
ar
X

iv
:1

20
6.

15
56

v2
  [

m
at

h.
R

T
] 

 5
 J

ul
 2

01
2

CATEGORIES OF MODULES FOR ELEMENTARY ABELIAN p-GROUPS
AND GENERALIZED BEILINSON ALGEBRAS

JULIA WORCH

Abstract. In this paper, we approach the study of modules of constant Jordan type and
equal images modules over elementary abelian p-groups Er of rank r ≥ 2 by exploiting
a functor from the module category of a generalized Beilinson algebra B(n, r), n ≤ p, to
modEr.
We define analogs of the above mentioned properties in modB(n, r) and give a homologi-
cal characterization of the resulting subcategories via a P

r−1-family of B(n, r)-modules of
projective dimension one. This enables us to apply general methods from Auslander-Reiten
theory and thereby arrive at results that, in particular, contrast the findings for equal im-
ages modules of Loewy length two over E2 [6] with the case r > 2. Moreover, we give a
generalization of the W -modules defined by Carlson, Friedlander and Suslin in [6].

Introduction

Addressing representations of finite group schemes over fields of positive characteristic, Carl-
son, Friedlander and Pevtsova have introduced in [5] the category of modules of constant
Jordan type. Their approach involves the theory of π-points, i.e. certain embeddings
α : k[T ]/(T p) → kG along which representations of kG can be restricted to the less compli-
cated subalgebra kZp

∼= k[T ]/(T p). The representations of k[T ]/(T p) are completely under-
stood in terms of Jordan types, i.e. Jordan block decompositions. Since kG is wild in most
cases, it is reasonable to study representations with additional properties. A kG-module
has constant Jordan type if its Jordan block decomposition does not depend on the chosen
π-point. There is the related notion of the constant j-rank property such that a module has
constant Jordan type iff it has constant j-rank for all j ≥ 1 (cf. [9, p. 11]).

Confining investigations to elementary abelian p-groups Er = (Zp)
×r of rank r ≥ 2, a more

restrictive condition has been formulated in [6] by Carlson, Friedlander and Suslin, where
M ∈ mod kEr satisfies the so-called equal images property if there exists a k-space V such
that α(t).M = V for all π-points α. The dual concept is referred to as the equal kernels prop-
erty. In [6], the authors are mainly concerned with the case r = 2 and they introduce a family
of kE2-modules, the so-called W -modules, which satisfy the equal images property and are
ubiquitous in a sense that every module satisfying the equal images property is a quotient of
a W -module [6, 4.4]. This relies on the fact that the indecomposable equal images modules of
Loewy length two over kE2 are W -modules [6, 4.1]. It has been observed that these modules
correspond to the preinjective modules over the Kronecker algebra (cf. [8, 4.2.2]).

The approach we give in this paper is based on the objective to understand modn kEr, i.e.
the full subcategory of kEr-modules with Loewy length bounded by n ≤ p. The generalized
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Beilinson algebra B(n, r) provides a faithful exact functor F : modB(n, r) → modn(kEr).
We formulate analogs of the constant Jordan type and constant j-rank property as well as
the equal images and equal kernels property for B(n, r)-modules and define full subcategories
CJT(n, r), CRj(n, r), EIP(n, r), EKP(n, r) ⊂ modB(n, r) such that the restrictions of F
to EIP(n, r) and EKP(n, r) reflect isomorphisms and have an essential image consisting of
standardly graded modules with the equal images property and costandardly graded modules
with the equal kernels property, respectively.

An immediate advantage of passing over to B(n, r) is that we are able to give a homolog-
ical characterization of the categories EIP(n, r) and EKP(n, r) involving a P

r−1-family of
B(n, r)-modules of projective dimension one which allows us to apply general methods from
Auslander-Reiten theory. With this tool in hand, we prove:

Theorem (A). The category EIP(n, r) is the torsion class T of a torsion pair (T ,F) in
modB(n, r) such that EKP(n, r) ⊂ F and T is closed under the Auslander-Reiten translate
τ and contains all preinjective modules.
Dually, EKP(n, r) is the torsion-free class F ′ of a torsion pair (T ′,F ′) in modB(n, r) such
that EIP(n, r) ⊂ T ′ and F ′ is closed under τ−1 and contains all preprojective modules.
In particular, there are no non-trivial maps EIP(n, r) → EKP(n, r).

We can specialize our results to the case n = 2: The algebra B(2, r) is the path algebra Kr

of the r-Kronecker and has wild representation type if and only if r > 2. The Auslander-
Reiten quiver of the wild hereditary algebra B(2, r) consists of a preprojective component,
a preinjective component and infinitely many (regular) components of type ZA∞ [17]. We
summarize our main results for B(2, r), r > 2, as follows, contrasting the findings for r = 2:

Theorem (B). Let r > 2, n ≤ p and let Γ be the Auslander-Reiten quiver of B(2, r).

(i) Let C be a regular component of Γ. Then EIP(2, r)∩C and EKP(2, r)∩C are non-empty
disjoint cones. The size of the gap W(C) ∈ N0 between these cones is an invariant of C.

(ii) For each n ∈ N, there exists a regular component C of Γ such that W(C) > n.
(iii) If W(C) = 0, then every object in C has constant Jordan type.
(iv) If W(C) = 1, then either C ⊂ CJT(2, r) or apart from the cones EIP(2, r) ∩ C and

EKP(2, r) ∩ C, there are no other objects of constant Jordan type in C.

Our paper is organized as follows: In Section 1, we recall definitions and basic results
and give a generalization of the W -modules defined in [6] to arbitrary rank. We intro-
duce generalized Beilinson algebras and give a homological description of the categories
CJT(n, r), CRj(n, r), EIP(n, r) and EKP(n, r) in Section 2 and point out the special role
that generalized W -modules play in EIP(n, r). In the final section, we restrict our investiga-
tions to modules of Loewy length two and give our more specific results on the r-Kronecker
together with some examples.

1. Generalized W -modules

Let us first of all introduce the set up and recall the relevant concepts and some basic results
from [5], [4], [6] and [9]. In doing so, we will present some definitions in a way that is suitable
for our purposes.
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Let k be an algebraically closed field of characteristic p > 0. Let Er = (Zp)
×r be an elementary

abelian p-group of rank r ≥ 2 with generators g1, . . . , gr. Let furthermore R = k[X1, . . . , Xr]
be the polynomial ring in r variables. Sending Xi to xi := gi − 1 yields an isomorphism
k[X1, . . . , Xr]/(X

p
1 , . . . , X

p
r )

∼= kEr between the truncated polynomial ring and the group
algebra of Er. Consider furthermore the ideal I = (X1, . . . , Xr) ⊆ R generated by all polyno-
mials of degree one as well as the augmentation ideal J = rad(kEr) = (x1, . . . , xr) of kEr. We
let mod kEr be the category of finitely generated kEr-modules and modn(kEr) ⊂ mod kEr

be the full subcategory consisting of modules of Loewy length at most n.

An algebra homomorphism α : k[T ]/(T p) → kEr is called p-point if the pullback α∗(kEr) is
a free k[T ]/(T p)-module. Note that this is equivalent to saying that α(t) with t := T + (T p)
is an element in rad(kEr)\ rad

2(kEr) [6, p. 3]. Given such a p-point α, for M ∈ mod kEr, we
consider the linear operator α(t)M : M → M, m 7→ α(t).m. The Jordan canonical form of
α(t)M entirely determines the isomorphism type of M as a k[T ]/(T p)-module. The sequence
of sizes of Jordan blocks is referred to as the Jordan type of M corresponding to α and we
write JType(α,M) = ap[p] + · · · + a1[1], indicating that there are ai blocks of size [i] for
1 ≤ i ≤ p. If this Jordan type does not depend on the p-point we choose, we say that M is
of constant Jordan type JType(M) := JType(α,M).

