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2 A HOMOMORPHISM THEOREM FOR BILINEAR MULTIPLIERS

SALVADOR RODŔIGUEZ-LÓPEZ

ABSTRACT. In this paper we prove an abstract homomorphism theorem forbi-
linear multipliers in the setting of locally compact Abelian (LCA) groups. We
also provide some applications. In particular, we obtain a bilinear abstract ver-
sion of K. de Leeuw’s theorem for bilinear multipliers of strong and weak type.
We also obtain necessary conditions on bilinear multipliers on non-compact LCA
groups, yielding boundedness for the corresponding operators on products of re-
arrangement invariant spaces. Our investigations extend some existing results in
Rn to the framework of general LCA groups, and yield new boundedness results
for bilinear multipliers in quasi Banach spaces.

1. INTRODUCTION

The study of multilinear multipliers is motivated by their natural appearance in
analysis, such as in the work of R. Coifman and Y. Meyer on singular integral op-
erators and commutators [10]. The proof of M. Lacey and C. Thiele (see [22]) on
the boundedness of the bilinear Hilbert transform, ignitedinterest in questions re-
lated to multilinear operators, which lead to the study of the validity of multilinear
counterparts to classical linear results. In particular, and of direct relevance to this
paper, there has been quite a few studies in establishing multilinear versions of K.
de Leeuw’s type theorems (see [13]) on the Lebesgue spaces [6,7,14,16,26]. The
proofs in the existing literature, rely either on the dilation structure ofRn or on
duality arguments that use the Banach space structure of thetarget space.

Roughly speaking, de Leeuw’s results state that ifm is a Fourier multiplier for
Lp(Rn), with 1≤ p ≤ ∞, then if π is either the natural injection ofZn in Rn or
that ofRd in Rn for d < n, the compositionm ◦π is also a multiplier forLp(Tn),
respectively forLp(Rd), with norm bounded by the norm ofm. These results were
generalised to the context of LCA groups first by S. Saeki [24], and later reproved,
using transference techniques, by R. Coifman and G. Weiss [12]. Applying these
transference ideas, N. Asmar [1] and E. Berkson, T.A. Gillespie and P. Muhly
[4] obtained a proof of R. Edwards and G. Gaudry’s homomorphism theorem for
multipliers [15, Theorem B.2.1], which allows to recover deLeeuw’s result as a
special case.

The aim of this work is to obtain, in the abstract setting of LCA groups, a homo-
morphism theorem for bilinear multipliers (see Theorem 2.3below), which is the
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bilinear counterpart of Edwards and Gaudry’s. Roughly speaking, we show that if
G andΓ are two LCA groups,m is a bilinear multiplier onG andπ is a homomor-
phism between the dual group ofΓ andG, then the compositionm◦π ⊗π is also
a bilinear multiplier onΓ, with operator norm bounded by the norm ofm.

In contrast to the linear case, interesting multilinear operators, such as the bi-
linear Hilbert transform, or bilinear Calderón-Zygmund operators, map Banach
Lebesgue spaces toLp spaces with 0< p< 1. Thus duality is precluded in proving
the most general results.

The two main difficulties to develop the abstract theory are the lack of duality
for target spaces and of dilation structure in the general setting. The main achieve-
ments of this work are to provide proofs that rely only on the underlying group
structure (avoiding dilation arguments), using the bilinear transference techniques
developed by L. Grafakos and G. Weiss [19] (see also O. Blasco, M. Carro and T.
A. Gillespie’s work [6] for a related approach), and moreover, to develop a method
of approximating bilinear Fourier multipliers between general rearrangement in-
variant function spaces, in particular Lebesgue spaces, totackle the technical diffi-
culties of dealing with non-Banach target spaces (Theorem 2.5 below).

As application of our study, we recover several known results and present some
new ones. In particular, we obtain an abstract de Leeuw’s type theorem (Theorem
5.1) that allows us to extend D. Fan and S. Sato’s results (seeCorollary 5.3 below)
for anisotropic dilations, and to extend G. Diestel and L. Grafakos’s [14, Proposi-
tion 2] for p< 1 and for weak type multipliers. Furthermore, inspired by N.Asmar
and E. Hewitt’s approach in the linear setting [2], we define aGeneralised Bilin-
ear Hilbert Transform on certain groups with ordered dual, and obtain an abstract
version of Lacey and Thiele’s result for it (see Theorem 5.9 below). As another
application we obtain necessary conditions, in terms of theBoyd indices, on mul-
tipliers on non-compact LCA groups to be bounded on productsof rearrangement
invariant spaces (see Theorem 5.12 below). This is a bilinear counterpart of the
classical result of L. Hörmander [21, Theorem 1.1]. In particular, our result ex-
tends L. Grafakos and R. Torres’s [18, Proposition 5], L. Grafakos and J. Soria’s
[17, Proposition 2.1] and F. Villarroya’s [26, Proposition3.1 ], to the setting of
multipliers on general non-compact LCA groups acting on rearrangement invari-
ant spaces.

The paper is organised as follows: In Section 2 we introduce the basic nota-
tions and state our main results, which we prove in sections 3and 4 respectively.
Applications derived from our main theorems are collected in Section 5.

It is worth mentioning that the results of this work easily extends to the setting
of m-linear operators whenm≥ 3 but, for the sake of simplicity in the exposition,
we restrict our discussion to the bilinear case as it contains the major ideas of this
investigation.

2. BASIC NOTATION AND MAIN RESULTS

HereG denotes a locally compact Hausdorff,σ -compact, Abelian topological
group and we shall abbreviate it to LCA group. We adopt the additive notation for
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the group inner operation. We shall denote byĜ the group of characters and we
write 〈ξ ,x〉 for the value ofξ ∈ Ĝatx∈G, and〈ξ ,x〉 for its complex conjugate. We
shall use the lettersx,y for denoting elements inG, andξ ,η ,ζ ,γ for elements in̂G.
We reserve the symboleG for the identity element ofG. In order to avoid technical
conditions, we will assume that the groupG is metrisable which is equivalent for
Ĝ to beσ -compact.

From now on,L1(G) stands for the space of integrable functions onG with
respect the Haar measure, and we denote byL1

c(G) the subspace of compactly
supported integrable functions. Let̂f be the Fourier transform of a functionf
defined by

f̂ (ξ ) =
∫

G
f (u)〈ξ ,u〉du.

We choose the Haar measure inĜ in such a way that the following Fourier inversion
formula holds,

f (u) =
∫

Ĝ
f̂ (ξ )〈ξ ,u〉dξ ,

for any f ∈SL1(G), which stands for the space of functionf ∈ L1(G) such that̂f ∈
L1(Ĝ). We shall denote byf∨ the inverse Fourier transform defined byf∨(ξ ) =
f̂ (−ξ ). We write G2 for denoting the groupG×G endowed with the product
measure. For any functionsf ,g on G we introduce another functionf ⊗g on G2

by setting f ⊗g(ξ ,η) = f (ξ )g(η).
For more information about topological groups and their properties we refer the

reader to [20].
By a quasi-Banach function space (QBFS for short) on a totally σ -finite mea-

sure space(Ω,Σ,µ), we denote a complete linear subspaceX of the space ofµ-
measurable functions,L0(Ω), endowed with a (quasi-)norm‖·‖X with the follow-
ing properties:

(1) f ∈ X if, and only if ‖ f‖X = ‖| f |‖X < ∞;
(2) g∈ X and‖g‖X ≤ ‖ f‖X, wheneverg∈ L0(Ω), f ∈ X, and|g| ≤ | f | µ-a.e;
(3) If 0 ≤ fn ↑ f a.e., then‖ fn‖X ↑ ‖ f‖X;
(4) µ(E)< ∞ ⇒ ||χE||X < ∞.

