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Abstract

We provide a full and rigorous proof of a theorem attributed to Żuk, stating that
random groups in the Gromov density model for d > 1/3 have property (T) with
high probability. The original paper had numerous gaps, in particular, crucial steps
involving passing between different models of random groups were not described. We
fix the gaps using combinatorial arguments and a recent result concerning perfect
matchings in random hypergraphs. We also provide an alternative proof, avoiding
combinatorial difficulties and relying solely on spectral properties of random graphs in
G(n, p) model.

1 Introduction

The topic of this paper are two important concepts in geometric group theory — random
groups and property (T).

Random groups have been an active field of study ever since their introduction by Gromov
in the early nineties [Gro93]. The main focus of this theory is on asymptotic properties of
groups. Roughly speaking, we define a model in which group presentations are chosen at
random, subject to certain restrictions, and depend on some parameter going to infinity. We
then study the probability that a random group has given property (for example, is trivial,
free, word hyperbolic etc.). It turns out that frequently this probability tends to 0 or 1, so
we can say that asymptotically “almost none” or “almost all” groups have the considered
property.
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Various different models of choosing a group at random have been proposed. The most
popular and widely studied is the Gromov density model [Gro93], in which the presentations
have fixed number of generators, but the length and number of relators go to infinity. The
number of relators is controlled by a parameter d ∈ [0, 1], called the density. It has been
discovered that many properties exhibit a “phase transition” — below a certain critical
density almost all groups have the property, while above it almost none do. The most
celebrated example is Gromov’s theorem ([Gro93], see [Oll10] for d = 1

2
), which states that

for d ≥ 1
2

a random group in this model is almost surely trivial or Z2, while for d < 1
2

it is
almost surely infinite and word hyperbolic (where “almost surely” means “with probability
tending to 1 as the relevant parameters go to infinity”). Therefore the Gromov model gives
us new examples of hyperbolic groups.

An excellent survey of random groups is [Oll05], where the reader can find out more
about the history of this field, important results and further references.

The second concept, property (T), was first introduced by Kazhdan to study certain
properties of lattices in Lie groups (hence it is also known as Kazhdan’s property). Later it
turned out that this property, concerning unitary representations of groups and their invari-
ant vectors, is relevant to many other areas of mathematics and also computer science. A
comprehensive treatment of this topic and its history can be found in [BdlHV08], here we
will only mention that property (T) has found applications in representation theory, har-
monic analysis, ergodic theory, expanding graphs, computational group theory and measure
theory. For example, groups with property (T) were used by Margulis to give a first explicit
construction of families of expanders, graphs with good spectral properties which are impor-
tant in theoretical computer science (we will also encounter spectral graph theory in later
sections). Many such applications are described in [Lub94].

Interestingly, for a long time few examples of groups having property (T) were known,
most of them associated with lattices in Lie groups. As we will see, it is random group
theory that gives us new examples of such groups. Actually, in a suitably defined sense
“most” groups have property (T), in the same way as “most” groups in the Gromov model
are trivial or hyperbolic for certain densities.

This remarkable result is due to Żuk and was proved in [Żuk03]. In this paper Żuk shows
this for the triangular model, a model of random groups closely related to the Gromov model:

Theorem A. For density d > 1
3
, a random group in the triangular model M(m, d) has

property (T) with overwhelming probability.

Analogous statement for the Gromov model is attributed to Żuk, although it does not
appear in [Żuk03]:

Theorem B. For density d > 1
3
, a random group in the Gromov model G(n, l, d) has property

(T) with overwhelming probability.

Together with Gromov’s theorem, this shows that for d between 1
3

and 1
2

we obtain a
multitude of infinite hyperbolic groups with property (T). On the other hand, it is known
[OW10] that for d < 1

5
random groups in the density model do not have property (T). It is
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an open problem to decide if the density 1
3

for the Gromov model can be improved or if it is
critical for having property (T).

Żuk’s key insight is the introduction of the triangular model, mentioned above, and
the use of a certain spectral criterion for property (T), which relates this property to the
spectrum of the discrete Laplacian on a suitably defined finite graph. It is then possible to
pass to the original Gromov model, so that the task of proving property (T) is reduced to
the analysis of eigenvalues of the Laplacian on random graphs.

Unfortunately, Żuk’s original paper contains gaps — the steps needed to pass from results
about random graphs to the triangular model are not spelled out explicitly and are stated
without proof. The passage from the triangular model to the Gromov density model is
not mentioned there, although it can be done following ideas from the survey [Oll05]. As
Ollivier points out in his survey, each of these steps requires dealing with technical details,
but the required proofs do not seem to appear anywhere in the literature. In particular the
passage from the results about random regular graphs to the triangular model turns out to
be nontrivial.

The goal of this paper is to fill the gaps from Żuk’s argument and describe the passage
to the Gromov model, thus giving a full and rigorous proof of Theorem B. We introduce
the appropriate definitions and properties of random group models and then proceed to
prove in detail the facts needed to obtain the main theorem, relying on a strong result from
random graph theory to deal with the major difficulty mentioned above. In addition we
give an alternative way of passing to the triangular model, not relying on theorems about
random regular graphs, but using more recent results about the so called Erdős-Renyi model
of random graphs.

The structure of the paper is as follows. In Section 2 we introduce the models of random
groups, property (T), the spectral criterion and give an outline of Żuk’s approach to the
proof. In Section 3, after recalling necessary notions from graph theory, we prove that
random groups in the triangular model typically have property(T). We then use this result
to finish the proof of the main theorem, proving that groups in the Gromov model are
quotients of groups in the triangular model. Section 4, is devoted to the alternative proof of
Theorem A, relying on methods from spectral graph theory and random graphs.

Acknowledgements
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valuable suggestions.

2 Preliminary notions

2.1 Models of random groups

In this section, we define relevant models of random groups. A comprehensive survey on the
topic of random groups is given in [Oll05]. All groups we consider will be finitely generated.
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Suppose we have a finite set of generators S = {s1, . . . , sn}. Let R be a set of words
chosen randomly according to some probability distribution on the set of all words on the
elements of S and their inverses. A random group will be a group given by the presentation
〈S|R〉. Choosing a model of random groups consists of specifying a probability law for the
set of relators R. Unless stated otherwise, we consider only relators r which are cyclically
reduced, i.e. if r = s1 . . . sl, then si 6= s−1

i+1 for 1 ≤ i ≤ l (where we identify sl+1 and
s1). Usually, we will be interested in asymptotic properties of a random group when some
parameter, e.g. number of generators n or the length of relators l, goes to infinity.

Whenever numbers like (2n−1)ld, denoting an integer quantity (e.g. number of relators),
appear, they are understood to mean their integer parts, e.g. ⌊(2n− 1)ld⌋.

The most widely studied model of random groups is the Gromov density model.

Definition 2.1. Fix a parameter d ∈ (0, 1), called the relation density. A group Γ in the
Gromov density model G(n, l, d) is given by Γ = 〈S|R〉, where |S| = n and R is a set of
(2n−1)ld relators, each of them chosen uniformly and independently from the set of relators
of length l (note that the same relator can appear several times).

Definition 2.2. Fix n and d. We say that a property P of groups holds with over-
whelming probability (w.o.p.) in the Gromov density model if we have lim

l→∞
P(Γ ∈

G(n, l, d) satisfies P ) = 1.

We will sometimes relax the requirement that exactly (2n− 1)ld relators are chosen, i.e.

we allow choosing f(n) ≈ (2n− 1)ld relators, where ”≈” means that f(n)
(2n−1)ld

→ 1 as n → ∞.
It will be clear that the properties we consider do not depend on such details.

As mentioned in the introduction, for d ≥ 1
2

groups in the Gromov density model are
trivial or Z2 w.o.p., so we will only be interested in values of d < 1

2
.

