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Abstract

We consider an elliptic self-adjoint first order differential operator act-
ing on pairs (2-columns) of complex-valued half-densities over a connected
compact 3-dimensional manifold without boundary. The principal sym-
bol of our operator is assumed to be trace-free. We study the spectral
function which is the sum of squares of Euclidean norms of eigenfunctions
evaluated at a given point of the manifold, with summation carried out
over all eigenvalues between zero and a positive λ. We derive an explicit
two-term asymptotic formula for the spectral function as λ → +∞, ex-
pressing the second asymptotic coefficient via the trace of the subprincipal
symbol and the geometric objects encoded within the principal symbol —
metric, torsion of the teleparallel connection and topological charge. We
then address the question: is our operator a massless Dirac operator on
half-densities? We prove that it is a massless Dirac operator on half-
densities if and only if the following two conditions are satisfied at every
point of the manifold: a) the subprincipal symbol is proportional to the
identity matrix and b) the second asymptotic coefficient of the spectral
function is zero.
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1 Main results

Consider a first order differential operator A acting on 2-columns v =
(

v1 v2
)T

of complex-valued half-densities over a connected compact 3-dimensional man-
ifold M without boundary. (See subsection 1.1.5 in [22] for definition of half-
density.) We assume the coefficients of the operator A to be infinitely smooth.
We also assume that the operator A is formally self-adjoint (symmetric):

∫

M

w∗Av dx =

∫

M

(Aw)∗v dx (1.1)

for all infinitely smooth v, w : M → C2. Here and further on the superscript ∗

in matrices, rows and columns indicates Hermitian conjugation in C
2 and dx :=

dx1dx2dx3, where x = (x1, x2, x3) are local coordinates on M .
Let A1(x, ξ) be the principal symbol of the operator A, i.e. matrix obtained

by leaving in A only the leading (first order) derivatives and replacing each
∂/∂xα by iξα, α = 1, 2, 3. Here ξ = (ξ1, ξ2, ξ3) is the variable dual to the position
variable x; in physics literature the ξ would be referred to as momentum. Our
principal symbol A1(x, ξ) is a 2× 2 Hermitian matrix-function on the cotangent
bundle T ∗M , linear in every fibre T ∗

xM (i.e. linear in ξ).
Throughout this paper we assume that the principal symbol A1(x, ξ) is trace-

free for all (x, ξ) ∈ T ∗M and that

detA1(x, ξ) 6= 0, ∀(x, ξ) ∈ T ′M, (1.2)

where T ′M := T ∗M \{ξ = 0} (cotangent bundle with the zero section removed).
The assumption (1.2) is a version of the ellipticity condition.

Under the above assumptions A is a self-adjoint operator in L2(M ;C2)
(Hilbert space of square integrable complex-valued column “functions”) with
domain H1(M ;C2) (Sobolev space of complex-valued column “functions” which
are square integrable together with their first partial derivatives) and the spec-
trum of A is discrete, with eigenvalues accumulating to ±∞. Let λk and
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vk =
(

vk1(x) vk2(x)
)T

be the eigenvalues and eigenfunctions of the opera-
tor A. The eigenvalues λk are enumerated in increasing order with account of
multiplicity, using a positive index k = 1, 2, . . . for positive λk and a nonpositive
index k = 0,−1,−2, . . . for nonpositive λk.

We will be studying the spectral function and the counting function. The
spectral function is the real density defined as

e(λ, x, x) :=
∑

0<λk<λ

‖vk(x)‖
2, (1.3)

where ‖vk(x)‖
2 := [vk(x)]

∗vk(x) is the square of the Euclidean norm of the
eigenfunction vk evaluated at the point x ∈ M and λ is a positive parameter
(spectral parameter). The counting function is the function

N(λ) :=
∑

0<λk<λ

1 =

∫

M

e(λ, x, x) dx . (1.4)

In other words, N(λ) is the number of eigenvalues λk between zero and λ.
We aim to derive, under appropriate assumptions on Hamiltonian trajec-

tories, two-term asymptotics for the spectral function (1.3) and the counting
function (1.4), i.e. formulae of the type

e(λ, x, x) = a(x)λ3 + b(x)λ2 + o(λ2), (1.5)

N(λ) = aλ3 + bλ2 + o(λ2) (1.6)

as λ → +∞, where the real constants a, b and real densities a(x), b(x) are
related in accordance with

a =

∫

M

a(x) dx, (1.7)

b =

∫

M

b(x) dx. (1.8)

In our recent paper [10] we performed a comprehensive analysis of two-term
spectral asymptotics for general first order elliptic systems. In doing this we
showed that all previous publications on systems gave formulae for the second
asymptotic coefficient that were either incorrect or incomplete (i.e. an algorithm
for the calculation of the second asymptotic coefficient rather than an explicit
formula), see Section 11 of [10] for the appropriate bibliographic review. The
correct formula for the coefficient b(x) was the main result of [10].

