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ON FUNDAMENTAL LOOPS AND THE FAST ESCAPING SET

D. J. SIXSMITH

Abstract. The fast escaping set, A(f), of a transcendental entire function
f has begun to play a key role in transcendental dynamics. In many cases
A(f) has the structure of a spider’s web, which contains a sequence of fun-
damental loops. We investigate the structure of these fundamental loops for
functions with a multiply connected Fatou component, and show that there
exist transcendental entire functions for which some fundamental loops are an-
alytic curves and approximately circles, while others are geometrically highly
distorted. We do this by introducing a real-valued function which measures
the rate of escape of points in A(f), and show that this function has a number
of interesting properties.

1. Introduction

Suppose that f : C → C is a transcendental entire function. The Fatou set
F (f) is defined as the set of points z ∈ C such that (fn)n∈N is a normal family
in a neighbourhood of z. The Julia set J(f) is the complement in C of F (f). An
introduction to the properties of these sets was given in [5].

For a general transcendental entire function the escaping set

I(f) = {z : fn(z) → ∞ as n→ ∞}
was studied first in [11]. This paper concerns a subset of the escaping set, called
the fast escaping set A(f). This was introduced in [7], and can be defined [21] by

(1.1) A(f) = {z : there exists ℓ ∈ N such that |fn+ℓ(z)| ≥Mn(R, f), for n ∈ N}.
Here, themaximum modulus functionM(r, f) = max|z|=r |f(z)|, for r ≥ 0, Mn(r, f)
denotes repeated iteration of M(r, f) with respect to the variable r, and R > 0 is
such that Mn(R, f) → ∞ as n → ∞. For simplicity, we only write down this
restriction on R in formal statements of results – elsewhere this should be assumed
to be true. We write M(r) when it is clear which function is being referred to.

In [21] several results on A(f) were proved by considering the closed sets

AR(f) = {z : |fn(z)| ≥Mn(R), n ∈ N},
where R > 0 is such that Mn(R) → ∞ as n → ∞. Rippon and Stallard [21] used
properties of AR(f) and A(f) to develop new results relating to Eremenko’s conjec-
ture [11] that I(f) contains no bounded components. In addition they introduced
the concept of a spider’s web. A set E is a spider’s web if E is connected and there
exists a sequence of bounded simply connected domains (Gn)n∈N such that

∂Gn ⊂ E, Gn ⊂ Gn+1, for n ∈ N, and
⋃

n∈N

Gn = C.

A transcendental entire function for which AR(f) is a spider’s web has very
strong dynamical properties – for example, it is shown in [21] that A(f) and I(f)
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are also spiders’ webs, Eremenko’s conjecture holds and all components of the Fatou
set are bounded. There are many large classes of transcendental entire functions for
which it is known that AR(f) is a spider’s web; see [21], [17] and [22] for examples.

To understand the structure of AR(f) spiders’ webs, Rippon and Stallard [21]
introduced fundamental holes and fundamental loops. When AR(f) is a spider’s
web, we define the fundamental hole HR as the component of AR(f)

c that contains
the origin, and the fundamental loop LR by LR = ∂HR. Since AR(f) is closed, we
have that LR ⊂ AR(f).

Our notation here differs slightly from that in [21]. For R > 0 fixed, Rippon and
Stallard define sets

Am
R (f) = {z : |fn(z)| ≥Mn+m(R), n ∈ N, n+m ≥ 0}, for m ≥ 0,

and define the sequence of fundamental holes to be the components of Am
R (f)c that

contain the origin. Denoting this sequence by (H ′
m)m≥0, we observe that these

notations are related by the equation

HMm(R) = H ′
m, for m ≥ 0.

It was shown in [21, Theorem 1.9 (a)] that AR(f) is a spider’s web whenever f is
a transcendental entire function with a multiply connected Fatou component. We
now give the first results on the properties of fundamental loops in this case. The
first of these gives information on the location of some fundamental loops. We say
that a set U surrounds a set V if and only if V is contained in a bounded component
of C\U . We also write dist(z, U) = infw∈U |z − w|.
Theorem 1.1. Suppose that f is a transcendental entire function. Then there
exists R′ = R′(f) > 0 such that the following holds. If U is a multiply connected
Fatou component of f , such that U surrounds the origin and dist(0, U) > R′, then
there exist 0 < R1 < R2 such that

(a) LR1
= ∂intU ;

(b) LR2
= ∂outU ;

(c) if LR is a fundamental loop such that LR ∩ U 6= ∅, then LR ⊂ U . Moreover,
this condition occurs if and only if R1 < R < R2.

Here ∂outU is defined as the boundary of the unbounded component of C\U ,
and ∂intU is defined as the boundary of the component of C\U that contains the
origin. The related set ∂innU is defined in [8] as the boundary of the component of
C\U that contains the origin.

In general, if U is a Fatou component, we write Un, n ≥ 0, for the Fatou
component containing fn(U). Note that, by Lemma 2.2 below, if V is a multiply
connected Fatou component then there is an N ∈ N such that, for n ≥ N , Vn is a
multiply connected Fatou component which satisfies the hypotheses of Theorem 1.1.

Using Theorem 1.1 we prove the following result.

Theorem 1.2. Suppose that f is a transcendental entire function and that LR is
a fundamental loop of f . Then either LR ⊂ F (f) or LR ⊂ J(f).

A second consequence of Theorem 1.1 is that when a fundamental loop lies within
a multiply connected Fatou component, U , it is often possible to say more about the
nature of this set. In fact, there is a close relationship between some fundamental
loops of f and some level sets of the non-constant positive harmonic function h
that was introduced by Bergweiler, Rippon and Stallard in [8, Theorem 1.2], and
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used to prove many geometric properties of multiply connected Fatou components.
The function h is defined by

(1.2) h(z) = lim
n→∞

log |fn(z)|
log |fn(z0)|

, for z ∈ U, some z0 ∈ U.

Our result is as follows.

Theorem 1.3. Suppose that f is a transcendental entire function. Then there
exists R′ = R′(f) > 0 such that the following holds. If U is a multiply connected
Fatou component of f , such that U surrounds the origin, dist(0, U) > R′, and h is
as defined as in (1.2), then

(a) if LR ⊂ U is a fundamental loop, then h(z) is constant on LR and so LR is an
analytic Jordan curve;

(b) if Γ is a level set of h, then Γ has a component γ which surrounds the origin
and there is a fundamental loop LR such that LR ⊂ γ.

It follows from these results that the fundamental loops of a transcendental
entire function can have very varied geometrical properties. For example, consider
the transcendental entire function f given in [8, Example 3]. This has a multiply
connected Fatou component U with the property that

lim
n→∞

max{log |z| : z ∈ ∂outUn}
min{log |z| : z ∈ ∂outUn}

= ∞.

By Theorem 1.1, there is a fundamental loop of f which coincides with ∂outUn, and
so is far from circular for large values of n. However, there are also fundamental
loops of f which lie inside Un, for each n ∈ N. By Theorem 1.3(a) these are analytic
Jordan curves, and by [8, Theorem 7.1] can be approximately circular.

