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A HOMOMORPHISM THEOREM FOR BILINEAR MULTIPLIERS

SALVADOR RODRIGUEZ-LOPEZ

ABSTRACT. In this paper we prove an abstract homomorphism theoretifor
linear multipliers in the setting of locally compact Abeli@dLCA) groups. We

also provide some applications. In particular, we obtairliadar abstract ver-
sion of K. de Leeuw’s theorem for bilinear multipliers of@tg and weak type.
We also obtain necessary conditions on bilinear multiplgr non-compact LCA
groups, yielding boundedness for the corresponding operah products of re-
arrangement invariant spaces. Our investigations extama £xisting results in
R" to the framework of general LCA groups, and yield new bounesd results
for bilinear multipliers in quasi Banach spaces.

1. INTRODUCTION

The study of multilinear multipliers is motivated by themtaoral appearance in
analysis, such as in the work of R. Coifman and Y. Meyer onudargntegral op-
erators and commutatots [10]. The proof of M. Lacey and CelEhiseel[22]) on
the boundedness of the bilinear Hilbert transform, ignitedrest in questions re-
lated to multilinear operators, which lead to the study efihlidity of multilinear
counterparts to classical linear results. In particulad af direct relevance to this
paper, there has been quite a few studies in establishinglimadr versions of K.
de Leeuw’s type theorems (see[13]) on the Lebesgue spat&din 16, 26]. The
proofs in the existing literature, rely either on the diatistructure ofR" or on
duality arguments that use the Banach space structure tdriljet space.

Roughly speaking, de Leeuw’s results state that i a Fourier multiplier for
LP(R™), with 1 < p < oo, then if rTis either the natural injection d&" in R" or
that of RY in R" for d < n, the compositiorm o 1Tis also a multiplier forLP(T"),
respectively folL,P(RY), with norm bounded by the norm af. These results were
generalised to the context of LCA groups first by S. S&eki,[@A4dl later reproved,
using transference techniques, by R. Coifman and G. WeRjs Mpplying these
transference ideas, N. Asmair [1] and E. Berkson, T.A. Gilesand P. Muhly
[4] obtained a proof of R. Edwards and G. Gaudry’s homomamhiheorem for
multipliers [15, Theorem B.2.1], which allows to recover ldseuw’s result as a
special case.

The aim of this work is to obtain, in the abstract setting o @oups, a homo-
morphism theorem for bilinear multipliers (see Theotemt&®w), which is the
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bilinear counterpart of Edwards and Gaudry’s. Roughly kimgga we show that if
Gandl are two LCA groupstn is a bilinear multiplier orG andrris a homomor-
phism between the dual group bfandG, then the compositiomo T® ris also
a bilinear multiplier or”, with operator norm bounded by the normnof

In contrast to the linear case, interesting multilinearrafmes, such as the bi-
linear Hilbert transform, or bilinear Calderébn-Zygmungeoators, map Banach
Lebesgue spaces td spaces with @< p < 1. Thus duality is precluded in proving
the most general results.

The two main difficulties to develop the abstract theory aeelick of duality
for target spaces and of dilation structure in the genetihge The main achieve-
ments of this work are to provide proofs that rely only on timelerlying group
structure (avoiding dilation arguments), using the bdingansference techniques
developed by L. Grafakos and G. Weiss|[19] (see also O. BlJadc€arro and T.
A. Gillespie’s work [6] for a related approach), and morepie develop a method
of approximating bilinear Fourier multipliers between ggal rearrangement in-
variant function spaces, in particular Lebesgue spaceackte the technical diffi-
culties of dealing with non-Banach target spaces (Thear&b&ow).

As application of our study, we recover several known resatid present some
new ones. In particular, we obtain an abstract de Leeuwis tigporem (Theorem
[5.7) that allows us to extend D. Fan and S. Sato’s resultsGeedlary[5.3 below)
for anisotropic dilations, and to extend G. Diestel and Laf@kos’s [14, Proposi-
tion 2] for p < 1 and for weak type multipliers. Furthermore, inspired byASmar
and E. Hewitt’'s approach in the linear setting [2], we defim@emeralised Bilin-
ear Hilbert Transform on certain groups with ordered duadi @btain an abstract
version of Lacey and Thiele’s result for it (see Theofen ®BbWw). As another
application we obtain necessary conditions, in terms oBttwed indices, on mul-
tipliers on non-compact LCA groups to be bounded on prodoictsarrangement
invariant spaces (see Theorem %.12 below). This is a bilineanterpart of the
classical result of L. Hormander [21, Theorem 1.1]. In jgatar, our result ex-
tends L. Grafakos and R. Torres’s [18, Proposition 5], L.f&as and J. Soria’s
[17, Proposition 2.1] and F. Villarroya’s [26, Propositi@nl ], to the setting of
multipliers on general non-compact LCA groups acting onregagement invari-
ant spaces.

The paper is organised as follows: In Sectién 2 we introdheeb@asic nota-
tions and state our main results, which we prove in secfibasd84 respectively.
Applications derived from our main theorems are collecte8ectiori b.