We say that M ∈ mod kEr is of constant j-rank for j ∈ N if the rank rkα(t)jM is independent
of our choice of p-point. Note that M is of constant Jordan type iff M is of constant j-rank
for all j ≥ 1 [9, p. 11]. We denote the subcategories of mod kEr consisting of such modules
by CRj(kEr) and CJT(kEr).
A module M ∈ mod kEr is said to satisfy the equal images property if imα(t)M = radM
for all p-points α. A module M ∈ mod kEr is said to satisfy the equal kernels property if
kerα(t)M = socM for all p-points α. We denote the corresponding subcategories of mod(kEr)
by EIP(kEr) and EKP(kEr), respectively.
In [6, 1.2, 1.7], it is shown that it suffices to check the above properties for all p-points α
with α(t) = α1x1 + · · ·+ αrxr for a non-trivial element (α1, . . . , αr) ∈ kr\0.
Note that M satisfies the equal images property if and only if its linear dual M∗ satisfies
the equal kernels property. The category EIP(kEr) is image-closed [6, 1.10], and dually
EKP(kEr) is closed under taking submodules. We have EIP(kEr)∪EKP(kEr) ⊆ CJT(kEr)
[6, 1.9] and furthermore EIP(kEr) ∩ EKP(kEr) = add k [8, 4.4.3], where k is the trivial
kEr-module and add k the full subcategory of mod kEr whose objects are direct sums of the
trivial module k.

We now give a generalization of the Zp × Zp-modules Wn,d defined by Carlson, Friedlander
and Suslin in [6] to elementary abelian p-groups of arbitrary rank. The authors show that
these so-called W -modules are indecomposable equal images modules which play a promi-
nent role in the category EIP(k(Zp ×Zp)). Whereas in [6], the modules Wn,d are defined via
generators and relations, we give an alternative definition that is amenable to generalization
to higher rank.

For all n ∈ N, d ≤ min {n, p}, we consider the R-module

M
(r)
n,d := In−d/In.
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By choice of d, the canonical action factors through R/(Xp
1 , . . . , X

p
r ), so that we can likewise

study this module and its linear dual W
(r)
n,d := (M

(r)
n,d)

∗ over kEr.

The module M
(3)
3,2 can be depicted as follows

x1
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②
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✎
✎
✎
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$d
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x3
•
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��✴
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✎✎
✎✎
✎

• • • • • •

where the dots represent the canonical basis elements given by the monomials in degree one
and two and →, 99K and  denote the action of x1, x2 and x3, respectively. It is easy to

see that in case r = 2 we have W
(2)
n,d = Wn,d as defined in [6]. Modules of the form M

(r)
n,d will

be referred to as M-modules and modules of the form W
(r)
n,d as W -modules, respectively. We

furthermore set the convention that M
(r)
n,d := M

(r)
n,n and W

(r)
n,d := W

(r)
n,n in case d > n.

The module M
(r)
n,d satisfies the equal kernels property, since for all (α1, . . . , αr) ∈ kr\0 we

have

ker

{

r
∑

i=1

αixi : M
(r)
n,d → M

(r)
n,d

}

= In−1/In = soc(M
(r)
n,d).

Hence W
(r)
n,d satisfies the equal images property. Some W -modules can be recognized as

submodules of the group algebra kEr, generalizing [6, 2.2].

Proposition 1.1. There is an isomorphism

W
(r)
d,d

∼= radr(p−1)+1−d(kEr)

for d ≤ p.

Proof. Observe that kEr is isomorphic to the restricted enveloping algebra of an r-dimensional
abelian Lie algebra with trivial p-map [18, §5] and is equipped with the structure of a Frobe-
nius algebra where the projection τ : kEr → k onto the coefficient of xp−1

1 · · ·xp−1
r defines a

non-degenerate associative symmetric bilinear-form

(., .) : kEr × kEr → k, (a, b) := τ(ab),

see [3]. Since there is an isomorphism kEr/ rad
d(kEr) ∼= M

(r)
d,d , the claimed isomorphism of

kEr-modules follows from the associativity of (., .) together with the isomorphism

W
(r)
d,d

∼= (kEr/ rad
d(kEr))

∗ ∼= (radd(kEr))
⊥ = radr(p−1)+1−d(kEr).

�

Observe furthermore that the algebraic group GLr(k) acts on the r-dimensional vector space
⊕r

i=1 kXi and thereby on R and kEr via automorphisms, leaving I and J invariant. Moreover,
consider the action of GLr(k) on mod kEr sending M ∈ mod kEr to its g-twist M (g) for
g ∈ GLr(k), where M

(g) is the kEr-module with underlying vector space M and action given
by x.m := (g−1.x)m. We call a module GLr(k)-stable if there is an isomorphism M ∼= M (g)

for all g ∈ GLr(k). Since GLr(k) acts on
⊕r

i=1 kXi\0 with one orbit, GLr(k)-stable modules
are necessarily of constant Jordan type.

Proposition 1.2. Let n ∈ N, d ≤ p. The kEr-modules M
(r)
n,d and W

(r)
n,d are GLr(k)-stable.
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Proof. Since dualizing and twisting are compatible, it suffices to prove the first claim: The
module In−d/In is a subfactor of the GLr(k)-module R and the map

ϕ : In−d/In → In−d/In, m 7→ g−1.m

defines an isomorphism M
(r)
n,d

∼= (M
(r)
n,d)

(g). �

In the following, we will make use of the graded structures of the algebras R and kEr and
their module categories, respectively.
Graded (Artin) algebras and their modules categories were studied by Gordon and Green
[10], [11]. An algebra Λ is Zn-graded for some n ∈ N if Λ affords a vector space decomposition
Λ =

⊕

i∈Zn Λi such that ΛiΛj ⊆ Λi+j for all i, j ∈ Z
n. We denote by |i| :=

∑n

j=1 ij the value

of i = (i1, . . . , in) ∈ Z
n. Graded ideals are defined canonically. A Λ-module M is Zn-graded

if M =
⊕

i∈Zn Mi such that ΛiMj ⊆ Mi+j for all i, j ∈ Z
n.

The category modZn Λ has the finitely generated Z
n-graded Λ-modules as objects and the

sets of morphisms HomZ
n

Λ (M,N) are the Λ-linear maps ϕ : M → N with ϕ(Mi) ⊆ Ni for all
i ∈ Z

n. Furthermore, the i-th shift functor [i] : modZn Λ → modZn Λ is defined on objects
M ∈ modZn Λ to be M [i] where M [i]j := Mj−i. Morphisms are left unchanged.
If M,N ∈ modZn Λ afford gradings M =

⊕

i∈Zn Mi and N =
⊕

i∈Zn Ni, then HomΛ(M,N)
affords a grading HomΛ(M,N) =

⊕

i∈Zn HomΛ(M,N)i as a module over the Zn-graded alge-
bra EndΛ(N), where HomΛ(M,N)i = {ϕ ∈ HomΛ(M,N)|ϕ(Mj) ⊆ Ni+j ∀j ∈ Z

n}.

Now R = ⊕i∈ZrRi is a Z
r-graded algebra, where Ri is the k-span of the polynomial X i1

1 · · ·X ir
r

for all i = (i1, . . . , ir) ∈ N
r
0 and Ri = 0 else. Hence all non-trivial homogeneous components

are one-dimensional.
Since the ideal (Xp

1 , . . . , X
p
r ) is homogeneous with respect to this grading, kEr inherits the

Z
r-grading from R. Furthermore it is I =

⊕

i∈Zr

i6=0
Ri and hence M

(r)
n,d = In−d/In has both as

an R- and kEr-module a canonical Zr-grading

M
(r)
n,d =

⊕

i∈Zr

Mi

whereMi is the vector space spanned by xi1
1 · · ·xir

r = X i1
1 · · ·X ir

r +In for all i ∈ N
r
0 with n−d ≤

|i| ≤ n−1, and Mi = 0 else. Endowed with this grading, M
(r)
n,d is generated by its components

Mi with i ∈ N
r
0, |i| = n − d. Observe that the Z

r-grading induces a Z-grading both on the
algebra and the graded modules in a canonical fashion via Ri =

⊕

|(j1,...,jr)|=i R(j1,...,jr) and

Mi =
⊕

|(j1,...,jr)|=i M(j1,...,jr) for all i ∈ Z.

