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VOLUME GROWTH AND BOUNDS FOR THE ESSENTIAL

SPECTRUM FOR DIRICHLET FORMS

SEBASTIAN HAESELER, MATTHIAS KELLER, AND RADOS LAW K. WOJCIECHOWSKI

Abstract. We consider operators arising from regular Dirichlet forms with
vanishing killing term. We give bounds for the bottom of the (essential) spec-
trum in terms of exponential volume growth with respect to an intrinsic metric.
As special cases we discuss operators on graphs. When the volume growth is
measured in the natural graph distance (which is not an intrinsic metric) we
discuss the threshold for positivity of the bottom of the spectrum and finiteness
of the bottom of the essential spectrum of the (unbounded) graph Laplacian.
This threshold is shown to lie at cubic polynomial growth.

1. Introduction and Main Results

In 1981 Brooks proved that the bottom of the essential spectrum of the Laplace
Beltrami operator on a complete non compact Riemannian manifold with infinite
measure can be bounded by the exponential volume growth rate of the manifold
[Br]. Following this, similar results were proven in various contexts, see [DK, Fuj,
Hi1, Hi2, OU, Stu]. Very recently it was shown in [KLW] that such a result fails
to be true in the case of the (non-normalized) graph Laplacian when the volume
is measured with respect to the natural graph distance. Indeed, there are graphs
of cubic polynomial volume growth that have positive bottom of the spectrum and
slightly more than cubic growth already allows for purely discrete spectrum. This
suggests that one should look for other candidates for a metric on a graph.

In this work we use the context of regular Dirichlet forms (without killing term)
and the corresponding concept of intrinsic metrics, see [Stu] and [FLW], to prove a
Brooks-type theorem. The purpose of this approach is threefold. First, we provide
a set up which includes all known examples (and various others, e.g., quantum
graphs) and give a unified treatment. Additionally, our estimates are slightly better
than most of the previous results. Secondly, our method of proof seems to be much
clearer and simpler than most of the previous works. Finally, graph Laplacians are
now included and the disparity discussed above is resolved by considering suitable
metrics. As an application, we can now prove that the examples found in [KLW]
for Laplacians on graphs do indeed give the borderline for positive bottom of the
spectrum. In particular, for the natural graph distance the threshold for zero
bottom of the essential spectrum and the discreteness of the spectrum lies at cubic
growth.

Let X be a locally compact separable metric space and m a positive Radon
measure of full support. Let E be a closed, symmetric, non-negative form on the
Hilbert space L2(X,m) of real-valued square integrable functions with domain D.
We assume that E is a regular Dirichlet form without killing term (for background
on Dirichlet forms see [Fuk], more details are given in Section 2.1). Let L be the
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positive self adjoint operator arising from E . Define

λ0(L) := inf σ(L) and λess
0 (L) := inf σess(L)

where σess(L) denotes the essential spectrum of L.
We let ρ be an intrinsic pseudo metric in the sense of [FLW]. For x0 ∈ X and

r ≥ 0, we define the distance ball Br = Br(x0) = {x ∈ X | ρ(x, x0) ≤ r}. Let the
exponential volume growth be defined as

µ = lim inf
r→∞

1

r
logm(Br(x0)).

Note that, in contrast to previous works on manifolds [Br], graphs [Fuj] and strongly
local forms [Stu], we consider a lim inf here, rather than a lim sup.

If ρ takes values in [0,∞), then X =
⋃

r Br(x0). In this case µ does not depend
on the particular choice of x0. There is another constant first introduced in [Stu]
which we call the minimal exponential volume growth and which is defined as

µ̃ = lim inf
r→∞

1

r
inf
x∈X

log
m(Br(x))

m(B1(x))
.

In this paper we prove the following theorem.

Theorem 1.1. Let L be the positive self adjoint operator arising from a regular
Dirichlet form E without killing term and let ρ be an intrinsic metric such that all
distance balls are compact. Then,

λ0(L) ≤
µ̃2

4
.

If additionally m(
⋃

r Br(x0)) = ∞ for some x0, then

λess
0 (L) ≤

µ2

4
.

This has the following immediate corollary. The corollary has various conse-
quences, for example, the exponential instability of the semigroup (e−tL)t≥0 on
Lp(X,m), p ∈ [1,∞], see [Stu, Corollary 2].

Corollary 1.2. Suppose that (X, d) is of subexponential growth, i.e., µ̃ = 0 (re-
spectively, µ = 0). Then, λ0(L) = 0 (respectively, λess

0 (L) = 0).

Remark 1. (a) Let us discuss Theorem 1.1 in the perspective of the present liter-
ature: For the Laplace Beltrami operator on a Riemannian manifolds an estimate
for λess

0 can be found in [Br], see also [Hi2]. In [Stu] the statement for λ0 is proven
for strongly local Dirichlet forms. For non-local operators such results were known
only for normalized Laplacians on graphs, see [DK, Fuj, Hi1, OU]. These operators
are of a very special form, in particular, they are always bounded. For unbounded
Laplacians on graphs the conclusions of the theorem do not hold if one considers
volume with respect to the natural graph metric, see [KLW]. However, by [FLW]
(see also [GHM]), there is now a suitable notion of intrinsic metric for non-local
forms. Let us stress that our result covers the results in [Br, DK, Fuj, OU, Stu].
The results of type [Hi1, Hi2] could certainly also be obtained with slightly more
technical effort which we avoid here for clarity of presentation.

(b) Despite the fact that our result is much more general, we have a unified
method of proof for the bounds on the spectrum and the essential spectrum. More-
over, for the essential spectrum, the proof is significantly simpler than the one of
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[Br, Fuj] as we use test functions that converge weakly to zero and, therefore, avoid
a cut-off procedure.