It is worth mentioning that the results of this work easilyemds to the setting
of mlinear operators whem > 3 but, for the sake of simplicity in the exposition,
we restrict our discussion to the bilinear case as it cogtia major ideas of this
investigation.

2. BASIC NOTATION AND MAIN RESULTS

Here G denotes a locally compact Hausdordf;compact, Abelian topological
group and we shall abbreviate it to LCA group. We adopt thétmddchotation for
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the group inner operation. We shall denote@yhe group of characters and we
write (¢,x) for the value of € Gatxe G, and(&,x) for its complex conjugate. We
shall use the letters y for denoting elements i®, andé, n, {, y for elements iG.
We reserve the symbaej; for the identity element o&. In order to avoid technical
conditions, we will assume that the groGis metrisable which is equivalent for
G to be o-compact.

From now on,L(G) stands for the space of integrable functions®@mnvith
respect the Haar measure, and we denoté}§%) the subspace of compactly
supported integrable functions. Létbe the Fourier transform of a functioh
defined by

fo)= [fuE v

We choose the Haar measuredin such a way that the following Fourier inversion
formula holds,

(o) = [ fE)E.ud.

for any f € SLY(G), which stands for the space of functiére L1(G) such thatf e
L1(G). We shall denote by " the inverse Fourier transform defined by(&) =
fA(—E). We write G2 for denoting the groufs x G endowed with the product
measure. For any functiorisg on G we introduce another functioh® g on G2
by settingf ®9(&,n) = f(&)a(n).

For more information about topological groups and theipprties we refer the
reader to[[20].

By a quasi-Banach function space (QBFS for short) on a yotaifinite mea-
sure spacéQ, 2, i), we denote a complete linear subspxcef the space ofu-
measurable functions.(Q), endowed with a (quasi-)norifi ||y, with the follow-
ing properties:

(1) feXif,andonly if|[f|y = ||| f]|lx < o;

(2) ge X and|gllx < ||fllx, wheneveg € L°(Q), f € X, and|g| < |f| u-a.e;

(3) fO < fn 1 f a.e., then| fnl|y 1[I flIx;

(4) H(E) < oo = [[Xellx <o
Observe that bounded functions supported in sets of finieesare belong to every
QBFS. If||-||x is a norm, and for any finite measure &etthere exists a constant
Ce such that,

LI <Cel flx. @)

we say thaiX is a Banach function space (BFS for short). The followagou’s
propertyholds:

Lemma 2.1. [3 Lemma l.1.5]Let X be a QBFS, and, foraN, f,e X. If f; — f
a.e., and ifiminfy || fn||x < oo, then fe X and

Il < timinf{|falx .



4 S. RODRGUEZ-LOPEZ

We say that a QBFS (or a BFS) is rearrangement invariant (Rl for short)
if there exists a quasi-norm (respectively a nofifv)y. defined onL®[0, u(Q))
endowed with the Lebesgue measure, such|thiyf = || f*||y.. Heref* stands for
the non-increasing rearrangementfofiefined, fort > 0, by

f*(t) =inf{s: pi(s) <t},

whereps(s) = p{x: |f(x)| > s} is the distribution function of’. Let X be a RI
QBFS, let

Eysf*(t) = 7 (t/s), st>0, (2.2)
be the dilation operator, and denoteligy(s) its norm. That is,
( E, f*
hy(s)= sup 1+ =X s>0. (2.3)

fexvoy Tl

Lebesgud.P spaces, Classical Lorentz spaces and Orlicz spaces ar@lesaof
RI QBFSs. We refer the reader 1d [3] for further informatiam mon-increasing
rearrangement, BFS and RI spaces.

It is is easy to see for that any BBSon G equipped with the Haar measure,
such that|-||y is absolutely continuous (s€€ [3, Definition 3.1, p. 18])}(G)N X
is a dense set iX. In particular,SL}(G) is dense in any.P(G) for p < .

A QBFSX is the p-convexification of a BFS' if X can be renormed by a quasi-
norm||-||x such that, for anyf € X,

1
£l = NI FIPIY-

In such case, we will assume that the quasi-norrK is given by\||.|p||\l/p. The
Lebesgué 9 and the weak Lorentz%* spaces, for & g < 1 andL'> are examples
of such spaces.

A BFS X is p-concave (see [23]) if there exists a constllint oo so that

(Jilunui)%w (ém!*’)% x

for every choice{ fj}''_; in X. The least constari¥ satisfying the inequality is
denoted byM (X). Let us observe that, for any< p < e, M, (LP) = 1.

Throughout the paper, we shall assume #atX, are RIBFS andX is a RI
QBFS onG endowed with the Haar measure.

)

Definition 2.2. Letm(&,n) € L®(G?). Define

Bn(f.0)00 = /[ F()a(mm(&,n) (& +n.x déan

for f, g€ SL}(G). We say tham is a bilinear multiplier for (Xg, Xz, X) if there
exists C> 0 such that

[1Bm (f,9)lIx < C[Ifllx,[9llx, (2.4)
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forany f, g € SL*(G). We write./Z y, (2,G) for the space of bilinear multipliers
for (Xg,X2,X), and we denote bym||j,)¥ (20 the least constant C satisfying
1,72

24)

If (X1,X2) = (Lpl LP2) and eitherX = LP or X = LP®, we will write it simply
ME o, (2,G), A5, (2,G) respectively, for short.