Theorem 1.3. For r ≥ 2 and n ≥ d > 1, d ≤ p, we have an isomorphism of Zr-graded rings

EndkEr
(M

(r)
n,d)

∼= kEr/J
d ⊕

⊕

i∈Zr

|i|=d−1

k[i]si

where the right-hand side denotes the trivial extension of kEr/J
d by a sum of shifts of the

trivial kEr-bimodule k. In particular, EndkEr
(M

(r)
n,d) is local and commutative.

Remark. By computing Hom-spaces, we will moreover show that the si are uniquely deter-
mined and that they are all equal to zero iff n = d.
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Proof. We claim that for n ∈ N, d ≤ min {n, p}, there is a monomorphism

ι : kEr/J
d → EndkEr

(M
(r)
n,d)

of Zr-graded k-algebras. Multiplication by an element of kEr clearly yields an endomorphism

of M
(r)
n,d and we obtain a homomorphism kEr → EndkEr

(M
(r)
n,d) of k-algebras which obviously

respects the Z
r-grading. Since annkEr

(M
(r)
n,d) = Jd, ι is injective.

We now show that ι induces an isomorphism of homogeneous components

(1) (kEr/J
d)i ∼= End(M

(r)
n,d)i

for i ∈ Z
r with |i| ≤ d− 2.

Proof of (1): Since M
(r)
d,d

∼= kEr/J
d, the isomorphism in (1) is obvious for n = d. We thus

assume n > d. Let ϕi ∈ End(M
(r)
n,d)i and |i| ≤ d− 2. Recall that all non-trivial homogeneous

components of M
(r)
n,d are one-dimensional and the module is generated by its homogeneous

components Mj =
〈

xj1
1 · · ·xjr

r

〉

k
with |j| = n− d.

For all 1 ≤ t ≤ r, we denote by 1t the element in N
r
0 with the t-th entry being equal to 1

and all others being equal to 0. For all 1 ≤ t, t′ ≤ r we denote by −1t + 1t′ the operation on
K = {κ ∈ N

r
0| |κ| = n− d} given by −1t+1t′(κ) = κ−1t+1t′ if κt 6= 0 and −1t+1t′(κ) = κ

else. Observe that every non-empty subset of K that is closed under all such operations is
equal to K.
Let us first of all show that ϕi = 0 if i has a negative entry il for some 1 ≤ l ≤ r. We know
that ϕi certainly vanishes on those Mj , |j| = n− d, with jl = 0.

Now assume ϕi(Mk) = 0, i.e. ϕi(x
k1
1 · · ·xkr

r ) = 0 for some k ∈ N
r
0, |k| = n − d. Let

furthermore t ∈ {1, . . . , r} such that kt 6= 0. For all t′ ∈ {1, . . . , r}, we have

(2) xtϕi(x
k1
1 · · ·xkr

r

xt′

xt

) = xt′ϕi(x
k1
1 · · ·xkr

r ).

By our assumption, we have |i| ≤ d − 2 which implies ϕi(x
k1
1 · · ·xkr

r
xt′

xt
) = 0 and hence

ϕi(Mk−1t+1t′
) = 0. Thus {κ ∈ K|ϕi(Mκ) = 0} is non-empty and closed under operations of

the form −1t + 1t′ and hence equal to K. We thus obtain ϕi(Mκ) = 0 for all κ ∈ K and
hence ϕi = 0.
For i ∈ N

r
0, |i| ≤ d − 2, we use the fact that non-trivial homogeneous components are one-

dimensional and obtain ϕi(x
k1
1 · · ·xkr

r ) = ckx
k1+i1
1 . . . xkr+ir

r for all k ∈ N
r
0, |k| = n − d and

scalars ck. Comparing coefficents in (2) yields that ϕi is multiplication by an element of the
form cxi1

1 · · ·xir
r with c ∈ k. This proves our claim (1).

In case i ∈ N
r
0, |i| = d− 1, we have an isomorphism of vector spaces

EndkEr
(M

(r)
n,d)i

∼=
⊕

j∈Nr0
|j|=n−d

Homk((M
(r)
n,d)j , (M

(r)
n,d)i+j)

and hence dimk EndkEr
(M

(r)
n,d)i/ι((kEr/J

d)i) = dimk I
n−d − 1. The right-hand term is equal

to zero if and only if n = d. For i ∈ Z
r\Nr

0, |i| = d− 1, we have

EndkEr
(M

(r)
n,d)i

∼=
⊕

j∈Nr
0

|j|=n−d

i+j∈Nr
0

Homk((M
(r)
n,d)j , (M

(r)
n,d)i+j)

6



with (kEr/J
d)i = (0) and the right-hand term being equal to zero iff n = d. Since furthermore

End(M
(r)
n,d)i = 0 for i ∈ Z

r, |i| ≥ d, and maps of degree d−1 vanish when composed with maps
of degree greater than zero, we obtain the above structure of the endomorphism ring. �

Corollary 1.4. Let n ∈ N and 1 < d ≤ p.

(i) The kEr-module M
(r)
n,d is indecomposable.

(ii) We have k ∼= EndkEr
(M

(r)
n,d)0 = EndZ

kEr
(M

(r)
n,d), i.e. M

(r)
n,d is a brick in modZ kEr.

Jordan types that can be realized via indecomposable modules are of special interest. Count-
ing polynomials, we obtain:

Proposition 1.5. For n ∈ N, d ≤ min {n, p}, we have

JType(M
(r)
n,d) =

(

r + n− d− 1

n− d

)

[d] +

d−1
∑

i=1

(

r + n− 2− i

n− i

)

[i] = JType(W
(r)
n,d)

and in particular for n = d ≤ p

JType(M (r)
n,n) = [n] +

n−1
∑

i=1

(

r + n− i− 2

n− i

)

[i] = JType(W (r)
n,n).

The indecomposability of W - and M-modules of Loewy length greater than one over the
algebra kE2 follows directly from [6, 4.2], according to which the Jordan type

∑p

i=1 ai[i] of
a module with the equal images property is such that ai−1 6= 0 whenever ai 6= 0, i ≥ 2.
Taking into account that EIP(kEr) and EKP(kEr) are closed under direct summands and

JType(Wn,d) = (n − d + 1)[d] +
∑d−1

i=1 [i], these modules are hence indecomposable if d ≥ 2.
In case r > 2, this conclusion does not seem to follow from the computation of Jordan types.

Moreover, for r = 2, the indecomposable equal images modules of Loewy length 2 are just
the modules Wn,2 [6, 4.1]. We will show in the following sections that in case r > 2, the
situation is completely different and there is no hope to parametrize the indecomposable
equal images modules of Loewy length 2 in the same fashion. It seems that W -modules are
thus not “ubiquitous” in EIP(kEr) if r > 2.

2. Equal images modules for generalized Beilinson algebras

In order to understand the subcategories of mod kEr introduced in the previous section, we
will now consider the category modZ kEr of Z-graded modules over the Z-graded algebra
kEr. When studying objects in modZ kEr that have a bounded support, the generalized
Beilinson algebra B(n, r) comes into play. It turns out that we can define certain analogs
of our subcategories of modn kEr as subcategories of modB(n, r) which exhibit interesting
properties and behave nicely when it comes to Auslander-Reiten theory. Our main results
strongly depend on our homological characterization of these subcategories.