Another model of random groups, introduced ad hoc in [Żuk03], is the triangular model.

Definition 2.3. As before, fix d ∈ (0, 1). A group Γ in the triangular model M(m, d) is
given by Γ = 〈S|R〉, where |S| = m and R is a set of (2m− 1)3d relators, chosen uniformly
and independently from the set of relators of length 3.

Intuitively, a random group in the triangular model M(m, d) should be related to a

Gromov random group G(n, l, d) with 2m = (2n)
l

3 , since then the numbers of relators,
(2m−1)3d and (2n−1)ld, are approximately the same. Indeed, we will see in Chapter 3 that
every group in G(n, l, d) has a subgroup of finite index which is a homomorphic image of a
group in the (slightly modified) triangular model, with m as above.

Definition 2.4. For fixed d, we say that a property P of groups holds with overwhelming
probability (w.o.p.) in the triangular model if we have lim

m→∞
P(Γ ∈ M(m, d) satisfies P ) =

1.

We note that if d < 1
2
, in both models w.o.p each relator appears at most once [Oll05]:

Remark 2.5. If d < 1
2
, w.o.p. all relators in the presentation of a random group in the

Gromov model G(n, l, d) or the triangular model M(m, d) are distinct words.
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The last model we shall use is the permutation model.

Definition 2.6. Fix a set of generators S = {s1, . . . , sn} of size n. Choose v ≥ 1 and
pick uniformly and independently v pairs of permutations {π1

1, π
1
2}, . . . , {πv

1 , π
v
2}, where each

πi
k, k = 1, 2, is chosen randomly from the set of all permutations of {s1, . . . , sn, s−1

1 , . . . , s−1
n }.

A random group Γ in the permutation model F(n, v) is Γ = 〈S|R〉, with R consisting of
2nv words of the form s±1

j πi
1(s

±1
j )πi

2(s
±1
j ), for i = 1, . . . , v and j = 1 . . . , n.

Note that we place no restrictions on the permutations πi
k, so the resulting words

s±1
j πi

1(s
±1
j )πi

2(s
±1
j ) might not be cyclically reduced.

The permutation model is directly related to the following notion of a random graph:

Definition 2.7. Fix a set of vertices V = {1, . . . , n} and choose at random v permutations
π1, . . . , πv of V . Define the set of (undirected) edges between vertices as E = {(i, πk(i)) : i =
1, . . . , n, k = 1, . . . , v}. We allow multiple edges between two vertices. A random graph in
the configuration model L(n, v) is the graph G = (V,E).

A graph in the configuration model L(n, v) is a random regular graph of degree 2v. Such
graphs have been extensively studied (see for example [J LR00]) and their spectral properties
will be helpful in analysing random groups appearing in the permutation model.

Definition 2.8. For fixed v, we say that a property P of groups holds with overwhelming
probability (w.o.p.) in the permutation model if we have lim

n→∞
P(Γ ∈ F(n, v) satisfies P ) =

1.

2.2 Property (T)

We will now define Kazhdan’s property (T) and formulate some basic facts. Here, we are
only concerned with discrete, finitely generated groups — for a more complete treatment,
including property (T) for general topological groups, see [BdlHV08].

Let Γ be a finitely generated group with a finite generating set S. Consider H, a Hilbert
space, and π : Γ → U(H), a unitary representation of Γ on H. We will say that π has
almost invariant vectors if for every ε > 0 there exists uε ∈ H such that for every s ∈ S
‖π(s)uε − uε‖ < ε‖uε‖ (call such uε ε-invariant). A vector u ∈ H is called invariant if
π(g)u = u for every g ∈ Γ.

Definition 2.9. We say that Γ has property (T) if for every H and π the following holds:
if π has almost invariant vectors, then π has an invariant vector.

Before we proceed to give examples, we note the following simple property:

Remark 2.10. Let φ : Γ → H be an epimorphism. Then if Γ has property (T), so does H.

Proof. Let S be a generating set of Γ. Take φ(S) to be a generating set of H . Every
representation π of H can be pulled back to a representation π′ = π ◦ φ of Γ. Note that
ε-invariant vectors of π are also ε-invariant of π′, so if π has almost invariant vectors, so does
π′. Since Γ has property (T), π′ has an invariant vector, which is also an invariant vector of
π.
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An easy consequence of the above fact is that property (T) is preserved under adding
relators — if Γ = 〈S|R〉 has property (T), then Γ′ = 〈S|R ∪ R′〉, obtained from Γ by
adding an arbitrary set of relators R′, also has property (T). Therefore, to prove that a
group Γ = 〈S|R〉 has property (T), it suffices to find a subset R′ ⊆ R of relators such that
Γ′ = 〈S|R′〉 has property (T).

Another useful fact is that property (T) is preserved when passing to a subgroup of finite
index [BdlHV08, Theorem 1.7.1]:

Remark 2.11. Let H be a subgroup of finite index in Γ. Then H has property (T) if and
only if Γ has property (T).

We illustrate the definition of property (T) with a few examples:

• Z does not have property (T), which can be seen by analysing its representation on
L2(R) by translations

• from Remark 2.10, any group admitting an epimorphism onto Z does not have property
(T) — this includes Z

n and free groups Fn

• lattices in certain Lie groups, including SLn(R) for n ≥ 3 and Sp2n(R) for n ≥ 2, have
property (T) [BdlHV08, Section 1.4, 1.5]

2.3 Spectral criterion for property (T)

Given a group and its presentation, it is in general difficult to decide whether the group has
property (T) or not. Here we describe, following [Żuk03], a simple sufficient condition for
having property (T), based on spectral properties of a certain finite graph associated with
the group’s presentation.

Let G = (V,E) be a graph with the vertex set V and the set of edges E (we allow multiple
edges between two vertices). For a vertex v we denote its degree by deg(v). For functions
f, g : V → R their inner product is defined as:

〈f, g〉 =
∑

v∈V
f(v)g(v) deg(v)

We can then introduce the discrete Laplacian ∆:

(∆f)(v) = f(v) − 1

deg(v)

∑

v′∼v

f(v′)

where v′ ∼ v means that vertices v′ and v are adjacent (if there are multiple edges between
v and v′, then v′ appears in the sum with the corresponding multiplicity).

The Laplacian ∆ is a linear operator from ℓ2(G) to ℓ2(G). It is easily seen that it is
non-negative and self-adjoint with respect to the inner product defined above and therefore
has real spectrum.

Constant functions are mapped by ∆ to 0, so 0 is always an eigenvalue. If Γ is connected,
then it is a simple eigenvalue. We will denote the smallest nonzero eigenvalue of ∆ by λ1(Γ).

The graph L(S) below is the same as the graph L′(S) from Żuk’s paper:

6



Definition 2.12 ([Żuk03, Section 7.1]). Let Γ = 〈S|R〉, where S = {s1, . . . , sn}. We
define the graph L(S) as follows. The vertices of this graph are generators s1, . . . , sn and
their inverses s−1

1 , . . . , s−1
n . For each relator in R of the form sxsysz we introduce edges

(sxs
−1
y ), (sys

−1
z ), (szs

−1
x ).

This definition allows having multiple edges between two distinct vertices, but does not
allow loops from a vertex to itself (since we assume that relators are cyclically reduced).
Note that only relators of length 3 (corresponding to triangles in the Cayley graph of Γ
associated with the presentation) are relevant to the definition of L(S).

We will always assume that L(S) is connected. As noted in Żuk’s paper, even if L(S)
is not connected (which is the case, for example, for Z

2 with standard generators), we can
change the generating set, replacing S by S ∪ S2, and it is easily checked that the latter
set gives a connected graph. Thus, every group has a generating set S for which L(S) is
connected.

Intuitively, for a presentation consisting only of relators of length 3, the graph L(S) is
the vertex link of the triangular presentation 2-complex.