(c) Indeed, we prove a slightly more general result than above for non-local forms
in Section 3.2. In particular, for some special cases we prove much better estimates
and recover the results of [DK, Fuj, OU] in Corollary 4.3 in Section 4.1.

(d) If we assume that ρ takes values in [0,∞), then we can clearly replace the
assumption that m(

⋃
r Br(x0)) = ∞ with m(X) = ∞. The case when m(X) < ∞

is notably different, see [HKLW2] for more details.
(e) If infx∈X m(B1(x)) > 0, then one can also show that λess

0 (L) ≤ µ̃2/4.
(f) Our result deals exclusively with Dirichlet forms with vanishing killing term.

The major challenge in the case of non vanishing killing term is to give a proper
definition of volume which incorporates the killing term. We shortly discuss a
strategy of how one could approach this case: We need an positive generalized
harmonic function u, i.e., E(u, ϕ) = 0 for all ϕ ∈ D, where u is assumed to be locally
in the domain of E (this space is introduced in [FLW] as D∗

loc). Such a function
exists in many settings, see e.g. [DK, HK, LSV], and the result which guarantees
the existence of such a function is often referred to as a Allegretto-Piepenbrink type
theorem. Then, by a ground state representation, see Theorem 10.1 [FLW], one
obtains a form Eu with vanishing killing term such that E = Eu on the intersection
of their domains. Now, we can apply the methods above for Eu to derive the result
for E . However, as shown in [HK], there are examples of non-locally finite weighted
graphs that do not have such a generalized harmonic function. Therefore, it would
be interesting to find sufficient conditions under which the approach above can be
carried out.

Let us highlight one of the applications of our results for graphs. Let ∆ be the
graph Laplacian on ℓ2(X) acting as

∆ϕ(x) =
∑

y∼x

(ϕ(x) − ϕ(y))

(for more details, see Sections 4.1 and 4.2). Moreover, let Bd
r , for r ≥ 0, be balls

with respect to the natural graph distance d defined as the length of the shortest
path of edges between two vertices. It has to be stressed that this metric is not an
intrinsic metric for ∆. However, we will show in Theorem 4.4 that, if the growth of
the balls Bd

r is r3−ε for any ε > 0, then λ0(∆) = λess
0 (∆) = 0 and if it is less than

r3, then λess
0 (∆) < ∞. We demonstrate by examples that this result is sharp, see

Section 4.2.

The paper is structured as follows. In Section 2 we recall some basic facts about
Dirichlet forms and intrinsic metrics. Moreover, we give a bound on the bottom
of the essential spectrum via weak null sequences and introduce the test functions.
In Section 3 we prove the crucial estimate for the strongly local and the non-local
parts of the Dirichlet form and prove the main theorem. In Section 4 we discuss
the result for weighted graphs and prove the polynomial growth bound discussed
above.

Note added: After this work was completed we learned about the very recent
preprint of Matthew Folz “Volume growth and spectrum for general graph Lapla-
cians” which contains related material in the special case of graphs.
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2. Preliminaries

In this section we introduce the basic notions and concepts. The first subsection
is devoted to recalling the setting of Dirichlet forms. In the second subsection
we prove an estimate for the bottom of the essential spectrum and in the third
subsection we discuss the basic properties of the test functions that are used to
prove our result.

2.1. Dirichlet forms. In this section we recall some elementary facts about Dirich-
let forms, see e.g. [Fuk] and, for recent work on non-local forms, [FLW].

As above let X be a locally compact separable metric space and let m be a
positive Radon measure of full support. We consider all functions on X to be
real-valued, but, by complexifying the corresponding Hilbert spaces and forms,
we could also consider complex-valued functions. A closed non-negative form on
L2(X,m) consists of a dense subspace D ⊆ L2(X,m) and a sesqui-linear non-
negative map E : D × D → R such that D is complete with respect to the form
norm ‖ · ‖E =

√
E(·, ·) + ‖ · ‖2 where ‖ · ‖ always denotes the L2 norm. We write

E(u) := E(u, u) for u ∈ D.
A closed non-negative form (E , D) is called a Dirichlet form if for any u ∈ D and

any normal contraction c : R → R we have c◦u ∈ D and E(c◦u) ≤ E(u). Here, c is
a normal contraction if c(0) = 0 and |c(x)− c(y)| ≤ |x− y| for x, y ∈ R. A Dirichlet
form is called regular if D ∩Cc(X) is dense both in (D, ‖ · ‖E) and (Cc(X), ‖ · ‖∞)
where Cc(X) is the space of continuous compactly supported functions.

A function f : X → R is said to be quasi continuous if for every ε > 0 there is
an open set U ⊆ X with

cap(U) := inf{‖v‖E | v ∈ D, 1U ≤ v} ≤ ε,

such that f |X\U is continuous (where inf ∅ = ∞ and 1U is the characteristic function
of U). For a regular Dirichlet form (E , D) every u ∈ D admits a quasi continuous
representative, see [Fuk, Theorem 2.1.3]. In the following we assume that when
considering u as a function we always choose a quasi continuous representative.

There is a fundamental representation theorem for regular Dirichlet forms called
the Beurling-Deny formula, see [Fuk, Theorem 3.2.1.]. It states that there is a non-
negative Radon measure k on X , a non-negative Radon measure J on X ×X \ d
which is X × X without the diagonal d := {(x, x) | x ∈ X} and a positive semi-
definite bilinear form Γ(c) on D ×D with values in the signed Radon measures on
X which is strongly local, i.e., satisfies Γ(c)(u, v) = 0 if u is constant on the support
of v, such that

E(u) =

∫

X

dΓ(c)(u) +

∫

X×X\d

(u(x)− u(y))2dJ(x, y) +

∫

X

u(x)2dk(x),

where we choose a quasi continuous representative of u in the second and third
integral. The first term on the right hand side is called the strongly local part of
E , the second term is called the jump part and the third term is called the killing
term. The measure J gives rise to a Radon measure Γ(j) (where the j refers to
‘jump’) which is characterized by

∫

K

dΓ(j)(u) =

∫

K×X\d

(u(x)− u(y))2dJ(x, y)
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for K ⊆ X compact and u ∈ D. The focus of this paper is on regular Dirichlet
forms E without killing term, i.e., k ≡ 0. Thus, we denote

Γ = Γ(c) + Γ(j).