A key tool in the proofs of these theorems is a function RA, defined in (4.1)
below, which for a point z is the largest R such that z ∈ AR(f). In general this
function can only be defined in a subset of A(f). In Section 6 we show that, subject
to a certain normalisation, this definition can in fact be extended in a natural way
to the whole complex plane. We show that, in this case, there is an alternative
characterisation of A(f). We also show that the function RA has a number of in-
teresting properties.

The structure of this paper is as follows. First, in Section 2, we state a num-
ber of results required in the proof of our main theorems. With the exception of
Lemma 2.6, these are all known results. In Section 3 we prove a new result, which
states that if a transcendental entire function has a certain property with respect
to a nested sequence of bounded simply connected domains, then there is a fixed
point which has a certain ‘attracting’ property. This may be of independent inter-
est. In Section 4 we show that the function RA can be defined in certain multiply
connected Fatou components, and prove several preparatory lemmas. In Section 5
we prove Theorems 1.1, 1.2 and 1.3. Finally, in Section 6 we state and prove several
results regarding the case when RA can be defined in the whole complex plane.

2. Background material

We use the following notation for an annulus and a disc

A(r1, r2) = {z : r1 < |z| < r2}, for 0 < r1 < r2,
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B(ζ, r) = {z : |z − ζ| < r}, for 0 < r.

We require the following two well known facts about the maximum modulus of
a transcendental entire function:

(2.1) logM(et) is a convex and increasing function of t,

and

(2.2)
logM(r)

log r
→ ∞ as r → ∞.

We often use the following lemma [8, Theorem 2.2], generally with n = 1.

Lemma 2.1. Let f be a transcendental entire function. Then there exists R0 = R0(f) > 0
such that, for all 0 < c′ < 1 < c, and all n ∈ N,

(2.3) M(rc, fn) ≥M(r, fn)c, for r > R0,

and

(2.4) M(rc
′

, fn) ≤M(r, fn)c
′

, for r > R
1/c′

0 .

We denote the inverse function of M , when this is defined, by M−1. For sim-
plicity we write M−n, for n ∈ N, to denote n repeated iterations of M−1. Observe
that M−1(r) is defined for r ∈ [|f(0)|, ∞) and is strictly increasing. Moreover,
by (2.1) and [16, Theorem 7.2.2], logM−1(es) is a concave and increasing function
of s. Also, if R0 is the constant from Lemma 2.1, then it follows from (2.3) that

(2.5) M−1(rc) ≤M−1(r)c, for r > max{M(R0), |f(0)|}, c > 1.

We next require a number of results concerning multiply connected Fatou com-
ponents. Our first is the following well-known result of Baker [1, Theorem 3.1],
which we often use without comment.

Lemma 2.2. Suppose that f is a transcendental entire function and that U is a
multiply connected Fatou component of f . Then each Un is bounded and multiply
connected, Un+1 surrounds Un for large n, and Un → ∞ as n→ ∞.

In particular, if U is a multiply connected Fatou component, then U is bounded
and so fn : U → Un is a proper map, for n ∈ N; see [15, Corollary 1]. Hence
Un = fn(U), for n ∈ N.

We need a number of results from [8]. Suppose that f is a transcendental entire
function with a multiply connected Fatou component U = U0, and let z0 ∈ U be
fixed. It follows from [8, Theorem 1.2] that there exists α > 0 such that, for large n,
the maximum annulus centred at the origin, contained in Un and containing fn(z0)
is of the form

(2.6) Bn = A(ran
n , rbnn ), where rn = |fn(z0)|, 0 < an < 1− α < 1 + α < bn.

We require part of [8, Theorem 1.5].

Lemma 2.3. Suppose that f is a transcendental entire function with a multiply
connected Fatou component U , and let z0 ∈ U . For large n ∈ N, let rn, an and bn
be as defined in (2.6), and let an denote the smallest value such that

{z : |z| = r
an
n } ∩ ∂innUn 6= ∅.

Then, as n→ ∞,

an → a ∈ [0, 1), an → a, and bn → b ∈ (1,∞].
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We also need the following [8, Theorem 1.3] which shows that any compact subset
of U eventually iterates into the maximal annulus Bn.

Lemma 2.4. Let f, U, z0 be as in Lemma 2.3. For large n ∈ N, let rn, an, bn
and Bn be as in (2.6). Then, for each compact set C ⊂ U , there exists N ∈ N such
that

(2.7) fn(C) ⊂ Cn ⊂ Bn, for n ≥ N,

where

(2.8) Cn = A
(

ran+2πδn
n , rbn(1−3πδn)

n

)

, with δn = 1/
√

log rn.

We also need the following, which shows that within Cn the modulus of f is very
close to the maximum modulus, for large values of n. This is summarised from
[8, Theorem 5.1(b)].

Lemma 2.5. Let f, U and z0 be as in Lemma 2.3. For large n ∈ N, let rn, an
and bn be as in (2.6), and let δn = 1/

√
log rn. Then, there exists N such that for

n ≥ N , and m ∈ N,

(2.9) log |fm(z)| ≥ (1− δn) logM(|z|, fm), for z ∈ A
(

ran+2πδn
n , rbn−2πδn

n

)

.

The following is a straightforward consequence of these lemmas.

Lemma 2.6. Let f and U be as in Lemma 2.3, let z ∈ U and let 0 < c < 1. Then
there exists N ∈ N such that

(2.10) |fn+m(z)| ≥Mm(|fn(z)|c), for n ≥ N, m ∈ N.

Proof. Fix z0 ∈ U , and let βn = 1 − 1/
√
log rn, where rn = |fn(z0)|, for n ∈ N. It

is well-known that it follows from Lemma 2.2 that U ⊂ A(f). Hence there exists
ℓ ∈ N such that rn+ℓ ≥Mn(R), for n ∈ N, where R > 0 is such that Mn(R) → ∞
as n→ ∞. It follows from (2.2) that we can choose N ∈ N sufficiently large that

(2.11)

∞
∏

k=N

βk > c.

Now let z ∈ U . We can further assume that N is sufficiently large that

|fn(z)|c > R0, for n ≥ N,

where R0 is the constant from Lemma 2.1. Now, by Lemma 2.3,

Cn ⊂ A
(

ran+2πδn
n , rbn−2πδn

n

)

,

for large values of n. Hence, we can assume, by Lemma 2.4 and Lemma 2.5, that
N is sufficiently large that

(2.12) log |fn+1(z)| ≥ βn logM(|fn(z)|), for n ≥ N.

Hence, by (2.12) and (2.4),

(2.13) |fn+1(z)| ≥M(|fn(z)|)βn ≥M(|fn(z)|βn), for n ≥ N.

By repeated application of (2.13) and (2.4), and by (2.11), we have that

|fn+m(z)| ≥Mm(|fn(z)|
∏m−1

k=0
βn+k) ≥Mm(|fn(z)|c), for n ≥ N, m ∈ N,

as required. �

We also need the following [21, Theorem 2.3].
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Lemma 2.7. Let f be a transcendental entire function and let η > 1. There exists
R′

0 = R′
0(f) > 0 such that if r > R′

0, then there exists

z′ ∈ A(r, ηr) ∩ A(f)
with

|fn(z′)| > Mn(r, f), for n ∈ N,

and hence

z′ ∈ Ar(f) and M(ηr, fn) > Mn(r, f), for n ∈ N.