We can now formulate the theorem connecting spectral properties of the Laplacian and
property (T).

Theorem 2.13 ([Żuk03, Proposition 6]). Let Γ be a group given by a presentation 〈S|R〉
and assume that L(S) is connected. If λ1(L(S)) > 1

2
, then Γ has property (T).

The theorem first appears in [BŚ97] (see also [Żuk96]). It is usually formulated for a
version of L(S) without multiple edges.

Property (T) and the above criterion are closely connected to the spectral properties of
G-invariant random walks and existence of certain Poincaré inequalities on the Cayley graph
of Γ. A good reference for this topic is [Oll03] (see also [BdlHV08]).

The following example shows that the constant 1
2

cannot be improved [Żuk03]. Take
Γ = Z

2 with the generating set S = {(0, 1), (1, 0), (1, 1)}. The graph L(S) is a cycle of six
vertices and it can be checked that the eigenvalues of ∆ on this graph are 0, 1

2
, 3
2
, 2. We then

have λ1(L(S)) = 1
2
, but Z

2 does not satisfy property (T).
Later on it will be also convenient to decompose L(S) into subgraphs, as in the following

definition.

Definition 2.14. Let Γ = 〈S|R〉 be a group. We define graphs Li, i = 1, 2, 3, such that
each of them has the same vertex set as L(S) and for each relator of the form sxsysz we
insert and edge (sx, s

−1
y ) into L1, (sy, s

−1
z ) into L2 and (sz, s

−1
x ) into L3.

2.4 Proofs of main theorems – outline

The main results we are concerned with in this paper are the following theorems:

Theorem A. For density d > 1
3
, a random group in the triangular model M(m, d) has

property (T) with overwhelming probability.
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Theorem B. For density d > 1
3
, a random group in the Gromov model G(n, l, d) has property

(T) with overwhelming probability.

Here we give an outline of Żuk’s original argument concerning Theorem A, which is
contained in [Żuk03], and point out gaps in the proof which need to be filled. Then we
sketch how this can be used to deduce Theorem B.

The first step is to prove that w.o.p. a random group in the permutation model F(n, v)
satisfies property (T) (for a suitably chosen value of v).

This is accomplished by invoking the spectral criterion. Namely, let Γ = 〈S|R〉 be a
random group in the F(n, v) model. Consider the graph L(S) and the associated subgraphs
L1, L2, L3. It is readily proved, as in Żuk’s paper [Żuk03, Lemma 6], that if λ1(Li) >

1
2

for
i = 1, 2, 3, then λ1(L(S)) > 1

2
. We can then invoke Theorem 2.13 to conclude that Γ has

property (T). To prove that each of Li, say L1, has λ1 > 1
2
, we observe that it is exactly a

random graph in the configuration model L(n, v) (Definition 2.7) and such graphs typically
have large second Laplacian eigenvalue, thanks to the following theorem by Friedman:

Theorem 2.15 ([Fri91, Theorem B]). Let L be a random graph in the configuration model
L(n, v). Then

lim
n→∞

P

(

λ1(L) > 1 −
(
√

2v − 1

v
+

log v

v
+

c

v

))

= 1

where c is some constant independent of v.

The inequality in [Fri91] is formulated in terms of eigenvalues of the adjacency matrix,
but it is straightforward to rewrite it as an inequality for the Laplacian eigenvalues.

We fix v to be large enough so that the theorem above gives λ1(Li) > 1
2

(actually we

can have λ1(Li) arbitrarily close to 1, as 1 −
(√

2v−1
v

+ log v
v

+ c
v

)

→ 1 with v → ∞). This

concludes the first step.
The second step consists of showing that w.o.p. a random group in the triangular model

for d > 1
3

is a quotient of a random group in the permutation model. Since we know that
random groups in the latter model w.o.p. have property (T) and property (T) is preserved
under taking quotients, it will follow that w.o.p. a random group in the triangular model
has property (T).

To this end we need to show that a typical presentation of a triangular group contains
a subset of relators corresponding to pairs of permutations, as in the definition of F(n, v).
In [Żuk03] this fact is stated without proof. Actually, this is equivalent to finding a perfect
matching in a certain hypergraph closely related to L(S), which we will define in Chapter
3. We will prove there, using a theorem proved by Johansson, Kahn and Vu in [JKV08],
that indeed such a matching exists with high probability (although we should stress that the
result from [JKV08] is highly nontrivial). This gives us Theorem A.

To obtain Theorem B, we need to pass from the triangular model to the Gromov density
model. As explained in [Oll05], the triangular model is typically “less quotiented” than
the Gromov model, so we expect that groups in the latter model with high probability will
be quotients of groups in the former. This is indeed the case, although only some of the
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details are provided in [Oll05]. In Section 3.3 we prove the required result by constructing
a homomorphism from a suitable modification of the triangular model to the density model
(the modifications are needed to deal with technical issues involving nonreduced words).

This strategy of proof may be considered roundabout — we are forced to look for a perfect
matching in a random hypergraph, but only because of good spectral properties of random
groups in the permutation model, i.e. we are only interested in the large eigenvalue the
matching provides and not the matching itself. A more direct proof, avoiding combinatorial
difficulties with finding matchings, might be desirable. We give such a proof in Section 4,
where we prove directly in the triangular model (using known results about another model
of random graphs and without resorting to permutations) that graphs Li typically have large
λ1.

3 Proofs of main theorems - the triangular model and

the Gromov model

3.1 Basic notions of random graphs

In this section we recall basic notions of random graph theory and introduce auxilliary
definitions. We shall use standard asymptotic notation. For functions f, g, f = O(g) means
that f(n) ≤ Cg(n) for some constant C, and similarly f = Ω(g) means that f(n) ≥ Cg(n)

for some C. f = o(g) means that f(n)
g(n)

→ 0 as n → ∞ and f = ω(g) means that f(n)
g(n)

→ ∞
as n → ∞. Finally f = Θ(g(n)) if both f = O(g) and f = Ω(g) hold.

Fix a vertex set V of size n. A k-hypergraph G = (V,E) with vertex set V consists
of a family of hyperedges E, where each hyperedge e ∈ E is a subset of V of size k (we
allow repeated hyperedges). The case k = 2 gives the usual notion of graph with edges.
A hypergraph will be called k-partite if the vertex set V can be partitioned into k disjoint
subsets, V = V1 ∪ · · · ∪ Vk, such that each hyperedge is of the form e = {v1, . . . , vk}, vi ∈ Vi

for i = 1, . . . , k. A perfect matching in a k-partite hypergraph is a set of disjoint edges
that cover V .

One of the most widely used models of random graphs is the G(n, p) model (also called
the Erdős-Renyi model), in which a random graph on n vertices is obtained by taking each
possible edge independently with probability p. The expected number of edges is N =

(

n
2

)

p.
Typically we are interested in asymptotic properties of such graphs, when n → ∞ and
p = p(n) depends on n. For given p, we say that a random graph has property P with
high probability (w.h.p.) if lim

n→∞
P(G ∈ G(n, p) satisfies P ) = 1. A common phenomenon

in G(n, p) model is the existence of sharp thresholds, where for a given graph property P
there exists a threshold probability p(n) such that lim

n→∞
P(G ∈ G(n, p) satisfies P ) = 0 if

p = o(p(n)), but lim
n→∞

P(G ∈ G(n, p) satisfies P ) = 1 for p = ω(p(n)).

A related model is the G(n,M) model, where we choose uniformly at random a set of
edges from all possible sets of edges of size M on n vertices. This is somewhat similar to the
G(n, p) model with p such that M =

(

n
2

)

p (so that the expected number of edges agrees) and

9



sometimes results about one model can be transferred to the other [J LR00]. Both definitions
are straightforwardly generalized to the case of hypergraphs.

For technical reasons it will be also convenient to define two slightly different models
of random hypergraphs. The motivation for introducing them will be clear from the next
section.