Observe that iff,g € SL}(G), then f ® g € SI}(G?) andm(f® §) € LY(G?).
Then, Bn(f,g)(x) makes pointwise meaning as a continuous function. Observe
also that ifm = K whereK e L1(G?), for any f,g € SL1(G),

= /GZK(u,v)f(x— u)g(x—v)dudv.

Here and subsequently,stands for a universal constant that depends only on
0 < p, p1, P2 < o, which value is given by

c: —Bp/’{\gpz, if p<1;
1, if p>1,

where,Aq and Bq denotes the best constant on Khintchine’s inequality (88e [
Theorem 2.b.3])

(S \0’1\2)1/2 < za,-r,-

Here{r;} stands for the Rademacher’s system.
Our main results can be stated as follows.

< Bq (Z‘al‘ )1/2

La[0,1]

Theorem 2. 3(Homomorphism theorem for bilinear multipliersl)et GT beLCA
groups and lett: G—oTbea group homomorphism. Liete %b( ). Suppose that
1< pg, p2 <, 0< p<osatisfy

1 1 1

pL P2 P
The following holds:

(1) fme. Y, (2,T)N%G(T), thenmo (Te M) € .45 1, (2,G) and

Ime(mem| 4 . 2c < cllMl g @ -

() Ifme.#5%, (2,T) N%(T), thenmo (T 1) € MES, (2,G) and

Imo (M@l gpe 26 < clMl_gp 2r) -

Observation 2.4. The conditionm € %(G) can be relaxed to the assumption of
m being normalized (seeADefiniti.4 below). Indeed, thalrdslds if m is
continuous on the image &R by 1@ 11 (see Remark4.1 below).

The proof of the previous results rely on a general approtiangproperty of
bilinear multipliers, that is the bilinear analogue [of [&rama 2].
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Theorem 2.5. Let0 < p< 1< pg, p2 < . Let X be the p-convexification of a
RIBFS and let X X, be RIBFS, such thatjXs p-concave for i=1,2. For any
m € L®(G?) N x, (2,G) there exists a sequenden;}; C L*(G?) such that:

(Py) for each jmy € LY(G?);

(P,) for almost eveng,n € G, lim;m;(£,n) =m(&,n);

(Ps) sup [|milleo < [|M]],,

(Pa) sup [[m; ”//l%lvxz(ZG) <0 HmH//zgl'XZ(zG)v
whered = 1if p > 1, or 0 = M(p,)(X1)M(p,) (X2)c otherwise. Moreover, ifn €

-~

%b(G) or m is normalized (see Definitidn 3.4 below) then

(P) for every&,n € G, limjm;(&,n) =m(&,n).

3. PROOF OFTHEOREM[Z2.8

In order to prove the Theorem we need first to prove some teahl@mmas.
Let us denote byl; f(x) = (&,x) f(x).
Lemma 3.1. Let f,g € SLY(G). For any x< G, the function

G?3 (Z,y) = F(.Y) = Bm(M_¢ f,M_,9)(x),

is uniformly continuous (uniformly on x). Moreover, for amythere exists a sym-

metric relatively compact open neighbourhoogldd g5, such that Y +Up CUp 3
and, for anyl,{’ € U,

=

sup [F(¢,y) —F({,y)| <
XeG,yeG

Proof. Let{,{’,y € G, x € G. Since Haar measure is invariant under translations,
it holds

I~(,y) —R(Zsy)| =
= [, m&m (fe+0)-fE+2))an+y)&+n.xdedn
< Imllo |- 1o f]

whererz stands for the translation operator. Then,

F Ry < f—Leofll 18l e -
s [R(Z.y) ()< Il |- Le-o T, o I8l

Ll(é) HgHLl(G)a

The result easily follows by the uniform continuity of tréatsons in Ll(é) [20,
(20.4)]. O

Lemma 3.2 (Marcinkiewicz-Zygmund’s bilinear inequality)Let X, X, be BFSs
and let X be a QBFS. Assume that for sdine p < 1 < pg, p2 < o, X is the p-
convexification of a BFS and; X pj-concave j=1,2. If T is a bounded bilinear
operator such that

ITCEDlx <ITITFllx, llgllx, ;
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1/2 1/2 1/2
(; \mj,gk)f) (; 9 \2> (; rng)

for any family{ f;}; C X1, {gj}; C X2 andd as above.

Proof. Observe that is suffices to prove the result féy} and{gx} with a finite
number of elements. The assumptiomomplies that|| f ||y = ||| f|p\|\l/p whereY
is a BFS. Khintchine’s bilinear inequality [25, Appendix,2ind thep-convexity

of the space« yield
% Mo 3

@T(f,-,gk)!z)

],
T () fi, t
(;H(S) i Zrk( )9k>

1 p 1/p
G dsdt
A ( )
p

X
1/p P 1/p

Tl /* !
: A%S </0 X1 ds) </0 ngk(t)gk X2 dt) .