2.1. General approach. We recall from [10] that there is a faithful exact functor

F : modZ kEr → mod kEr

referred to as the forgetful functor since it “forgets” the grading on objects. F preserves
indecomposability and has the property that the fibre of an indecomposable object in the
essential image of F consists of the shifts M [i], i ∈ Z, of a certain indecomposable object

7



M =
⊕

i∈Z Mi ∈ modZ kEr [10, 4.1]. Note furthermore that F is not dense.
If M =

⊕

i∈Z Mi ∈ modZ kEr, then supp(M) = {i ∈ Z|Mi 6= 0} is called the support of
M . An object in the essential image of F is called gradable. We say that M ∈ mod kEr

is J-gradable for J ⊆ Z if M ∼= F(
⊕

i∈Z Mi) for some
⊕

i∈Z Mi ∈ modZ kEr such that
supp(

⊕

i∈Z Mi) ⊆ J .
Using the terminology of [12], the positively graded algebra Λ = kEr is standardly graded,
i.e. Λ0 is a direct product of k, Λi is finite dimensional for all i ≥ 0 and ΛiΛj = Λi+j for
all i, j ≥ 0. We call M =

⊕

i∈Z Mi ∈ modZ kEr standardly graded if M is generated by Mi,
where i = min supp(M). Dually, we say that M is costandardly graded if M is cogenerated
by Mi, where i = max supp(M). We refer to their images under F as standardly gradable and
costandardly gradable objects, respectively.
For 2 ≤ n ≤ p, we now consider the full subcategory C[0,n−1] of modZ kEr containing those
objects M =

⊕

i∈Z Mi ∈ modZ kEr with supp(M) ⊆ [0, n − 1] := {0, . . . , n− 1}. Hence the
essential image of F|C[0,n−1]

consists of the [0, n − 1]-gradable objects in mod kEr. Observe

furthermore that C[0,n−1] is equivalent to modB(n, r), the module category of a generalized
Beilinson algebra, where B(n, r) is defined as follows:
Let E(n, r) be the path algebra of the quiver with n vertices and r arrows between vertices
i and i+ 1 for all 0 ≤ i ≤ n− 1.

0

γ
(0)
1

!!

γ
(0)
r

==
... 1

γ
(1)
1

!!

γ
(1)
r

==
... 2 ··· n− 2

γ
(n−2)
1

((

γ
(n−2)
r

77
... n− 1

Now let B(n, r) be the factor algebra E(n, r)/I where I is generated by the commutativity

relations γ
(j)
i γ

(j−1)
k − γ

(j)
k γ

(j−1)
i for all i, k ∈ {1, . . . , r} , j ∈ {1, . . . , n− 2}. The equivalence

between C[0,n−1] and modB(n, r) is such that M = M0⊕· · ·⊕Mn−1 ∈ C[0,n−1] is a module for
B(n, r) where Mi = eiM for the primitive orthogonal idempotents ei ∈ B(n, r) corresponding
to the vertex i. Hence we use this notation both for objects in C[0,n−1] and modB(n, r). The

action of xj on elements in Mi corresponds to the action of γ
(i)
j on elements in eiM .

In the following, we thus regard modB(n, r) as a full subcategory of modZ kEr and we will
see in the next section that we gain a lot by viewing C[0,n−1] as the module category for a
bound quiver algebra. A general introduction to representation theory of quivers can be
found in [2].
For all 0 ≤ i ≤ n − 1, we denote by S(i), P (i) and I(i) the simple, the projective and the
injective indecomposable B(n, r)-module corresponding to the vertex i.
Restricting F to modB(n, r) yields a functor

F(n,r) : modB(n, r) → modn kEr.

We now define subcategories of modB(n, r) that correspond to the full subcategories
CRj

n(kEr) ⊂ CRj(kEr), CJTn(kEr) ⊂ CJT(kEr), EIPn(kEr) ⊂ EIP(kEr) as well as
EKPn(kEr) ⊂ EKP(kEr) containing modules of Loewy length at most n.

Let therefore α ∈ kr\0. Now for the element α̃ =
∑n−2

i=0 (α1γ
(i)
1 + · · ·+ αrγ

(i)
r ) ∈ B(n, r) and

M =
⊕n−1

i=0 Mi ∈ modB(n, r), left-multiplication with α̃ yields a linear operator

αM : M → M
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such that for 1 ≤ j ≤ n − 1, (αM)j coincides with the left-multiplication with the element
∑n−j−1

i=0 ((α1γ
(i+j−1)
1 + · · ·+ αrγ

(i+j−1)
r ) · · · (α1γ

(i)
1 + · · ·+ αrγ

(i)
r )) ∈ B(n, r).

Definition 2.1.1. For n ≤ p, r ≥ 2, we define full subcategories of modB(n, r) as follows:

(a) EIP(n, r) :=
{

M ∈ modB(n, r)| im(αM) =
⊕n−1

i=1 Mi ∀ α ∈ kr\0
}

,
(b) EKP(n, r) := {M ∈ modB(n, r)| ker(αM) = Mn−1 ∀ α ∈ kr\0},
(c) CRj(n, r) := {M ∈ modB(n, r)|∃cj ∈ N0 : rk(αM)j = cj ∀ α ∈ kr\0},
(d) CJT(n, r) :=

⋂n

j=1CR
j(n, r).

Remark. A module M ∈ EIP(n, r) is standardly graded and M0 = 0 implies M = 0. Dually,
a module M ∈ EKP(n, r) is costandardly graded and Mn−1 = 0 implies M = 0.

Note that the duality D : modB(n, r) → modB(n, r) induced by relabelling the vertices in
the reversed order and taking the linear dual is such that DEIP(n, r) = EKP(n, r). Moreover
observe that we have EIP(n, r) ∪ EKP(n, r) ⊂ CRj(n, r) for all j ≥ 1.

Proposition 2.1.2. The restriction of F(n,r) to

X ∈
{

EIP(n, r),EKP(n, r),CRj(n, r),CJT(n, r)
}

induces a faithful exact functor

FX : X → modn kEr

such that

(i) for X = EIP(n, r), FX reflects isomorphisms and the essential image consists of the
standardly gradable objects in EIPn(kEr).

(ii) for X = EKP(n, r), FX reflects isomorphisms and the essential image consists of the
costandardly gradable objects in EKPn(kEr).

(iii) for X = CRj(n, r), the essential image of FX consists of the [0, n− 1]-gradable objects
in CRj

n(kEr).

Proof. Observe that for M ∈ modB(n, r), the linear operator αM given by α ∈ kr\0
corresponds to the linear operator α(t)F(n,r)(M) on F(n,r)(M) given by the p-point α with

α(t) = α1x1 + · · ·+ αrxr.
(i): With the preceding observation and in view of the fact that fibres of indecomposables
are shifts on an indecomposable object [10, 4.1], it is easy to see that for an indecomposable
object M ∈ modZ kEr we have F(n,r)(M) ∈ EIPn(kEr) if and only if M = N [i] for some
object N ∈ EIP(n, r) ⊂ modZ kEr.
Given N ∈ EIP(n, r)\0, we have supp(N) = [0, l] for some 0 ≤ l ≤ n − 1. Thus we have
N [i] /∈ EIP(n, r) unless i = 0 since suppN [i] = [i, l + i]. Since F(n,r) commutes with direct
sums and modn kEr is a Krull-Schmidt category, FEIP(n,r) thus reflects isomorphisms. More-
over, M ∈ EIP(n, r) is generated by M0 and is hence standardly graded. Thus the essential
image of FEIP(n,r) consists of the standardly gradable objects in EIPn(kEr).
(ii): Dual to (i).
(iii): Is clear in view of our general observation above. �

Remark. A direct consequence of Proposition 2.1.2 is EIP(n, r) ∩ EKP(n, r) = (0), since
S(0) is the only simple B(n, r)-module in EIP(n, r), S(n−1) the only simple B(n, r)-module
in EKP(n, r) and EIP(kEr) ∩ EKP(kEr) = add k [8, 4.4.3].
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2.2. Homological characterization. In this section, we will give a new point of view on
our subcategories of modB(n, r) which enables us to apply general methods from Auslander-
Reiten theory. The approach we present is inspired by work of Happel and Unger [13] on
representations of the generalized Kronecker Kr. The authors construct a representation
X = (X1, X2) over Kr corresponding to a given arrow γ of Kr such that the representations
Y = (Y1, Y2) in the right-perpendicular category X⊥ are exactly those for which the operator
γY : Y1 → Y2 corresponding to γ is bijective [13, 2.1].