Finally, in Section 6 we need the following well-known result [20, Lemma 2.1].

Lemma 2.8. Let f be a transcendental entire function, let K be a compact set with
K ∩ E(f) = ∅ and let ∆ be an open neighbourhood of z ∈ J(f). Then there exists
N ∈ N such that fn(∆) ⊃ K, for n ≥ N .

HereO−(z) = {w : fn(w) = z, for some n ∈ N} andE(f) = {z : O−(z) is finite}.
The set E(f) contains at most one point.

3. A map on a nested sequence of domains

In this section we prove a result about the existence and properties of a fixed
point for certain transcendental entire functions. This may be of independent in-
terest. For a hyperbolic domain V , we write [w, z]V for the hyperbolic distance
between w and z in V . The main result of this section is as follows.

Theorem 3.1. Suppose that f is a transcendental entire function, and that (Gn)n≥0

is a sequence of bounded simply connected domains such that

(3.1) Gn ⊂ Gn+1 and f(∂Gn) = ∂Gn+1, for n = 0, 1, 2, · · · .
Then there exists α ∈ G0, a fixed point of f , such that, if K ⊂ G0 is compact, then

[α, fn(z)]Gn
→ 0 as n→ ∞, uniformly for z ∈ K.

To prove Theorem 3.1 we require the following lemma. Define D = {z : |z| < 1}.
Lemma 3.1. Suppose that (Bn)n≥0 is a sequence of analytic functions from D to
D. Suppose also that there exist α ∈ D and λ ∈ (0, 1) such that

(3.2) Bn(α) = α and |B′
n(α)| ≤ λ, for n = 0, 1, 2, · · · .

Then, if K ′ is a compact subset of D,

Bn ◦ · · · ◦B0(z) → α as n→ ∞, uniformly for z ∈ K ′.

Proof. By conjugating with a Möbius map if necessary, we may assume that α = 0.
A result of Beardon and Carne [3, p.217] states that if g : D → D is an analytic

function with g(0) = 0, then

|g(z)| ≤ |z|
( |z|+ |g′(0)|
1 + |g′(0)z|

)

, for z ∈ D,

in which case

M(r, g) ≤ r

(

r + |g′(0)|
1 + |g′(0)|r

)

, for r ∈ (0, 1).
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Now, (r + x)/(1 + rx) is an increasing function of x, for r ∈ (0, 1). Hence, by
(3.2),

(3.3) M(r, Bn) ≤ r

(

r + λ

1 + λr

)

= µ(r) < r, for r ∈ (0, 1), n = 0, 1, 2, · · · .

Note that µ(r) is a strictly increasing function of r ∈ (0, 1). Let r0 ∈ (0, 1) be
such that |z| ≤ r0, for z ∈ K ′. Then, by (3.3),

|Bn−1 ◦ · · · ◦B0(z)| ≤ µn(r0), for z ∈ K ′.

Now µ(0) = 0, µ(1) = 1, and 0 < µ(r) < r, for r ∈ (0, 1). Hence µn(r0) → 0 as
n→ ∞. This completes the proof of the lemma. �

We now prove Theorem 3.1.

Proof of Theorem 3.1. By (3.1), the triple (f,G0, G1) is a polynomial-like map in
the sense of Douady and Hubbard [10]. Hence, by [2, Lemma 3] (see also [12,
Lemma 3]), there exists a point α ∈ G0 such that f(α) = α.

For n = 0, 1, 2, · · · , let φn : D → Gn be a Riemann map such that φn(0) = α.
Note that, since hyperbolic distance is preserved under conformal maps, we have
that

(3.4) [α, fn(z)]Gn
= [0, φ−1

n ◦ fn(z)]D, for z ∈ G0.

Hence it suffices to show that [0, φ−1
n ◦fn(z)]D → 0 as n→ ∞, uniformly for z ∈ K.

Define functions Bn : D → D by

Bn = φ−1
n+1 ◦ f ◦ φn, for n = 0, 1, 2, · · · .

Then Bn is a proper map such that Bn(0) = 0, for n = 0, 1, 2, · · · , and so is a finite
Blaschke product

(3.5) Bn(z) = cnz
qn

pn
∏

k=1

(

z − ak,n
1− ak,nz

)mk,n

, for z ∈ D,

where pn, qn,mk,n ∈ N, |cn| = 1, 0 < |ak,n| < 1, and ak,n = ak′,n implies that
k = k′, for n = 0, 1, 2, · · · , and k = 1, 2, · · · , pn. (See, for example, [14, p.35].)

We claim that there exists λ ∈ (0, 1) such that

(3.6) |B′
n(0)| ≤ λ, for n = 0, 1, 2, · · · .

Suppose first that qk ≥ 2 for some k ∈ N. Then B′
n(0) = 0, for n = 0, 1, 2, · · · .

Suppose, on the other hand, that qn = 1, for n = 0, 1, 2, · · · . Then

(3.7) |B′
n(0)| =

pn
∏

k=1

|ak,n|mk,n < 1, for n = 0, 1, 2, · · · .

For n = 0, 1, 2, · · · , and k = 1, 2, · · · , pn, set αk,n = φn(ak,n). Then f(αk,n) = α,

and so φ−1
n+1(αk,n) is a zero of Bn+1. Without loss of generality we can assume that

αk,n = αk,n+1 = φn+1(ak,n+1), for n = 0, 1, 2, · · · , k = 1, 2, · · · , pn.
Now, by (3.1), [αk,n, α]Gn

≥ [αk,n+1, α]Gn+1
. Hence, once again since hyperbolic

distance is preserved under conformal maps, |ak,n+1| ≤ |ak,n|.
Moreover, mk,n and mk,n+1 are both equal to the multiplicity of the zero αk,n

of f(z)− α, and so mk,n = mk,n+1. Thus, by (3.7),

|B′
n+1(0)| ≤ |B′

n(0)|, for n = 0, 1, 2, · · · .
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This establishes (3.6).
Let K ⊂ G0 be compact. By Lemma 3.1, applied with K ′ = φ−1

0 (K), we obtain
that

[0, Bn−1 ◦ · · · ◦B1 ◦B0 ◦ φ−1
0 (z)]D → 0 as n→ ∞, uniformly for z ∈ K.

The result follows by (3.4), since

Bn−1 ◦ · · · ◦B1 ◦B0 ◦ φ−1
0 = φ−1

n ◦ fn.

�

4. The function RA defined in a multiply connected Fatou component

The main role of this section is to introduce the function RA, which plays a key
role in the proof of Theorem 1.1. Before stating and proving a sequence of lemmas,
we outline how these results are used.

Suppose that U is a multiply connected Fatou component which surrounds the
origin. We show that if U is sufficiently far from the origin, then we can define a
real-valued function RA which, for each z ∈ U , is the largest value of R such that
z ∈ AR(f); see (4.1) below. It turns out that this function has a close relationship
to fundamental loops. Indeed, where defined, RA is strictly less than R in HR,
and is at least equal to R on LR. We then prove that the function RA has certain
continuity properties, and shares level sets with the function h defined in (1.2).
These facts allow us to show that;

(a) on ∂intU , RA is equal to its infimum in U ;
(b) on ∂outU , RA is at least equal to its supremum in U ;
(c) RA does not achieve a maximum or a minimum in U .

