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SIMILARITY OF OPERATORS IN THE BERGMAN SPACE

SETTING

RONALD G. DOUGLAS, HYUN-KYOUNG KWON, AND SERGEI TREIL

Abstract. We give a necessary and sufficient condition for an n- hy-
percontraction to be similar to the backward shift operator in a weighted
Bergman space. This characterization serves as a generalization of the
description given in the Hardy space setting, where the geometry of the
eigenvector bundles of the operators is used.
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Notation

:= equal by definition;

C the complex plane;

D the unit disk, D := {z ∈ C : |z| < 1};

T the unit circle, T := ∂D = {z ∈ C : |z| = 1};
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2 DOUGLAS, KWON, AND TREIL

∂
∂z
, ∂
∂z

∂ and ∂ derivatives: ∂
∂z

:= ( ∂
∂x

− i ∂
∂y
)/2, ∂

∂z
:= ( ∂

∂x
+ i ∂

∂y
)/2;

∆ normalized Laplacian, ∆ := ∂∂ = ∂∂ = 1
4

(
∂2

∂x2 + ∂2

∂y2

)
;

S2 Hilbert-Schmidt class of operators;

‖ · ‖, · norm: since we are dealing with matrix- and operator-valued
functions, we will use the symbol ‖ . ‖ (usually with a subscript)
for the norm in a function space, while . is used for the norm
in the underlying vector (operator) space. Thus, for a vector-
valued function f the symbol ‖f‖2 denotes its L

2-norm, but the
symbol f stands for the scalar-valued function whose value
at a point z is the norm of the vector f(z);

H∞ the space of all functions bounded and analytic in D;

L∞
E∗

→E class of bounded functions on the unit circle T whose values
are bounded operators from a Hilbert space E∗ to another one
E (the spaces E and E∗ are not supposed to be related in any
way);

H∞
E∗

→E operator Hardy class of bounded analytic functions whose val-
ues are bounded operators from E∗ to E:

‖F‖∞ := sup
z∈D

F (z) = esssup
ξ∈T

F (ξ) ;

TΦ Toeplitz operator with symbol Φ.

All Hilbert spaces are assumed to be separable. We also assume that in a
Hilbert space, an orthonormal basis is fixed so that any operator A : E → E∗

can be identified with its matrix. Thus, besides the usual involution A 7→ A∗

(A∗ is the adjoint of A), we have two more: A 7→ AT (transpose of the
matrix) and A 7→ A (complex conjugation of the matrix), so A∗ = (A)T =

AT . Although everything in the paper can be presented in an invariant,
“coordinate-free” form, the use of the transposition and complex conjugation
makes the notation simpler and more transparent.

0. Introduction

We consider the question of when operators with a complete analytic
family of eigenvectors are similar. Recall that operators T1 and T2 are said
to be similar if there exists a bounded, invertible operator A satisfying the
intertwining relation AT1 = T2A.

The problem of determining when two such operators are unitarily equiv-
alent goes back to the 1970’s when the Cowen-Douglas class was introduced
in [4]. It is proven there that unitary equivalence has to do with the curva-
tures of the eigenvector bundles of the operators and the partial derivatives
of them up to a certain order matching up. Unlike the unitary equivalence
case, however, the similarity problem posed a more complicated situation
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(only some necessary conditions are listed in [4]) and no such criterion was
obtained.

By adding the assumption that the operators in consideration be con-
tractive (‖T‖ ≤ 1), the authors in [8] dealt with a special case of the prob-
lem; they gave a description of operators with a complete analytic family
of eigenvectors that are similar to S∗, the backward shift operator on the
Hardy space H2 (both scalar- and vector-valued) of the unit disk D. The
backward shift S∗ is defined to be the adjoint of the forward shift S,

Sf(z) = zf(z),

for f ∈ H2, and similarity is shown to be equivalent to the existence of a
bounded (subharmonic) solution ϕ defined on D to the Poisson equation

∆ϕ = g,

where g is a function related to the curvatures of the eigenvector bundles of
the operators.