Observe that bounded functions supported in sets of finite measure belong to every
QBFS. If ‖·‖X is a norm, and for any finite measure setE, there exists a constant
CE such that, ∫

E
| f | ≤CE ‖ f‖X , (2.1)

we say thatX is a Banach function space (BFS for short). The followingFatou’s
propertyholds:

Lemma 2.1. [3, Lemma I.1.5]Let X be a QBFS, and, for n∈N, fn ∈ X. If fn → f
a.e., and iflim inf n‖ fn‖X < ∞, then f∈ X and

‖ f‖X ≤ lim inf
n

‖ fn‖X .
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We say that a QBFS (or a BFS)X is rearrangement invariant (RI for short)
if there exists a quasi-norm (respectively a norm)‖·‖X∗ defined onL0 [0,µ(Ω))
endowed with the Lebesgue measure, such that‖ f‖X = ‖ f ∗‖X∗ . Here f ∗ stands for
the non-increasing rearrangement off , defined, fort > 0, by

f ∗(t) = inf
{

s : µ f (s)≤ t
}
,

whereµ f (s) = µ {x : | f (x)| > s} is the distribution function off . Let X be a RI
QBFS, let

E1/s f ∗(t) = f ∗ (t/s) , s, t > 0, (2.2)

be the dilation operator, and denote byhX(s) its norm. That is,

hX(s) = sup
f∈X\{0}

∥∥∥E1
s
f ∗
∥∥∥

X∗

‖ f ∗‖X∗

, s> 0. (2.3)

LebesgueLp spaces, Classical Lorentz spaces and Orlicz spaces are examples of
RI QBFSs. We refer the reader to [3] for further information on non-increasing
rearrangement, BFS and RI spaces.

It is is easy to see for that any BFSX on G equipped with the Haar measure,
such that‖·‖X is absolutely continuous (see [3, Definition 3.1, p. 14]),SL1(G)∩X
is a dense set inX. In particular,SL1(G) is dense in anyLp(G) for p< ∞.

A QBFSX is thep-convexification of a BFSY if X can be renormed by a quasi-
norm‖·‖X such that, for anyf ∈ X,

‖ f‖X = ‖| f |p‖1/p
Y .

In such case, we will assume that the quasi-norm inX is given by‖|.|p‖1/p
Y . The

LebesgueLq and the weak LorentzLq,∞ spaces, for 0< q< 1 andL1,∞ are examples
of such spaces.

A BFSX is p-concave (see [23]) if there exists a constantM < ∞ so that
(

n

∑
j=1

∥∥ f j
∥∥p

X

) 1
p

≤ M

∥∥∥∥∥∥

(
n

∑
j=1

∣∣ f j
∣∣p
) 1

p

∥∥∥∥∥∥
X

,

for every choice{ f j}
n
j=1 in X. The least constantM satisfying the inequality is

denoted byM(p)(X). Let us observe that, for any 1≤ p< ∞, M(p)(L
p) = 1.

Throughout the paper, we shall assume thatX1,X2 are RIBFS andX is a RI
QBFS onG endowed with the Haar measure.

Definition 2.2. Letm(ξ ,η) ∈ L∞(Ĝ2). Define

Bm( f ,g)(x) =
∫∫

Ĝ2
f̂ (ξ )ĝ(η)m(ξ ,η)〈ξ +η ,x〉dξ dη

for f , g ∈ SL1(G). We say thatm is a bilinear multiplier for(X1,X2,X) if there
exists C> 0 such that

||Bm( f ,g)||X ≤C|| f ||X1||g||X2 (2.4)
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for any f, g∈ SL1(G). We writeM X
X1,X2

(2,G) for the space of bilinear multipliers
for (X1,X2,X), and we denote by‖m‖

M X
X1,X2

(2,G) the least constant C satisfying

(2.4).

If (X1,X2) = (Lp1,Lp2) and eitherX = Lp or X = Lp,∞, we will write it simply
M

p
p1,p2 (2,G), M

p,∞
p1,p2 (2,G) respectively, for short.

Observe that iff ,g ∈ SL1(G), then f ⊗ g ∈ SL1(G2) andm( f̂ ⊗ ĝ) ∈ L1(Ĝ2).
Then,Bm( f ,g)(x) makes pointwise meaning as a continuous function. Observe
also that ifm = K̂ whereK ∈ L1

c(G
2), for any f ,g∈ SL1(G),

Bm( f ,g)(x) =
∫∫

G2
K(u,v) f (x−u)g(x−v)dudv.

Here and subsequently,c stands for a universal constant that depends only on
0< p, p1, p2 < ∞, which value is given by

c=

{
Bp1Bp2

A2
p

, if p< 1;

1, if p≥ 1,
,

where,Aq andBq denotes the best constant on Khintchine’s inequality (see [23,
Theorem 2.b.3])

Aq

(
∑
∣∣α j
∣∣2
)1/2

≤

∥∥∥∥∥∑j

α j r j

∥∥∥∥∥
Lq[0,1]

≤ Bq

(
∑
∣∣α j
∣∣2
)1/2

.

Here{r j} stands for the Rademacher’s system.
Our main results can be stated as follows.

Theorem 2.3(Homomorphism theorem for bilinear multipliers). Let G,Γ be LCA
groups and letπ : Ĝ→ Γ̂ be a group homomorphism. Letm ∈Cb(Γ̂). Suppose that
1≤ p1, p2 < ∞, 0< p≤ ∞ satisfy

1
p1

+
1
p2

=
1
p
.

The following holds:

(1) If m ∈ M
p
p1,p2 (2,Γ)∩Cb(Γ̂), thenm◦ (π ⊗π) ∈ M

p
p1,p2 (2,G) and

‖m◦ (π ⊗π)‖
M

p
p1,p2(2,G) ≤ c‖m‖

M
p,∞
p1,p2(2,Γ)

.

(2) If m ∈ M
p,∞
p1,p2 (2,Γ)∩Cb(Γ̂), thenm◦ (π ⊗π) ∈ M

p,∞
p1,p2 (2,G) and

‖m◦ (π ⊗π)‖
M

p,∞
p1,p2(2,G) ≤ c‖m‖

M
p,∞
p1,p2(2,Γ)

.

Observation 2.4. The conditionm ∈ Cb(Ĝ) can be relaxed to the assumption of
m being normalized (see Definition 3.4 below). Indeed, the result holds if m is
continuous on the image of̂G2 by π ⊗π (see Remark 4.1 below).