Because of the close relationship between the function RA and the definition of
fundamental loops, properties (a), (b) and (c) above can then be used to prove
Theorem 1.1 parts (a), (b) and (c) respectively. Theorems 1.2 and 1.3 then follow
quickly.

We start with a simple lemma.

Lemma 4.1. Suppose that f is a transcendental entire function and that AR(f) is
a spider’s web. Then f has a fixed point.

Proof. Suppose that HR is a fundamental hole of f . By [21, Lemma 7.2] we have
that the triple (f,HR, f(HR)) is a polynomial-like map. The result follows by
[2, Lemma 3]. �

The following lemma is central to our results.

Lemma 4.2. Suppose that f is transcendental entire function. Then there exists
R′ = R′(f) > 0 such that the following holds. Suppose that U is a multiply connected
Fatou component of f , which surrounds the origin and satisfies dist(0, U) > R′.
Define Gn as the complementary component of Un which contains the origin, for
n = 0, 1, 2, · · · . Then

(a) Gn ⊂ Gn+1, for n = 0, 1, 2, · · · ;
(b) f(∂Gn) = ∂Gn+1, for n = 0, 1, 2, · · · ;
(c) for all z ∈ U there exists R = R(z) such that z ∈ AR(f).
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Proof. First we note [21, Theorem 1.9 (a)] that AR(f) is a spider’s web. Hence, by
Lemma 4.1, f has a fixed point α.

Let V be a multiply connected Fatou component of f . By Lemma 2.2 there is
an N ∈ N such that fN (V ) surrounds both the origin and α, and also fn+1(V )
surrounds fn(V ) for n ≥ N .

Choose R > 0 such that Mn(R) → ∞ as n → ∞. Then [21, Theorem 1.2(a)]

there is an L ∈ N such that fL(V ) ⊂ AR(f). Set M = max{L,N}, and let

R′ = max {|z| : z ∈ fM (V )}.
Suppose that U is any multiply connected Fatou component such that U sur-

rounds the origin and satisfies dist(0, U) > R′. Then U certainly surrounds fM (V ).
Since U surrounds α, then U1 = f(U) surrounds α by the argument principle.
Moreover, U1 cannot meet either fM+1(V ) or U , since ∂U1 ⊂ J(f). Hence, by the
maximum principle, U1 surrounds both f

M+1(V ) and U . Inductively, Uk surrounds
both fM+k(V ) and Uk−1, for k ∈ N. Parts (a) and (c) of the lemma follow from
this fact and the choice of M .

Finally we establish part (b). Choose n = 0, 1, 2, · · · . Since f(Gn) is open and
connected, and its boundary is in J(f), it cannot meet the boundary of Gn+1. Now,
α ∈ Gn, and so f(Gn) ∩Gn+1 6= ∅. Hence ∂f(Gn) must lie in Gn+1, and so

f(∂Gn) ⊂ Gn+1.

Moreover, f is a proper map on the Fatou component Un, and so

f(∂Gn) ⊂ f(∂Un) = ∂Un+1.

Thus ∂f(Gn) = ∂Gn+1, as required. �

Suppose that U is a multiply connected Fatou component which surrounds the
origin, and that dist(0, U) > R′, where R′ is the constant from Lemma 4.2. Then,
by Lemma 4.2(c) and by the continuity of M , we may define

(4.1) RA(z) = max{R : z ∈ AR(f)}, for z ∈ U.

The function RA has some strong continuity properties, and shares level sets with
the function h.

Lemma 4.3. Suppose that f and U are as in Theorem 1.1, and that RA is as in
(4.1). Then RA is upper semicontinuous in U and continuous in U . Moreover, if h
is as in (1.2), then there exists a continuous strictly increasing function φ : R → R

such that

(4.2) RA(z) = φ(h(z)), for z ∈ U.

Proof. We first prove that RA is upper semicontinuous in U . Suppose that z ∈ U
and that ǫ > 0. By the definition of RA, we have that z /∈ ARA(z)+ǫ(f). Hence

there is an N ∈ N such that |fN (z)| < MN (RA(z) + ǫ). By continuity, there exists
a δ > 0 such that

|fN (z′)| < MN(RA(z) + ǫ), for z′ ∈ B(z, δ).

Hence RA(z
′) < RA(z) + ǫ, for all z′ ∈ U ∩B(z, δ). This completes the proof that

RA is upper semicontinuous in U .

To prove that RA is continuous in U we need to prove that RA is lower semicon-
tinuous at z ∈ U . Suppose, to the contrary, that RA is not lower semicontinuous
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at z. Then there exists ǫ > 0 such that the following holds. If ∆ ⊂ U is a neigh-
bourhood of z, then there is a z′ ∈ ∆ such that RA(z) − ǫ > RA(z

′), in which
case z′ /∈ ARA(z)−ǫ(f). There exists, therefore, a sequence (zk)k∈N of points of U ,
distinct from but tending to z, and a sequence (nk)k∈N of integers such that

|fnk(zk)| < Mnk(RA(z)− ǫ), for k ∈ N.

Hence, for each k ∈ N,

|fnk(zk)| < Mnk(RA(z)− ǫ) < Mnk(RA(z)) ≤ |fnk(z)|,
which implies that

(4.3)
logMnk(RA(z))

logMnk(RA(z)− ǫ)
<

log |fnk(z)|
log |fnk(zk)|

, for k ∈ N.

We now establish a contradiction by showing that the right-hand side of (4.3) has
an upper bound which tends to 1 as k → ∞, but the left-hand side is greater than
some c > 1, for sufficiently large values of k. Note that we can assume that nk → ∞
as k → ∞.

We may assume that ǫ is sufficiently small that Mn(RA(z)− ǫ) → ∞ as n→ ∞.
Hence we can choose N large enough that MN (RA(z) − ǫ) > R0, where R0 is the
constant from Lemma 2.1. Set

r =MN(RA(z)− ǫ) and c =
logMN (RA(z))

log r
> 1.

It follows by repeated application of (2.3) that we have

logMm(rc) ≥ c logMm(r), for m ∈ N.

Hence
logMm+N (RA(z))

logMm+N(RA(z)− ǫ)
=

logMm(rc)

logMm(r)
≥ c > 1, for m ∈ N.

This establishes our claim regarding the left-hand side of (4.3).

To establish our claim regarding the right-hand side of (4.3) we use some tech-
niques from [19], though we give the full details for completeness. For a hyperbolic
domain V , we let ρV denote the density of the hyperbolic metric in V .

Choose any w1, w2 ∈ J(f) with w1 6= w2, and put G = C\{w1, w2}. Note that

[z, zk]U ≥ [fnk(z), fnk(zk)]fnk (U) ≥ [fnk(z), fnk(zk)]G =

∫

Γk

ρG(z) |dz|, for k ∈ N,

where Γk is a hyperbolic geodesic in G joining fnk(z) to fnk(zk). By, for example,
[13, Theorem 9.14], there exist R > 2 and C > 0 such that

ρG(z) ≥
C

|z| log |z| , for |z| ≥ R.