SinceX; is pi-concave angh < 1, Holder inequality and [23, Theorem 1.d.6] yield

(Kl (3],

This finishes the proof because a similar inequality holdsHe other term. [

then

<o||T]|

X

P 1/p

k(t)T(fj,0¢)| dsdt

Y

> ri(9)f;

I

X1

X1

The following result extends [5, Lemma 2.2] for the case whbe target space
is not Banach and it is the bilinear unweighed analogue|df¢tma 3.6]. Before
we discuss it, we introduce some notation. We denotMb&) the space of com-
plex measured defined onG, with finite total variation||A HM(G) = [gd|A[(X).
The convolution of a complex measure and a function is defimélde usual way
as in [20, (20.12)]. We say that a bounded functiois a Fourier multiplier forxX
if the operator defined o8L'(G) by

/m &)(¢.,x)d¢,

extends to a Bounded operator ¥n We write .#x (G) for denoting the space of
linear multipliers acting orX and ||m|| 4 () denotes the norm of the associated
operatorTy,.

Proposition 3.3. Let0 < p< 1< pg, p2 < . Let X be the p-convexification of
a RIBFS and let X X, be RIBFS, such that;ds p-concave for i=1,2. Let
m € .45 x, (2,G). The following holds:
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(1) ifmy € #x,(G) andm; € .#x,(G), then(my @ mz)m € 45 , (2,G) and
Imi@m2)m| s | 20) < IMlLgx , @20 IM1ll.a @) IM2ll.a5,0)
(2) 1A, € M(G), then(A @ p) xm € .4 4, (2,G) and

1A @ ) *mll e 26 <0 T 1-lIme) IMILag

“X1 ><2 G)’
with 0 as above.

Proof. The fist assertion is almost direct, so we omit the proof. Vil glmove the
second one. Observe first that for ahyg € SLY(G),

Booum( 10 = [ (€+y0Bn(M (M@0 RQ (). (G

whereM; f(x) = ({,x)f(x). If X is Banach, the result follows by Minkowski's
integral inequality. So, it remains to prove the case wKds quasi-Banach and
p<l1.

Assume first that there exists a compact.gétsuch thatA andu are supported
in 7. By the Lemma&_3]1, there exists a sequence of symmetriévediatompact
open neighbourhoofU,, }, of €g, satisfying thatl, +Up C Un_; and that for every
n>1andl,{’ € Uy,

DIH

SUpA“:x(Za y)—FR({', V)‘
xeG,yeG

Since.#” is compact, there existd, € N, {1,...,{\, € % such that
Nn
A C|JUn+¢.
j=1
If we define, forj =2,...,Ny,
le = (Un_‘_zj)\leilv Q%:Un_‘_Zl?
we obtain a disjoint covering o, # C Lﬂ';'ile, with Nj; < N, such that
1
sup sup |R(Z.y)—F(),y)| < =
2€QixeG,yeG n

By (3.1), it follows that

Bucwen(f90| < [[IRE@YI dA@dlul). 32
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For anyn, the inner integral in the right hand side can be bounded by
LRl dA(@) = /155ywuu>

_Ejlfmuo+jm«mmépwa>

A HM

- +Z‘FX Z]a ‘am

wherea) := [, d|A|({)dZ. Then [32) yields

H)\HM(G) HUHM(G)
n

N,
Bpspem(F.0)] < S a [ IF@yldiul (). 33)
= /G

Repeating the argument with each integral appearing onlghe mand side, we
can find a family of disjoint subse{sYk}k_l, and a famlly{w(} ™, C ¢ satisfying
that.#” c wYK, and that

=

sup sup |K(Z,y) —K({ w)| <
{eYK7eGxeG

In this way, if we definef = Jyd[u|(y), the sum in[(3B) is bounded by

IINHM g N

Z +ij%wmq,y

=1 =1k=1

Thus, using tha[J 1a5 ||)\||M(é),we have

2[AM e HIJHM

Nn Mn
k
JL IR A @)l () < +3 3 alth F(<iw|-

Cauchy-Schwarz inequality yields

Zn Znanbk“:x (g5, )| <
J=1k=1

Bm \/;NLZJ' f, \/EEM—WQ)(

< A - n n
< 1A lhwig Ikl (;g

N 1/2
x)) .
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SinceB,, is a bounded bilinear operator, Lemmal3.2 implies

No My . 2\ /2
(RO
X
1/2
<m| @‘\/;Maf(x) 2) (Z‘\/EEMWQ(
X;

=Ml 26) /A @) 1HIwa 11 Flx, 19lx, -
So, for any compact se¥ C G, and anyn > 1, (3.3) yields

Xa0) [ IFdwy)| Al @l )

2[[Allw) 1Hllme) foszx+ (3.4)
n
+olmiLg 20 1M lIme) 1K) [l 19llx -

Hence, taking first limit im — o we have that for any compact s¢tC G
Baremem(f. 90Xl <IMILzx @) 1Al 1M I fllx, 9l

Taking a family of compact set#;G and using the monotonicity of the norm the
result follows. R

For general case, consider an increasing sequence on cosgiac/, 1 G .
Monotone convergence implies

Bacwn(1.00| <lim [[ IRyl dA|@)dlul ().