The proof of the previous results rely on a general approximation property of
bilinear multipliers, that is the bilinear analogue of [8, Lemma 2].
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Theorem 2.5. Let 0 < p ≤ 1 ≤ p1, p2 < ∞. Let X be the p-convexification of a
RIBFS and let X1,X2 be RIBFS, such that Xi is pi-concave for i= 1,2. For any
m ∈ L∞(Ĝ2)∩M X

X1,X2
(2,G) there exists a sequence{m j} j ⊂ L∞(Ĝ2) such that:

(P1) for each j,m∨
j ∈ L1

c(Ĝ
2);

(P2) for almost everyξ ,η ∈ Ĝ, lim j m j(ξ ,η) = m(ξ ,η);
(P3) supj ‖m j‖∞ ≤ ‖m‖∞,
(P4) supj ‖m j‖M X

X1,X2
(2,G) ≤ d‖m‖

M X
X1,X2

(2,G),

whered = 1 if p ≥ 1, or d = M(p1)(X1)M(p2)(X2)c otherwise. Moreover, ifm ∈

Cb(Ĝ) or m is normalized (see Definition 3.4 below) then

(P′
2) for everyξ ,η ∈ Ĝ, lim j m j(ξ ,η) = m(ξ ,η).

3. PROOF OFTHEOREM 2.5

In order to prove the Theorem we need first to prove some technical lemmas.
Let us denote byMξ f (x) = 〈ξ ,x〉 f (x).

Lemma 3.1. Let f,g∈ SL1(G). For any x∈ G, the function

Ĝ2 ∋ (ζ ,γ) 7→ Fx(ζ ,γ) := Bm(M−ζ f ,M−γg)(x),

is uniformly continuous (uniformly on x). Moreover, for anyn, there exists a sym-
metric relatively compact open neighbourhood Un of eĜ, such that Un+Un ⊂Un−1

and, for anyζ ,ζ ′ ∈Un

sup
x∈G,γ∈Ĝ

∣∣Fx(ζ ,γ)−Fx(ζ ′,γ)
∣∣≤ 1

n
.

Proof. Let ζ ,ζ ′,γ ∈ Ĝ, x∈ G. Since Haar measure is invariant under translations,
it holds∣∣Fx(ζ ,γ)−Fx(ζ ′,γ)

∣∣=

=
∫∫

R2
m(ξ ,η)

(
f̂ (ξ +ζ )− f̂ (ξ +ζ ′)

)
ĝ(η + γ)〈ξ +η ,x〉dξ dη

≤ ‖m‖∞

∥∥∥ f̂ − τζ−ζ ′ f̂
∥∥∥

L1(Ĝ)
‖ĝ‖L1(Ĝ) ,

whereτζ stands for the translation operator. Then,

sup
x∈G.γ∈Ĝ

∣∣Fx(ζ ,γ)−Fx(ζ ′,γ)
∣∣≤ ‖m‖∞

∥∥∥ f̂ −Lζ−ζ ′ f̂
∥∥∥

L1(Ĝ)
‖ĝ‖L1(Ĝ) .

The result easily follows by the uniform continuity of translations inL1(Ĝ) [20,
(20.4)]. �

Lemma 3.2 (Marcinkiewicz-Zygmund’s bilinear inequality). Let X1,X2 be BFSs
and let X be a QBFS. Assume that for some0< p≤ 1≤ p1, p2 < ∞, X is the p-
convexification of a BFS and Xj is pj -concave j= 1,2. If T is a bounded bilinear
operator such that

‖T( f ,g)‖X ≤ ‖T‖‖ f‖X1
‖g‖X2

,
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then∥∥∥∥∥∥

(
∑
j,k

∣∣T( f j ,gk)
∣∣2
)1/2

∥∥∥∥∥∥
X

≤ d‖T‖

∥∥∥∥∥∥

(
∑

j

∣∣g j
∣∣2
)1/2

∥∥∥∥∥∥
X1

∥∥∥∥∥∥

(
∑
k

|gk|
2

)1/2
∥∥∥∥∥∥

X2

,

for any family{ f j} j ⊂ X1, {g j} j ⊂ X2 andd as above.

Proof. Observe that is suffices to prove the result for{ f j} and{gk} with a finite

number of elements. The assumption onX implies that‖ f‖X = ‖| f |p‖1/p
Y whereY

is a BFS. Khintchine’s bilinear inequality [25, Appendix D], and thep-convexity
of the spaceX yield

∥∥∥∥∥∥

(
∑
j,k

∣∣T( f j ,gk)
∣∣2
)1/2

∥∥∥∥∥∥
X

≤
1

A2
p

∥∥∥∥∥
∫∫

[0,1]2

∣∣∣∣∣∑j,k
r j(s)rk(t)T( f j ,gk)

∣∣∣∣∣

p

dsdt

∥∥∥∥∥

1/p

Y

≤
1

A2
p3

(∫∫

[0,1]2

∥∥∥∥∥T

(
∑

j

r j(s) f j ,∑
k

rk(t)gk

)∥∥∥∥∥

p

X

dsdt

)1/p

≤
‖T‖
A2

p3

(∫ 1

0

∥∥∥∥∥∑j

r j(s) f j

∥∥∥∥∥

p

X1

ds

)1/p(∫ 1

0

∥∥∥∥∥∑k

rk(t)gk

∥∥∥∥∥

p

X2

dt

)1/p

.

SinceX1 is p1-concave andp≤ 1, Hölder inequality and [23, Theorem 1.d.6] yield

(∫ 1

0

∥∥∥∥∥∑j

r j(s) f j

∥∥∥∥∥

p

X1

ds

) 1
p

≤
∫ 1

0

∥∥∥∥∥∑j

r j(s) f j

∥∥∥∥∥
X1

ds≤M(p1)(X1)Bp1

∥∥∥∥∥∥

(
∑

j

∣∣ f j
∣∣2
) 1

2

∥∥∥∥∥∥
X1

.

This finishes the proof because a similar inequality holds for the other term. �

The following result extends [5, Lemma 2.2] for the case where the target space
is not Banach and it is the bilinear unweighed analogue of [9,Lemma 3.6]. Before
we discuss it, we introduce some notation. We denote byM(Ĝ) the space of com-
plex measuresλ defined onĜ, with finite total variation‖λ‖M(Ĝ) =

∫
Gd|λ |(x).

The convolution of a complex measure and a function is definedin the usual way
as in [20, (20.12)]. We say that a bounded functionm is a Fourier multiplier forX
if the operator defined onSL1(G) by

Tm f (x) =
∫

Ĝ
m(ξ ) f̂ (ξ )〈ξ ,x〉dξ ,

extends to a Bounded operator onX. We writeMX(G) for denoting the space of
linear multipliers acting onX and‖m‖MX(G) denotes the norm of the associated
operatorTm.

Proposition 3.3. Let 0 < p ≤ 1 ≤ p1, p2 < ∞. Let X be the p-convexification of
a RIBFS and let X1,X2 be RIBFS, such that Xi is pi-concave for i= 1,2. Let
m ∈ M X

X1,X2
(2,G). The following holds:
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(1) If m1 ∈MX1(G) andm2 ∈MX2(G), then(m1⊗m2)m∈M X
X1,X2

(2,G) and

‖(m1⊗m2)m‖
M X

X1,X2
(2,G) ≤ ‖m‖M X

X1,X2
(2,G) ‖m1‖MX1(G) ‖m2‖MX2(G)

(2) If λ ,µ ∈ M(Ĝ), then(λ ⊗µ)∗m ∈ M X
X1,X2

(2,G) and

‖(λ ⊗µ)∗m‖
M X

X1,X2
(2,G) ≤ d‖λ‖M(Ĝ) ‖µ‖M(Ĝ) ‖m‖

M X
X1,X2

(2,G) ,

with d as above.