One can ask whether the above characterization also holds for the back-
ward shift operators B∗

α defined on the weighted Bergman spaces A2
α (again,

both scalar- and vector-valued) of D. If we let Pα denote the Bergman
projection and let TΦ be the Toeplitz operator with symbol Φ given by

TΦf = Pα(Φf),

then it is easily seen that our backward shifts can be represented for f ∈ A2
α

as

B∗
αf(z) = Pα(z̄f(z)) = Tz̄f(z),

just like in the Hardy space case where the Bergman projections are replaced
by the Szegö projection. We show in this paper that the function-theoretic
proof provided in [8] for S∗ on H2 can be applied to B∗

α on A2
α, giving a

generalization of the results there. Finally we mention the recent paper [5],
where the authors use a Hilbert module approach to prove that the similarity
to the backward shift operator on certain reproducing kernel Hilbert spaces
can be reduced to the similarity to S∗ on H2.

1. Preliminaries

Let n be a positive integer. Following the notation of [2], we denote by
Mn the Hilbert space of analytic functions on the unit disk D satisfying

‖f‖2n :=
∞∑

i=0

|f̂(i)|2
1(

n+i−1
i

) < ∞,

for Mn ∋ f =
∑∞

i=0 f̂(i)z
i. Note that Mn corresponds to the Hardy space

H2 for n = 1, and for each positive integer n ≥ 2, to the weighted Bergman
space A2

n−2 defined by

A2
n−2 = {f ∈ Hol(D) : (n− 1)

∫

D

|f(z)|2(1− |z|2)n−2dA(z) < ∞},
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for dA the normalized area measure on D. We can define the vector-valued
spaces Mn,E taking values in a separable Hilbert space E in a similar way.

On the space Mn,E are the forward shift operator Sn,E, Sn,Ef(z) = zf(z)
and the backward shift operator S∗

n,E, its adjoint. SinceMn is a reproducing

kernel Hilbert space with reproducing kernel knλ := (1 − λ̄z)−n, λ ∈ D, the
eigenvectors of S∗

n,E corresponding to the eigenvalue λ is kn
λ̄
e for e ∈ E.

We now come to the definition of an n-hypercontraction introduced in
[1] and [2]. Let H be a Hilbert space. An operator T ∈ L(H) is called an
n-hypercontraction if

k∑

i=0

(−1)i
(
k

i

)
T ∗iT i ≥ 0,

for all 1 ≤ k ≤ n. Note that the 1-hypercontraction case corresponds to the
definition of the usual contraction.

Lastly, we recall the definition of a Carleson measure. Let

Q(I) := {z ∈ T :
z

|z|
∈ I, 1 − |z| ≤ |I|},

for I ⊆ T, an arc of length |I|. A complex measure µ in the closed unit disk
is called a Carleson measure if for some constant C,

|µ|Q(I) ≤ C|I|,

where |µ| denotes the variation of µ [9].

2. Main results

Let n be a positive integer andH a Hilbert space. We assume the following
for the operator T ∈ L(H) that we consider:

(1) T is an n−hypercontraction;
(2) span{ker(T − λ) : λ ∈ D} = H; and
(3) ker(T − λ) depend analytically on the spectral parameter λ ∈ D.

Assumption (3) says that for each λ ∈ D, a neighborhood Uλ of λ and an
operator-valued analytic function Fλ defined on Uλ that is left-invertible in
L∞ satisfying

ran Fλ(w) = ker(T − w),

for all w ∈ Uλ exist. Therefore, the disjoint union
∐

λ∈D ker(T − λ) =
{(λ, vλ) : λ ∈ D, vλ ∈ ker(T − λ)} is a hermitian, holomorphic vector bundle
over D with the metric inherited from H and the natural projection π,
π(λ, vλ) = λ. Note that assumption (3) then implies that dimker(T − λ)
is constant for all λ ∈ D. According to [4], the operators that belong to
the Cowen-Douglas class Bm(D), or more generally those with a certain
Fredholm condition, for instance, satisfy assumption (3).

We next mention that a bundle map is a holomorphic map between two
holomorphic vector bundles over D that linearly maps each fiber π−1(λ) of
one bundle to the corresponding fiber of the other bundle.