Using Fatou’s property ok and arguing as before, we obtain that for any compact
setZz C G,

[B1oeanem(1. 9l <0lm g, o (iminf [ L[ ) 16 gl
<Ml gz . o) M ey s 1l Il -

Arguing as before, the monotone convergence theorem \tieddsesult. d

<

o 1/2
X) )

X2

[Birapym(f9)X2[lx < ‘

Having proved the previous result we are now in a positiorotaioue the proof
of Theoren 2.6. So we need to give the countable family of iplidts {m;};
satisfyindP1)-(Ps). To this end, let considep; € 6:(G) such that

(11) Foreveryj>0,$j > 0;

(I2) Foreveryj >0, [sj=1;

(I3) For every relatively compact open sgt C G such thaeg € .7,

lim ;=0

i Jegw
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In other words,{¢;}; is an approximate identity for1(G), which existence is
ensured by[[11, Lemma 3.4]. Considef = ¢; ® ¢; € 6c(G?). It is easy to see

that{®;}; is an approximate identity fdr'(G?).
Consideth; € %;(G) such that &< h; < 1, [ h; = 1 and such that, for an§ € G

limjh;(&) = 1. Define

mj = (hj @ hy) ((¢j ®¢;) *m> (3.5)
A similar argument td [11, Lemma 3.5] for the groG® G, implies propertiesH;)
and @) for {m;};. On the other hand, sinc& andX, are RI BFS, Minkowski
integral inequality yields that, for any, h; € .#x(G) and thH///Xk(G) <1 for
k= 1,2. Thus, Proposition 3.3 yields that the sequefiog}; satisfies Ps).

In order to finish the proof of Theorein 2.5 we need to prd¥¢ &nd ). We
are going first to recall the concept of normalized functd®, [Chapter 3].

Definition 3.4. We say tham ¢ Lm(éz) is a normalized function (with respect to
®;) if, forany ¢, n € G,

Iirjnm*de(E,n)zm(f,'?)-

It follows from propertieg1), (I3), (I3) above, thati{&,n) € G2is a continuity
point of m, lim;m« ®;(£,n) = m(&,n). Thatis, ifm € %,(G?), then it is a
normalized function (with respect {@; © ¢ }). Above all, ifm e %,(G), then the
sequence{mj}j given in [35) satisfiesH).

Observation 3.5. If m(&,n) = M(n — &) where Me L®(G), then it is easy to see
that

M+ (@R Y)(&,n) =M (Y1 9)(n—&).

wherex; indicates the convolution for functions @ and @(z) = ¢(—z). There-
fore, if M is a normalized function o with respect to{¢;}, so it ism on G2
with respect to{¢; ® ¢;}. That is the case, for instance, of the functioé, n) =
—isign(n — &), which is the multiplier associated to the Bilinear Hilbdntans-
form.

We have proved tha{m j} J. defined in[(3.b) satisfied(),(Ps),(Ps) and observe
that, any partial sequence also does. Then, for the gerese| it suffices to ensure
the a.e. convergence property for a partial sequenc@qf}j. To this end, we
need the following technical lemma.

Lemma 3.6. Letl” be a LCA group and Ie{c/b\j}j be an approximate identity for

L1(F) and letb € L* (T"). Defineb; = ®; xb. Then, there exist a partial sequence
{bj, }x such that

Iiin b (§)=Db(§) aelerl.
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Proof. Suppose first thdt is a compact group. Therf(I") c LY(I) and, since/ﬁj
is an approximate identity, lighj = b in theL(I") norm. In particular, there exits
a partial sequence gb;};, such that we have the desired a.e. convergence.
Suppose now thdt is a non-compact group. Lét, be a sequence of relatively
compact, symmetric open neighbourhoods of the identitsnetd inl", such that
Hn C Hyh+Hp € Hp1 andll = UpH,. Observe that this familyH, }, satisfies that
for anyn > 1, there existsn(n) > n such thatH, + (I \ Hyn)) C (I \ Hp). Note
that any partial sequence o®;} is also an approximate identity far ().
Then, fixedn, sincebxy,, € L), XH”(G?J- * bemm)) converges tdx, in the
L! norm, whenj tends to infinity. On the other hand, for aéys H,

OO ()] < Il [ @y(mn <ol [ &)

which converges to zero whgrtends to |nf|n|ty.

Then, by an induction argument we can construct a partialeseme{b;, }x sat-
isfying that, for anyn > 1, there exists a set of measure zNfosuch that, for any
& € Hn\ Ny, limabj, (&) = b(&). A standard measure argument yields the desired
result. O

For a generam < L°°((32), the previous lemma with = G2 provide us with a
partial sequencé®;, « m}, which satisfies®). In particular,{mj, }, which is a
partial sequence of that given in_(B.5), that we rename aseghe{m;};, satisfies
(P1)-(Pa).

4. PROOF OFTHEOREM[Z2.3

Lets consider the case € .}, ,, (2,T). The weak case is proved analogously,
so we omit the details. We want to prove thab (T® 1) € .45, p, (2,G) and

Imo (MMl 4, 26 <cIMllgp 2

Assume first that there exisitse LL(I"2) such tha = m. In this case, itis easy
to see that the multiplier operator coincides with the oypergiven by

B(F.G)(0) = [/, F(x—Y)G(x— y2)K (ya.y2) yr .

which by assumption om, is a bounded operator frotrP1 (") x LP2(I") to LP(I")
with bound||m\|j,‘?1,?op2(2.r).