The space D∗
loc of functions locally in the domain of E was introduced in [FLW]

and is important for the definition of intrinsic metrics. It is defined as the set of
functions u ∈ L2

loc(X,m) such that for all open and relatively compact sets G there
is a function v ∈ D such that u and v agree on G and for all compact K ⊆ X

∫

K×X\d

(u(x)− u(y))2dJ(x, y) <∞.

We can extend Γ(c) and Γ(j) to D∗
loc, see [Fuk, Remarks after the proof of Theo-

rem 3.2.1.] and [FLW, Proposition 3.3].
For the strongly local part we have a chain rule (see [Fuk, Theorem 3.2.2.]) as

follows: for ϕ : R → R continuously differentiable with bounded derivative ϕ′,

Γ(c)(ϕ(u), v) = ϕ′(u)Γ(c)(u, v), u, v ∈ D∗
loc ∩ L

∞(X,m).

A pseudo metric is a map ρ : X ×X → [0,∞] which is symmetric, satisfies the
triangle inequality and ρ(x, x) = 0 for all x ∈ X . For A ⊆ X we define the map
ρA : X → [0,∞] by

ρA(x) = inf
y∈A

ρ(x, y).

If ρ is a pseudo metric and T > 0, then ρ ∧ T is a pseudo metric and we have that
(ρ ∧ T )A = ρA ∧ T and |ρA(x) ∧ T − ρA(y) ∧ T | ≤ ρ(x, y).

By [FLW, Definition 4.1.] a pseudo metric ρ is called an intrinsic metric for the
Dirichlet form E if there are Radon measures m(c) and m(j) with m(c) +m(j) ≤ m
such that for all A ⊆ X and all T > 0 the functions ρA ∧ T are in D∗

loc ∩C(X) and
satisfy

Γ(c)(ρA ∧ T ) ≤ m(c) and Γ(j)(ρA ∧ T ) ≤ m(j).

This implies that if A ⊆ X is such that ρA(x) < ∞ for all x ∈ X , then ρA ∈
D∗

loc ∩ C(X) and Γ(ρA) ≤ m. We assume that ρ is continuous with respect to the
original topology.

2.2. An estimate for the bottom of the essential spectrum. The following
Persson-type theorem seems to be standard in some settings, see [Per, Gri]. How-
ever, since we are not able to find a proper reference in the literature which covers
our case, we include a short proof.

Proposition 2.1. Let h be a closed quadratic form on L2(X,m) that is bounded
from below and let H be the corresponding self adjoint operator. Assume that there
is a normalized sequence (fn) in D(h) that converges weakly to zero. Then,

λess
0 (H) ≤ lim inf

n→∞
h(fn).

Proof. Without loss of generality assume that h ≥ 0 and that λess
0 (H) > 0. Let

0 < λ < λess
0 (H). We will show that there is an N ≥ 0 such that h(fn) > λ for

all n ≥ N . Let λ1 be such that λ < λ1 < λess
0 (H) and let ε > 0 be arbitrary.

Since D(H) is a core for D(h) there exist gn ∈ D(H) for all n ≥ 0 such that

‖fn − gn‖
2
h = h(fn − gn) + ‖fn − gn‖

2 ≤ ε and (gn) converges weakly to zero as
well. As λ1 < λess

0 (H), the spectral projection E(−∞,λ1] of H and the interval
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(−∞, λ1] is a finite rank operator. Therefore, as (gn) converges weakly to zero,

there is an N ≥ 0 such that
∥∥E(−∞,λ1]gn

∥∥2
< ε for n ≥ N . Letting νn be the

spectral measure of H with respect to gn, we estimate for n ≥ N

h(gn) ≥

∫ ∞

λ1

tdνn(t) ≥ λ1

∫ ∞

λ1

dνn(t) = λ1(‖gn‖
2 − ‖E(−∞,λ1]gn‖

2) > λ1(1− ε),

where we used λ1 ≥ 0 as h ≥ 0. Since h(fn) ≥ h(gn) − ε by the choice of gn, we
conclude the asserted inequality by choosing ε = (λ1 − λ)/(1 + λ1) > 0. �

2.3. The test functions. In this section we introduce the sequence of test func-
tions which we will use to estimate the bottom of the (essential) spectrum.

If µ = ∞ or µ̃ = ∞ the statements of our theorem become obvious, therefore,
from now on, we assume that µ, µ̃ <∞.

For r ∈ N, x0 ∈ X,α > 0, define

fr,x0,α : X → [0,∞), x 7→
(
(eαr ∧ eα(2r−ρ(x0,x)))− 1

)
∨ 0.

Then, for fixed r, α, x0, we have f |Br
≡ eαr − 1, f |B2r\Br

= eα(2r−ρ(x0,·)) − 1 and
f |X\B2r

≡ 0. Clearly, f is spherically homogeneous, i.e., there exists h : [0,∞) →
[0,∞) such that f(x) = h(ρ(x0, x)). The definition of f combines ideas from [Br],
[Fuj] and [Stu].

Moreover, for r ∈ N, x0 ∈ X,α > 0, let gr,x0,α : X → [0,∞), be given by

gr,x0,α = (fr,x0,α + 2)1B2r

Lemma 2.2. Let α > µ/2, x0 ∈ X and fr = fr,x0,α and gr = gr,x0,α for r ≥ 0.
Then,

(a) fr, gr ∈ L2(X,m) for all r ≥ 0.
(b) If m(

⋃
r Br) = ∞, then fr/‖fr‖ converges weakly to 0 as r → ∞.