Note that P (i) ∼= kEr[i]/J
n−ikEr[i] in modZ kEr. Let α ∈ kr\0. Since n− i ≤ n− 1 < p, the

map

α(i) : P (i+ 1) → P (i), ei+1 7→ α1γ
(i)
1 + · · ·+ αrγ

(i)
r ,

i.e. the right multiplication with α1γ
(i)
1 +· · ·+αrγ

(i)
r , defines an embedding ofB(n, r)-modules.

Composition yields embeddings

α(i)j : P (i+ j) → P (i), ei+j 7→ (α1γ
(i+j−1)
1 + · · ·+ αrγ

(i+j−1)
r ) · · · (α1γ

(i)
1 + · · ·+ αrγ

(i)
r )

for all 0 ≤ i ≤ n− 2, 1 ≤ j ≤ n− i− 1. We let X i,j
α := cokerα(i)j = P (i)/α(i)j(P (i+ j)).

For 1 ≤ j ≤ n− 1, α ∈ kr\0, we define

Xj
α =

n−j−1
⊕

i=0

X i,j
α .

By definition, we obtain for the projective dimensions of these modules pd(X i,j
α ) = 1 and

hence pd(Xj
α) = 1. In the following, whenever we write Hom or Ext, we refer to the category

modB(n, r).

Theorem 2.2.1. We have

(a) EIP(n, r) =
{

M ∈ modB(n, r)|Ext1(X1
α,M) = 0 ∀α ∈ kr\0

}

,
(b) EKP(n, r) = {M ∈ modB(n, r)|Hom(X1

α,M) = 0 ∀α ∈ kr\0},
(c) CRj(n, r) =

{

M ∈ modB(n, r)|∃cj dimk Ext
1(Xj

α,M) = cj ∀α ∈ kr\0
}

.

Proof. Consider the projective resolution 0 → P (i + j)
α(i)j
−→ P (i) → X i,j

α → 0 and, for
M ∈ modB(n, r), the exact sequence

0 → Hom(X i,j
α ,M) → Hom(P (i),M) → Hom(P (i+ j),M) → Ext1(X i,j

α ,M) → 0.

There is a commutative diagram

Hom(P (i),M)
Hom(α(i)j ,M)
−−−−−−−−→ Hom(P (i+ j),M)





y

∼=





y

∼=

Mi

(αM )j |Mi−−−−−→ Mi+j

whence

(αM)j |Mi
: Mi → Mi+j
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is surjective, resp. injective, if and only if Ext1(X i,j
α ,M) = 0, resp. Hom(X i,j

α ,M) = 0. This
already yields (a) and (b) and since

rk(αM)j =

n−j−1
∑

i=0

(dimk Mi+j − dimk Ext
1(X i,j

α ,M)) =

n−j−1
∑

i=0

dimk Mi+j − dimk Ext
1(Xj

α,M),

we obtain (c). �

Hence we have a homological description of the subcategories defined in § 2.1 that involves
a P

r−1-family of B(n, r)-modules of projective dimension 1. At this juncture, we exploit
fundamental homological properties of modB(n, r) that do not hold in mod kEr.

Let us list some of the distinctive features of these modules.

Proposition 2.2.2. Let α ∈ kr\0 and let ι : B(n, r− 1) → B(n, r) be the embedding defined
via γk

l 7→ γk
l for all 0 ≤ k ≤ n− 2 and 1 ≤ l ≤ r − 1.

(i) We have pd(Xj
α) = 1 for all 1 ≤ j ≤ n− 1.

(ii) The module X i,j
α is standardly graded and supp(X i,j

α ) = [i, n− 1].
(iii) We have dimk(X

i,j
α )i = 1 and the module X i,j

α is a brick in modB(n, r).
(iv) All proper submodules of Xn−2,1

α are of the form P (n− 1)⊕m for some m < r.
(v) The pullback ι∗(X i,1

(0,...,0,1)) is isomorphic to the projective B(n, r − 1)-module P̃ (i).

In the following, we make use of Auslander-Reiten theory as well as torsion theory. At this
point, we will briefly and in a somewhat informal way recall what Auslander-Reiten theory
is about. A thorough introduction can be found in [2, IV]. The module category modA is
described in terms of the Auslander-Reiten quiver Γ(A) of the algebra A which is defined as
follows:

(i) The vertices of Γ(A) correspond to the isomorphism classes [M ] of indecomposable
A-modules.

(ii) The arrows from [N ] to [M ] correspond to so-called irreducible maps f : N → M , i.e. f
is neither a section nor a retraction and whenever f = f1f2, then either f1 is a retraction
or f2 is a section.

Each non-projective indecomposable module M (non-injective indecomposable module N)
gives rise to a uniquely determined short exact sequence, an Auslander-Reiten (or almost
split) sequence,

0 → N
f
→

t
⊕

i=1

Eni

i

g
→ M → 0

where N (M) is indecomposable, the Ei are pairwise non-isomorphic and indecomposable
and the maps fi1 , . . . , fini

: N → Ei, gi1, . . . , gini
: Ei → M correspond to bases of the

vector spaces of irreducible maps N → Ei and Ei → M , respectively. We write N = τ(M)
(M = τ−1(N)), where τ is referred to as the Auslander-Reiten translation of M and we
denote this in Γ(A) by [N ] L99 [M ].
An indecomposable module M is called pre-projective (pre-injective) if there is n ∈ N0 such
that τn(M) (τ−n(M)) is projective (injective). A module is referred to as regular if it is
neither pre-injective nor pre-projective. Connected components of Γ(A) that consist entirely
of regular modules are then called regular.
Furthermore, we say that an indecomposable module N is a predecessor (successor) of M if
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there is a directed path from [N ] to [M ] ([M ] to [N ]) in Γ(A), i.e. a chain of irreducible maps
from N to M (M to N). We denote the set of all predecessors and successors by (→ M) and
(M →), respectively.

Given an algebra A, a pair (T ,F) of full subcategories of modA is called torsion pair if the
following conditions are satisfied

(a) HomA(M,N) = 0 for all M ∈ T , N ∈ F .
(b) HomA(M,−)|F = 0 implies M ∈ F .
(c) HomA(−, N)|T = 0 implies N ∈ F .

The category T (F) is then called torsion (torsion-free) class of the torsion pair (T ,F).
According to [2, VI, 1.4], torsion classes correspond to those full subcategories of modA that
are closed under images and extensions whereas torsion-free classes correspond to the full
subcategories of modA that are closed under submodules and extensions.

Corollary 2.2.3. The category EIP(n, r) is the torsion class T of a torsion pair (T ,F) in
modB(n, r) with EKP(n, r) ⊂ F that is closed under the Auslander-Reiten translate τ and
which contains all preinjective modules.
Dually, EKP(n, r) is a torsion-free class F ′ of a torsion pair (T ′,F ′) in modB(n, r) with
EIP(n, r) ⊂ T ′ that is closed under τ−1 and contains all preprojective modules.
In particular, there are no non-trivial maps EIP(n, r) → EKP(n, r).

Proof. Application of Theorem 2.2.1 directly yields that EIP(n, r) is extension closed. Since
pd(Xj

α) = 1 and hence Ext2(Xj
α,−) = 0, the class is furthermore image closed. Thus

EIP(n, r) is a torsion class in modB(n, r).
The corresponding torsion-free objects in F = {M ∈ modB(n, r)|Hom(T ,M) = 0} are those
that do not have any non trivial submodules in EIP(n, r). In particular, all N ∈ modB(n, r)
such that N0 = 0 are torsion-free.
We now show that for M ∈ EIP(n, r), we have τ(M) ∈ EIP(n, r). The Auslander-Reiten
formula [2, IV, 2.13] yields an isomorphism

Ext1(X1
α, τM) ∼= DHom(M,X1

α),

where

Hom(M,X1
α)

∼=

n−1
⊕

i=0

Hom(M,X i,1
α ).