Let1: I — G be the dual homomorphism afdefined by
X, 1(2)) = (n(x),2), VYxeG,vzerl,

that, by [20, (24.38)] it is a continuous homomorphism, vhieduces a strongly
continuous, measure preserving representation iof L9(G) for any 0< q <
given by

R f1(X) = f1(T(2) +X).
This representation satisfies, for anyz;,z €T,

RZo (Rzl flRZz f2) = RZo+21 f1 RZo+22 f27
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and that forang € T, ||R.f[| q = [/ || for g = p, p1, p2.
Consider thélransferred operatoas in [19], given by

fl, f2 // Z1722 R21 f1 )R22 fz( )d

for fy, f € SLY(G). Then [19, Theorem 1] (19, Theorem 2] for the weak case)
yields thatTk can be extended to a bounded operat#(G) x LP2(G) to LP(G)
with a bound no larger th&‘lm\\//;g{p (2r)- But observe that it holds that

fl, f2 / K Z]_,Zz )R2 ( )dZ]_de
= /A f1(&)fa(n) // K(z1,22)(&, T1(z1) +X) (N, TH(z2) +X) dz; dy> dé dn
- / (&) Fom)R (&), m(m)) (0 + £ )€ oy
= Bmo n@n)(fl fz)(X),
which yields
Imo (MMl 4 . 26 < Ml @) (4.1)

form e I_T(\Fz)

Lets assume now thah € (T YN A p, (2,T). Let {m;}; be the sequence
given by Theoreri 2]5. The Dominated convergence theor@fha(d @s) imply
that, for anyf,, f, € SLY(G),

Bine(eom (T2, 200 = [ (&) Talm) (&), 7m)) & + . d€an
4.2)
= tim [ (&) am)m; (m(&), m(m)) (€ + n.x)dEln.
Then, Fatou’s lemmaPY) and [4.1) yield
B (F1 12|y < M By (P P2,
S Iimjinf Im; H//zg’l,pz(gr) I falley ) [l f2llLee(g)
Therefore, the results follows as ki),
I|mJ|nf Hml H~%F§)1,p2(27r) S ¥ HmHJ//F%)l,pz(Zr) .
Il

Observation 4.1. Observe that in the proof of the previous theordd) holds,
and also the statement of Theorem 2.3 does, if we can ensure.&h(&,n) € G2,
the limitlim;m;(m(&),m(n)) = m(m(&), m(n)) holds. Hence, by Remdrk 2.4, the
result holds ifm is normalized or it is continuous on the image cfley T 7.
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5. APPLICATION AND CONSEQUENCES

5.1. Applications of Theorem[Z.3. In this section we will restrict our attention to
indicespy, pz, p satisfying 1< py, p2 < o0, 0 < p < o such that

1 1 1

—+—=—. (5.1)

Pr P2 P
5.1.1. K. de Leeuw's restriction type resultslere we show how our Theordm P.3
allows us to produce de Leeuw’s type bilinear results. Ferdake of brevity,
we restrict our results only the strong case, but it has todm k mind that the
corresponding weak results also hold.

We shall start with an abstract version of of D. Fan and S.’S§t6, Theorem

3] to LCA groups. LetG be a LCA group and leil be a closed subgroup &&.
Considerd” = G/H. Recall that the dual group &fcan be identified as

Fr=H!:= {E €G: VgeH(E,g}:l}.
Letting beris the canonical inclusion ¢+ < G, andr the canonical projection
from G — H, Theoreni 2.8 yields the following abstract result.
Theorem 5.1. If G is a LCA groups and H is a closed subgroup. Then,
(1) fm e .Y, o, (2,G)N%G(G?) thenm (e 1) € 48, p, (2,G/H) and
Im(me M| g . eem <clmlze, 2o -
@) fme. .Y o, (2,H)N%(H2) thenm(M @ N) € .45, p, (2,G) and
MmO eMIl 4z 26 <clmll g, 2n -

In the particular cas€ = RY, H = Z9, identifying T® with [0, 1), if we consider
rrto be the canonical projectiom( &) = (&1 —[&1],- .., &d —[€4]), where]t] denotes
the integer part of, the previous result implies the following.

Corollary 5.2. Letm € %,(T?d) N.#¥, p, (2,Z%). If we definen(&,n) =m(& —
[&1],m1— (M4, & — [€a].na — [na]), thenm € .3, p, (2,R?) and
Ml zg o, (2m0) < €Ml _gg , (220) -

Observe that in Theorem 2.3, the obtained bound does nohdepethe homo-
morphism considered. This allows us to obtain a extensidh ¢fan and S. Sato’s
[16, Theorem 3].