Proof. The fist assertion is almost direct, so we omit the proof. We shall prove the
second one. Observe first that for anyf ,g∈ SL1(G),

B(λ⊗µ)∗m( f ,g)(x) =
∫∫

Ĝ2
〈ζ + γ ,x〉Bm(M−ζ f ,M−γg)(x)dλ (ζ )dµ(γ), (3.1)

whereMζ f (x) = 〈ζ ,x〉 f (x). If X is Banach, the result follows by Minkowski’s
integral inequality. So, it remains to prove the case whenX is quasi-Banach and
p< 1.

Assume first that there exists a compact setK such thatλ andµ are supported
in K . By the Lemma 3.1, there exists a sequence of symmetric relatively compact
open neighbourhood{Un}n of eĜ, satisfying thatUn+Un ⊂Un−1 and that for every
n≥ 1 andζ ,ζ ′ ∈Un,

sup
x∈G,γ∈Ĝ

∣∣Fx(ζ ,γ)−Fx(ζ ′,γ)
∣∣< 1

n
.

SinceK is compact, there existsNn ∈ N, ζ1, . . . ,ζNn ∈ K such that

K ⊂
Nn⋃

j=1

Un+ζ j .

If we define, for j = 2, . . . ,Nn,

Ω j
n = (Un+ζ j)\Ω j−1

n , Ω1
n =Un+ζ1,

we obtain a disjoint covering ofK , K ⊂
⊎N′

n
j=1Ω j

n, with N′
n ≤ Nn such that

sup
ζ∈Ω j

n

sup
x∈G,γ∈Ĝ

∣∣Fx(ζ ,γ)−Fx(ζ j ,γ)
∣∣≤ 1

n
.

By (3.1), it follows that

∣∣B(λ⊗µ)∗m( f ,g)(x)
∣∣ ≤

∫∫

Ĝ2
|Fx(ζ ,γ)| d|λ | (ζ )d|µ | (γ). (3.2)
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For anyn, the inner integral in the right hand side can be bounded by

∫

Ĝ
|Fx(ζ ,γ)| d|λ | (ζ ) =

N′
n

∑
j=1

∫

Ω j
n

|Fx(ζ ,γ)| d|λ |(ζ )

≤
1
n

N′
n

∑
j=1

∫

Ω j
n

d|λ | (ζ )+
N′

n

∑
j=1

∣∣Fx(ζ j ,γ)
∣∣
∫

Ω j
n

d|λ |(ζ )

=
‖λ‖M(Ĝ)

n
+

N′
n

∑
j=1

∣∣Fx(ζ j ,γ)
∣∣a j

n,

wherea j
n :=

∫
Ω j

n
d|λ | (ζ )dζ . Then (3.2) yields

∣∣B(φ⊗ψ)∗m( f ,g)(x)
∣∣ ≤

‖λ‖M(Ĝ) ‖µ‖M(Ĝ)

n
+

N′
n

∑
j=1

a j
n

∫

Ĝ

∣∣Fx(ζ j ,γ)
∣∣d|µ | (γ). (3.3)

Repeating the argument with each integral appearing on the right hand side, we
can find a family of disjoint subsets{ϒk

n}
Mn
k=1, and a family{γk}

Mn
k=1 ⊂K satisfying

thatK ⊂ ⊎ϒk
n, and that

sup
ζ∈ϒk

n

sup
ζ∈Ĝ,x∈G

|Fx(ζ ,γ)−Fx(ζ ,γk)| ≤
1
n
.

In this way, if we definebk
n =

∫
ϒk

n
d|µ |(γ), the sum in (3.3) is bounded by

‖µ‖M(Ĝ)

n

Nn

∑
j=1

a j
n+

N′
n

∑
j=1

Mn

∑
k=1

a j
nbk

n

∣∣Fx(ζ j ,γk)
∣∣ .

Thus, using that∑Nn
j=1a j

n = ‖λ‖M(Ĝ), we have

∫∫

Ĝ2
|Fx(ζ ,γ)| d|λ | (ζ )d|µ | (γ)≤

2‖λ‖M(Ĝ) ‖µ‖M(Ĝ)

n
+

Nn

∑
j=1

Mn

∑
k=1

a j
nbk

n

∣∣Fx(ζ j ,γk)
∣∣ .

Cauchy-Schwarz inequality yields

Nn

∑
j=1

Mn

∑
k=1

a j
nbk

n

∣∣Fx(ζ j ,γk)
∣∣≤

≤
√

‖λ‖M(Ĝ) ‖µ‖M(Ĝ)

(
Nn

∑
j=1

Mn

∑
k=1

∣∣∣∣Bm(

√
a j

nM−ζ j
f ,
√

bk
nM−γkg)(x)

∣∣∣∣
2
)1/2

.
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SinceBm is a bounded bilinear operator, Lemma 3.2 implies
∥∥∥∥∥∥

(
Nn

∑
j=1

Mn

∑
k=1

∣∣∣∣Bm(

√
a j

nM−ζ j
f ,
√

bk
nM−γkg)(x)

∣∣∣∣
2
)1/2

∥∥∥∥∥∥
X

≤

≤ d‖m‖

∥∥∥∥∥∥

(
∑

j

∣∣∣∣
√

a j
nM−ζ j

f (x)

∣∣∣∣
2
)1/2

∥∥∥∥∥∥
X1

∥∥∥∥∥∥

(
∑
k

∣∣∣∣
√

bk
nM−γkg(x)

∣∣∣∣
2
)1/2

∥∥∥∥∥∥
X2

= d‖m‖
M X

X1,X2
(2,G)

√
‖λ‖M(Ĝ) ‖µ‖M(Ĝ) ‖ f‖X1

‖g‖X2
.

So, for any compact setR ⊂ G, and anyn≥ 1, (3.3) yields

∥∥B(λ⊗µ)∗m( f ,g)χR

∥∥
X ≤

∥∥∥∥χR(x)
∫

Ĝ2
|Fx(u,γ)| d|λ |(u)d|µ |(γ)

∥∥∥∥
X

2‖λ‖M(Ĝ) ‖µ‖M(Ĝ) ‖χR‖X

n
+

+d‖m‖M X
X1,X2

(2,G) ‖λ‖M(Ĝ) ‖µ‖M(Ĝ) ‖ f‖X1
‖g‖X2

.

(3.4)

Hence, taking first limit inn→ ∞ we have that for any compact setR ⊂ G
∥∥B(λ⊗µ)∗m( f ,g)χR

∥∥
X ≤ d‖m‖

M X
X1,X2

(2,G) ‖λ‖M(Ĝ) ‖µ‖M(Ĝ) ‖ f‖X1
‖g‖X2

.

Taking a family of compact setsR↑G and using the monotonicity of the norm the
result follows.

For general case, consider an increasing sequence on compact setsKn ↑ Ĝ .
Monotone convergence implies

∣∣B(λ⊗µ)∗m( f ,g)(x)
∣∣ ≤ lim

n

∫∫

Kn⊗Kn

|Fx(ζ ,γ)| d|λ |(ζ )d|µ |(γ).