Now we state the main results of the paper:
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Theorem 2.1. Let T ∈ L(H) satisfy the above 3 assumptions with dimker(T−
λ) = m < ∞ for every λ ∈ D. Denote by Π : D → L(H) the projection-
valued function that assigns to each λ ∈ D, the orthogonal projection onto
ker(T − λ). The following statements are equivalent:

(1) T is similar to the backward shift operator S∗
n,Cm on Mn,Cm via an

invertible operator A : Mn,Cm → H;
(2) There exists a holomorphic bundle map bijection Ψ from the eigen-

vector bundle of S∗
n,Cm to that of T such that for some constant

c > 0,

1

c
‖vλ‖Mn,Cm

≤ ‖Ψ(vλ)‖H ≤ c‖vλ‖Mn,Cm
,

for all vλ ∈ ker(S∗
n,Cm − λ) and for all λ ∈ D;

(3) There exists a bounded solution ϕ defined on D to the Poisson equa-
tion

∆ϕ(z) =


∂Π(z)

∂z



2

S2

−
mn

(1− |z|2)2
.

Corollary 2.2. A contraction T that satisfies assumptions (2), (3), and

n∑

i=0

(−1)i
(
n

i

)
T ∗iT i ≥ 0,

enjoys the similarity characterization given in Theorem 2.1.

Corollary 2.3. A subnormal contraction that satisfies assumptions (2) and
(3) enjoys the similarity characterization given in Theorem 2.1.

Remark 2.4. Note that the function Π is C∞ and even real analytic in the

operator norm topology, so it does make sense to consider ∂Π(z)
∂z

.

Remark 2.5. Since
∂Π(z)

∂z


2

S2

− mn
(1−|z|2)2

≥ 0 (see Section 3), ϕ is actually

subharmonic.

Remark 2.6. For m = 1, −
∂Π(z)

∂z


2

S2

and − n
(1−|z|2)2

represent the curva-

tures of the eigenvector bundles of T and of S∗
n,C, respectively ([4], [7]).

Remark 2.7. The existence of a bounded subharmonic function ϕ defined
on D satisfying

∆ϕ(z) ≥


∂Π(z)

∂z



2

S2

−
mn

(1− |z|2)2

is equivalent to the uniform boundedness of the Green potential

G(λ) :=
2

π

∫∫

D

log

∣∣∣∣
z − λ

1− λz

∣∣∣∣

(
∂Π(z)

∂z



2

S2

−
mn

(1− |z|2)2

)
dxdy

inside the unit disk D.
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In order to prove Theorem 2.1, we first need to obtain a tensor product
structure for the operator T . Then since the equivalence of statements (1)
and (2) of Theorem 2.1 is obvious, and (3) follows from the two statements

(4) The measure
(

∂Π(z)

∂z



2

S2

−
mn

(1− |z|2)2

)
(1− |z|)dxdy

is Carleson; and
(5) We have the estimate

(
∂Π(z)

∂z


2

S2

−
mn

(1− |z|2)2

) 1

2

≤
C

1− |z|
,

it suffices to show that (2) implies both (4) and (5) (Section 4) and that (3)
implies (1) (Section 5).

3. Tensor structure of the eigenvector bundle

3.1. Structure of the eigenvector bundle of T . The following theorem
by J. Agler ([2]) proven through the Rovnyak-de Branges construction is
the first step to obtaining a tensor product representation of the eigenvector
bundle of T . The reader is advised to consult [1] also for an alternative proof
of the theorem based on complete positivity:

Theorem 3.1. Let T ∈ L(H). There exists a Hilbert space E and an S∗
n,E-

invariant subspace N ⊆ Mn,E such that T is unitarily equivalent to S∗
n,E|N

if and only if T is an n-hypercontraction with limk ‖T
kh‖ = 0 for all h ∈ H.

Let us first observe that limk ‖T
kh‖ = 0 for h ∈ H that is a linear

combination of the eigenvectors of T . According to assumption (2), these
linear combinations form a dense subspace of H. Moreover, since an n-
hypercontraction is automatically a contraction, we have ‖T k‖ ≤ 1. We
can thus employ a standard argument to show that limk ‖T

kh‖ = 0 for all
h ∈ H.