Corollary 5.3. Let m € %,(R?) N .45, p, (2RY). For any € = (1,...,&) €
(R;)%let 7% : Z9 — RY be the anisotropic dilationg (n) = (&1, ..., &4ng). Then

sup Mgl 4 . (2me) < €Ml ge . (2me)
ge(Ry)"

wheremg(n,m) = m (1&(n), 7&(m)), for n,m ¢ Z9.
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Corollary 5.4. Letm € %,(R?") N.#§ p, (2,R"). Let A:RY — R" be a linear
map given by a matrix A. Define f&f,n’ € R9
m(&’,n’) =m(Ag’ An').
Thenm € . p, (2,R?) and
10 g, o9y < €ImlLg 2

Proof. Let G =R", let H = {& € R": & = Ax, x€ R%} be the image ofA and
apply (2) in Theorerh 511. O

The previous result allows us to obtain a generalization oD@stel and L.
Grafakos's[[14, Proposition 2] fgp < 1 (and also its weak type counterpart), on
the restriction to a lower dimension of a bilinear multiplie

Corollary 5.5. Let, for n>2, m € ¢,(R?") N.#p, p, (2,R"). Let d< n. Consider
dy =n—d. For anyni,n, € R%, the function defined by

M(&1, &) = m(E,N1,&2,M2), Vé1,& € RY,
satisfies thafi € .5, p, (2,R%) and

Hm”///g’l,pz(z,ﬂ&d) <c HmH//zg’l,pz(an)-

Proof. It is easy to see that ifh € ., ,, (2,R"), for any y1,» € R", then the
functionmy, , (v, V) = m(y+ W,V + ) € 4§ p, (2,R") and

HmVLV?H//[F‘,’LpZ(ZRn) = HmH///,,F'LpZ(ZR")'

In particular, if we considey; = (0,n;), for j = 1,2 and we take the linear map
A:RY — R" given byAZ = (&,0), the result follows by the previous one applied
tomy , as

M(&1,&2) = My, (Ad1,Ad2).

We can also obtain the following two lifting results on mpiligrs.

Corollary 5.6. Let, d>n>1andm € €,(R?") N.Z%, p, (2,R"). Define, for any
(&,nj) ER"x RI"for j =12,

m(fla ni, EZ7 r’2) - m(f]_, 62)
Thenm € ./, p, (2,R?) and
Hm”‘%l?l,pz(zde) é ¥ HmH//[;?l,pz(ZR”) .

Proof. It suffices to consider the natural projectidn RY — R" such that maps
any(&,n) e R"x R4 "to &, and apply Corollarf 514 as

m(&1,N1,&2,n2) = M(A(&1,N1),A(&2,N2)) = M(&1, &2).
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Corollary 5.7. Letm € ,(R?) N.#§ p, (2,R) and d> 1. Fixed yc RY, define,
forany(&,n) € R%

my(&,n) =m(&-y,n-y).
Thenmy € ., p, (2,RY) and

- ) |
SUpI | g ame) < Ml 2

Proof. It suffices to consider the linear form given by the scaladpmAyx = Xx-y
and apply Corollary 514. O

5.1.2. Bilinear Hilbert transform in groups with ordered dualn this section, fol-
lowing the spirit of [2], we define a Generalised Hilbert sform on groups with
ordered dual by using the original versionRnand obtain its boundedness.

To this end we shall assume th@tis a LCA group such tha® has a measurable
orderP. That is, there exist® C G measurable satisfying+P = P, PN (—P) =
{0}; PU(-P) = G. The groupG = T is an example of such class of groups (see
[2] and the references therein for more information on adeyroups). WitH? we
associate the function signgiven by

1 if &eP\{0};
signp(§) =40 if &=0;
-1 if &e(—P)\{0}.
Definition 5.8. We define the Generalised Bilinear Hilbert Transform in Gy t

operator given by the multipliem(&,n) = —isignp(n —&). Thatis, itis given by
the expression

He(1.90 = [ ~isigne(n —&)F(&)an) (& +n.x dédn.
Theorem 5.9. With the notations as above, there exists a constant C sattidh
any feLP(G), ge LP2(G),
[#6(f,9)[l, <ClIfllp, lI9llp,
providedZ < p < o, 1 < py, p; < .
Proof. By density, it is enough to prove the result fbrg such that the support
of f, §is compact, with constants independently on these suppbes.#}, 7y

be the support off and g respectively. Byl[2, Theorem (5.14)], there exists a
homomorphisnyt from G to R such that the equality

signp(&) = sign(m(§))
holds for a.eé € %5 — J#;. Thus, sincetis an homomorphism
signp(n — &) = sign(m(n —&)) = sign(m(&) — m(n)).
Hence, since by Remalk 3.5 sign is a normalized multiplier,can apply Theo-

rem[2.3 (see Remafk 2.4), jointly with Lacey and Thiele’sulssin [22] to con-
clude the proof. O
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5.1.3. Isomorphic groups.The following result is an immediate consequence of
applying Theorerh 213 twice.

Corollary 5.10. If G,I" are LCA groups that are topologically isomorphic, then
the spaces#y, o, (2,7)N%(T) and .4y, p, (2,G) N Gu(G) (A5, (2,7) NEH(T)
and.Z§5, (2,G) N 6y(G) respectively), are isomorphic.