For i ≥ 1, we have (X i,1
α )0 = 0 (Prop. 2.2.2, (ii)) and thus X i,1

α ∈ F . This yields the isomor-
phism Hom(M,X1

α)
∼= Hom(M,X0,1

α ). Since [0] ⊂ [0, n − 1] = suppX0,1
α (Prop. 2.2.2, (ii))

and by definition imα
X

0,1
α

= 0, we in particular obtain X0,1
α /∈ EIP(n, r).

Since X0,1
α = B(n, r)(X0,1

α )0 as well as dimk(X
0,1
α )0 = 1, this already yields X0,1

α ∈ F and
hence Hom(M,X0,1

α ) = 0 which implies τ(M) ∈ EIP(n, r).
Moreover, Theorem 2.2.1 directly yields that EIP(n, r) contains all injective objects in
modB(n, r) and hence also their τm-shifts for all m ≥ 0, i.e. all preinjectives. The
dual statement follows using D. Hence EKP(n, r) is closed under taking submodules and
EIP(n, r) ∩ EKP(n, r) = (0) implies EKP(n, r) ⊂ F . �

Note furthermore that the inclusions EKP(n, r) ⊂ F and EIP(n, r) ⊂ T ′ are proper. We
have Xn−2,1

α ∈ F\EKP(n, r) for example.
Corollary 2.2.3 implies that a mesh in the Auslander-Reiten quiver of modB(n, r)
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with M in EIP(n, r), is completely contained in EIP(n, r). We thus obtain

Corollary 2.2.4. Let M ∈ EIP(n, r) be indecomposable. Then (→ M) ⊆ EIP(n, r). Dually,
for M ∈ EKP(n, r), we have (M →) ⊆ EKP(n, r).

We can make more precise statements for ZA∞-components of Γ(B(n, r)). These components
can be visualized as follows:
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Modules in the bottom row of such components are called quasi-simple. Ringel [17] has
shown that for each module M in a regular ZA∞-component C, there exist uniquely deter-
mined quasi-simple modules X and Y ∈ C and uniquely determined chains of irreducible
monomorphisms X = X1 → · · · → Xs−1 → Xs = M and epimorphisms M = Ys → Ys−1 →
· · · → Y1 = Y where s is the so called quasi-length of M and X (Y ) is referred to as the
quasi-socle (quasi-top) of M . Moreover, M is uniquely determined by its quasi-length and
quasi-socle (quasi-top) whence we write M = X(s) (M = [s]Y ).

Proposition 2.2.5. Let C be a regular ZA∞-component of Γ(B(n, r)). If EIP(n, r)∩ C 6= ∅,
then either C ⊆ EIP(n, r) or there exists a quasi-simple module WC such that
(→ WC) = C ∩ EIP(n, r). Dually, if EKP(n, r) ∩ C 6= ∅, then either C ⊆ EKP(n, r) or
there exists a quasi-simple module MC such that (MC →) = C ∩ EKP(n, r).

Proof. Since in every regular ZA∞-component the irreducible maps from top to bottom
are surjective, EIP(n, r) ∩ C 6= ∅ yields the existence of a quasi-simple module W in C
that belongs to EIP(n, r). If all quasi-simple modules belong to EIP(n, r), Corollary 2.2.4
yields C ⊂ EIP(n, r). In view of Corollary 2.2.4 and the fact that any two quasi-simple
modules are successor, resp. predecessor of one another, we can choose k maximal such that
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WC := τ−k(W ) ∈ EIP(n, r) and (→ WC) = C ∩ EIP(n, r). Dual properties of modules in
EKP(n, r) yield the assertion. �

Furthermore, we can extend Corollary 2.2.3 with regard to when the translate of a module
satisfies the equal images property.

Proposition 2.2.6. Let M = M0 ⊕ M1 · · · ⊕ Mn−1 ∈ modB(n, r) be indecomposable and
generated by M0. If Mn−1 = 0, then τM ∈ EIP(n, r).

Proof. Applying Theorem 2.2.1 again in combination with the Auslander-Reiten formula, it
suffices to show that Hom(M,X1

α) = 0. Since the module M is generated by M0, we have
Hom(M,X1

α)
∼= Hom(M,X0,1

α ).
Assume that there is a non-trivial morphism ϕ : M → X0,1

α . Then there exists m ∈ M0 such
that ϕ(m) ∈ (X0,1

α )0\0. Since (X0,1
α )0 is one-dimensional (Proposition 2.2.2, (iii)) and X0,1

α

is generated by (X0,1
α )0 (Proposition 2.2.2, (ii)), ϕ is hence surjective. This contradicts the

fact that Mn−1 = 0 and (X0,1
α )n−1 6= 0. �

The next result concerns the special role that W - and M- modules play as modules for
generalized Beilinson algebras.

Recall that for all m ∈ N, d ≤ n, the Z-graded module M
(r)
m,d endowed with the grading from

§ 1 satisfies supp(M
(r)
m,d) = [m − d,m − 1]. Hence we have M

(r)
m,d[n −m] ∈ C[0,n−1] such that

M
(r)
m,d[n −m] is an object in EKP(n, r). Likewise, the canonical Z-grading on W -modules is

such that supp(W
(r)
m,d) = [−m + 1,−m+ d] and hence W

(r)
m,d[m− 1] ∈ C[0,n−1] is an object in

EIP(n, r). For our duality D on modB(n, r), we have

DM
(r)
m,d[n−m] ∼= W

(r)
m,d[m− 1].

Note furthermore that for 1 ≤ d ≤ n, we haveM
(r)
d,d [n−d] ∼= P (n−d) andW

(r)
d,d [d−1] ∼= I(d−1).

Since M
(r)
m,d is a brick in modZ kEr by Corollary 1.4, M

(r)
m,d[n−m] is a brick in modB(n, r).

In the remainder of this section, we are concerned with B(n, r)-modules and hence shorten

notation and write M
(r)
m,d for the B(n, r)-module M

(r)
m,d[n − m] and likewise W

(r)
m,d for the

B(n, r)-module W
(r)
m,d[m− 1].

The following theorem does not hold in case r = 2. Since modules of the form M
(2)
m,2 are

preprojective, we have τ(M
(2)
m,2) ∈ EKP(2, 2)\0 for m > 2.

Theorem 2.2.7. Let r ≥ 3 and let n ≤ p, m > n. Then τ(M
(r)
m,n) ∈ EIP(n, r) and dually

τ−1(W
(r)
m,n) ∈ EKP(n, r).

Proof. We want to apply Theorem 2.2.1 again in combination with the Auslander-Reiten

formula and thus show that for all α ∈ kr\0, there are only trivial maps M
(r)
m,n → X1

α.

Since M
(r)
m,n is generated by (M

(r)
m,n)0, we have Hom(M

(r)
m,n, X1

α)
∼= Hom(M

(r)
m,n, X0,1

α ) and a

non-trivial map ϕ : M
(r)
m,n → X0,1

α is necessarily surjective (2.2.2, (ii), (iii)). By Proposition

1.2, M
(r)
m,n is GLr(k)-stable. Furthermore, for all α, β ∈ kr\0, there exists g ∈ GLr(k) such

that (X0,1
α )(g) ∼= X0,1

β . Since Hom(M
(r)
m,n, X0,1

α ) ∼= Hom(M
(r)
m,n, (X0,1

α )(g)) we may hence assume
that α = (0, 0, . . . , 1).

Now we have γ
(i)
r ∈ annB(n,r)X

0,1
α and thus γ

(i)
r M

(r)
m,n ⊆ kerϕ for all 0 ≤ i ≤ n− 2. Note that
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N :=
∑n−2

i=0 γ
(i)
r M

(r)
m,n is a submodule of M such that γ

(i)
r acts trivially on M̃ := M

(r)
m,n/N .