Using Fatou’s property ofX and arguing as before, we obtain that for any compact
setR ⊂ G,

∥∥B(φ⊗ψ)∗m( f ,g)χR

∥∥
X
≤ d‖m‖

M X
X1,X2

(2,G)

(
lim inf

n

∫

Kn

d|λ |
∫

Kn

d|µ |
)
‖ f‖X1

‖g‖X2
,

≤ d‖m‖
M X

X1,X2
(2,G) ‖λ‖M(Ĝ) ‖µ‖M(Ĝ) ‖ f‖X1

‖g‖X2
.

Arguing as before, the monotone convergence theorem yieldsthe result. �

Having proved the previous result we are now in a position to continue the proof
of Theorem 2.5. So we need to give the countable family of multipliers {m j} j

satisfying(P1)-(P4). To this end, let considerϕ j ∈ Cc(G) such that

(I1) For every j ≥ 0, ϕ̂ j ≥ 0;
(I2) For every j ≥ 0,

∫
Ĝ ϕ̂ j = 1;

(I3) For every relatively compact open setK ⊂ Ĝ such thateĜ ∈ K ,

lim
j

∫

ξ 6∈K

ϕ̂ j = 0.
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In other words,{ϕ̂ j} j is an approximate identity forL1(Ĝ), which existence is
ensured by [11, Lemma 3.4]. ConsiderΦ j = ϕ j ⊗ϕ j ∈ Cc(G2). It is easy to see
that{Φ̂ j} j is an approximate identity forL1(Ĝ2).

Considerh j ∈ Cc(G) such that 0≤ h j ≤ 1,
∫

h j = 1 and such that, for anyξ ∈ Ĝ
lim j ĥ j(ξ ) = 1. Define

m j = ̂(h j ⊗h j)
(

̂(ϕ j ⊗ϕ j)∗m
)

(3.5)

A similar argument to [11, Lemma 3.5] for the groupG⊗G, implies properties (P1)
and (P3) for {m j} j . On the other hand, sinceX1 andX2 are RI BFS, Minkowski
integral inequality yields that, for anyj, ĥ j ∈ MXk(G) and

∥∥h j
∥∥

MXk(G)
≤ 1 for

k= 1,2. Thus, Proposition 3.3 yields that the sequence{m j} j satisfies (P4).
In order to finish the proof of Theorem 2.5 we need to prove (P2) and (P′

2). We
are going first to recall the concept of normalized function [12, Chapter 3].

Definition 3.4. We say thatm ∈ L∞(Ĝ2) is a normalized function (with respect to
Φ j ) if, for anyξ ,η ∈ Ĝ,

lim
j

m∗Φ j(ξ ,η) = m(ξ ,η).

It follows from properties(I1), (I3), (I3) above, that if(ξ ,η)∈ Ĝ2 is a continuity
point of m, lim j m ∗ Φ j(ξ ,η) = m(ξ ,η). That is, if m ∈ Cb(Ĝ2), then it is a
normalized function (with respect to{ϕ̂ j ⊗ ϕ̂ j}). Above all, ifm ∈ Cb(Ĝ), then the
sequence

{
m j
}

j given in (3.5) satisfies (P′
2).

Observation 3.5. If m(ξ ,η) = M(η −ξ ) where M∈ L∞(Ĝ), then it is easy to see
that

m∗ (φ ⊗ψ)(ξ ,η) = M ∗1 (ψ ∗1 φ̃)(η −ξ ).

where∗1 indicates the convolution for functions in̂G and φ̃ (z) = φ(−z). There-
fore, if M is a normalized function on̂G with respect to{ϕ j}, so it is m on Ĝ2

with respect to{ϕ j ⊗ϕ j}. That is the case, for instance, of the functionm(ξ ,η) =
−i sign(η − ξ ), which is the multiplier associated to the Bilinear HilbertTrans-
form.

We have proved that
{

m j
}

j defined in (3.5) satisfies (P1),(P3),(P4) and observe
that, any partial sequence also does. Then, for the general case, it suffices to ensure
the a.e. convergence property for a partial sequence of

{
m j
}

j . To this end, we
need the following technical lemma.

Lemma 3.6. Let Γ be a LCA group and let{Φ̂ j} j be an approximate identity for
L1(Γ) and letb ∈ L∞ (Γ). Defineb j = Φ̂ j ∗b. Then, there exist a partial sequence
{b jk}k such that

lim
k

b jk(ξ ) = b(ξ ) a.e.ξ ∈ Γ.
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Proof. Suppose first thatΓ is a compact group. ThenL∞(Γ)⊂ L1(Γ) and, sincêΦ j

is an approximate identity, limj b j = b in theL1(Γ) norm. In particular, there exits
a partial sequence of{b j} j , such that we have the desired a.e. convergence.

Suppose now thatΓ is a non-compact group. LetHn be a sequence of relatively
compact, symmetric open neighbourhoods of the identity element inΓ, such that
Hn ⊂ Hn+Hn ⊂ Hn+1 andΓ = ∪nHn. Observe that this family{Hn}n satisfies that
for any n≥ 1, there existsm(n) > n such thatHn+(Γ \Hm(n)) ⊂ (Γ \Hn). Note
that any partial sequence of{Φ j} is also an approximate identity forL1(Γ).

Then, fixedn, sincebχHm(n)
∈ L1(Γ), χHn(Φ̂ j ∗bχHm(n)

) converges tobχHn in the

L1 norm, whenj tends to infinity. On the other hand, for anyξ ∈ Hn,
∣∣∣Φ̂ j ∗bχΓ\Hm(n)

(ξ )
∣∣∣≤ ‖b‖∞

∫

Hn+Γ\Hm(n)

Φ̂ j(η)dη ≤ ‖b‖∞

∫

Γ\Hn

Φ̂ j(η)dη ,

which converges to zero whenj tends to infinity.
Then, by an induction argument we can construct a partial sequence{b jk}k sat-

isfying that, for anyn≥ 1, there exists a set of measure zeroNn, such that, for any
ξ ∈ Hn\Nn, limn b jk(ξ ) = b(ξ ). A standard measure argument yields the desired
result. �

For a generalm ∈ L∞(Ĝ2), the previous lemma withΓ = Ĝ2 provide us with a
partial sequence{Φ̂ jk ∗m}k which satisfies (P2). In particular,{m jk}k, which is a
partial sequence of that given in (3.5), that we rename as thenew{m j} j , satisfies
(P1)-(P4).

4. PROOF OFTHEOREM 2.3

Lets consider the casem ∈ M
p
p1,p2 (2,Γ). The weak case is proved analogously,

so we omit the details. We want to prove thatm◦ (π ⊗π) ∈ M
p
p1,p2 (2,G) and

‖m◦ (π ⊗π)‖
M

p
p1,p2(2,G) ≤ c‖m‖M

p
p1,p2(2,Γ)

.

Assume first that there existsK ∈ L1
c(Γ2) such that̂K = m. In this case, it is easy

to see that the multiplier operator coincides with the operator given by

BK(F,G)(x) =
∫∫

Γ2
F(x−y1)G(x−y2)K(y1,y2)dy1 dy2,

which by assumption onm, is a bounded operator fromLp1(Γ)×Lp2(Γ) to Lp(Γ)
with bound‖m‖

M
p,∞
p1,p2(2,Γ)

.