In particular the previous corollary ard |20, Theorem (Bi8ply that, if G is a
LCA group such thaG is a compactly generated LCA (s€el[20, Definition (5.12)]),
then.Zy, p, (2,G)N%w(G) is fully characterised by the spacgp, , (2,7) N%,(T)
wherer is a LCA group of the typeR2 x TP x K, wherea,b are non-negative
integers an is a discrete Abelian group.

5.2. Consequences of Theorer 2.5As a result of the approximation theorem,
we will obtain also, a necessary condition (analogous tatdmder’s([21, Theo-
rem 1.1]), which generalises Grafakos and Torres’s [18p&sibion 5]. We shall
first recall the concept of Boyd indices of a Rl QBFS.

Definition 5.11. (see[3]) For any RI QBFS X, the upper Boyd index is defined by

ax =inf{p: JdcVa> lhx(a) < ca’}, (5.2)
and the lower Boyd index by
ay =sup{p: JcVa< lhx(a) <cal}. (5.3)

We shall mention that, for Lorentz spack¥s= LP9, and in particular forLP
— Oy = L
spacesgy = 0x = 5.

Theorem 5.12.Let G be a non-compact LCA group and lgt Xy, X be RI QBFSs

on G such that that X is the p-convexification of a RI BFS anis 4 pj-concave

RIBFS, for j=1,2. If there existsn € ./ y, (2,G), m # 0, then

Proof. Observe that by Theorem 2.5, we can reduce ourselves toskdltat there
existsK € LL(G?)\ {0} such thaK = m.

Let %o be a symmetric compact neighbourhoodegin G such that supi
Jo X K#p. Observe that iffy, f, are functions irSLl(G), supported in compact sets
L1 andL, respectively, then the operator

Bm(f1, f2)(X) = //GZK(ul,u2)f1(x— ug) fo(x— up) du,

is supported in the compact se¥o+ L1) N (4 + La).
Let.#" be a compact neighbourhood&fand letf,g € SLY(G) with support in
2 such that|Bk (f,g)||x > 0. Observe that

suppBn(f,g) C Ao+ 2.

Consider the translation operatorgiven by t,g(x) = g(x—Yy). SinceG is not
compact, there exists a sequerge}j>o of elements of5, with yg = g;, such that



18 S. RODRGUEZ-LOPEZ

the compact set§. %o+ % +Y, }j>o are pairwise disjoint. It follows that for any
pair of indicesj # k

B (1y; f,1.9) 0; (5.4)
Ty, fryf = 0; (5.5)
Ty,01y 9 = O0; (5.6)
Ty, Be(f,09)1y,Be(f,g) = O (5.7)
Thus, for anyN > 1, biIinearity and[(5.14) yield
N N N
> Bk(f.g Z B (ty, F, 1 Q) (X) = Bg(%Tyjﬁ > %9)(X)
k=0 k=0j= = k=0

Then [5.T) yields

N
> 5190

(N+1)u{xeG: |B(f.0)(x)| >s} = u{xeG

which implies,
N
%Tykg )
Xq 1K= Yo

where recall thatE; f ) (s) = f*(ts) denotes the dilation operator (see [2.2) above).
By (5.5) and[(5.6) the term on the right hand is equal to

R 1EN 2l x0T ;-

Ena (Be(f.9))"Ix

. N
<[] 3
J

Therefore, byl(Z)3),

1
0.< [1Be(f.0)x < ||| ( +1) Py (N -+ DPXe(N -+ 1) [, 19l

Hence, sincd, g are fixed, this implies that there exists a constantO such that
foranyN

1
hx (N 1> hx, (N4 1)hy,(N+1) >
which, by [5.2) and(5]3), yields that

g

Observation 5.13. Observe that in the previous proof, we have used the convex-
ity assumptions only for being able to apply Theofen 2.5 riteoto ensure the
existence of a multipliem, which Fourier transform is a compactly supported in-
tegrable function. Hence, we could have dropped the cotyverinditions if we
have imposed this last condition aminstead.

As an application of the previous theorem we can obtain aenebetd version of
L. Grafakos and J. Soria’s result [17, Theorem 1] to Rl QBFSs.
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Corollary 5.14. Let G be a non-compact LCA group and lat Xo, Xo Rl QBFS
on G. If there exists K L*(G?)\ {0}, K > 0, such thaK € .Zy 4, (2,G), then

gx é aX]_ +HX1'

Proof. SinceK > 0, the boundedness Bk is equivalent to the boundedness of the
operator

(.0 = [ K(ua, ) F(v=us)]lg(v )| dugcle,

and in particular, for any compact set.ii C G2 such that is not zero on’#’,
Pky, defines a bounded operator froka x X, — X. ThenKx.» € LL(G?) and

KXx € ///>><(1,Xz (2,G). Thus the previous remark and Theofem 5.12 yield the result.
O

If we particularise Theorer 5.112 to the case of classicakhta-spaces, we
obtain, is the following extension of F. Villarroya’s res{26, Proposition 3.1 ] to
arbitrary non compact LCA groups.

Corollary 5.15. Let G be a non-compact LCA group and le& p1,p2 < o, 1<
01, G < oo. If there existsn € .45, o, | pe, (2,G), m #£ 0, then

1 1 1
—<—4—.
p P11 P2
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