Choose K sufficiently large such that

|fnk(z)| > |fnk(zk)| > 2R, for k ≥ K.

We then have

(4.4) [z, zk]U ≥
∫

Γk

ρG(z) |dz| ≥ C

∫ |fnk (z)|

|fnk(zk)|

dr

r log r
= C log

(

log |fnk(z)|
log |fnk(zk)|

)

.
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Hence

(4.5)
log |fnk(z)|
log |fnk(zk)|

≤ exp([z, zk]U/C), for k ∈ N.

As k → ∞, zk → z and so [z, zk]U → 0. Hence the right-hand side of (4.5) is indeed
bounded above by a term tending to 1 as k → ∞. This completes the proof that
RA is continuous in U .

Finally we need to prove that there exists a real function φ which satisfies
(4.2). Our method of proof is as follows. Suppose that w, z ∈ U . We claim
that h(w) < h(z) if and only if RA(w) < RA(z). This, combined with the fact
that both h and RA are continuous in U , proves that RA(z) = φ(h(z)), for z ∈ U ,
where φ is continuous and strictly increasing.

Let w, z ∈ U . Suppose first that RA(w) < RA(z) = r, say. Then, there is an
N ∈ N such that

|fn(z)| ≥Mn(r) > |fn(w)|, for n ≥ N.

Assume also that N is sufficiently large that |fn(w)| > R0, for n ≥ N , where R0 is
the constant in Lemma 2.1. Set

c =
logMN(r)

log |fN(w)| > 1.

Then, by (2.3),

MN+m(r) =Mm(|fN (w)|c) ≥Mm(|fN (w)|)c ≥ |fN+m(w)|c, for m ∈ N.

Hence

h(w)

h(z)
= lim

m→∞

log |fN+m(w)|
log |fN+m(z)| ≤ lim

m→∞

log |fN+m(w)|
log |MN+m(r)| ≤

1

c
< 1,

and so h(w) < h(z). This completes the first part of the proof.

Suppose next that h(w) < h(z). The proof is complete if we can show that
RA(w) < RA(z). Choose c such that h(w)/h(z) < c < 1. Choose N ′ sufficiently
large such that

|fn(z)|c > |fn(w)|, for n ≥ N ′.

By Lemma 2.6, there exists N > N ′ such that

|fN+m(z)| ≥Mm(|fN (z)|c), for m ∈ N.

Hence

(4.6) RA(f
N(z)) ≥ |fN (z)|c > |fN (w)| ≥MN(RA(w)).

Set R =M−N(|fN (z)|c), and note that R > RA(w) by (4.6). Then

|fN+m(z)| ≥Mm(|fN(z)|c) =MN+m(R), for m ∈ N.

Hence RA(z) ≥ R > RA(w) as required. This completes the proof of the lemma. �

Remark. In fact, with the conditions of Lemma 4.3, the stronger result holds
that RA is continuous in U\∂outU . This follows from Lemma 4.4 below, but is not
pertinent to the proofs of the results of this paper.

We use Lemma 4.3 to prove the following result regarding the values of the
function RA in U .
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Lemma 4.4. Suppose that f and U are as in Theorem 1.1 and that RA is as in
(4.1). Set

(4.7) R1 = R1(U) = inf
z∈U

RA(z) and R2 = R2(U) = sup
z∈U

RA(z).

Then

(a) RA(z) = R1, for z ∈ ∂U\∂outU ;
(b) RA(z) ≥ R2, for z ∈ ∂outU ;
(c) R1 < RA(z) < R2, for z ∈ U .

Proof. First, suppose that z ∈ ∂intU . Choose w ∈ U . By Lemma 2.4 applied with
C = {w}, there exists N ∈ N such that |fn(w)| > |fn(z)|, for n ≥ N , in which case
RA(z) ≤ RA(w). Hence RA(z) ≤ R1. Equality follows by the upper semicontinuity
of RA at z ∈ U .

We now show, more generally, that RA(z) = R1 for z ∈ ∂U\∂outU , by showing
that RA is constant on this set. First, suppose that

RA(z) > R0, for z ∈ ∂U\∂outU,
where R0 is the constant from Lemma 2.1. Suppose also that there exist points
z1, z2 ∈ ∂U\∂outU with

RA(z1) = R > ρ > RA(z2), for some ρ.

Set c = logR/ log ρ > 1. Then, for all sufficiently large n ∈ N, we have by (2.3),

(4.8) |fn(z2)|c < Mn(ρ)c ≤Mn(ρc) =Mn(R) ≤ |fn(z1)|.
We now observe that, for sufficiently large values of n,

(4.9) r
an
n ≤ |fn(z)| ≤ ran

n , for z ∈ ∂U\∂outU,
where an is as in Lemma 2.4. This fact is in part of the proof of [8, Theorem 1.6],
but we give a brief justification for completeness. Suppose that K is a component
of ∂U\∂outU and γ is a Jordan curve in U that contains K in its interior int(γ).
For large n we have, by Lemma 2.4, that fn(γ) ⊂ Cn ⊂ Bn. Hence

fn(int(γ)) ⊂ {z : |z| < rbn},
and (4.9) follows by the definitions of an and an, and the fact that fn(z) /∈ Bn, for
z ∈ ∂U\∂outU .

Now, by Lemma 2.3, both an and an tend to a as n → ∞. Hence, for large
values of n ∈ N, by (4.9),

(4.10) |fn(z2)|c ≥ r
can
n ≥ ran

n ≥ |fn(z1)|,
which is a contradiction to (4.8).

Now suppose that RA(z) ≤ R0, for some z ∈ ∂U\∂outU . Let Un, for some
n ∈ N, be such that RA(z) > R0, for z ∈ ∂Un\∂outUn. Now, fn is a proper
map of U to Un and fn(∂U\∂outU) = ∂Un\∂outUn. The result follows because
RA(f

n(z)) =Mn(RA(z)) and since, by the above, RA is constant on ∂Un\∂outUn.
This completes the proof of part (a) of the lemma.

Next, suppose that z ∈ ∂outU . Choose w ∈ U . By Lemma 2.4 applied with
C = {w}, there exists N ∈ N such that |fn(z)| > |fn(w)|, for n ≥ N , in which case
RA(z) ≥ RA(w). Thus RA(z) ≥ R2 and this completes the proof of part (b) of the
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lemma.

Finally, suppose that there exists z ∈ U such that RA(z) = R2, in which case
RA achieves a maximum in U at z. Then h also achieves a maximum in U at z,
by Lemma 4.3. This is a contradiction, because h is harmonic in U . For a similar
reason, RA cannot equal R1 and so achieve a minimum in U . This completes the
proof of the lemma. �

5. Proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3

In this section we prove Theorem 1.1, and then show that this can be used to
prove Theorem 1.2 and Theorem 1.3. We begin by proving the following result.
Recall that R1 = R1(U) = infz∈U RA(z).

Lemma 5.1. Suppose that f and U are as in Theorem 1.1, and let G0 be the
complementary component of U containing the origin. Then G0 ⊂ AR1

(f)c.

Proof. Suppose, to the contrary, that there exists z0 ∈ G0 such that z0 ∈ AR1
(f).