Let π̃ : Γ → G be the dual homomorphism ofπ defined by

〈x, π̃(z)〉= 〈π(x),z〉, ∀x∈ G, ∀z∈ Γ,
that, by [20, (24.38)] it is a continuous homomorphism, which induces a strongly
continuous, measure preserving representation ofΓ in Lq(G) for any 0< q < ∞
given by

Rz f1(x) = f1(π̃(z)+x).

This representation satisfies, for anyz0,z1,z2 ∈ Γ,

Rz0 (Rz1 f1Rz2 f2) = Rz0+z1 f1 Rz0+z2 f2,
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and that for anyz∈ Γ, ‖Rz f‖Lq = ‖ f‖Lq for q= p, p1, p2.
Consider theTransferred operatoras in [19], given by

TK( f1, f2)(x) =
∫∫

Γ2
K(z1,z2)Rz1 f1(x)Rz2 f2(x) dz,

for f1, f2 ∈ SL1(G). Then [19, Theorem 1] ( [19, Theorem 2] for the weak case)
yields thatTK can be extended to a bounded operatorLp1(G)× Lp2(G) to Lp(G)
with a bound no larger than‖m‖

M
p
p1,p2(2,Γ)

. But observe that it holds that

TK( f1, f2)(x) =
∫∫

Γ2
K(z1,z2)R

1
z1

f1(x)R
2
z2

f2(x)dz1 dz2

=
∫∫

Ĝ2
f̂1(ξ ) f̂2(η)

∫∫

Γ2
K(z1,z2)〈ξ , π̃(z1)+x〉〈η , π̃(z2)+x〉dz1 dγ2 dξ dη

=

∫∫

Ĝ2
f̂1(ξ ) f̂2(η)K̂(π(ξ ),π(η))〈η +ξ ,x〉dξ dη

= Bm◦(π⊗π)( f1, f2)(x),

which yields

‖m◦ (π ⊗π)‖
M

p
p1,p2(2,G) ≤ ‖m‖

M
p,∞
p1,p2(2,Γ)

, (4.1)

for m ∈ L̂1
c(Γ2).

Lets assume now thatm ∈ Cb(Γ̂)∩M
p
p1,p2 (2,Γ). Let {m j} j be the sequence

given by Theorem 2.5. The Dominated convergence theorem, (P′
2) and (P3) imply

that, for anyf1, f2 ∈ SL1(G),

Bm◦(π⊗π)( f1, f2)(x) =
∫∫

Ĝ2
f̂1(ξ ) f̂2(η)m(π(ξ ),π(η))〈ξ +η ,x〉dξ dη

= lim
j

∫∫

Ĝ2
f̂1(ξ ) f̂2(η)m j(π(ξ ),π(η))〈ξ +η ,x〉dξ dη .

(4.2)

Then, Fatou’s lemma, (P1) and (4.1) yield

∥∥Bm◦(π⊗π)( f1, f2)
∥∥

Lp(G)
≤ lim inf

j

∥∥∥Bm j◦(π⊗π)( f1, f2)
∥∥∥

Lp(G)

≤ lim inf
j

∥∥m j

∥∥
M

p
p1,p2(2,Γ)

‖ f1‖Lp1(G) ‖ f2‖Lp2(G) .

Therefore, the results follows as by (P4),

liminf
j

∥∥m j
∥∥

M
p
p1,p2(2,Γ)

≤ c‖m‖
M

p
p1,p2(2,Γ)

.

�

Observation 4.1. Observe that in the proof of the previous theorem,(4.2) holds,
and also the statement of Theorem 2.3 does, if we can ensure that a.e.(ξ ,η)∈ G2,
the limit lim j m j(π(ξ ),π(η)) = m(π(ξ ),π(η)) holds. Hence, by Remark 2.4, the
result holds ifm is normalized or it is continuous on the image of G2 by π ⊗π.
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5. APPLICATION AND CONSEQUENCES

5.1. Applications of Theorem 2.3. In this section we will restrict our attention to
indicesp1, p2, p satisfying 1≤ p1, p2 < ∞, 0< p< ∞ such that

1
p1

+
1
p2

=
1
p
. (5.1)

5.1.1. K. de Leeuw’s restriction type results.Here we show how our Theorem 2.3
allows us to produce de Leeuw’s type bilinear results. For the sake of brevity,
we restrict our results only the strong case, but it has to be kept in mind that the
corresponding weak results also hold.

We shall start with an abstract version of of D. Fan and S. Sato’s [16, Theorem
3] to LCA groups. LetG be a LCA group and letH be a closed subgroup ofG.
ConsiderΓ = G/H. Recall that the dual group ofΓ can be identified as

Γ̂ = H⊥ :=
{

ξ ∈ Ĝ : ∀g∈ H 〈ξ ,g〉= 1
}
.

Letting beπ is the canonical inclusion ofH⊥ →֒ Ĝ, andΠ the canonical projection
from Ĝ→ Ĥ, Theorem 2.3 yields the following abstract result.

Theorem 5.1. If G is a LCA groups and H is a closed subgroup. Then,

(1) If m ∈ M
p
p1,p2 (2,G)∩Cb(Ĝ2) thenm(π ⊗π) ∈ M

p
p1,p2 (2,G/H) and

‖m(π ⊗π)‖
M

p
p1,p2(2,G/H) ≤ c‖m‖M

p
p1,p2(2,G) .

(2) If m ∈ M
p
p1,p2 (2,H)∩Cb(Ĥ2) thenm(Π⊗Π) ∈ M

p
p1,p2 (2,G) and

‖m(Π⊗Π)‖
M

p
p1,p2(2,G) ≤ c‖m‖M

p
p1,p2(2,H) .

In the particular caseG=Rd, H =Zd, identifyingTd with [0,1)d, if we consider
π to be the canonical projectionπ(ξ ) = (ξ1− [ξ1], . . . ,ξd− [ξd]), where[t] denotes
the integer part oft, the previous result implies the following.

Corollary 5.2. Letm ∈ Cb(T
2d)∩M

p
p1,p2

(
2,Zd

)
. If we definem̃(ξ ,η) = m(ξ1−

[ξ1],η1− [η1], . . . ,ξd − [ξd],ηd − [ηd]), thenm̃ ∈ M
p
p1,p2

(
2,Rd

)
and

‖m̃‖
M

p
p1,p2(2,Rd) ≤ c‖m‖

M
p
p1,p2(2,Zd) .

Observe that in Theorem 2.3, the obtained bound does not depend on the homo-
morphism considered. This allows us to obtain a extension ofD. Fan and S. Sato’s
[16, Theorem 3].

Corollary 5.3. Let m ∈ Cb(R
2d)∩M

p
p1,p2

(
2,Rd

)
. For any~ε = (ε1, . . . ,εd) ∈

(R+)
d let π~ε : Zd →Rd be the anisotropic dilationsπ~ε(n) = (ε1n1, . . . ,εdnd). Then

sup
~ε∈(R+)

d

‖m~ε‖M
p
p1,p2(2,Td) ≤ c‖m‖

M
p
p1,p2(2,Rd) ,

wherem~ε(n,m) = m(π~ε(n),π~ε (m)), for n,m∈ Zd.
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Corollary 5.4. Let m ∈ Cb(R
2n)∩M

p
p1,p2 (2,R

n). Let A : Rd → Rn be a linear
map given by a matrix A. Define forξ ′,η ′ ∈ Rd

m̃(ξ ′,η ′) = m(Aξ ′,Aη ′).