Definition 3.1. Fix n and M . Let V be a set of size 2n whose elements are labeled
by s1, . . . , sn, s

−1
1 , . . . , s−1

n . A random graph G in the G3(n,M) is a 3-partite hypergraph
obtained in the following way. The vertex set of G consists of three disjoint copies V1, V2, V3

of V . We choose uniformly and independently a set of M hyperedges, where each hyperedge
is a triple (sx, sy, sz), sx ∈ V1, sy ∈ V2, sz ∈ V3.

Let e = (sx, sy, sz) be an edge as in the previous definition. We will call e a reduced
edge if the corresponding word sxsysz is cyclically reduced. A reduced perfect matching
is a perfect matching whose all hyperedges are reduced.

Definition 3.2. Fix n and M . A random graph G in the Gred
3 (n,M) model is a 3-partite

hypergraph obtained in the same way as in the G3(n,M) model, with the restriction that
we choose edges only from the set of reduced edges. The notion of satisfying a property with
high probability is defined in the same way as in the previous models.

3.2 From the permutation model to the triangular model

In this section we will describe how to pass from the permutation model to the triangular
model — roughly, we will prove that a random triangular group is a quotient of a random
group in the permutation model. Our first step will be establishing the existence of a perfect
matching in a random hypergraph associated with a random group in the M(m, d) model.
Then, after a few technical steps, we will apply this analysis to the M(m, d) triangular model
and a variant of the F(n, v) permutation model. This will enable us to prove Theorem A.

Recall that a random group Γ = 〈S|R〉 in the triangular model M(m, d) is obtained by
choosing independently (2m− 1)3d relators of the form sxsysz. From now on we take d > 1

3

so that 3d = 1 + ε, ε > 0. As we want to pass from this model to the permutation model, we
focus our attention on finding a subset of relators of the form s±1π1(s

±1)π2(s
±1) for s ∈ S,

where πi is a permutation. Each s should appear in these relators three times (playing the
role of s, π1(s

′) and π2(s
′′) for some s′, s′′).

The requirement that R contains a subset of relators of the desired form is naturally
rephrased in terms of the following 3-hypergraph associated to the presentation.

Definition 3.3. Let Γ = 〈S|R〉 be a group in the M(m, d) model. We define a graph L3(S)
in the following way: take the vertex set to be V1 ∪ V2 ∪ V3, where Vi are disjoint copies of
S ∪ S−1. For a relator sxsysz ∈ R insert a hyperedge (sx, sy, sz), sx ∈ V1, sy ∈ V2, sz ∈ V3

(we remove duplicate edges).

Choosing a random group in the triangular model M(m, d) gives us a random graph
L3(S) in the Gred

3 (m,M) model for M = (2m− 1)3d = (2m− 1)1+ε (note that both models
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allow only reduced relators and edges, respectively). To find a subset of relators of the form
s±1π1(s

±1)π2(s
±1), for s ∈ S, it is enough to find a perfect matching in L3(S).

In principle, models G3(n,M) and Gred
3 (n,M) allow duplicate edges. However, we will

use these graphs in the setting of random groups with density < 1
2
, where with overwhelming

probability there are no duplicate relators (Remark 2.5). We can therefore assume that no
duplicate edges will occur in random graphs described above.

The key result upon which our proof is based is the following result from random graph
theory [JKV08, Corollary 2.6]:

Theorem 3.4. Let p(n) = Ω( logn
n2 ). Then a random 3-partite 3-hypergraph in G3(n,M) for

M = Ω(n3p) contains a perfect matching with high probability.

The theorem in [JKV08] is actually proved for ordinary, not k-partite, hypergraphs, but
the proof requires essentially no modifications to acommodate this change.

Theorem 3.4 is a special case of a more general theorem in [JKV08], concerning thresholds
for existence of balanced factors in random graphs. In particular, it solves the long-standing
“Shamir problem”, asking for the threshold probability for existence of a perfect matching in
a hypergraph. The proof is rather difficult, employing concentration inequalities and entropy
estimates as well as intricate combinatorial arguments.

This is in sharp contrast with the case of bipartite graphs, where a simple argument based
on Hall’s marriage theorem gives a threshold probability of p = logn

n
[Bol01, Corollary 7.13].

The lack of a Hall-type theorem for hypergraphs, giving necessary and sufficient conditions
for a perfect matching, makes generalizing that argument to hypergraphs unfeasible. Indeed,
the problem of finding perfect matchings even in 3-hypergraphs is NP-hard, so it is unlikely
that a simple Hall-type criterion exists. There are several partial criteria for matchings in
hypergraphs ([AH00], [Hax95]), but none of them seems sufficient to establish our result.

Easier arguments can be given [J LR00, Theorem 4.19] to obtain a matching as soon as

Mn− 4

3 → ∞. One first conditions the graph on the sequence of degrees of its vertices and
then applies the second moment method. However, this is too weak for our purposes, since
it would only give Theorem A for densities d > 4

9
.

As an immediate corollary of Theorem 3.4, we obtain:

Corollary 3.5. With high probability a random graph in the G3(m,M) model for M =
(2m− 1)1+ε contains a perfect matching.

Since we are interested in finding a matching in the reduced graph Gred
3 (m,M), we first

need to establish the following fact:

Corollary 3.6. A random graph in the G3(m,M) model, for M = (2m− 1)1+ε, contains a
reduced perfect matching with high probability.

Proof. Let G be a random graph in G3(m,M) model. A perfect matching corresponds
to a pair of permutations π1, π2 such that the edges of the matching are of the form
(s, π1(s), π2(s)), s ∈ S ∪ S−1. Being a reduced matching imposes the additional condi-
tions s 6= π1(s)

−1, π1(s) 6= π2(s)
−1 and π2(s) 6= s−1, for each s. Therefore reduced perfect

11



matchings correspond to pairs π1, π2 such that, after composing with an involution, π1 is
a derangement (a permutation without a fixed point), and, once π1 is chosen, π2 is subject
to the constraints π2(s) 6= s−1, π1(s) 6= π2(s)

−1, which means that for each s it has now to
avoid two values.

It is well known that as m → ∞, probability that a random permutation is a derangement
approaches 1

e
. Furthermore, it can be shown that permutations with two forbidden values, as

in the case of π2, also asymptotically, as m → ∞, form a constant fraction of all permutations
(this is equivalent to the so called ménage problem and the constant is 1

e2
[Kap43]). Therefore,

by taking m large enough, we can assume that for a random pair of permutations π1, π2 the
probability of satisfying the conditions for a reduced matching is bounded from below by a
constant p independent of m.

In our model, the number of edges, of order m1+ε, is asymptotically greater than the
threshold value from Theorem 3.4. Since the threshold number of edges is only m logm,
we can easily partition the edge set into f(m) = C mε

logm
sets of size m logm, f(m) → +∞.

In each such set we have a perfect matching with high probability, and since probability
that a perfect matching is reduced is ≥ p, we have a perfect reduced matching with some
probability p′ > 0, independent of m. The probability that there is no perfect reduced
matching is therefore less than (1 − p′)f(m), which goes to 0 as m → ∞.

Now we are ready to find a perfect matching in the reduced graph model:

Corollary 3.7. A random graph in the Gred
3 (m,M) model, for M = (2m− 1)1+ε, contains

a (necessarily reduced) perfect matching with high probability.

Proof. From Corollary 3.6 it follows that a random graph in the G3(m,M) model, for M =
(2m− 1)1+ε, contains a reduced perfect matching with high probability. Let PM(F ) denote
the probability that a random graph in G3(m,M) contains such a matching, Pred

M (F ) — the
same probability for Gred

3 (m,M) and let EM ′ be the event that a random graph in G3(m,M)
contains exactly M ′ reduced edges, M ′ ≤ M .