Recall that Un = fn(U), Gn is the component of C\Un containing the origin, and
∂intUn = ∂Gn. Let rn = dist(0, ∂intUn) and let zn = fn(z0) ∈ Gn, for n ∈ N.

In view of Lemma 4.2(a) and (b), we can apply Theorem 3.1, with Gn as above
and with K = {z0}. We obtain that f has a fixed point α ∈ G0 such that

[α, zn]Gn
→ 0 as n→ ∞.

We claim that there exists N ∈ N such that |zn| < rn/2 for n ≥ N . Suppose,
to the contrary, that |zn| > rn/2 infinitely often. For these values of n, let γn be a
curve in Gn joining α and zn such that

2[α, zn]Gn
≥

∫

γn

ρGn
(w)|dw|.

Recall (for example, [9, Theorem 4.3]) that

ρGn
(w) ≥ 1

2 dist(w, ∂Gn)
, for w ∈ Gn.

We can assume that n is sufficiently large that |α| < rn/4. Let

γ′n = γn ∩B(0, rn/2).

Note that dist(w, ∂Gn) ≤ 2rn, for w ∈ γ′n. Moreover the length of γ′n is certainly
at least equal to rn/4. Hence

2[α, zn]Gn
≥

∫

γ′

n

ρGn
(w)|dw| ≥ 1

4rn

∫

γ′

n

|dw| ≥ 1

4rn

rn
4

=
1

16
,

which is a contradiction. Thus our claim is established.

We now set η = 3/2. By Lemma 2.7 and the above, there exists N ∈ N such
that the following conditions both hold. Firstly, there exists z′ ∈ A(rN/2, 3rN/4)
such that z′ ∈ ArN/2(f). Secondly, |zN | < rN/2.

We have supposed that z0 ∈ AR1
(f), and so this second condition implies that

MN(R1) < rN/2. Suppose that there exists w ∈ ∂intUN ∩ ArN/2(f). Since

w = fN (w′), for some w′ ∈ ∂intU , then

w′ ∈ AM−N (rN/2)(f).
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This is impossible since M−N(rN/2) > R1, but RA(w
′) = R1, by Lemma 4.4(a).

Hence we have that ∂intUN ∩ArN/2(f) = ∅. This is a contradiction because ∂intUN

surrounds z′, but ArN/2(f) has no bounded components [21, Theorem 1.1]. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. First we let R′ be the constant from Lemma 4.2. Suppose
that U is a multiply connected Fatou component of f , such that U surrounds the
origin and dist(0, U) ≥ R′. Let R1 = R1(U) and R2 = R2(U) be the constants
from (4.7). Part (a) of the theorem, that ∂intU is the fundamental loop LR1

, fol-
lows because ∂intU ⊂ AR1

(f), by Lemma 4.4(a), but the bounded component of
C\∂intU is in AR1

(f)c, by Lemma 5.1.

Part (b) of the theorem, that ∂outU is the fundamental loop LR2
, follows imme-

diately from Lemma 4.4(b) and (c).

Finally we prove part (c) of the theorem. Suppose that LR is a fundamental loop,
and that z ∈ LR ∩ U . Now z ∈ AR(f), and so RA(z) ≥ R. Moreover, RA(w) < R,
for w ∈ HR ∩ U . Hence, by the continuity of RA in U , RA(z) = R. Thus, by
Lemma 4.4(c), R1 < RA(z) = R < R2.

Recall that RA(w) = R1, for w ∈ ∂U\∂outU . It follows, by the upper semiconti-
nuity of RA in U , that LR ∩ ∂U\∂outU = ∅.

It remains to show that LR ∩ ∂outU = ∅. Suppose, to the contrary, that LR in-
tersects ∂outU . We note [21, Lemma 7.2 (c)] that, in general, if Lρ is a fundamental
loop then f(Lρ) = LM(ρ). By Lemma 2.4, applied to any closed subset of LR ∩ U ,
there exists N ∈ N such that LMn(R) ∩Cn 6= ∅, where Cn is the annulus defined in
(2.8), for n ≥ N .

Next choose η > 1. We can assume that N is sufficiently large that, for n ≥ N
and z ∈ Un, we have that |z| > max{R0, R

′
0}, where R0 is the constant from

Lemma 2.1 and R′
0 is the constant from Lemma 2.7. We can also assume that N

is sufficiently large that the conclusions of Lemma 2.5 can be applied.
Define cn = bn−2πδn−δ2n, for n ∈ N.We can further assume thatN is sufficiently

large that we have both

bN (1− 3πδN ) < cN < bN − 2πδN

and

ηr
bN (1−3πδN )
N < r

cN (1−δN )
N .

The first inequality is easy to satisfy since, by Lemma 2.3, bn → b > 1, as
n→ ∞. The second can be satisfied since

ηrbn(1−3πδn)
n = r

bn(1−3πδn)+log η δ2n
n ,

and

cn(1− δn) = bn(1− (2π/bn + 1)δn) + δ2n(2π − 1 + δn),

and since δn → 0 and bn → b > 1 as n→ ∞.

Consider the fundamental loop LMN (R). Since LMN (R) ∩ CN 6= ∅, there is a

point on LMN (R) of modulus less than r
bN (1−3πδN )
N . Hence

(5.1) MN(R) < r
bn(1−3πδN )
N .
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Moreover, by assumption we have that LMN (R) ∩ ∂outUN 6= ∅. Hence LMN (R)

surrounds points in UN which lie at all radii in (r
bN (1−3πδN )
N , rbNN ). In particular,

there exists a point

(5.2) z ∈ HMN (R) ∩ UN , such that |z| = rcNN .

Then, by Lemma 2.5, Lemma 2.1 and Lemma 2.7, we have that, for m ∈ N,

|fm(z)| ≥M(rcNN , fm)1−δN

≥M(r
cN (1−δN )
N , fm) ≥M(ηr

bN (1−3πδN )
N , fm)

≥Mm(r
bN (1−3πδN )
N , f).

Hence z ∈ Aρ(f), where ρ = r
bN (1−3πδN )
N . This is in contradiction to (5.1), since

z /∈ AMN (R)(f) by (5.2). This completes the first half of the proof of part (c).

Finally, suppose that R1 < R < R2. Then, by the continuity of RA and the
definitions of R1 and R2, there exists z ∈ U such that RA(z) = R. Hence the
fundamental loop LR must intersect U , and so LR ⊂ U . This completes the proof.

�

Next we prove Theorem 1.2, which states that if f is a transcendental entire func-
tion and that LR is a fundamental loop of f , then either LR ⊂ F (f) or LR ⊂ J(f).

Proof of Theorem 1.2. Suppose first that z ∈ LR ∩ U , where U is a simply con-
nected Fatou component of f . Since LR ⊂ AR(f), it follows from [21, The-
orem 1.2(b)] that U ⊂ AR(f). This is a contradiction since LR = ∂HR and
HR ⊂ AR(f)

c. Hence LR cannot intersect any simply connected Fatou compo-
nent of f .