The problem examined in the current paper is a special case of that from [10].
Namely, in the current paper we make the following additional assumptions as
compared to [10]:

our manifold has dimension 3, (1.9)

the number of equations in our system is 2, (1.10)

our operator is differential (as opposed to pseudodifferential), (1.11)
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the principal symbol is trace-free. (1.12)

The need for a detailed analysis of the special case (1.9)–(1.12) is driven by
applications to the massless Dirac operator.

The additional assumptions (1.9)–(1.12) lead to the following simplifications
as compared to [10].

• The subprincipal symbol Asub does not depend on the dual variable ξ
(momentum) and is a function of x (position) only. Recall that the sub-
principal symbol is the zeroth order term of the full symbol of the first
order operator A written in a way which makes it invariant under coordi-
nate transformations, see formula (6.2) for formal definition and subsection
2.1.3 in [22] for background material.

• The principal symbol A1 admits a geometric description.

The first of these simplifications is trivial whereas the second is not. We list
below the geometric objects encoded within the principal symbol.

Geometric object 1: the metric. Observe that the determinant of the
principal symbol is a negative definite quadratic form

detA1(x, ξ) = −gαβξαξβ (1.13)

and the coefficients gαβ(x) = gβα(x), α, β = 1, 2, 3, appearing in (1.13) can
be interpreted as components of a (contravariant) Riemannian metric. This
implies, in particular, that our Hamiltonian (positive eigenvalue of the principal
symbol) takes the form

h+(x, ξ) =
√

gαβ(x) ξαξβ (1.14)

and the x-components of our Hamiltonian trajectories become geodesics.

Geometric object 2: the teleparallel connection. This is an affine
connection defined as follows. Suppose we have a covector ξ based at the point
x ∈ M and we want to construct a parallel covector ξ̃ based at the point x̃ ∈ M .
This is done by solving the linear system of equations

A1(x̃, ξ̃) = A1(x, ξ). (1.15)

Equation (1.15) is equivalent to a system of three real linear algebraic equations
for the three real unknowns, components of the covector ξ̃, and it is easy to
see that this system has a unique solution. It is also easy to see that the
affine connection defined by formula (1.15) preserves the Riemannian norm of
covectors, i.e. gαβ(x̃) ξ̃αξ̃β = gαβ(x) ξαξβ , hence, it is metric compatible. The
parallel transport defined by formula (1.15) does not depend on the curve along
which we transport the (co)vector, so our connection has zero curvature. The
word “teleparallel” (parallel at a distance) is used in theoretical physics [18] to
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describe metric compatible affine connections with zero curvature. The origins of
this terminology go back to the works of A. Einstein and É. Cartan [28, 23, 7],
though Cartan preferred to use the term “absolute parallelism” rather than
“teleparallelism”.

The teleparallel connection coefficients Γα
βγ(x) can be written down explic-

itly in terms of the principal symbol, see formula (3.7), and this allows us to
define yet another geometric object — the torsion tensor

Tα
βγ := Γα

βγ − Γα
γβ . (1.16)

Further on we raise and lower indices of the torsion tensor using the metric.

Geometric object 3: the topological charge. It turns out, see Sec-
tion 3, that the existence of a principal symbol implies that our manifold M is
parallelizable. Parallelizability implies orientability. Having chosen a particular
orientation, we allow only changes of local coordinates xα, α = 1, 2, 3, which
preserve orientation.

We define the topological charge as

c := −
i

2

√

det gαβ tr
(

(A1)ξ1(A1)ξ2(A1)ξ3
)

, (1.17)

with the subscripts ξα indicating partial derivatives. We show in Section 3
that the number c defined by formula (1.17) can take only two values, +1 or
−1, and describes the orientation of the principal symbol relative to the chosen
orientation of local coordinates.

We have identified three geometric objects encoded within the principal sym-
bol — metric, teleparallel connection and topological charge. Consequently, one
would expect the coefficient b(x) from formula (1.5) to be expressed via these
three geometric objects and the subprincipal symbol. This assertion is confirmed
by the following theorem.

Theorem 1.1 The coefficients in the two-term asymptotics (1.5) are given by
the formulae

a(x) =
1

6π2

√

det gαβ(x) , (1.18)

b(x) =
1

8π2

(

[ 3 c ∗T ax − 2 trAsub ]
√

det gαβ
)

(x) , (1.19)

where

T ax
αβγ :=

1

3
(Tαβγ + Tγαβ + Tβγα) (1.20)

is axial torsion (totally antisymmetric piece of the torsion tensor) and ∗ is the
Hodge star (3.4).