Now, consider the following procedure — we choose a random graph G in the G3(m,M)
model and remove nonreduced edges, obtaining a graph G′. Fixing any M ′ ≤ M and
conditioning on existence of exactly M ′ reduced edges in G gives us G′ that is a random
graph in Gred

3 (m,M ′). G contains a reduced matching if and only if G′ does. Since M ′

is now fixed, the distribution of nonreduced edges in G is independent of the existence of
a reduced matching, so PM(F |EM ′) = P

red
M ′ (F ). G′ is a random graph in Gred

3 (m,M ′) and
M ′ ≤ M , so P

red
M ′ (F ) ≤ P

red
M (F ). Thus, we obtain PM(F |EM ′) ≤ P

red
M (F ) and since this is

true for every M ′, upon taking the total distribution PM(F ) we obtain PM(F ) ≤ P
red
M (F ).

Therefore a random graph in the Gred
3 (m,M) model contains a perfect matching with high

probability.

We can now formally state and prove the main result of this section. Since relators in the
triangular model are reduced, it is necessary to replace the usual permutation model F(n, v)
with the reduced model F red(n, v):

12



Definition 3.8. The reduced permutation model, denoted by F red(n, v), is the random
group model defined analogously to F(n, v) (Definition 2.6), but we allow only relators
which are cyclically reduced, i.e. only permutations {π1, π2} with π1(s) 6= s−1, π1(s) 6=
π2(s)

−1, π2(s) 6= s−1 for every s ∈ S ∪ S−1 are admissible.

Definition 3.9. The random graph model Lred(n, v) (compare to Definition 2.7) is a random
graph on a vertex set V, |V | = 2n, labelled by {s1, . . . , sn, s−1

1 , . . . , s−1
n }, which is constructed

by choosing at random v permutations π1, . . . , πv for which πk(s) 6= s−1 for every s ∈ V .
The edge set E is defined as E = {(s, πk(s)) : s ∈ V, k = 1, . . . , v}.

For F red(n, v), it is easy to see that if we define graphs L(S) and L1, L2, L3 as in Section
2.4, each Li will be a random graph in Lred(n, v).

We know from Theorem 2.15 that for v large enough a random graph L in L(n, v) has
λ1(L) > 1

2
with high probability. The same holds for Lred(n, v):

Lemma 3.10. For v large enough, a random graph L in Lred(n, v) is connected and has
λ1(L) > 1

2
with high probability.

Proof. As in the proof of Lemma 3.6, permutations such that π(s) 6= s for all s (derange-
ments) asymptotically, as m → ∞, form a constant fraction of all permutations, with con-
stant 1

e
. If we pick v permutations π1, . . . , πv and require πk(s) 6= s for k = 1, . . . , v and all s,

the probability that all are derangements also, as m → ∞, approaches a constant. Choosing
v permutations with these restrictions corresponds to graph model Lred(m, v), while choos-
ing unrestricted permutations corresponds to L(m, v). From Theorem 2.15, if we choose v
large enough, a random graph L in L(m, v) has λ1 >

1
2

with high probability. Furthermore,
it is well known that random regular graphs such as L are connected ([J LR00, Theorem
9.20]). Since the probability that L conforms to restrictions of Lred(m, v) is bounded from
below by a constant, independent of n, graphs in Lred(m, v) will also have λ1 >

1
2

with high
probability.

From Lemma 3.10 and and Theorem 2.13, we obtain:

Corollary 3.11. For v sufficiently large, a random group in the reduced permutation model
F red(n, v) has property (T) with overwhelming probability.

We therefore obtain the main result of this section, Theorem A.

Proof of Theorem A. Since d > 1
3
, we have (2m − 1)1+ε relators and thus from Corollary

3.7 a random triangular presentation contains, with overwhelming probability, a subset of
relators of the form s±1π1(s

±1)π2(s
±1) for s ∈ S. Actually, for any fixed v we can find v

disjoint subsets of such relators — it is enough to divide the set of relators R arbitrarily into
v equal disjoint parts and find a desired subset in each of them. Obviously if we can find
such a subset with overwhelming probability in one part, we will also be able to do this in
all v parts, as v is fixed and each part has, up to a constant, the same number of relators as
R.
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Thus, with overwhelming probability we can assign to a random group Γ in M(m, d) a
group Γ′ in F red(m, v) such that Γ is a quotient of Γ′. The choice of v subsets of relators
is not unique, but we can perform it in such a way that Γ′ is uniformly random, i.e. is a
random group in F red(m, v). For example, we can first enumerate such subsets in arbitrary
order and always choose the first one that appears. If we take v large enough, from Corollary
3.11 Γ′ has property (T) with overwhelming probability, and since Γ is a quotient of Γ′, Γ
has propery (T) with overwhelming probability.

3.3 From the triangular model to the Gromov model

In this section we show how to pass from the triangular model to the Gromov density model
and thus complete the proof of Theorem B. The idea is, as before, to prove that a random
group in the Gromov model is a quotient of a random group in the triangular model. We
first describe the proof informally and then present a more detailed argument, dealing with
certain technical issues.

The first attempt, based on [Oll05, Section I.3.g], would be as follows. Let us fix n, l, d and
let W denote the set of all reduced words over letters a±1

1 , . . . , a±1
n of length l/3 (assuming that

l is divisible by 3). If we now consider a group Γ in the M(m, d) model with 2m = |W |, we
see that there is a natural mapping from M(m, d) to G(n, l, d) (with a1, . . . , an as generators
in the latter model), with the same d. Namely, let W+,W− be such that W = W+ ∪W−,
|W+| = |W−| = 1

2
|W |, wi 6= w−1

j for wi, wj ∈ W+ and words from W− are inverses of words
from W+. We then enumerate the elements of W+ arbitrarily and define the homomorphism
as φ(si) = wi, where s1, . . . , sm are generators in the triangular model and w1, . . . , wm are
distinct elements of W+. This is a homomorphism from Γ into a group Γ′ in the G(n, l, d)
model, as each relator of the form sxsysz is mapped to a word of length l, a valid relator in
the Gromov model (with the same density d, as (2m− 1)3d = (|W | − 1)3d ≈ (2n− 1)ld). In
fact, this is an epimorphism onto a subgroup of finite index in Γ′ and since every random
group in the Gromov model arises from a triangular group by means of this homomorphism
(so that the probability distribution induced on M(m, d) is uniform), it follows that with
high probability groups in G(n, l, d) have property (T).

The problem with this construction is that the words φ(sxsysz) obtained in the image of
the homomorphism may not be reduced. For example, if φ(s1) = a1a2a3 and φ(s2) = a−1

3 a1a1,
then s1s2s2, a valid relation in the triangular model, is mapped to a1a2a3a

−1
3 a1a1a

−1
3 a1a1,

which is not reduced and hence not a valid relator in the Gromov model. As such reduc-
tions will occur with overwhelming probability, we have to introduce a modification of the
triangular model and the homomorphism to deal with this issue.

Definition 3.12. Fix d ∈ (0, 1). A group Γ in the positive triangular model M+(m, d)
is given by Γ = 〈S|R〉, where |S| = m and R is a set of (2m − 1)3d relators, chosen
independently and uniformly from the set of relators of length 3, with the restriction that
only words not using elements from S−1 are chosen.