Next suppose that z ∈ LR ∩ U , where U is a multiply connected Fatou com-
ponent of f . Then there exists N ∈ N such that dist(0, UN) > R′, where R′ is
the constant from Theorem 1.1 and UN = fN(U). Then fN(LR) = LMN (R) is a
fundamental loop which intersects UN and so, by Theorem 1.1, is contained in UN .
The result follows. �

Finally we prove Theorem 1.3, which relates fundamental loops lying in U to
level sets of h.

Proof of Theorem 1.3. First suppose that LR ⊂ U is a fundamental loop. Then,
because of the continuity of RA in U , we have RA(z) = R, for z ∈ LR. Hence, by
Lemma 4.3, h is also constant on LR. This completes the first part of the proof.

Suppose next that Γ is a level set of h. By Lemma 4.3, Γ is also a level set of
RA, and so RA(z) = R, say, for z ∈ Γ. Now R1 < R < R2, where R1 and R2 are as
in (4.7), and so, by Theorem 1.1, there is a fundamental loop LR ⊂ U . The result
follows, since LR ⊂ Γ, again by Lemma 4.3. �

6. The function RA defined in C

The function RA played a key role in proving Theorem 1.1. In general, however,
RA(z) cannot be defined for many values of z ∈ A(f); consider, for example,
f(z) = ez and z = log 2π + iπ/2. In this section we show that, with a certain
normalisation of f , the definition of RA(z) can be extended in a natural way to all
z ∈ C. The function RA then has several interesting properties.
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First we adopt the normalisation f(0) = 0. We observe that, by Lemma 4.1, all
transcendental entire functions for which AR(f) is a spider’s web have a fixed point
and so, in this case, this normalisation is merely a change of coordinates. This
suggests that this normalisation is not entirely unnatural when AR(f) is a spider’s
web. Even when f does not have a fixed point the normalisation f(0) = 0 is not as
limiting as it might seem. If f(0) 6= 0, then we choose α, a fixed point of f2, and
replace f by g where g(z) = f2(z + α) − α. Then g(0) = 0, and the sets A(f) and
A(g) differ only by a translation, since [21, Theorem 2.6] we have A(f2) = A(f).

With the normalisation f(0) = 0, we can define

(6.1) Rf = max{r ≥ 0 :Mn(r) 9 ∞ as n→ ∞}.
The following gives an alternative characterisation of A(f) as a continuous limit of
the closed sets AR(f).

Theorem 6.1. Suppose that f is a transcendental entire function, that f(0) = 0,
and that Rf is as defined in (6.1). Then

(6.2) A(f) =
⋃

R>Rf

AR(f).

Proof. If z ∈ ⋃

R>Rf
AR(f), then z ∈ AR(f) for some R such that Mn(R) → ∞ as

n→ ∞, and so z ∈ A(f) by definition.
Now, suppose that z ∈ A(f). Then, by (1.1), f ℓ(z) ∈ AR(f), for some R > Rf

and some ℓ ∈ N. Note next that, since f(0) = 0, we have thatM−n(r) is defined for
all r ≥ 0 and n ∈ N. Hence we can set R′ = M−ℓ(R), and we note that R′ > Rf .
Then z ∈ AR′(f) and so z ∈ ⋃

R>Rf
AR(f), as required. �

For a transcendental entire function f with f(0) = 0, we extend the definition
of RA to the whole complex plane by setting

(6.3) RA(z) =

{

max{R : z ∈ AR(f)}, for z ∈ A(f),

Rf , for z /∈ A(f).

The existence of the maximum, for z ∈ A(f), follows from (6.2) and the continuity
of M . Note that it follows from (6.3) that

(6.4) M(RA(z)) = RA(f(z)), for z ∈ A(f).

If f satisfies the normalization f(0) = 0, then a stronger version of Lemma 4.3
holds.

Theorem 6.2. Suppose that f is a transcendental entire function and that f(0) = 0.
Then

(a) RA is upper semicontinuous in C;
(b) RA is nowhere continuous in A(f) ∩ J(f);
(c) RA is constant in a simply connected Fatou component of f ;
(d) RA is continuous in A(f)c ∪ F (f).
Proof. Part (a) follows in exactly the same way as the first part of the proof of
Lemma 4.3, and so we omit the details.

Now we prove part (b). Observe that, in general, if w ∈ A(f), n > 1 and
fn(w′) = w, then

(6.5) RA(w
′) =M−n(RA(w)) < M−1(RA(w)) < RA(w).
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Suppose that z ∈ A(f) ∩ J(f) and assume first that z /∈ E(f). Let ∆ be a
neighbourhood of z, sufficiently small that ∆ ∩ E(f) = ∅. Then, by Lemma 2.8,
there is an n > 1 such that fn(∆) ⊃ ∆. Hence, since z cannot be periodic, there is
a z′ ∈ ∆ with z′ 6= z and such that fn(z′) = z. Hence, by (6.5),

(6.6) RA(z
′) < M−1(RA(z)) < RA(z).

This shows that RA is not continuous at z in the case that z /∈ E(f), since ∆ was
arbitrary.

In the case that z ∈ E(f), we first observe that f(z) /∈ E(f). Let ∆ be a

neighbourhood of z, sufficiently small that f(∆)∩E(f) = ∅. By the same argument
as above, there is a z′ ∈ ∆ such that

(6.7) RA(f(z
′)) < M−1(RA(f(z))) < RA(f(z)).

Equation (6.6) now follows from (6.7) and (6.4). This completes the proof of
part (b).

Next we prove part (c). Suppose that U is a simply connected Fatou component
and that U ∩A(f) = ∅. Then RA(z) = Rf , for z ∈ U . On the other hand, suppose

that z ∈ U ∩ AR(f), for some R > Rf . Then U ⊂ AR(f) [21, Theorem 1.2(b)].
This completes the proof of part (c).

Finally we prove part (d). The result when z ∈ A(f)c is immediate from part (a),
and the fact that RA achieves its global minimum of Rf everywhere in A(f)c. If
z ∈ A(f) ∩ F (f), then we can assume that z is in a multiply connected Fatou
component of f , and the proof follows in exactly the same way as the second part
of the proof of Lemma 4.3. �

In a multiply connected Fatou component, we can say more about the properties
of the function RA.

Theorem 6.3. Suppose that f is a transcendental entire function and that f(0) = 0.
Then the function v = − logRA is subharmonic in F (f).

Remark 1. It follows from Theorem 6.2(d) and Theorem 6.3 that 1/RA is in the
class PL in each component of F (f). Here (see [4]), a function u in a domain D
is said to be in the class PL if u is continuous and non-negative in D, and log u
is subharmonic in the part of D where u > 0. This class is a generalisation of
functions of the form |φ|, where φ is analytic in D. The weaker result that 1/RA

is subharmonic in F (f) also follows from Theorem 6.3, since 1/RA(z) = exp(v(z))
and by [18, Corollary 2.6.4].

Remark 2. It seems natural to ask if v is harmonic in F (f). This cannot be the case
in general. For, by the last statement of Lemma 4.3, if v is harmonic in a multiply
connected Fatou component U which satisfies the conditions of Theorem 1.1, then
there is a continuous function ψ : R → R such that

(6.8) v(z) = ψ(h(z)), for z ∈ U.