Observe that for the embedding ι from Proposition 2.2.2, we have ι∗(M̃) ∼= M
(r−1)
m,n . Moreover,

Proposition 2.2.2, (v), yields ι∗(X0,1
α ) ∼= P̃ (0) for the projective indecomposable of B(n, r−1)-

module corresponding to the vertex 0.

Thus there results a split epimorphism M
(r−1)
m,n → P̃ (0) of B(n, r − 1)-modules which is a

contradiction since by Theorem 1.4 M
(r−1)
m,n is indecomposable and furthermore non-projective

in modB(n, r− 1) since m > n and r > 2. Hence we have τ(M
(r)
m,n) ∈ EIP(n, r). Our duality

D on modB(n, r) now yields the assertion. �

Lemma 2.2.8. Let 0 → A → B → C → 0 be an exact sequence in modB(n, r). If
A ∈ EIP(n, r), then B ∈ CRj(n, r) if and only if C ∈ CRj(n, r).

Proof. Since Ext2(Xj
α,−) = 0, we get an exact sequence

Ext1(Xj
α, A) → Ext1(Xj

α, B) → Ext1(Xj
α, C) → 0,

where Ext1(Xj
α, A) = 0 since A ∈ EIP(n, r). Thus the dimension of the rightmost term does

not depend on α iff the dimension of the middle term does not. �

We close this section on Beilinson algebras with the following statement concerning Auslander-
Reiten sequences. In case n = 2, this is a direct consequence of Theorem 3.1.2 below.

Proposition 2.2.9. Let 0 → A → B → C → 0 be an Auslander-Reiten sequence in
modB(n, r) such that A is in EIP(n, r) and C is in EKP(n, r). Then B is an indecom-
posable module in CJT(n, r)\(EKP(n, r) ∪ EIP(n, r)).

Proof. Let us first of all show that B is indecomposable. Assume that there exists a decom-
position B = ⊕i∈IBi such that |I| > 2. Then for reasons of dimension it is not possible that
all irreducible maps A → Bi are injective and all irreducible maps Bj → C are surjective (this
would imply dimA+dimC < dimBi +dimBj ≤ dimB). Thus there exists an epimorphism
A → Bi for some i or a monomorphism Bi → C. This now implies that Bi satisfies the
equal images property, respectively the equal kernels property. Now in case Bi ∈ EIP(n, r),
every morphism Bi → C is trivial in view of Corollary 2.2.3. With the same argument
Bi ∈ EKP(n, r) yields that every morphism A → Bi is trivial, a contradiction. Thus B is
indecomposable. Corollary 2.2.3 yields B /∈ EIP(n, r) ∪ EKP(n, r), whereas B ∈ CJT(n, r)
follows from Lemma 2.2.8. �

Remark. Returning to the categories EIP(kEr), EKP(kEr), CRj(kEr) and CJT(kEr),
Lemma 2.2.8 holds in mod kEr as well and follows directly from the Snake Lemma [2, I.5,
5.1]. Demanding that k is not a direct summand of the middle-term B, Proposition 2.2.9
also holds in mod kEr.

3. The generalized Kronecker quiver

We are now going to confine our investigations to the case B(2, r) where r ≥ 2. The al-
gebra B(2, r) is isomorphic to Kr, the path algebra of the r-Kronecker quiver. Note that
F(2,r) is dense and so are the functors FX from Proposition 2.1.2. Furthermore, we have

CJT(2, r) = CR1(2, r). As was mentioned above, the indecomposable equal images modules
for kE2 of Loewy length at most 2 have been classified in [6]: The only indecomposable
modules in EIP(2, 2) are the preinjective modules over K2, i.e. the modules Wn,2 and the
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simple injective module S(1) [8, 4.2.2]. This implies that EIP(2, 2) is the additive closure
of the preinjectives. Apart from the preprojective modules, that satisfiy the equal kernels
property, there are no other indecomposable modules of constant Jordan type. We show that
the situation is completely different for r ≥ 3.

The algebra Kr is wild if r > 2 and tame if r = 2. Recall that the Auslander-Reiten translate
for the hereditary algebra Kr, r ≥ 2, is given by τ ∼= Ext1(−,Kr)

∗ [2, V.II, 1.9]. The compo-
nents of the Auslander-Reiten quiver Γ(Kr) of modKr have the following shape if r > 2:
There is exactly one preprojective component P, consisting of the two projective modules
and their τ−1-shifts and exactly one preinjective component I consisting of the two injective
modules and their τ -shifts. Ringel has proven in [17], that the remaining (regular) compo-
nents are of type ZA∞.

From now on, we assume that r > 2. We write Xα := X1
α = cokerα(1) for α ∈ kr\0.

The module Xα is a brick and has no proper submodules apart from direct sums of P (1)
(Proposition 2.2.2, (iii), (iv)). Via computing the dimension vectors of the preprojective and
preinjective modules, we can conclude that Xα is regular and, since it has no proper regular
submodules, thus quasi-simple. Moreover, computation yields

Proposition 3.0.10. Let α ∈ kr\0. Then DXα = Ext1(Xα,Kr)
∗ = τXα.

According to Thereom 2.2.3, we have I ⊆ EIP(2, r) and P ⊆ EKP(2, r) whereas Theorem

2.2.7 implies that W
(r)
n,2 /∈ I and M

(r)
n,2 /∈ P for n > 2. Thus these modules are examples

of regular modules with the equal images property and with the equal kernels property,
respectively.

3.1. Regular components. We will now describe the occurrence of regular equal images
and equal kernels modules in the Auslander-Reiten quiver Γ(Kr) of modKr.
In order to show the existence of equal images as well as equal kernels modules in every
regular component of Γ(Kr), we record the following dual version of a lemma by Kerner:

Lemma 3.1.1 (Kerner [15], 4.6). If X, Y are regular modules over a wild hereditary algebra,
there exists an integer N with Hom(Z, τ−m(X)) = 0 for all m ≥ N and all regulars Z with
dimk Z ≤ dimk Y .

Note that our next result also follows from Corollary 2.2.3 in combination with [1, Theorem
(B)], a general result concerning non-splitting torsion pairs for wild hereditary algebras.

Theorem 3.1.2. Let C be a regular component of Γ(B(2, r)). Then C contains two uniquely
determined quasi-simple modules WC and MC such that

(→ WC) = C ∩ EIP(2, r) and (MC →) = C ∩ EKP(2, r).

Proof. Let C be a regular component, X be in C. Since we have dimk Xα = dimk Xβ for
all α, β ∈ kr\0 and Kr is wild, we can apply Lemma 3.1.1 with Y = Xα for some α
and Z running through all Xβ, β ∈ kr\0. This implies that there exists an N such that
HomKr

(Xα, τ
−m(X)) = 0 for all m ≥ N and all α ∈ kr\0. In view of Theorem 2.2.1 we thus

have τ−m(X) ∈ EKP(2, r) for all m ≥ N . Dually, EIP(2, r) ∩ C 6= ∅. Now apply Proposition
2.2.5. �
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Thus the regular components of Γ(Kr) have the following shape

...
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...
...

...
...

...
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❆❆
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>>⑥⑥
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❆
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· · · ∇
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��❁
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��❄
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where ∇ and ∆ indicate that the corresponding module is an object in EIP(2, r), resp. in
EKP(2, r). Hence for each regular component C, the width W(C) of the gap between these
two modules, i.e. the natural number k such that τk+1(MC) = WC is an invariant for C.

Examples

(1) Let Cn be the component containg the module W
(r)
n,2 for n > 2. By Theorem 2.2.7

we have τ−1(W
(r)
n,2) ∈ EKP(2, r) and thus W

(r)
n,2 = WCn and τ−1(W

(r)
n,2) = MCn . Hence

W(Cn) = 0.
(2) Let Cα be the component containing the quasi-simple brick Xα. Recall that by Propo-

sition 3.0.10, we have τ(Xα) ∼= DXα. Since Kr is wild hereditary, τ is an equivalence
on the full subcategory of regular modules and hence

HomKr
(Xβ, τ

−1(Xα)) ∼= HomKr
(τ(Xβ), Xα) ∼= HomKr

(DXβ, Xα)

for all β ∈ kr\0. Proper submodules of Xα are of the form P (2)⊕m (Proposition
2.2.2, (iv)) and, dually, proper factor modules of DXβ are of the form I(1)⊕m′

. Hence
the rightmost term is equal to zero. According to Theorem 2.2.1, we thus obtain
τ−1(Xα) ∈ EKP(2, r). Using the Auslander-Reiten formula, we can analogously show
that τ 2(Xα) ∈ EIP(2, r). Hence W(Cα) = 2.