(c) There is a sequence (rk) such that ‖grk‖/‖frk‖ → 1 as k → ∞.

If α > µ̃/2, then

(d) There are a sequences (xk) in X and (rk) such that fk = frk,xk,α, gk =
grk,xk,α ∈ L2(X,m) and we have that ‖gk‖/‖fk‖ → 1 as k → ∞.

Proof. (a) As µ < ∞ it follows that m(Br(x0)) < ∞ for all r ≥ 0. Therefore,
fr, gr ∈ L2(X,m) for all r ≥ 0 since fr, gr are supported in B2r and bounded.
(b) Let ψ ∈ L2(X,m) with ‖ψ‖ = 1, ε > 0 and set ϕ = ψ1⋃Br

. There exists R > 0

such that
∥∥ϕ1X\BR

∥∥ ≤ ε/2. Moreover, let r ≥ R be such that m(BR) ≤ ε2m(Br)/4
(this choice is possible since m(

⋃
Br) = ∞). We conclude by the Cauchy-Schwarz

inequality and ‖fr1BR
‖ ≤ ε

2‖fr‖ that

〈ϕ, fr〉 = 〈ϕ1BR
, fr〉+

〈
ϕ1X\BR

, fr
〉
≤ ‖ϕ‖ ‖fr1BR

‖+
∥∥ϕ1X\BR

∥∥ ‖fr‖ ≤ ε ‖fr‖ .

As supp fr ⊆
⋃

sBs, it follows that 〈ψ, fr〉 = 〈ϕ, fr〉 for r ≥ 0 which proves (b).
Before we prove (c) we show (d) and indicate how to adapt the proof to (c) after-
wards. Let 0 < ε < α − µ̃/2. By the definition of µ̃ there are sequences (rk) of
increasing positive numbers and (xk) of elements in X such that

m(B2rk(xk))

m(B1(xk))
≤ e(2µ̃+ε)rk , k ≥ 0.

We set fk = frk,xk,α, gk = grk,xk,α. As m(B2rk(xk)) < ∞ and the functions fk, gk
are supported in B2rk(xk) and bounded, they are in L2(X,m). By definition we
have gk = gk1B2rk

= (fk + 2)1B2rk
, k ≥ 0. Using the inequalities (a + b)2 ≤
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1
(1−ε)a

2 + 1
εb

2 and ‖fk‖2 ≥ m(Brk(xk))(e
αrk − 1)2 ≥ m(Brk(xk))e

2αrk/c for some

c > 0 we get

‖gk‖2

‖fk‖2
≤

(‖fk‖+ 2
√
m(B2rk(xk)))

2

‖fk‖2
≤

1
(1−ε)‖fk‖

2 + 4
εm(B2rk(xk))

‖fk‖2

≤
1

(1− ε)
+

4c

ε

m(B2rk(xk))

m(Brk(xk))
e−2αrk .

For rk large enough we have

m(Brk(xk))

m(B1(xk))
≥ inf

x∈X

m(Brk(x))

m(B1(x))
≥ e(µ̃−ε)rk .

Thus, by the choice of (rk) and (xk), we have
m(B2rk

)

m(Brk
) ≤ e(µ̃+2ε)rk . As 0 < ε <

α− µ̃/2

‖gk‖2

‖fk‖2
≤

1

(1− ε)
+

4c

ε
e(µ̃+2ε−2α)rk →

1

(1− ε)
as k → ∞.

Since ε can be chosen to be arbitrarily small and ‖gk‖ ≥ ‖fk‖ we deduce the
statement.
For (c) we choose (xk) to be x0 and follow the lines of the proof replacing µ̃ by
µ. �

Remark 2. If infx∈X m(B1(x)) > 0, then fk/‖fk‖ of (d) also converges weakly to
zero as k → ∞.

The following auxiliary estimates will later give us bounds for the Lipshitz con-
stants of fr,x,α.

Lemma 2.3. Let α > 0. For all R ≥ 0 one has
(
eαR − 1

)2

(e2αR + 1)
≤
α2R2

2
.

Moreover, for R ∈ [0, 1] one has

(
eαR − 1

)2

(e2αR + 1)
≤
R2(eα − 1)2

(R2e2α + 1)
.

Proof. For the first statement let s = αR and check via a series expansion that

s 7→ s2
(
e2s + 1

)
− 2(es − 1)

2
is non-negative. The second statement follows by

direct calculation since we have eαR − 1 ≤ R(eα − 1) for R ∈ [0, 1] and α > 0. �

Lemma 2.4. Let r ∈ N, x0 ∈ X, α > 0 and set f := fr,x0,α, g := gr,x0,α. Then,
for all x, y ∈ X

(f(x)− f(y))2 ≤ c(α)(g(x)2 + g(y)2)ρ(x, y)2

where c(α) = α2

2 . If additionally ρ(x, y) ≤ 1, then c(α) can be chosen to be

c(α, ρ(x, y)) = (eα−1)2

ρ(x,y)2e2α+1 . In particular, f is Lipshitz continuous with Lipshitz

constant α(eαr + 1).
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Proof. We fix r, α and x0 for the proof. Let x, y ∈ X be given and let s = ρ(x0, x)
and t = ρ(x0, y). We define Ds,t := (f(x)− f(y))2. Moreover, we use the estimate

on F (R) := (eαR−1)2

e2αR+1
, R ≥ 0, by c(α)R2 (and by c(α,R)R2 for R ≤ 1) from

Lemma 2.3. By symmetry we may assume, without loss of generality, that s ≤ t so
that we have six cases to check.
Case 1: If s ≤ t ≤ r, then Ds,t = 0.
Case 2: If s ≤ r ≤ t ≤ 2r, then since t − r ≤ t − s = ρ(x0, y) − ρ(x0, x) ≤ ρ(x, y)
and g(x) = eαr + 1, g(y) = eα(2r−t) + 1,

Ds,t = (eαr − eα(2r−t))2 = (e2αr + e2α(2r−t))F (t− r) ≤ (e2αr + e2α(2r−t))c(α)(t − r)2

≤ c(α)(g(x)2 + g(y)2)ρ(x, y)2.