The graph L(S) associated with the group is defined in the same way as for the standard
triangular model. Note that this time L(S) is always a bipartite graph, with vertex sets S
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and S−1, as there are no edges of the form ss′ or s−1s′−1.
We would like to prove the analogue of Theorem A for the positive triangular model.
The main difference with the standard triangular model is that we cannot use Theorem

2.15 to deduce large λ1 eigenvalue of the graph induced by the permutation subset of relators.
Theorem 2.15 works for graphs chosen at random among all v-regular graphs, and in our case
each graph Li, as defined in Section 2.4, is always bipartite and v-regular. Fortunately, the
following analogue of Theorem 2.15 easily follows from a more general result about random
graphs (which, incidentally, can also be used to prove Theorem 2.15, with a different bound):

Theorem 3.13 ([Fri03, Theorem 1.2]). Consider the vertex set V consisting of two dis-
joint copies of {1, . . . , n}. Let G be a random bipartite v-regular graph obtained by choosing
uniformly at random v permutations π1, . . . , πv of {1, . . . , n} and inserting edges (i, πj(i)),
j = 1, . . . , v, i = 1, . . . , n, into V . Then for any ε > 0:

lim
n→∞

P

(

λ1(G) ≥ 1 −
(√

2v(v − 1)
1

4

v
+

ε

v

))

= 1

This in particular implies that λ1 → 1 with v → ∞.
One obtains this theorem by applying [Fri03, Theorem 1.2] to a base graph consisting of

two vertices connected by v edges. Every bipartite v-regular graph is then a cover of this
base graph.

Theorem 3.14. A random group in the M+(m, d) model for d > 1
3
has property (T) with

overwhelming probability

Proof. The proof is esentially the same as the proof of Theorem A, so we will not repeat all
the details. In fact, it is even easier, as we do not have to deal with possible reductions and
require that the permutations obtained in the proof are derangements.

We define the graph G3(n,M) in the same way as before, with the modification that it has
only vertices labelled by s1, . . . , sn, as their inverses are not used in any relators in M+(m, d).
Using Theorem 3.4, we deduce that with high probability it has a perfect matching, which
corresponds to a set of relators of the form sπ1(s)π2(s). This enables us to show that with
high probability every group in the M+(m, d) model is a quotient of a random group in
the modified F(n, v) model, where we disallow inverses of generators to appear, as in the
definition of M+(m, d). By Theorem 3.13 the latter groups satisfy the spectral criterion, as
in the case of standard permutation model, and the theorem follows.

We now proceed to define the desired homomorphism. Fix n, l, d and a set of generators
A = {a1, . . . , an}. We will call elements from A positive letters and elements from A−1

negative letters. Let Wl/3 denote the set of all reduced words over A ∪ A−1 of length l/3
which begin and end with a positive letter. By W ′

l we denote the set of words of the form
w1w2w3, where wi ∈ Wl/3 (all words in W ′

l are reduced and of length l). Consider now
the set S = {s1, . . . , sm}, where m = |Wl/3|, and enumerate all elements of Wl/3 in an
arbitrary way. Let 〈g1, . . . , gm〉 denote the free group generated by {g1, . . . , gm}. We define
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a homomorphism φ : 〈s1, . . . , sm〉 → 〈a1, . . . , an〉 by φ(si) = wi, where wi is the i-th element
of Wl/3.

Now note that if Γ = 〈S|R〉 is a group in the M+(m, d) model, then each relator sxsysz
is mapped by φ to a word in W ′

l . Therefore φ projects to a homomorphism (for simplicity
also denoted by φ) from Γ to Γ′ = 〈A|φ(R)〉, where |R| = |φ(R)| = (2m − 1)3d and each
relator in φ(R) is from W ′

l . Actually it is an epimorphism onto a subgroup of finite index in
Γ′.

Lemma 3.15. φ(Γ) is a subgroup of finite index in Γ′.

Proof. Throughout the proof a, b, c will always denote positive letters.
φ(Γ) is generated by all reduced words of length l/3 which are of the form avb. We will

show that every word over A∪A−1 is equal in the free group to a word of the form u, tu or
stu, where u ∈ φ(Γ) and s, t ∈ A∪A−1, which is enough to prove that φ(Γ) has finite index
in Γ′.

Observe that all words of the form avb−1 (and similarly a−1vb), where v has even length,
belong to φ(Γ). Namely, set k = l/3 − 2 and let v have even length. If v has length at most
2k, then we write v = v′v′′, where v′, v′′ have equal length, and concatenate words av′ut
and t−1u−1v′′b−1 = (bv′′−1ut)−1, where u is a word and t is a positive letter, chosen so that
both av′ut and bv′′−1ut are reduced. If v has length greater than 2k, then we write v as
v = v1v2 . . . vjv

′v′′, for some j, where each vi has length 2k and v′, v′′ have length at most k.
We then concatenate words av1t

−1
1 , t1v2t

−1
2 , . . ., tj−1vjt

−1
j , tjv

′utj+1 and t−1
j+1u

−1v′′b−1, where
again u and ti are chosen so that all these words are reduced.

Suppose now that we have a reduced word w over A∪A−1. Without loss of generality we
can assume that w begins with a or begins with a−1 and ends with a positive letter. Assume
that w begins with a (the other case is dealt with analogously). Consider first the case when
w has odd length. If w ends with a positive letter, say b, then for any c 6= a the word c−1w
is of the form c−1w′b, where w′ has even length, so it belongs to φ(Γ). Similarly, if w ends
with a negative letter, say b−1, than for c the word cw belongs to φ(Γ).

If w has even length, then we have two cases. If it ends with some b−1, then it is of the
form aw′b−1, where w′ has even length, so it belongs to φ(Γ). If it ends with some b, then
for c 6= a we have that c−1a−1w is of the form c−1w′b, where w′ has even length, so c−1a−1w
belongs to φ(Γ).

We are now in the position to finish the proof of our main theorem.

Proof of Theorem B. Fix n, l and 1/3 < d < 1/2. Let m = |Wl/3| (with all the notation as
above). We will first show that if Γ′ = 〈A|R〉 is a random group in the G(n, l, d) model, but
with the restriction that we choose (2m−1)3d relators only from W ′

l , then with overwhelming
probability Γ′ satisfies property (T).

Suppose Γ′ is such a group. By means of the construction described above, we can find a
group Γ in the M+(m, d) model, with the set of generators S and m = |Wl/3|, such that φ(Γ)
is a subgroup of finite index in Γ′ (Lemma 3.15). The probability distribution on M+(m, d)
obtained in this way is uniform and from Theorem 3.14 we know that with overwhelming

16



probability Γ has property (T). Since φ is an epimorphism from Γ onto a subgroup of finite
index in Γ′, from Remark 2.10 and Remark 2.11 we have that Γ′ satisfies property (T) with
overwhelming probability.

Now let Γ′ = 〈S|R〉 be a random group in the G(n, l, d) model. We will show that with
high probability R contains a subset R′ of at least (2m− 1)3d relators from W ′

l .
For C > 0, where C ≈ 1

26
, we have |W ′

l | = 1
C

(2n − 1)l. This means that the average
number of relators from W ′

l in R is 1
C

(2n− 1)ld. With overwhelming probability R contains
at least, say, 1

2
1
C

(2n−1)ld such relators. Since we want to have (2m−1)3d = (|Wl/3|−1)3d ≈
|W ′

l |d = 1
C

(2n − 1)ld relators, we should make an inessential change in the definition of
M+(m, d), taking 1

2
(2m − 1)3d relators instead of (2m − 1)3d. Alternatively we could take

the density in the triangular model to be some d′ arbitrarily smaller than d and construct the
homomorphism from M+(m, d′) to G(n, l, d). Another option is choosing relators of length
in [l − C, l + C] for some constant C > 0.

Since with overwhelming probability we can find a subset R′ of R consisting of at least
1
2
(2m− 1)3d words from W ′

l (and, in the same way as in the proof of Theorem A, it can be
chosen to be uniformly random), our group Γ′ will then be a quotient of a group 〈S|R′〉,
with R′ containing only words from W ′

l , and we have shown that such groups typically have
property (T), which finishes the proof.

Actually we have covered only the case of l divisible by 3. This can be dealt with by
relaxing the requirement that we choose relators of length exactly l in the definition of the
density model and instead allow all relators of length ≤ l, which is arguably more natural
(see discussion in [Oll05, I.2.c]). With high probability we can then find a sufficiently large
subset of relators of length divisible by 3 and repeat the proof above. Alternatively one could
try to modify the triangular model and the homomorphism.