Hence, the eigenspaces of T = S∗
n,E|N are given by

ker(T − λ) = {kn
λ
e : e ∈ N (λ)},

where knλ = (1 − λ̄z)−n, λ ∈ D, is the reproducing kernel for Mn and
N (λ) := {e ∈ E; kn

λ̄
e ∈ N}. Note that by assumption (3), the subspaces

N (λ) also depend analytically on the spectral parameter λ, i.e., the family
of subspaces N (λ) is a holomorphic vector bundle over D.

Now, since the vector-valued Hilbert space Mn,E can be identified with
Mn⊗E, the tensor product of the Hilbert spaces Mn and E, the eigenvector
bundle of T takes on the form

ker(T − λ) = span{kn
λ
} ⊗ N (λ).
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3.2. Calculation involving the eigenvector bundle of T . Recall that
Π(λ) stands for the orthogonal projection onto ker(T −λ). Using the tensor
structure given above, we can express Π(λ) as

(3.1) Π(λ) = Π1(λ)⊗Π2(λ),

where Π1(λ) is the orthogonal projection from the space Mn onto span{kn
λ̄
},

and Π2(λ) is the orthogonal projection from E onto N (λ). We remark that
rankΠ(λ) = rankΠ2(λ) = m.

Lemma 3.2. For λ ∈ D, let Γ(λ) be orthogonal projections onto an analytic
family of subspaces (holomorphic vector bundle). Then the identities

Γ(z)
∂Γ(z)

∂z
= 0

and

(I − Γ(z))
∂Γ(z)

∂z
Γ(z) =

∂Γ(z)

∂z
hold.

Proof of Lemma 3.2. Since the family of subspaces is a holomorphic vector
bundle, it can be locally expressed as ranF (λ), where F is an analytic, left-
invertible operator-valued function. Thus, Γ = F (F ∗F )−1F ∗. We obtain
through direct computation that

∂Γ(z)

∂z
= (I − Γ(z))F ′(z)(F (z)∗F (z))−1F (z)∗.

Since Γ(z) is a projection, we immediately arrive at the first identity. For

the second one, we note that Γ(z)F (z) = F (z) implies ∂Γ(z)
∂z

Γ(z) = ∂Γ(z)
∂z

.
We then invoke the first identity. �

Lemma 3.3. The projection Π1(λ) satisfies the identity


∂Π1(z)

∂z


2

S2

= n(1− |z|2)−2.

Proof of Lemma 3.3. We first use the reproducing kernel property of knλ =
1/(1 − λ̄z)n to see that ‖knλ‖

2
2 = 〈knλ , k

n
λ〉 = (1− |λ|2)−n. Thus

Π1(λ)f = ‖kn
λ̄
‖−2
2 〈f, kn

λ̄
〉kn

λ̄
= (1− |λ|2)nf(λ̄)kn

λ̄
,

for f ∈ Mn. We next use the fact that ∂f(λ̄)
∂λ

= 0 and ∂
∂λ

kn
λ̄
(z) = nz

(1−λz)n+1 =:

k̃n
λ̄
(z) to get

(3.2)
∂Π1(λ)

∂λ
f = (1− |λ|2)n−1f(λ̄)

(
−nλ̄kn

λ̄
+ (1− |λ|2)k̃n

λ̄

)
.

Since 〈f, k̃nλ〉 = f ′(λ) for f ∈ Mn,

‖k̃nλ‖
2
2 =

n(1 + n|λ|2)

(1− |λ|2)n+2
= ‖k̃n

λ̄
‖22.
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Once again, the reproducing property of knλ implies that

〈k̃n
λ̄
, kn

λ̄
〉 =

nλ̄

(1− |λ|2)n+1
.

Taking all these calculations into account, we conclude that

‖ − nλ̄kn
λ̄
+ (1− |λ|2)k̃n

λ̄
‖22 = n(1− |λ|2)−n.

Thus,


∂Π1(λ)

∂λ



2

= n(1− |λ|2)−2,

and we note from (3.2) that

rank
∂Π1(λ)

∂λ
= 1.

Therefore,


∂Π1(λ)

∂λ



2

S2

=


∂Π1(λ)

∂λ



2

= n(1− |λ|2)−2.

�

Lemma 3.4. The projection Π(λ) satisfies the identity


∂Π(z)

∂z


2

S2

= m


∂Π1(z)

∂z


2

S2

+


∂Π2(z)

∂z


2

S2

=
mn

(1− |z|2)2
+


∂Π2(z)

∂z



2

S2

.