(3) Let Cλ be the component containing the brick E(λ) for λ ∈ kr\0 with dimension vector
(1, 1) on which γi acts via multiplication with λi. Using the Auslander-Reiten formula
in combination with Theorem 2.2.1 we have

Ext1Kr
(Xα, τ(E

(λ))) ∼= HomKr
(E(λ), Xα) = 0

and hence τ(E(λ)) ∈ EIP(n, r). Dualizing yields

HomKr
(Xα, τ

−1(E(λ))) ∼= HomKr
(DXα, E

(λ))

∼= HomKr
(D(E(λ)), Xα)

∼= HomKr
(E( 1

λ
), Xα) = 0

where ( 1
λ
)i =

1
λi

if λi 6= 0 and ( 1
λ
)i = 0 else, for all 1 ≤ i ≤ r. Hence W(Cλ) = 1.
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The examples show that W(C) indeed varies while running through the different regular
components and we will show that there is no upper boundary for this number.

In [14], Kerner has defined an invariant for regular components of a wild hereditary algebra
A. Let C be a regular component of A and X some quasi-simple module in C. The quasi-rank
of C is defined via

rk C = min
{

m ∈ Z| rad(X, τ lX) 6= 0 ∀l ≥ m
}

,

where for two indecomposable modules X, Y ∈ modKr, rad(X, Y ) is the vector space of
all non-isomorphisms from X to Y (cf. [2, A.3, 3.5]). Hence for l 6= 0 and X regular, it is
rad(X, τ lX) = Hom(X, τ lX). A theorem by Hoshino (cf. [7, V]) says that for A = Kr, rk is
bounded above by 1. In view of [14, 1.6], we can conclude that C contains a brick if and only
if rk C = 1.

Proposition 3.1.3.

(i) Let C be a regular component of Kr. If C does not possess a brick, then we have
| rk C| ≤ W(C).

(ii) Let n ∈ N. Then there exists a regular component C of Kr such that W(C) > n.

Proof. (i): Choose the quasi-simple module WC in C given by Theorem 3.1.2. The mod-
ule τ−W(C)−1(WC) = MC satisfies the equal kernels property and hence by Corollary 2.2.3
Hom(WC, τ

−W(C)−1(WC)) = 0, which implies rk C > −W(C) − 1. Since C does not possess a
brick and hence rk C ≤ 0 it is | rkC| ≤ W(C).
(ii): In [16, 3.1] it is proven that

inf {rk(C)| C ∈ Ω(Kr)} = −∞

where Ω(Kr) denotes the set of regular components of modKr. Since rk C = 1 iff C contains
a brick, we can conclude (ii) with (i). �

For every component C containg a brick, it is rk C = 1. By contrast, the examples Cn and Cα
show, that some components containing bricks may be distinguished via the invariant W.

3.2. The category CJT(2,r). In this subsection, we direct our attention towards the
category CJT(2, r) and make some statemens concerning Auslander-Reiten components of
B(2, r). Friedlander and Pevtsova have shown that for the group algebra kEr, the constant
j-rank property is in fact a property of the components of the stable Auslander-Reiten quiver
of kEr [9, 4.7]. We will see, that the situation is rather different in our context.
Unlike EIP(2, r) and EKP(2, r), the category CJT(2, r) is neither closed under images nor
under submodules and is hence more difficult to grasp categorically. However, CJT(2, r) is
closed under direct summands [5, 3.7]. We are able to make more specific statements about
the category CJT(2, r) = CR1(2, r) as opposed to CRj(n, r) with n > 2.

Lemma 3.2.1. Let M ∈ modB(2, r) be regular and not isomorphic to an Xα. Let

0 → τ(M) → E → M → 0

be the Auslander-Reiten sequence ending in M . If two out of the three modules are of constant
rank, then so is the third.
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Proof. Since E → M is right almost split and Xα is indecomposable, any morphism Xα → M
factors through E. Hence we get the following exact sequence

0 → HomKr
(Xα, τ(M)) → HomKr

(Xα, E) → HomKr
(Xα,M) → 0

and the assertion follows with Theorem 2.2.1. �

A direct consequence is the following

Proposition 3.2.2. Let C be a regular component in Γ(Kr).

(i) If all quasi-simple modules in C are of constant rank, then C ⊆ CJT(2, r).
(ii) In particular, if W(C) = 0, then C ⊆ CJT(2, r).

This especially tells us, that there are many indecomposable modules of constant Jordan type
in Loewy length two that satisfy neither the equal images property nor the equal kernels prop-
erty which is not the case if r = 2. The inclusion indEIP(2, r)∪indEKP(2, r) ⊆ indCJT(2, r)
of indecomposable objects is proper if and only if r > 2. Since F(2,r) is dense, this directly
implies the same result for the categories EIP2(kEr), EKP2(kEr) and CJT2(kEr).

Proposition 3.2.3. Let C be a regular component with W(C) = 1. Then either C ⊆ CJT(2, r)
or there are no indecomposable modules of constant rank in C apart from the modules in
EIP(n, r) ∩ C and EKP(n, r) ∩ C.

Proof. We first of all show

(*) Let C be a regular component with W(C) = n and let WC and MC be as in Theorem
3.1.2. Then for all 1 ≤ k ≤ n we have the following: If there exists l ≥ k such that
(i) [l]τ−k(WC) is of constant rank, then so is [l′]τ−k(WC) for all l

′ ≥ k.
(ii) τk(MC)(l) is of constant rank, then so is τk(MC)(l

′) for all l′ ≥ k.

Proof of (*): We show (1), (2) is dual. Let l ≥ k and [l]τ−k(WC) be of constant rank. Now
assume that there is l′ > k minimal such that [l′]τ−k(WC) does not have constant rank.
The quasi-socle τk−l′−1(WC) satisfies the equal images property and we have a short exact
sequence (cf. [17, 2.2])

0 → τk−l′−1(WC) → [l′]τ−k(WC) → [l′ − 1]τ−k(WC) → 0.

In view of Lemma 2.2.8, [l′ − 1]τ−k(WC) has constant rank, a contradiction to the choice of
l′.

Now since W(C) = 1, we have [l]τ−k(WC) = τk(MC)(l) for all k, l ∈ N and furthermore

M =
{

[l]τ−k(WC)|l ≥ k ≥ 1
}

= {M ∈ C|M /∈ EIP(n, r) ∪ EKP(n, r)} .

Now (*) implies that if the coneM contains an element of CJT(2, r), we haveM ⊆ CJT(2, r).
�

Examples

(1) The component Cn containing W
(r)
n,2 for n ≥ 3: It is W(Cn) = 0 and hence Proposition

3.2.2 implies that all modules in Cn have constant rank.
(2) The component Cα containing Xα: We claim that there are no constant rank modules

in Cα apart from the equal images and equal kernels modules. In view of Statement
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(*) in the proof of Proposition 3.2.3, we only need to show that [2]Xα does not have
constant rank. Following [7, V], it is

HomKr
(Xα, [j]Xα) = 0

for all j ≥ 2. Hence HomKr
(Xα, [2]Xα) = 0. Since furthermore [2]Xα /∈ EKP(2, r),

the module can’t be of constant rank.
(3) The component Cλ containing the module E(λ): Since E(λ) obviously does not have

constant rank and W(Cλ) = 1, Corollary 3.2.3 implies that there are no modules of
constant rank in Cλ apart from the equal kernels and equal images modules.
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