Remark 1.1 The spectral and counting functions admit two-term asymptotic
expansions (1.5) and (1.6) only under appropriate assumptions on geodesic loops
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and closed geodesics respectively, see Theorems 8.3 and 8.4 in [10]. However,
one can easily reformulate asymptotic formulae (1.5) and (1.6) in such a way
that they remain valid without assumptions on geodesics: this can easily be
achieved, say, by taking a convolution with a function from Schwartz space S(R),
see Theorems 7.1 and 7.2 in [10]. Thus, the second asymptotic coefficients of
the spectral and counting functions are well-defined irrespective of how many
geodesic loops or closed geodesics we have. We introduced the second asymptotic
coefficients b(x) and b via the unmollified asymptotic expansions (1.5) and (1.6)
simply for the sake of clarity of presentation.

The proof of Theorem 1.1 is given in Sections 2–5.

We now turn our attention to the massless Dirac operator. This operator is
defined in Appendix A, see formula (A.3), and it does not fit into our scheme
because it is an operator acting on a 2-component complex-valued spinor (Weyl
spinor) rather than a pair of complex-valued half-densities. However, on a par-
allelizable manifold components of a spinor can be identified with half-densities.
We call the resulting operator the massless Dirac operator on half-densities.
The explicit formula for the massless Dirac operator on half-densities is (A.19).

The massless Dirac operator on half-densities is an operator of the type we
are considering in this paper, i.e. a self-adjoint first order elliptic differential
operator acting on 2-columns of complex-valued half-densities and with a trace-
free principal symbol. We address the question: is a given operator A a massless
Dirac operator? The answer is given by the following theorem which is our main
result.

Theorem 1.2 The operator A is a massless Dirac operator on half-densities
if and only if the following two conditions are satisfied at every point of the
manifold M : a) the subprincipal symbol of the operator, Asub(x), is proportional
to the identity matrix and b) the second asymptotic coefficient of the spectral
function, b(x), is zero.

Note that conditions a) and b) in Theorem 1.2 are invariant under special
unitary transformations, i.e. transformations of the operator

A 7→ RAR∗, (1.21)

where R : M → SU(2) is an arbitrary smooth special unitary matrix-function.
The invariance of condition b) is obvious. In fact, condition b) is invariant under
the action of a broader group: the unitary matrix-function R(x) appearing in
formula (1.21) does not have to be special. As to condition a), its invariance is
established by examination of formula (9.3) from [10] with the use of the special
commutation properties of trace-free Hermitian 2× 2 matrices (the anticommu-
tator of a pair of trace-free Hermitian 2×2 matrices is a multiple of the identity
matrix). The fact that the conditions of Theorem 1.2 are SU(2) invariant is
not surprising as the massless Dirac operator is designed around the concept of
SU(2) invariance, see Property 4 in Appendix A.
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The proof of Theorem 1.2 is given in Sections 6 and 7.

Theorems 1.1 and 1.2 tell us that for the massless Dirac operator on half-
densities formulae (1.5) and (1.6) read

e(λ, x, x) =

√

det gαβ(x)

6π2
λ3 + o(λ2), (1.22)

N(λ) =
VolM

6π2
λ3 + o(λ2), (1.23)

where VolM is the volume of the Riemannian 3-manifold M .

Remark 1.2 The factor
√

det gαβ(x) appears in the RHS of (1.22) because we
are working with the massless Dirac operator on half-densities (A.19) rather
than with the massless Dirac operator on spinors (A.3). For the massless Dirac
operator on spinors the spectral function is a scalar field (as opposed to a density)
and formula (1.22) reads e(λ, x, x) = 1

6π2λ
3 + o(λ2).

2 Reduction from the general setting

As explained in Section 1, the problem considered in the current paper is a
special case of that from [10]. Formulae (1.23) and (1.24) from [10] in our case
read

a(x) =

∫

h+(x,ξ)<1

d̄ξ , (2.1)

b(x) = b1(x) + b2(x) , (2.2)

where

b1(x) = −3

∫

h+(x,ξ)<1

([v+]∗Asubv
+)(x, ξ) d̄ξ , (2.3)

b2(x) =
3i

2

∫

h+(x,ξ)<1

{[v+]∗, A1 − 2h+I, v+}(x, ξ) d̄ξ . (2.4)

Here h+(x, ξ) is the positive eigenvalue of the principal symbol (see also formula
(1.14)), v+(x, ξ) is the corresponding normalized eigenvector (2-column), d̄ξ is
shorthand for d̄ξ := (2π)−3 dξ = (2π)−3 dξ1dξ2dξ3 and I is the 2 × 2 identity
matrix. Curly brackets in formula (2.4) denote the Poisson bracket on matrix-
functions

{P,R} := PxαRξα − PξαRxα (2.5)

and its further generalization

{P,Q,R} := PxαQRξα − PξαQRxα , (2.6)

with the subscripts xα and ξα indicating partial derivatives and the repeated
tensor index α indicating summation over α = 1, 2, 3.