Proof of Lemma 3.4. We apply the product rule to (3.1) to obtain

∂Π(λ)

∂λ
=

∂Π1(λ)

∂λ
⊗Π2(λ) + Π1(λ)⊗

∂Π2(λ)

∂λ
=: X + Y.

Since Π2(λ)
∂Π2(λ)

∂λ
= 0 by Lemma 3.2, X∗Y = 0. Therefore,

X + Y
2

S2
= trX∗X + trY ∗Y + 2Re tr(X∗Y ) =

X
2

S2
+
Y

2
S2

.

Using the fact that
A⊗B

2
S2

=
A

2
S2

B
2

S2
and that

P
2

S2
=

rankP for an orthogonal projection P , we get


∂Π(λ)

∂λ



2

S2

= m


∂Π1(λ)

∂λ



2

S2

+


∂Π2(λ)

∂λ



2

S2

.

The result now follows from Lemma 3.3. �
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4. Proof of “(2) implies (3)”

Let us mention again that statements (4) and (5) of Section 2 together
imply statement (3) of Theorem 2.1. Moreover, since we have by Lemma
3.4 

∂Π2(λ)

∂λ



2

S2

=


∂Π(λ)

∂λ



2

S2

−
mn

(1− |λ|2)2
,

the quantity
∂Π(λ)

∂λ


2

S2

− mn
(1−|λ|2)2

in statements (4) and (5) can be replaced

by
∂Π2(λ)

∂λ


2

S2

.

Assume that statement (2) of Theorem 2.1 holds to guarantee the ex-
istence of a holomorphic bundle map bijection Ψ with a certain property
between the eigenvector bundles. Then for all e ∈ C

m,

Ψ(kn
λ̄
e) = kn

λ̄
· F (λ)e,

where F is some function in H∞
Cm→E satisfying ranF (λ) = N (λ) and c−1I ≤

F ∗F ≤ cI. Thus it makes sense to consider (F ∗F )−1 and we can express
the orthogonal projection Π2(λ) from E onto N (λ) in terms of F as

Π2 = F (F ∗F )−1F ∗.

Since ∂Π2(z)
∂z

= (I −Π2(z))F
′(z)(F (z)∗F (z))−1F (z)∗, we get

(4.1)


∂Π2(z)

∂z

 ≤ C F ′(z) .

Lastly, we note that since F is a bounded analytic function taking values
in a Hilbert space, the estimate

(4.2) F ′(z) ≤ C/(1 − |z|)

holds, and the measure

(4.3) F ′(z) 2(1− |z|)dxdy

is Carleson. The first estimate (4.2) is well-known for scalar-valued analytic
functions, and one can pick x∗ = x∗(z), x∗ = 1 in the dual space X∗ such
that 〈F ′(z), x∗〉 = F ′(z) to show that it holds for functions with values in
a Banach space X. To see that the Carleson measure condition (4.3) holds,
we use Uchiyama’s Lemma which states that for a bounded subharmonic
function u, the measure ∆u(z)(1 − |z|)dxdy is Carleson. We apply this
Lemma to the function u(z) = F (z) 2 and note that ∆ F (z) 2 = F ′(z) 2.
By (4.1), (4.2), and (4.3), we get the existence of a bounded subharmonic
function ϕ on D with

∆ϕ(z) ≥


∂Π2(z)

∂z


2

S2

.
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To obtain equality, we note that the equation ∆u(z) = f(z) always has a
solution, namely, the Green potential

Gf (λ) :=
2

π

∫∫

D

log

∣∣∣∣
z − λ

1− λz

∣∣∣∣ f(z)dxdy.

But since

G∆ϕ ≤ G









∂Π2
∂z











2

S2

≤ 0,

and G∆ϕ is bounded, the subharmonic solution G









∂Π2
∂z











2

S2

to

∆u(z) =


∂Π2(z)

∂z



2

S2

is bounded as well.

5. Proof of “(3) implies (1)”

The goal of this section is to prove the existence of a bounded, invertible
operator A : Mn,Cm → N such that AS∗

n,Cm = (S∗
n,E|N )A. We first consider

the following theorem that will let us get a bounded, analytic projection onto
ranN (z) for z ∈ D [11].