Case 3: If s ≤ r ≤ 2r ≤ t, then since r ≤ t − s ≤ ρ(x, y), g(x) = eαr + 1 and
g(y) = 0,

Ds,t = (eαr − 1)2 = (e2αr + 1)F (r) ≤ (e2αr + 1)c(α)r2 ≤ 2c(α)(g(x)2 + g(y)2)ρ(x, y)2.

Case 4: If r ≤ s ≤ t ≤ 2r, then since t − s ≤ ρ(x, y) and g(x) = eα(2r−s) + 1,
g(y) = eα(2r−t) + 1,

Ds,t = (eα(2r−s) − eα(2r−t))2 = (e2α(2r−s) + e2α(2r−t))F (t− s)

≤ c(α)(g(x)2 + g(y)2)ρ(x, y)2.

Case 5: If r ≤ s ≤ 2r ≤ t, then since 2r − s ≤ t − s ≤ ρ(x, y), g(x) = eα(2r−s) + 1
and g(y) = 0,

Ds,t = (eα(2r−s) − 1)2 = (e2α(2r−s) + 1)F (2r − s) ≤ c(α)(g(x)2 + g(y)2)ρ(x, y)2.

Case 6: If 2r ≤ s ≤ t, then Ds,t = 0.
The Lipshitz bound follows since g is bounded by eαr + 1. �

Lemma 2.5. Let (E , D) be a regular Dirichlet form and ρ an intrinsic metric. For
all r > 0, x0 ∈ X and α > 0 we have f := fr,x0,α ∈ D∗

loc. Moreover, if B2r(x0) is
compact, then f ∈ D.

Proof. By Lemma 2.4 the functions f := fr,x0,α are Lipshitz continuous for all
r > 0, x0 and α > 0. Thus, by a Rademacher type theorem, see e.g. [Sto,
Theorem 5.1] for strongly local forms or [FLW, Theorem 4.8] for general Dirichlet
forms, we have f ∈ D∗

loc and Γ(f) ≤ m. If B2r(x0) is compact, then the function f
is compactly supported which implies that f ∈ D. �

3. Proof of the main theorem

3.1. The strongly local estimate. In this subsection we give an estimate which
will be used to prove the theorem for the strongly local part of the Dirichlet form.
For given r ∈ N, x0 ∈ X and α > 0 we denote f := fr,x0,α and g := gr,x0,α.

Lemma 3.1. Let ρ be an intrinsic metric for a regular strongly local Dirichlet form
E. Then, for all r > 0, x0 ∈ X and α > 0 such that f ∈ D we have

E(f) ≤ α2

∫

X

g2dm(c).
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Proof. As E is strongly local, we get by the chain rule and the fact that ρ is an
intrinsic metric that

E(f) =

∫

B2r\Br

dΓ(c)(f) =

∫

B2r\Br

dΓ(c)(eα(2r−ρ(x0,·)) − 1)

= α2

∫

B2r\Br

e2α(2r−ρ(x0,·))dΓ(c)(ρ(x0, ·))

≤ α2

∫

B2r\Br

e2α(2r−ρ(x0,·))dm(c) ≤ α2

∫

X

g2
r,x0,αdm

(c).

�

3.2. The non-local estimate. Next, we treat the non-local case. With applica-
tions to graphs in the next section in mind, we do not assume that the jump part
is a regular Dirichlet form for now.

For this subsection, let m be a Radon measure on X and let J be a symmetric
Radon measure on X × X \ d such that for every m-measurable A ⊆ X the set
A×X \ d is J measurable and vice versa. Let ρ be a pseudo metric on X which is
J measurable and assume that for all measurable A ⊆ X

∫

A×X\d

ρ(x, y)2dJ(x, y) ≤ m(A)(♣)

which immediately implies that for all measurable functions ϕ

∫

X×X\d

ϕ(x)2ρ(x, y)2dJ(x, y) ≤

∫

X

ϕ2dm.

We say that the pseudo metric ρ has jump size in [a, b], 0 ≤ a ≤ b, if for the set
Aa,b := {(x, y) ∈ X ×X | ρ(x, y) ∈ [a, b]} \ d

∫

X×X\d

ρ(x, y)2dJ(x, y) =

∫

Aa,b

ρ(x, y)2dJ(x, y).

For given r ∈ N, x0 ∈ X and α > 0 we denote f := fr,x0,α and g := gr,x0,α.

Lemma 3.2. Assume that ρ satisfies (♣). For all r ∈ N, x0 ∈ X and α > 0

∫

X×X\d

(f(x) − f(y))2dJ(x, y) ≤ 2c(α)

∫

X

g2dm,

where c(α) = α2

2 . If ρ has jump size in [δ, 1] for some 0 ≤ δ ≤ 1, then c(α) can be

chosen to be c(α, δ) = (eα−1)2

1+δ2e2α .