Thenm̃ ∈ M
p
p1,p2

(
2,Rd

)
and

‖m̃‖
M

p
p1,p2(2,Rd) ≤ c‖m‖M

p
p1,p2(2,R

n) .

Proof. Let G = Rn, let H =
{

ξ ∈ Rn : ξ = Ax, x∈Rd
}

be the image ofA and
apply (2) in Theorem 5.1. �

The previous result allows us to obtain a generalization of G. Diestel and L.
Grafakos’s [14, Proposition 2] forp < 1 (and also its weak type counterpart), on
the restriction to a lower dimension of a bilinear multiplier.

Corollary 5.5. Let, for n≥ 2, m ∈ Cb(R
2n)∩M

p
p1,p2 (2,R

n). Let d< n. Consider
d1 = n−d. For anyη1,η2 ∈ Rd1, the function defined by

m̃(ξ1,ξ2) = m(ξ1,η1,ξ2,η2), ∀ξ1,ξ2 ∈ Rd,

satisfies that̃m ∈ M
p
p1,p2

(
2,Rd

)
and

‖m̃‖
M

p
p1,p2(2,Rd) ≤ c‖m‖

M
p
p1,p2(2,R

n) .

Proof. It is easy to see that ifm ∈ M
p
p1,p2 (2,R

n), for any γ1,γ2 ∈ Rn, then the
functionmγ1,γ2(γ ,ν) = m(γ + γ1,ν + γ2) ∈ M

p
p1,p2 (2,R

n) and
∥∥mγ1,γ2

∥∥
M

p
p1,p2(2,R

n)
= ‖m‖M

p
p1,p2(2,R

n) .

In particular, if we considerγ j = (0,η j), for j = 1,2 and we take the linear map
A : Rd → Rn given byAξ = (ξ ,0), the result follows by the previous one applied
to mγ1,γ2 as

m̃(ξ1,ξ2) = mγ1,γ2(Aξ1,Aξ2).

�

We can also obtain the following two lifting results on multipliers.

Corollary 5.6. Let, d> n≥ 1 andm ∈ Cb(R
2n)∩M

p
p1,p2 (2,R

n). Define, for any
(ξ j ,η j) ∈Rn×Rd−n for j = 1,2,

m̃(ξ1,η1,ξ2,η2) = m(ξ1,ξ2).

Thenm̃ ∈ M
p
p1,p2

(
2,Rd

)
and

‖m̃‖
M

p
p1,p2(2,Rd) ≤ c‖m‖M

p
p1,p2(2,R

n) .

Proof. It suffices to consider the natural projectionA : Rd → Rn such that maps
any(ξ ,η) ∈ Rn×Rd−n to ξ , and apply Corollary 5.4 as

m̃(ξ1,η1,ξ2,η2) = m(A(ξ1,η1),A(ξ2,η2)) = m(ξ1,ξ2).

�
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Corollary 5.7. Let m ∈ Cb(R
2)∩M

p
p1,p2 (2,R) and d≥ 1. Fixed y∈ Rd, define,

for any(ξ ,η) ∈ R2d

m̃y(ξ ,η) = m(ξ ·y,η ·y).

Thenm̃y ∈ M
p
p1,p2

(
2,Rd

)
and

sup
y∈Rn

‖m̃y‖M
p
p1,p2(2,Rd) ≤ c‖m‖M

p
p1,p2(2,R)

.

Proof. It suffices to consider the linear form given by the scalar productAyx= x·y
and apply Corollary 5.4. �

5.1.2. Bilinear Hilbert transform in groups with ordered dual.In this section, fol-
lowing the spirit of [2], we define a Generalised Hilbert transform on groups with
ordered dual by using the original version inR, and obtain its boundedness.

To this end we shall assume that,G is a LCA group such that̂G has a measurable
orderP. That is, there existsP⊂ Ĝ measurable satisfyingP+P= P, P∩ (−P) =
{0}; P∪ (−P) = Ĝ. The groupG= T is an example of such class of groups (see
[2] and the references therein for more information on ordered groups). WithP we
associate the function signP given by

signP(ξ ) =





1 if ξ ∈ P\{0};

0 if ξ = 0;

−1 if ξ ∈ (−P)\{0}.

Definition 5.8. We define the Generalised Bilinear Hilbert Transform in G by the
operator given by the multiplierm(ξ ,η) =−i signP(η −ξ ). That is, it is given by
the expression

HG( f ,g)(x) =
∫∫

Ĝ2
−isignP(η −ξ ) f̂ (ξ )ĝ(η)〈ξ +η ,x〉dξ dη .

Theorem 5.9. With the notations as above, there exists a constant C such that for
any f∈ Lp1(G), g∈ Lp2(G),

‖HG( f ,g)‖p ≤C‖ f‖p1
‖g‖p2

,

provided2
3 < p< ∞, 1≤ p1, p2 < ∞.

Proof. By density, it is enough to prove the result forf ,g such that the support
of f̂ , ĝ is compact, with constants independently on these supports. Let K f ,Kg

be the support of̂f and ĝ respectively. By [2, Theorem (5.14)], there exists a
homomorphismπ from Ĝ toR such that the equality

signP(ξ ) = sign(π(ξ ))
holds for a.e.ξ ∈ Kg−K f . Thus, sinceπ is an homomorphism

signP(η −ξ ) = sign(π(η −ξ )) = sign(π(ξ )−π(η)).

Hence, since by Remark 3.5 sign is a normalized multiplier, we can apply Theo-
rem 2.3 (see Remark 2.4), jointly with Lacey and Thiele’s results in [22] to con-
clude the proof. �
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5.1.3. Isomorphic groups.The following result is an immediate consequence of
applying Theorem 2.3 twice.

Corollary 5.10. If G,Γ are LCA groups that are topologically isomorphic, then
the spacesM p

p1,p2 (2,Γ)∩Cb(Γ) andM
p
p1,p2 (2,G)∩Cb(G) (M p,∞

p1,p2 (2,Γ)∩Cb(Γ)
andM

p,∞
p1,p2 (2,G)∩Cb(G) respectively), are isomorphic.

In particular the previous corollary and [20, Theorem (9.8)] imply that, if G is a
LCA group such that̂G is a compactly generated LCA (see [20, Definition (5.12)]),
thenM

p
p1,p2 (2,G)∩Cb(Ĝ) is fully characterised by the spaceM

p
p1,p2 (2,Γ)∩Cb(Γ̂)

whereΓ is a LCA group of the typeRa ×Tb ×K, wherea,b are non-negative
integers andK is a discrete Abelian group.

5.2. Consequences of Theorem 2.5.As a result of the approximation theorem,
we will obtain also, a necessary condition (analogous to Hormander’s [21, Theo-
rem 1.1]), which generalises Grafakos and Torres’s [18, Proposition 5]. We shall
first recall the concept of Boyd indices of a RI QBFS.