The final remark is that most of technical issues in proofs in this and the preceding section
stem from the requirement that we choose only reduced words in the random presentations.
If we allow all words, not necessarily reduced, to be chosen in the Gromov model, the
straightforward construction of the homomorphism described in the beginning of this section
works well. Similarly, if we allow nonreduced words in the triangular model, we do not have
to deal with reductions and require that permutations are derangements when passing from
the permutation model to the triangular model. For the sake of continuity with previous
work in random groups we have adopted the traditional definitions of both models, but
perhaps allowing all words to appear in the presentations would be more natural in many
contexts.

4 The triangular model - alternative approach

Here, we provide another proof that for d > 1
3

random groups in the triangular model
M(m, d) have property (T) with overwhelming probability. The proof is based solely on
spectral properties of random graphs, in particular almost regular graphs. In Section 4.1,
we state basic definitions and lemmas about spectra of graphs. Then, in Section 4.2, we use

17



results about the second smallest eigenvalue the of Laplacian λ1 of a G(n, p) random graph
to deduce that a random graph in G(n,M) has λ1 >

1
2

with high probability. In Section 4.3,
we finish the proof by showing how to apply results about G(n,M) model to the triangular
model.

4.1 Spectral properties of graphs

Here we state basic definitions and facts about spectra of random graphs that we will use
later. A survey of basic facts from spectral graph theory can be found in [Chu97]. Through-
out this section we will work with G(n, p) and G(n,M) models described in Section 3.

For a graph G = (V,E) with vertex set V = {v1, . . . , vn}, let d(vi) denote the degree of
vertex vi. The degree matrix D(G), or simply D, is the diagonal matrix with degrees of
vertices on its diagonal, i.e. Dii = d(vi) for i = 1, . . . , n. We will assume that G is connected
and has no vertices of degree 0. The adjacency matrix of G, denoted by A(G) or A, is the
matrix such that its entry Aij is equal to the number of edges between vi and vj . Since our
graphs are unoriented, A is symmetric, Aij = Aji.

Definition 4.1. The normalized Laplacian L(G) is the matrix defined by

L = I −D− 1

2AD− 1

2

Both A and L are symmetric. For a symmetric matrix M , we can list its eigenvalues
in increasing order: λ0(M) ≤ λ1(M) ≤ · · · ≤ λn−2 ≤ λn−1(M). It can be easily seen that
the spectrum of A(G) lies in the interval [−dmax, dmax], where dmax = maxv∈G d(v) and the
spectrum of L(G) lies in the interval [0, 2]. The first nonzero eigenvalue of L(G), λ1, is often
the called the spectral gap of G.

We can compare the notion of normalized Laplacian to the Laplacian ∆ defined in Section
2, which can be expressed as ∆ = I−D−1A. In the case of d-regular graphs, where all vertices
have degree d, we have D = dI and the matrices L,∆ and I − 1

d
A coincide. If we have a

sequence of graphs which are “almost regular”, in the sense that their minimal and maximal
degrees are close to each other, we expect that spectral properties of L and ∆ should be
asymptotically the same, which will be made precise below.

Definition 4.2. Let {Gn}∞n=1 be a sequence of graphs and let dn be any sequence. We say
that graphs {Gn}∞n=1 are almost dn-regular if for every Gn its minimum and maximum
degree are (1 + o(1))dn.

We will often apply the term “almost dn-regular” when talking about a single graph,
where it is implicit that the graph depends on some parameter n → ∞. In particular we will
say that a random graph in G(n, p) (or G(n,M)) is almost dn-regular with high probability
if its minimum and maximum degree is (1 + o(1))dn with high probability.

We will be interested in studying random graphs in G(n, p), for which the average degree
is (n−1)p. Below, this will be asymptotically the same as np and for notational convenience
we will replace (n− 1)p by np. For p such that

(

n
2

)

p = n1+ε, a typical graph in G(n, p) will
be almost np-regular, thanks to the following easily proved fact [AS00, Theorem 8.5.1]:
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Lemma 4.3. Let p = ω( logn
n

) and G be a random graph in G(n, p). Then with high probability
for all v ∈ G we have d(v) = (1 + o(1))np, i.e. G is almost np-regular.

It can be easily shown that the largest eigenvalue of A for an almost dn-regular graph
is (1 + o(1))dn. The next standard lemma states that having the second largest eigenvalue
of A asymptotically smaller than the largest is equivalent to having spectral gap uniformly
close to 1:

Lemma 4.4. Let dn → ∞ and let Gn be almost dn-regular. Then 1
dn
λn−2(A(Gn)) = (1 +

o(1))(1 − λ1(L(Gn))). In particular if λn−2(A(Gn)) = o(dn) then λ1(L(Gn)) = 1 − o(1).

Proof. We shall use the following variational characterization of eigenvalues of a symmetric
matrix M , called the Courant-Fischer Theorem [Chu97]:

λk = max
V k

min
x⊥V k

〈x,x〉=1

〈Mx, x〉

where the maximum is taken over all k-dimensional subspaces V k.
It will be more convenient to replace L with L′ = I − D−1A - since these two matrices

are similar, they share the same spectrum.
Note that since all vertex degrees are (1+o(1))dn, all nonzero entries of 1

dn
D are 1+o(1),

so we can write:

λn−2(A)

dn
= max

V n−2

min
x⊥V n−2

〈x,x〉=1

〈 1

dn
Ax, x〉

= max
V n−2

min
x⊥V n−2

〈x,x〉=1

〈 1

dn
DD−1Ax, x〉

≤ (1 + o(1)) max
V n−2

min
x⊥V n−2

〈x,x〉=1

〈D−1Ax, x〉

= (1 + o(1))λn−2(I − L′) = (1 + o(1))(1 − λ1(L′)) = (1 + o(1))(1 − λ1(L))

The next lemma says that the Laplacian of an almost regular graph does not change
much if we add a small “correction” to the graph.

Lemma 4.5. Let G be an almost dn-regular graph and let K be a graph on the same vertex
set whose maximum degree is o(dn). Then:

a) G ∪K is almost dn-regular

b) λ1(L(G)) = 1 − o(1) if and only if λ1(L(G ∪K)) = 1 − o(1).
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Proof. Since K has maximum degree o(dn), every vertex of the graph G ∪K has degree at
most (1 + o(1))dn + o(dn) = (1 + o(1))dn, so G ∪K is almost dn-regular, which proves a).

Now assume that λ1(L(G)) = 1 − o(1). By Lemma 4.4, we have λn−2(A(G)) = o(dn).
Since K has maximum degree o(dn), all eigenvalues of its adjacency matrix are o(dn) in
absolute value. We have A(G ∪K) = A(G) + A(K), so for i = 1, . . . , n we obtain λi(A(G ∪
K)) = λi(A(G)) + o(dn) (since we are adding a matrix with spectral norm o(dn)). In
particular λn−2(G∪K) = o(dn) so, as from a) G∪K is almost dn-regular, by Lemma 4.4 we
have λ1(L(G ∪K)) = 1 − o(1).

4.2 From G(n, p) to G(n,M)

In this section we show that if M is sufficiently large, then typical graphs in G(n,M) have
good spectral properties, i. e. they have the spectral gap close to 1 as n → ∞.

It is well known that for p and M such that p = ω
(

logn
n

)

and M = ω(n logn) random
graphs in G(n, p) and G(n,M) are connected with high probability [Bol01]. Since these
bounds will be satisfied in all cases we are considering, we will assume that our graphs are
connected.