Theorem 5.1. Let Γ : D → L(H) be a C2 function whose values are orthog-

onal projections in H. Assume that Γ satisfies the identity Γ(z)∂Γ(z)
∂z

= 0
for all z ∈ D. Given a bounded, subharmonic function ϕ with

∆ϕ(z) ≥


∂Γ(z)

∂z


2

for all z ∈ D,

there exists a bounded analytic projection onto Γ(z), i.e., a function P ∈
H∞

H→H such that P(z) is a projection onto ran Γ(z) for all z ∈ D.

We know from Lemma 3.2 that the function Π2 whose values are orthog-

onal projections from E onto N (λ) satisfies the identity Π2(z)
∂Π2(z)

∂z
= 0

so that the above theorem is applicable. We thus get a bounded, analytic
projection P(z) onto ranΠ2(z) = N (z), and consider the inner-outer fac-
torization P = PiPo of P, where Pi ∈ H∞

E∗
→E for some Hilbert space E∗, is

an inner function and Po ∈ H∞
E→E∗

is an outer function. We then define a
function Qi on D by

Qi(z) := Pi(z̄),

and form the anti-analytic Toeplitz operator TQi
.

We claim that this bounded Toeplitz operator TQi
is an invertible operator

that establishes similarity. To this end, we need to prove the following three
statements:

(1) Tz̄TQi
= TQi

Tz̄;
(2) TQi

is left-invertible; and
(3) ranTQi

= N .
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We begin by recalling some well-known facts about Toeplitz operators on
the vector-valued spaces Mn. Let F,G ∈ H∞

E→E∗

:

(5.1) TFG = TFTG; and

(5.2) TF ∗knλe = knλF
∗(λ)e for e ∈ E∗.

Since Q∗
i ∈ H∞

E→E∗

, statement (1) easily follows from (5.1). To prove (2),
we consider the following Lemma.

Lemma 5.2. Po(z)Pi(z) ≡ I for all z ∈ D.

Proof of Lemma 5.2. By (5.1), we have that

TPi
TPo = TP = TP2 = TPiPoPiPo

= TPi
TPoPi

TPo .

Since TPo has dense range and ker TPi
= {0}, TPoPi

= I, so PoPi ≡ I for all
z ∈ D. �

We then note that since Q∗
o ∈ H∞

E∗→E, where Qo(z) := Po(z̄), we can
once again use (5.1) to conclude that

TQoTQi
= TQoQi

= I.

It now remains to show statement (3). The inclusion N (λ) = ranP(λ) ⊂
ranPi(λ) is obvious due to the factorization P = PiPo. For the other in-
clusion, since ranPo(λ) is dense in E∗ for all λ ∈ D , and Pi(λ) ranPo(λ) =
N (λ), ranPi(λ) ⊂ N (λ). Thus,

(5.3) ranPi(λ) = N (λ).

We next observe that by (5.2),

(5.4) TQik
n
λ̄
e = kn

λ̄
Qi(λ̄)e = kn

λ̄
Pi(λ)e,

for all e ∈ E∗. Then (3) follows from (5.4), the fact that span{knλ : λ ∈ D} =
Mn, and assumption (2) that span{ker(T − λ) : λ ∈ D} = H. �

6. Proof of corollaries

Now we prove the corollaries of Theorem 2.1 that appeared in Section 2.
The statements used in these proofs are contained in [2].

Proof of Corollary 2.2. We have limk ‖T
kh‖ = 0 for h ∈ H that is a linear

combination of the eigenvectors of T , which by assumption (2) is dense in
H. If T is a contraction, then ‖T k‖ ≤ 1, so that limk ‖T

kh‖ = 0 for all
h ∈ H. Now we use the result that an operator T ∈ L(H) with

n∑

i=0

(−1)i
(
n

i

)
T ∗iT i ≥ 0,

and such that limk ‖T
kh‖ = 0 for all h ∈ H is an n-hypercontraction. �

Proof of Corollary 2.3. An operator T is an n-hypercontraction for every n
if and only if ‖T‖ ≤ 1 and T is subnormal [6]. �
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