Proof. By Lemma 2.4 and since ρ satisfies (♣)

∫

X×X\d

(f(x) − f(y))2dJ(x, y) ≤ α2

∫

X×X\d

g(x)2ρ(x, y)2dJ(x, y) ≤ α2

∫

X

g2dm.
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Let δ > 0. If the jump size is in [δ, 1], then
∫

X×X\d

(f(x)− f(y))2dJ(x, y) =

∫

Aδ,1

(f(x) − f(y))2dJ(x, y)

≤

∫

Aδ,1

|g(x)|2
2(eα − 1)2

(1 + ρ(x, y)2e2α)
ρ(x, y)2dJ(x, y)

≤
2(eα − 1)2

(1 + δ2e2α)

∫

X×X\d

g(x)2ρ(x, y)2dJ(x, y)

≤
2(eα − 1)2

(1 + δ2e2α)

∫

X

g2dm.

�

3.3. Proof of Theorem 1.1. We now have all of the ingredients to prove our main
result.

Proof of Theorem 1.1. By [FLW, Lemma 4.7] an intrinsic metric satisfies (♣). More-
over, under the assumption that the distance balls are compact we have that
fr,x,α ∈ D for all r > 0, x ∈ X , α > 0 by Lemma 2.5.

By Lemma 2.2 (d) there are a sequences (xk) and rk such that for fk = frk,xk,α,
gk = grk,xk,α with α > µ̃/2

λ0(L) ≤ lim
k→∞

E(fk)

‖fk‖2
≤ α2 lim

k→∞

‖gk‖2

‖fk‖2
= α2,

where the second inequality follows from Lemmas 3.1 and 3.2 and the equality
follows from Lemma 2.2 (d). Hence, λ0(L) ≤ µ̃2/4. Let now (rk) be the sequence
given by Lemma 2.2 (c) for some fixed x0 ∈ X and let xk = x0 for all k ≥ 0. By
Lemma 2.2 (b) the sequence (fk/‖fk‖) converges weakly to zero and, therefore, we
get by Proposition 2.1 and Lemma 2.2 (c), that

λess
0 (L) ≤ lim

k→∞

E(fk)

‖fk‖2
≤ α2 lim

k→∞

‖gk‖2

‖fk‖2
= α2.

Therefore, λess
0 (L) ≤ µ2/4. �

3.4. A more general non-local estimate. Let L be the positive selfadjoint op-
erator associated to E .

Theorem 3.3. Assume that ρ satisfies (♣) and fr,x,α ∈ D for all r ≥ 0, x ∈ X
and α > µ̃/2. Then,

λ0(L) ≤
µ̃2

4
and λess

0 (L) ≤
µ2

4

if m(
⋃
Br(x0)) = ∞ for x0 used to define µ.

If the jump size is bounded in [δ, 1] for some 0 ≤ δ ≤ 1, then

λ0(L) ≤
2(eµ̃/2 − 1)2

δ2eµ̃ + 1
and λess

0 (L) ≤
2(eµ/2 − 1)2

δ2eµ + 1

if m(
⋃
Br(x0)) = ∞ for x0 used to define µ.

Proof. The proof follows analogously to the proof of the main theorem from Propo-
sition 2.1, Lemma 2.2 and Lemma 3.2. �
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4. Applications

4.1. Weighted graphs. In this section we derive consequences of Theorem 1.1
and Theorem 3.3 for graphs. We briefly introduce the setting and refer for more
background to [KL1].

Let X be a countable discrete set. Every Radon measure of full support on X
is given by a function m : X → (0,∞). Then, L2(X,m) is the space ℓ2(X,m) of

m-square summable functions with norm ‖u‖ = (
∑

x u(x)
2m(x))

1

2 , u ∈ ℓ2(X,m).
From [KL1, Theorem 7] it can be seen that all regular Dirichlet forms without
killing term are determined by a symmetric map b : X×X → [0,∞) with vanishing
diagonal that satisfies

∑

y∈X

b(x, y) <∞, for all x ∈ X,

which gives rise to a measure J on X ×X \ d by J = 1
2b. The one half stems from

the convention that in the form we consider each edge only once.
The map b can then be interpreted as a weighted graph with vertex set X .

Namely, the vertices x, y ∈ X are connected by an edge with weight b(x, y) if
b(x, y) > 0. In this case, we write x ∼ y. A graph is called connected if for all
x, y ∈ X there are vertices xi ∈ X such that x = x0 ∼ x1 ∼ . . . ∼ xn = y.

Let a map Ẽ : ℓ2(X,m) → [0,∞] be given by

Ẽ(u) =
1

2

∑

x,y∈X

b(x, y)(u(x) − u(y))2.

The regular Dirichlet form E associated to J is the restriction of Ẽ to Cc(X)
‖·‖E

.
Moreover, let

Emax = Ẽ |Dmax , Dmax = {u ∈ ℓ2(X,m) | Ẽ(u) <∞}

which is also a Dirichlet form. We denote the operator arising from E by L and the
operator arising from Emax by Lmax.

Let ρ be an intrinsic pseudo metric on X . In this context this is equivalent to
(♣) (see [FLW, Lemma 4.7, Theorem 7.3]) which reads as

1

2

∑

y∈X

b(x, y)ρ(x, y)2 ≤ m(x), x ∈ X.

For simplicity we restrict ourselves to the case when ρ takes values in [0,∞).
(Otherwise, we can easily consider the graph componentwise.)

Remark 3. Very often it is convenient to consider intrinsic metrics which satisfy∑
y∈X b(x, y)ρ(x, y)2 ≤ m(x) for all x ∈ X (i.e., we drop the 1

2 on the left hand

side). For example, in [Hu] an explicit example of such a metric ρ is given, for
x, y ∈ X , by

ρ(x, y) := inf{l(x0, . . . , xn) | n ≥ 1, x0 = x, xn = y, xi ∼ xi−1, i = 1, . . . , n}

where the length l is given by l(x0, . . . , xn) =
∑n

i=1 min{Deg(xi)
− 1

2 ,Deg(xi−1)
− 1

2 }
and Deg(z) =

∑
w b(z, w)/m(z) is a generalized vertex degree. In this case all

estimates in the theorem above can be divided by 2.
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In general, it is hard to determine whether distance balls with respect to a certain
metric are compact, which means finite in the original topology, in the situation
of graphs. However, we always have a statement for the operator Lmax related to
Emax.