We will rely on the following theorem about the G(n, p) model (which is a corollary of a
more general result from [CLV03, Theorem 3.6]):

Theorem 4.6. Suppose np = ω(log2 n) and let g(n) be an arbitrary function tending to
infinity. Then with high probability a random graph G in G(n, p) satisfies:

λ1(L(G)) ≥ 1 − (1 + o(1))
4√
np

− g(n) log2 n

np

In particular this implies that with high probability λ1(L(G)) = 1− o(1). We would like
to prove the analogous result for the G(n,M) model.

First we will need a lemma concerning the maximum vertex degree in a sparse graph.

Lemma 4.7. Let G be random graph in G(n, k) with k ≤
√
M , where M = ω(n logn). Then

with high probability:

max
v∈G

d(v) = o

(

M

n

)

In particular all eigenvalues of A(G) are with high probability o
(

M
n

)

.

Proof. Fix a vertex v ∈ G. We first estimate the probability that v has degree at least d

when G is from G(n, p) for k = p
(

n
2

)

. Note that for such k we have pn ≤
(

2
√
M
n

)

, so the

average degree d̄ is at most 1 (and actually tends to 0 if M = o(n2)). We use a tail estimate
for the binomial distribution (see [J LR00, Theorem 2.1]):

P
(

d(v) ≥ d̄ + t
)

≤ exp

(

− t2

2
(

d̄ + 2
3
t
)

)

(1)
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The right hand side can be made n−ω(1) by taking t = ω(logn) such that at the same time
t = o

(

M
n

)

. The probability that any vertex has degree at least d, denote this by Pp(d), is n

times the right hand side of (1), which is therefore also n−ω(1).
Now take the analogous probability in G(n, k), denote it by Pk(d). From a general

inequality between probabilities for G(n, k) and G(n, p) models [Bol01, Theorem 2.2, iii)],
we have Pk(d) ≤ 3

√
kPp(d). Since Pp(d) is n−ω(1) and k ≤

√
M ≤ n, the right hand side

goes to zero, so with high probability all vertices in G from G(n, k) have degree o
(

M
n

)

.

Theorem 4.8. Suppose M = ω(n log2 n). Then with high probability a random graph G in
G(n,M) satisfies:

a) G is almost np-regular

b) λ1(L(G)) = 1 − o(1)

Proof. Fix M = ω(n log2 n) and p such that M = p
(

n
2

)

. Let H be a random graph in G(n, p)

conditioned on having between M and M +
√
M edges. Since we are conditiong on an

event whose probability is bounded from below by some constant (which follows from the
properties of binomial distribution), conclusion of Lemma 4.3 and Theorem 4.6 still hold, so
with high probability H is almost np-regular and we have λ1(L(H)) = 1 − o(1).

Now let G be a subgraph of H having exactly M edges, chosen uniformly at random
from all such subgraphs. G has the same distribution as a random graph in G(n,M), so it
is enough to show that λ1(L(G)) = 1− o(1) with high probability. We will first estimate the
eigenvalues of the adjacency matrix of G.

Let K be a subgraph of G consisting of edges not belonging to H , so that A(K) =
A(H)−A(G). If we condition on H having exactly M + k edges, for 0 ≤ k ≤

√
M , then we

can think of this process as first choosing K according to the G(n, k) distribution (without
any constraints) and then choosing G uniformly among the graphs on the remaining edges.
As K is a random graph in G(n, k) with k ≤

√
M , from Lemma 4.7 we have that with high

probability all vertices of K have degree o
(

M
n

)

= o (np).

Since the above property holds for all k = 0, . . . ,
√
M , by Lemma 4.5 G is almost np-

regular and λ1(L(G)) = 1−o(1) if and only if λ1(G∪K) = λ1(H) = 1−o(1). As λ1(L(H)) =
1 − o(1) with high probability, this finishes the proof.

4.3 Application to the triangular model

We will now proceed to prove Theorem A using results from the previous section. We use the
notation of Section 2.4 — λ1(G) denotes the smallest nonzero eigenvalue of ∆ (equivalently:
of L) on graph G.

Fix d > 1/3 so that 3d = 1 + ε. Let Γ = 〈S|R〉 be a random group in the M(m, d)
model (we will asume that we actually choose (2m)3d ≈ (2m−1)3d relators in the triangular
model) and let L(S) be the graph associated with Γ as in Section 2.4. Let us divide L(S)
into three subgraphs L1, L2, L3 as in Section 2.4.
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Each Li is a random graph on n = 2m vertices, with the marginal distribution the same
as obtained by putting n1+ε edges one by one uniformly at random. As such it is not a graph
in G(n,M) for M = n1+ε, as it allows duplicate edges. However, the number of duplicates
is with high probability negligible as compared to n1+ε — choosing a random graph Li is
equivalent to an experiment in which put n1+ε balls into

(

n
2

)

bins at random and it can be
easily calculated (see e.g. [MU05, Chapter 5]) that with high probability we will have no
more than O(n2ε) duplicate edges. Therefore if we denote by L′

i a graph obtained from Li by
collapsing all duplicate edges into one edge, the difference Ki = Li\L′

i is a graph with O(n2ε)
edges. Its average degree is o(1) and it can be easily shown, using the same methods as in
proofs of Lemma 4.5 and Lemma 4.7, that with high probability Ki has maximum degree
at most o(nε), so that Li and L′

i will have asymptotically the same spectral properties.
Therefore from now on we will treat Li as a random graph in G(n,M), without duplicates.

Lemma 4.9. In the setting as above, with high probability λ1(L(S)) > 1
2
.

Proof. Let ∆i denote the Laplacian on Li, ∆ — the Laplacian of L(S), Di — the degree
matrix of Li, D — the degree matrix of L(S) (in particular D = D1 + D2 + D3). From the
definition of ∆ it is easily seen that:

∆ =

3
∑

i=1

DiD
−1∆i

Since M = n1+ε = ω(n log2 n), from part a) of Theorem 4.8 we have that each Li is with
high probability almost dn-regular for dn = nε. In particular each nonzero entry of Di is
(1 + o(1))dn and each nonzero entry of D is (3 + o(1))dn. Therefore we can write DiD

−1 =
1
3
I + Ki, where Ki has only diagonal entries which are all o(1). We get:

∆ =
1

3

3
∑

i=1

∆i + K

where K =
3
∑

i=1

Ki∆i has all eigenvalues at most o(1) (as ∆i has spectrum in [0, 2]).

Now suppose that ∆ has an eigenvector f with eigenvalue ≤ 1/2. We have:

1

2
〈f, f〉 ≥ 〈∆f, f〉 =

1

3

3
∑

i=1

〈∆if, f〉 + 〈Kf, f〉

By Theorem 4.8 λ1(Li) are uniformly bounded away from 1/2 and 〈Kf, f〉 will be arbitrarily
small as n → ∞. Therefore the above inequality implies that for at least one i we have
〈∆if, f〉 ≤ 1

2
〈f, f〉, which contradicts λ1(Li) >

1
2
.

Alternative proof of Theorem A. By Theorem 2.13 it is enough to show that λ1(L(S)) > 1
2

with overwhelming probability. Each Li is a random graph in G(n,M) for M ≈ n1+ε, in
particular M = ω(n log2 n), so the assumptions of Theorem 4.8 are satisfied and for each i
we have λ1(Li) = 1 − o(1) with high probability. By Lemma 4.9 we get λ1(L(S)) > 1

2
with

overwhelming probability and this finishes the proof.
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As we have seen in Section 3, to pass from the triangular model to the Gromov model
it is necessary to use a modification of the triangular model, the positive triangular model,
which results in L(S) being a random bipartite graph. Therefore what we actually need
to pass to the Gromov model and prove Theorem B is to prove that groups in the positive
model typically have property (T). To this end we would have to replace Theorem 4.6 with
an analogous result for the G(n, n, p) model of bipartite graphs (defined naturally). We have
not found such a result in the literature, although it seems plausible that Theorem 4.6 also
holds in the bipartite case.
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