Definition 5.11. (see[3]) For any RI QBFS X, the upper Boyd index is defined by

αX = inf {p : ∃c∀a> 1hX(a)≤ cap} , (5.2)

and the lower Boyd index by

αX = sup{p : ∃c∀a< 1hX(a)≤ cap} . (5.3)

We shall mention that, for Lorentz spacesX = Lp,q, and in particular forLp

spaces,αX = αX = 1
p.

Theorem 5.12.Let G be a non-compact LCA group and let X1,X2,X be RI QBFSs
on G such that that X is the p-convexification of a RI BFS and Xj is a pj -concave
RI BFS, for j= 1,2. If there existsm ∈ M X

X1,X2
(2,G), m 6= 0, then

αX ≤ αX1 +αX2.

Proof. Observe that by Theorem 2.5, we can reduce ourselves to the case that there
existsK ∈ L1

c(G
2)\{0} such thatK̂ = m.

Let K0 be a symmetric compact neighbourhood ofeg in G such that suppK ∈
K0×K0. Observe that iff1, f2 are functions inSL1(G), supported in compact sets
L1 andL2 respectively, then the operator

Bm( f1, f2)(x) =
∫∫

G2
K(u1,u2) f1(x−u1) f2(x−u2)du,

is supported in the compact set(K0+L1)∩ (K0+L2).
Let K be a compact neighbourhood ofeg and let f ,g∈ SL1(G) with support in

K such that‖BK( f ,g)‖X > 0. Observe that

suppBm( f ,g) ⊂ K0+K .

Consider the translation operatorτ given by τyg(x) = g(x− y). SinceG is not
compact, there exists a sequence{y j} j≥0 of elements ofG, with y0 = eg, such that
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the compact sets{K0+K + y j} j≥0 are pairwise disjoint. It follows that for any
pair of indicesj 6= k

BK̂(τyj f ,τykg) = 0; (5.4)

τyj f τyk f = 0; (5.5)

τyj gτykg = 0; (5.6)

τyj BK̂( f ,g)τykBK̂( f ,g) = 0. (5.7)

Thus, for anyN ≥ 1, bilinearity and (5.4) yield

N

∑
k=0

τykBK̂( f ,g)(x) =
N

∑
k=0

N

∑
j=0

BK̂(τyj f ,τykg)(x) = BK̂(
N

∑
j=0

τyj f ,
N

∑
k=0

τykg)(x).

Then (5.7) yields

(N+1)µ
{

x∈ G :
∣∣BK̂( f ,g)(x)

∣∣ > s
}
= µ

{
x∈ G :

∣∣∣∣∣
N

∑
k=0

τykBK̂( f ,g)(x)

∣∣∣∣∣ > s

}
,

which implies,

∥∥EN+1
(
BK̂( f ,g)

)∗∥∥
X∗ ≤

∥∥∥K̂
∥∥∥
∥∥∥∥∥

N

∑
j=0

τyj f

∥∥∥∥∥
X1

∥∥∥∥∥
N

∑
k=0

τykg

∥∥∥∥∥
X2

,

where recall that(Et f )(s) = f ∗(ts) denotes the dilation operator (see (2.2) above).
By (5.5) and (5.6) the term on the right hand is equal to

∥∥∥K̂
∥∥∥‖EN+1 f ∗‖X∗

1
‖EN+1g

∗‖X∗
2
.

Therefore, by (2.3),

0<
∥∥BK̂( f ,g)

∥∥
X ≤

∥∥∥K̂
∥∥∥hX

(
1

N+1

)
hX1(N+1)hXX2(N+1)‖ f‖X1

‖g‖X2
.

Hence, sincef ,g are fixed, this implies that there exists a constantc> 0 such that
for anyN

hX

(
1

N+1

)
hX1(N+1)hX2(N+1)> c,

which, by (5.2) and (5.3), yields that

αX ≤ αX1 +αX2.

�

Observation 5.13. Observe that in the previous proof, we have used the convex-
ity assumptions only for being able to apply Theorem 2.5, in order to ensure the
existence of a multiplierm, which Fourier transform is a compactly supported in-
tegrable function. Hence, we could have dropped the convexity conditions if we
have imposed this last condition onm instead.

As an application of the previous theorem we can obtain an extended version of
L. Grafakos and J. Soria’s result [17, Theorem 1] to RI QBFSs.
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Corollary 5.14. Let G be a non-compact LCA group and let X1,X2,X2 RI QBFS
on G. If there exists K∈ L1(G2)\{0}, K ≥ 0, such thatK̂ ∈ M X

X1,X2
(2,G), then

αX ≤ αX1 +αX1.

Proof. SinceK ≥ 0, the boundedness ofBK is equivalent to the boundedness of the
operator

PK( f ,g)(v) =
∫∫

G2
K(u1,u2) | f (v−u1)| |g(v−u2)| du1du2,

and in particular, for any compact set inK ⊂ G2 such thatK is not zero onK ,
PKχK

defines a bounded operator fromX1×X2 → X. ThenKχK ∈ L1
c(G

2) and

K̂χK ∈M X
X1,X2

(2,G). Thus the previous remark and Theorem 5.12 yield the result.
�

If we particularise Theorem 5.12 to the case of classical Lorentz-spaces, we
obtain, is the following extension of F. Villarroya’s result [26, Proposition 3.1 ] to
arbitrary non compact LCA groups.

Corollary 5.15. Let G be a non-compact LCA group and let1< p1, p2 < ∞, 1≤
q1,q2 ≤ ∞. If there existsm ∈ M Lp,q

Lp1,q1,Lp2,q2 (2,G), m 6= 0, then

1
p
≤

1
p1

+
1
p2

.
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20 S. RODŔIGUEZ-LÓPEZ

[12] , Transference methods in analysis, American Mathematical Society, Providence, R.I.,
1976. Conference Board of the Mathematical Sciences Regional Conference Series in Mathe-
matics, No. 31. MR0481928 (58 #2019)

[13] Karel de Leeuw,On Lp multipliers, Ann. of Math. (2)81 (1965), 364–379. MR0174937 (30
#5127)

[14] Geoff Diestel and Loukas Grafakos,Unboundedness of the ball bilinear multiplier operator,
Nagoya Math. J.185(2007), 151–159. MR2301463 (2007k:42026)

[15] R. E. Edwards and G. I. Gaudry,Littlewood-Paley and multiplier theory, Springer-Verlag,
Berlin, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 90. MR0618663 (58
#29760)

[16] Dashan Fan and Shuichi Sato,Transference on certain multilinear multiplier operators, J. Aust.
Math. Soc.70 (2001), no. 1, 37–55. MR1808390 (2002c:42013)

[17] Loukas Grafakos and Javier Soria,Translation-invariant bilinear operators with positive
kernels, Integral Equations Operator Theory66 (2010), no. 2, 253–264. MR2595656
(2011c:42045)

[18] Loukas Grafakos and Rodolfo H. Torres,Multilinear Calderón-Zygmund theory, Adv. Math.
165(2002), no. 1, 124–164. MR1880324 (2002j:42029)

[19] Loukas Grafakos and Guido Weiss,Transference of multilinear operators, Illinois J. Math.40
(1996), no. 2, 344–351. MR1398100 (97k:43010)

[20] Edwin Hewitt and Kenneth A. Ross,Abstract harmonic analysis. Vol. I, Second, Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 115, Springer-Verlag, Berlin, 1979. Structure of topological groups, integration theory,
group representations. MR551496 (81k:43001)
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