Theorem 4.1. Assume that b is connected and m(X) = ∞. Then,

λ0(L
max) ≤

µ̃2

4
and λess

0 (Lmax) ≤
µ2

4
.

If ρ(x, y) ∈ [δ, 1] for all x ∼ y, then

λ0(L
max) ≤

2(eµ̃/2 − 1)2

δ2eµ̃ + 1
and λess

0 (Lmax) ≤
2(eµ/2 − 1)2

δ2eµ + 1
.

Remark 4. In this case where the assumption on the adapted metric above is posed
without the 1/2 on the left hand side, all estimates in the theorem above can be
divided by 2.

Proof. Let Brk(x0), (respectively Br̃k(xk)) be a sequence of distance balls that re-

alizes µ (respectively µ̃), i.e., µ = limk→∞ r−1
k logm(Brk(x0)) (respectively µ̃ =

limk→∞ r−1
k logm(Br̃k(xk))). If the measure of Brk(x0), (respectively Br̃k(xk)) is

infinite for some k, then µ = ∞ (respectively µ̃ = ∞) and we are done. Other-
wise, frk,x0,α, grk,x0,α ∈ ℓ2(X,m) (respectively fr̃k,xk,α, gr̃k,xk,α ∈ ℓ2(X,m)) and
frk,x0,α ∈ Dmax (respectively fr̃k,xk,α ∈ Dmax) by Lemma 3.2. Thus, the statement
follows directly from Theorem 3.3. �

In the case when we know more about the measure or the metric structure we can
say something about the operator L. This is the case under either of the following
additional assumptions:

(A) Every infinite path of vertices has infinite measure.
(B) ρ is any adapted path metric on a locally finite graph such that (X, ρ) is

metrically complete.

In particular, (A) is satisfied if infx∈X m(x) > 0 and (B) is satisfied if all infinite
geodesics have infinite length.

Corollary 4.2. Assume that either (A) or (B) is satisfied. Then, the statement of
Theorem 4.1 holds for L = Lmax.

Proof. By [KL1, Theorem 6], respectively [HKMW, Theorem 2], (A), respectively
(B), imply that E = Emax and L = Lmax. �

Remark 5. Under the slightly stronger assumption that connected infinite sets have
infinite measure we can prove the corollary directly. Namely, if one of the relevant
distance balls is infinite, then it has infinite measure and the exponential volume
growth is infinite. In the other case the corollary follows from Theorem 3.3.

We also recover the result of [Fuj] which already covers [DK, OU]. In their very
particular situation, m is the vertex degree and b takes values in {0, 1}. The natural
graph distance d is given as the minimum length of a path of edges connecting two
vertices where the length is the number of edges contained in the path.
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Corollary 4.3. (Normalized Laplacians) Let b be a connected weighted graph over
(X,n), with n(x) =

∑
y∈X b(x, y), x ∈ X and let d be the natural graph metric.

Then, λess
0 (L) ≤ 1− 2eµ̃/2/(1 + eµ̃) and λ0(L) ≤ 1− 2eµ/2/(1 + eµ).

Proof. Clearly, L is a bounded operator and thus L = Lmax. Moreover, the natural
graph metric is an intrinsic metric for 2L and its jump size in exactly 1. Thus, the
statement follows from the previous theorem. �

4.2. Unweighted graphs and the natural graph distance. Let b : X ×X →
{0, 1} and m ≡ 1. Then, the operator L becomes the graph Laplacian ∆ acting on
D(∆) = {ϕ ∈ ℓ2(X) | (x 7→

∑
y∼x(ϕ(x) − ϕ(y))) ∈ ℓ2(X)}, see [KL1, Woj1], as

∆ϕ(x) =
∑

y∼x

(ϕ(x) − ϕ(y)),

where x ∼ y means that b(x, y) = 1. By m ≡ 1 we have that m(A) = |A| for all
A ⊆ X . For simplicity we assume that the graph is connected.

Theorem 4.4. Let the d be the natural graph distance on an infinite graph and
Bd

r = {x ∈ X | d(x, x0) ≤ r} for some x0 ∈ X and r ≥ 0. If

lim inf
r→∞

log |Bd
r (x0)|

log r
< 3,

then, λ0(∆) = λess
0 (∆) = 0. Moreover, if

lim sup
r→∞

|Bd
r (x0)|

r3
<∞,

then λess
0 (∆) <∞ and, in particular, σess(∆) 6= ∅.

Remark 6. (a) The result above is sharp. This can be seen by the examples of
antitrees discussed below the proof.

(b) In [GHM, Theorem 1.4] it is shown that less than cubic growth implies
stochastic completeness.

(c) In the case where the vertex degree is bounded by some K, the situation is
very different: the n in Corollary 4.3 becomes deg in our situation, where deg :
X → N is the function assigning to a vertex the number of adjacent vertices,

and the corresponding normalized operator is ∆̃ acting on ℓ2(X, deg) as ∆̃ϕ(x) =
1

deg(x)

∑
y∼x(ϕ(x) − ϕ(y)). Then,

λ0(∆̃) ≤ λ0(∆) ≤ Kλ(∆̃) and λess
0 (∆̃) ≤ λess

0 (∆) ≤ Kλess(∆̃),

see, e.g., [Ke]. Thus, in the bounded situation, the threshold lies again at subexpo-
nential growth by Corollary 4.3 (as the measures m ≡ 1 and n = deg also give the
same exponential volume growth.) Explicit estimates for the exponential volume
growth of planar tessellations in terms of curvature can be found in [KP].

