
h∈E Fj(h)h. Given g ∈ G and m, by the previous lemma g

belongs to at most C of the sets Fj(gm,i)gm,i, therefore and if m0 = m0(g) is the least

index such that this is true for some j and g ∈ Fj(gm,i)gm,i then g belongs to F ′
j(h)h

only for some h ∈ Em0(but no elements h ∈ Em′ for m′ 6= m0), and to at most C such

sets. It follows that

∑

g∈E

ψ(T gx) ≤ C
∑

m

ℓ(m)∑

i=1

∑

g∈F ′

j(gm,i)
gm,i

ψ(T gx)

Now by our assumptions about ϕi(T
gx) and ψi(T

gx) for g ∈ E, and the fact that

Fj(h)h \ F ′
j(h)h ⊆ ∂∗Fj(h)h, we conclude that for all m and 1 ≤ i ≤ ℓ(m),

∑

g∈F ′

j(gm,i)
gm,i

ψ(T gx) ≤
∑

g∈Fj(gm,i)
gm,i

ψ(T gx)

≤ α−1
∑

g∈Fj(gm,i)
gm,i

ϕ(T gx)

≤ α−1

1− ε

∑

g∈F ′

j(gm,i)
gm,i

ϕ(T gx)

Combined with the previous inequality, this gives

SFN
(ψ1E , x) ≤ Cα−1

1− ε

∑

m

ℓ(m)∑

i=1

∑

g∈F ′

j(gm,i)
gm,i

ϕ(T gx)

≤ Cα−1

1− ε

∑

g∈FNE

ϕ(T gx)

≤ Cα−1

1− ε
SF 2

N
(ϕ, x)

because ϕ ≥ 0 and FNE ⊆ F 2
N ; the claim follows.
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Proof of the maximal inequality (Theorem 3.6). Since it suffices to prove the claim

with ϕ replaced by ϕ + ρψ for arbitrarily small ρ, we can assume that ϕ > 0. Write

R = d̄-limsupRFi
(ϕ,ψ). Fix t > 0 and denote

S = {x : R(x) > t}

For δ > 0 let

Sδ = {x : d(RFi
(ϕ,ψ, x) > t+ δ) > δ}

Since S =
⋃

δ>0 Sδ and the union is monotone, it suffices for us to show that ν(Sδ) ≤
C

1−δ

´

ϕ/t for a constant C independent of δ. By Theorem 3.2, for ϕdµ-a.e. x ∈ Sδ we

have ϕi(x)
d−→ 0, with ϕi as in (6). Since ϕ,ψ > 0 the measures ϕdµ and ν = ψdµ are

equivalent, so this is also true ν-a.e., hence the set

S′
δ = {x : d(RFi

(ϕ,ψ, x) > t+ δ and ϕi(x) < δ) > δ}

differs from Sδ on a set of ν-measure 0, and it suffices to bound ν(S′
δ). Now, since ν is

a finite measure, there is an N such that

S′
δ,N = {x : RFi

(ϕ,ψ, x) > t+ δ and ϕi(x) < δ for some 1 ≤ i ≤ N}

satisfies

ν(S′
δ,N ) >

1

2
ν(S′

δ)

and so it suffices to bound the measure of S′
δ,N .

This now is a direct application of the transference principle and the previous

lemma. We have

|FN |ν(S′
δ,N ) =

ˆ

SFN
(ψ1S′

δ,N
) dµ

For x ∈ X let

E = Ex = {g ∈ FN : T gx ∈ S′
δ,N}

and for g ∈ E define i(g) = ix(g) ∈ {1, . . . , N} to be an index such thatRFj(g)
(ϕ,ψ, T gx) >

t and ϕi(T
gx) < δ. In this notation,

SFN
(ψ1S′

δ,N
, x) =

∑

g∈Ex

ψ(T gx)

and we may apply Lemma 3.8 at each x, concluding that

|FN |ν(S′
δ,N ) ≤ C

(1− δ)t

ˆ

SF 2
N
(ϕ)dµ =

C

(1− δ)
|F 2

N |
ˆ

ϕ dµ
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The conclusion now follows from the fact that by polynomial growth, |F 2
N |/|FN | =

|B2n(N)|/|Bn(N)| is bounded uniformly in N .
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