If v is harmonic, then we can differentiate (6.8) to obtain that ψ′′(h(z)) = 0, for
z ∈ U . Hence v is a linear function of h in U . Now, v is finite in U . In [8, Example
2 and Theorem 1.6] it is shown that there exist transcendental entire functions such
that h is unbounded in U . For these functions the relationship between h and v
cannot, therefore, be linear, and so v is not harmonic in U .
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In order to prove Theorem 6.3 we need three further lemmas. The first concerns
repeated iteration of the function M−1.

Lemma 6.1. Suppose that f is a transcendental entire function and that f(0) = 0.
For each n ∈ N, define the function vn by

(6.9) vn(z) = − logM−n(|fn(z)|), for z ∈ Dn = {z : fn(z) 6= 0}.
Then vn is subharmonic in Dn.

Proof. Since ψ(s) = logM−1(es) is a concave and increasing function of s, we have
(see, for example, [16, Theorem 7.2.1]) that

ψn(s) = logM−n(es)

is also a concave function of s, for n ∈ N. Now, for each n ∈ N, log |fn(z)| is a
harmonic function of z in Dn, since f

n(z) 6= 0 in Dn. The result follows since

vn(z) = − logM−n(exp(log |fn(z)|)) = −ψn(log |fn(z)|),
is a convex function of a harmonic function; see e.g. [18, p.47]. �

Note that, if f(0) = 0, then 0 /∈ A(f) and so vn(z) is defined for all z ∈ A(f)
and n ∈ N.

The second lemma gives an alternative characterisation of the function RA in
A(f).

Lemma 6.2. Suppose that f is a transcendental entire function and that f(0) = 0.
Then, for each z ∈ A(f), (M−n(|fn(z)|))n∈N is a non-increasing sequence, with
limit RA(z).

Proof. Suppose that z ∈ A(f). Since M(|fn(z)|) ≥ |fn+1(z)| we have that

(6.10) M−n(|fn(z)|) ≥M−(n+1)(|fn+1(z)|), for n ∈ N.

Hence the sequence (M−n(|fn(z)|))n∈N is non-increasing. In addition, since
|fn(z)| ≥ Mn(RA(z)), for n ∈ N, we have that

M−n(|fn(z)|) ≥ RA(z), for n ∈ N.

So limn→∞M−n(|fn(z)|) exists and is at least RA(z). It is straightforward to show
from (6.10) that if this limit is R, then z ∈ AR(f). This completes the proof. �

We also need a result on subharmonic functions. Suppose that D is a domain,
and u : D → [−∞,∞) is a function which is locally bounded above in D. The
upper semicontinuous regularization of u, u∗ : D → [−∞,∞) is defined by

u∗(z) = lim sup
w→z

u(w).

It can be shown that u∗ is the least upper semicontinuous function on D such that
u∗ ≥ u. The result we require is the following [18, Theorem 3.4.2(a)].

Lemma 6.3 (Brelot-Cartan Theorem). Suppose that D is a domain, that V is a
family of subharmonic functions on D and that u = supv∈V v is locally bounded
above on D. Then u∗ is subharmonic on D.

We now give the proof of Theorem 6.3, that the function v(z) = − logRA(z) is
subharmonic, for z ∈ F (f).
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Proof of Theorem 6.3. Suppose that z ∈ A(f)c ∩ F (f). The result follows because
RA is constant in a neighbourhood of z. On the other hand, suppose that we
have z ∈ A(f) ∩ F (f), and let U be the Fatou component containing z. Since RA

is constant in any simply connected Fatou component, we can assume that U is
multiply connected. Observe that, by Lemma 4.4, applied, if necessary, to UN for
some large N , there exists R1 > 0 such that RA(z) ≥ R1, for z ∈ U . Hence v is
bounded above in U .

Let vn be as defined in Lemma 6.1. Then, by Lemma 6.2 and Lemma 6.1, vn is
a non-decreasing sequence of subharmonic functions, converging pointwise in U to
v. Hence, supn∈N vn = v. By Lemma 6.3, applied with V = {vn : n ∈ N}, v∗ is
subharmonic in U . By Theorem 6.2 part (d), v is continuous in U , and so v∗ = v
there. This completes the proof. �

Another advantage of the normalisation f(0) = 0 is that, if this condition is satis-
fied, then the conclusions of Theorems 1.1 and 1.3 hold for any multiply connected
Fatou component which surrounds the origin, without the additional restriction
of being a sufficient distance from the origin. This fact follows from the proof of
Theorem 1.1 and from the following version of Lemma 4.2.

Lemma 6.4. Suppose that f is transcendental entire function and that f(0) = 0.
Suppose that U is a multiply connected Fatou component of f which surrounds the
origin, and define Gn as the complementary component of Un which contains the
origin, for n = 0, 1, 2, · · · . Then

(a) Gn ⊂ Gn+1, for n = 0, 1, 2, · · · ;
(b) f(∂Gn) = ∂Gn+1, for n = 0, 1, 2, · · · ;
(c) for all z ∈ U there exists R = R(z) such that z ∈ AR(f).

Proof. Parts (a) and (b) follow as in the proof of Lemma 4.2, since the origin is a
fixed point of f . Part (c) follows from Theorem 6.1. �

Given a transcendental entire function f and N ∈ N, it is not hard to show
that there is a point z ∈ A(f) such that |fn+1(z)| is small compared to |fn(z)|,
for n ≤ N . Hence RA(z) can be much smaller than |z|. It does seem reasonable,
however, to expect that Mn(RA(z)) should be comparable to |fn(z)|, for large
values of n ∈ N. We use results from [8] to prove the following.

Theorem 6.4. Suppose that f is a transcendental entire function, that f(0) = 0,
and that z is in a multiply connected Fatou component of f . Then

(6.11) lim
n→∞

log |fn(z)|
logMn(RA(z))

= 1.

Proof. Let U be the Fatou component containing z. It follow from (6.4) that we
need to prove that

(6.12) lim
n→∞

log |fn(z)|
logRA(fn(z))

= 1.

By definition |fn(z)| ≥ RA(f
n(z)), for n ∈ N. Suppose that, contrary to (6.12),

there exists 0 < c < 1 and a sequence of natural numbers (nk)k∈N such that
|fnk(z)|c > RA(f

nk(z)), for k ∈ N, and nk → ∞ as k → ∞. Then, by the
definition of RA, for each k ∈ N there exists mk ∈ N such that

(6.13) |fnk+m(z)| < Mm(|fnk(z)|c), for m ≥ mk.
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Since nk → ∞ as k → ∞, we see that (6.13) is contrary to Lemma 2.6. This
completes the proof of Theorem 6.4. �

Remark 1. If f is a transcendental entire function and f(0) 6= 0, then the con-
clusions of Theorem 6.3 and Theorem 6.4 still hold for a multiply connected Fatou
component U which satisfies the conditions of Theorem 1.1. This is readily seen
from a review of the proofs of these results.

Remark 2. The only known examples of simply connected fast escaping Fatou
components are given in [6] and [23]. It can be shown that, for the example in [23],
if z is in one of the simply connected fast escaping Fatou components then we have
the stronger result that

lim
n→∞

|fn(z)|
Mn(RA(z))

= 1.

It would be interesting to know, in general, whether a result similar to Theorem 6.4
holds for simply connected fast escaping Fatou components.
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