(d) In the case of bounded vertex degree we also have a threshold for recur-
rence of the corresponding random walk at quadratic volume growth, see [Woe,
Lemma 3.12].

Let ρ be the intrinsic metric from [Hu] introduced above in Remark 3 which, in
the case of unweighted graphs, is given by

ρ(x, y) = inf{
n−1∑

i=0

min{deg(xi)
− 1

2 , deg(xi+1)
− 1

2 } | (x0, . . . , xn) is a path from x to y}.
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Let Bρ
r = {x ∈ X | ρ(x, x0) ≤ r}, while Bd

r are the balls with respect to the natural
graph distance d.

The proof of the theorem is based on the following lemma which is inspired by
the proof of [GHM, Theorem 1.4]. Indeed, the second statement is taken directly
from there.

Lemma 4.5. If lim inf
r→∞

log |Bd
r |/log r = β ∈ [1, 3), then lim inf

r→∞
log |Bρ

r |/log r ≤
2β

3−β .

Moreover, if lim sup
r→∞

|Bd
r |/r

3 <∞, then lim sup
r→∞

1
r log |B

ρ
r | <∞.

Proof. Let Sd
r = Bd

r \B
d
r−1, r ≥ 0, and for convenience set Sd

−r = Bd
−r = ∅ for r > 0.

Let 1 ≤ α < 3 and (rk) be an increasing sequence such that log |Bd
rk(x0)|/log rk < α

for all k ≥ 0. Then,

|Bd
rk | =

rk∑

r=0

|Sd
r | < rαk

for large k ≥ 0. For ε > 0 and k ≥ 0 set

Ak := {r ∈ [0, rk] ∩ N0 | |Sd
r | >

α

εα
rα−1}.

We can estimate |Ak| ≤ εrk via

rαk > |Bd
rk | ≥

α

εα

∑

r∈Ak

rα−1 ≥
α

εα

|Ak|∑

r=0

rα−1 ≥
α

εα

∫ |Ak|

0

rα−1dr =
|Ak|

α

εα
.

Thus,

|{r ∈ [1, rk] ∩ N0 | max
i=0,1,2,3

|Sd
r−i| >

α

εα
rα−1}| ≤ 4εrk

and

|{r ∈ [1, rk] ∩ N0 | max
i=0,1,2,3

|Sd
r−i| ≤

α

εα
rα−1}| ≥ (1− 4ε)rk.

As we have deg ≤ |Sd
r−1 ∪ S

d
r ∪ Sd

r+1| on S
d
r , we get |Dk| ≥ (1− 4ε)rk, where

Dk := {(r + 1) ∈ [0, rk − 1] ∩ N0 | deg ≤
3α

εα
rα−1 on Sd

r−1 ∪ S
d
r }.

Hence, for (r + 1) ∈ Dk we have for x ∈ Sd
r−1, y ∈ Sd

r

ρ(x, y) ≥ cr−
α−1

2 , with c =
√
εα/3α.

Since any path from x0 to Sd
rk

contains such edges we have for any x ∈ Sd
rk

ρ(x0, x) ≥ c
∑

(r+1)∈Dk

r−
α−1

2 ≥ c

rk−1∑

r=4εrk

r−
α−1

2 ≥ c

∫ rk−1

4εrk

r−
α−1

2 dr ≥ C0r
3−α

2

k

with C0 > 0 for ε > 0 chosen sufficiently small and rk large. Let Rk := C0r
3−α

2

k and

C := C
− 2α

3−α

0 . Then, Bρ
Rk

⊆ Bd
rk and since |Bd

rk | =
∑rk

r=0 |S
d
r | < rαk , we conclude

|Bρ
Rk

| ≤ |Bd
rk
| < rαk ≤ CR

2α
3−α

k .

Thus, the first statement follows. The second statement is shown in the proof of
[GHM, Theorem 1.4]. �
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Proof of Theorem 4.4. In the case where the polynomial growth is strictly less than
cubic we get by the lemma above that µ = 0 with respect to the intrinsic metric ρ
and in the case where it is less than cubic we still have µ <∞. Thus, the statement
follows from Corollary 4.2, where (A) is clearly satisfied as m ≡ 1. �

Let us discuss the example of antitrees which show the sharpness of the result.
They were first introduced in [Woj3] and further studied in [BK, KLW].

Example. An antitree is a spherically symmetric graph, where a vertex in the r-th
sphere is connected to all vertices in the (r + 1)-th sphere for r ≥ 0, and there are
no horizontal edges. Thus, an antitree is characterized by a sequence (sr) taking
values in N which encodes the number of vertices in the sphere Sd

r = Bd
r \Bd

r−1.
Stronger growth than cubic: In [KLW, Corollary 6.6] it is shown that if the

polynomial volume growth of an antitree is more than cubic, i.e., as r3+ε for ε > 0,
then λ0(∆) > 0 and σess(∆) = ∅. Indeed, in the intrinsic metric ρ, these antitrees
have finite diameter and thus µ = ∞, see [Hu].

Cubic growth: If the distance spheres of an antitree satisfy |Sd
r | = (r+ 1)2, then

|Bd
r | ∼ (r+1)3. Moreover, the function which takes the value r−2 on vertices of the

(r−1)-th sphere, r ≥ 1, is a positive generalized super-solution for ∆ to the value 2,
that is, ∆ϕ ≥ 2ϕ. Thus, by a discrete Allegretto-Piepenbrink theorem (see [Woj2,
Theorem 4.1] or [HK, Theorem 3.1]) it follows that λ0(∆) ≥ 2. By Theorem 4.4 we
thus have 2 ≤ λess

0 (∆) <∞.
Weaker growth than cubic: In this case Theorem 4.4 shows that λ0(∆) =

λess
0 (∆) = 0.
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