7



Put P+(x, ξ) := [v+(x, ξ)][v+(x, ξ)]∗, which is the orthogonal projection
onto the eigenspace span v+ of the principal symbol. We have A1 − 2h+I =
2h+P+ − 3h+I and {[v+]∗, P+, v+} = 0, so formula (2.4) can be rewritten as

b2(x) = −
9i

2

∫

h+(x,ξ)<1

(h+{[v+]∗, v+})(x, ξ) d̄ξ . (2.7)

Our aim now is to evaluate the integrals (2.1), (2.3) and (2.7) explicitly.
Formulae (2.1) and (1.14) immediately imply (1.18).
In order to evaluate the integral (2.3) we rewrite this formula as

b1(x) = −3

∫

h+(x,ξ)<1

tr(AsubP
+)(x, ξ) d̄ξ

and use the fact that P+(x, ξ) = 1
2h+(x,ξ) (A1(x, ξ) + h+(x, ξ) I). We get

b1(x) = −3

∫

h+(x,ξ)<1

1

2h+(x, ξ)
tr(Asub(A1 + h+I))(x, ξ) d̄ξ .

But Asub does not depend on ξ whereas A1 and h+ are, respectively, odd and
even in ξ, so the term 1

2h+ tr(AsubA1) integrates to zero, leaving us with

b1(x) = −
3

2
(trAsub)(x)

∫

h+(x,ξ)<1

d̄ξ = −
1

4π2

(

trAsub

√

det gαβ
)

(x) . (2.8)

In order to complete the proof of Theorem 1.1 we need to evaluate explicitly
the integral (2.7). The next three sections deal with this nontrivial issue.

3 Teleparallel connection

We show in this section that the principal symbol generates a teleparallel con-
nection which allows us to reformulate the results of our spectral analysis in a
much clearer geometric language.

Let us show first that the existence of a principal symbol implies that our
manifold M is parallelizable. The principal symbol A1(x, ξ) is linear in ξ so it
can be written as

A1(x, ξ) = σα(x) ξα , (3.1)

where σα(x), α = 1, 2, 3, are some trace-free Hermitian 2 × 2 matrix-functions.
Let us denote the elements of the matrices σα as σα

ȧb , where the dotted index,
running through the values 1̇, 2̇, enumerates the rows and the undotted index,
running through the values 1, 2, enumerates the columns; this notation is taken
from [11]. Put

e1
α(x) := Reσα

1̇2(x), e2
α(x) := − Imσα

1̇2(x), e3
α(x) := σα

1̇1(x). (3.2)
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Formula (3.2) defines a triple of smooth real vector fields ej(x), j = 1, 2, 3, on
the manifold M . These vector fields are linearly independent at every point
x of the manifold: this follows from formula (1.2). Thus, the triple of vector
fields ej is a frame. The existence of a frame means that the manifold M is
parallelizable.

Conversely, given a frame ej we uniquely recover the principal symbolA1(x, ξ)
via formulae (3.1), (A.1) and (A.2). Thus, a principal symbol is equivalent to a
frame. Of course, this equivalence statement relies on our a priori assumptions
(1.1), (1.2) and (1.9)–(1.12).

It is easy to see that the frame elements ej are orthonormal with respect to
the metric (1.13). Moreover, the metric can be determined directly from the
frame as

gαβ = δjkej
α ek

β , (3.3)

where the repeated frame indices j and k indicate summation over j, k = 1, 2, 3.
The two definitions of the metric, (1.13) and (3.3), are equivalent.

Parallelizability implies orientability, see Proposition 13.5 in [20]. Having
chosen a particular orientation, we allow only changes of local coordinates xα,
α = 1, 2, 3, which preserve orientation and define the Hodge star in the standard
way: the action of ∗ on a rank q antisymmetric tensor Q is

(∗Q)γq+1...γ3
:= (q!)−1

√

det gαβ Q
γ1...γqεγ1...γ3

, (3.4)

where ε is the totally antisymmetric quantity, ε123 := +1, and g is the Rie-
mannian metric (1.13). Here and further on we identify differential forms with
covariant antisymmetric tensors. We raise and lower tensor indices using our
metric.

Substituting formulae (3.1) and (3.2) into (1.17) we get

c = sgndet ej
α. (3.5)

Formula (3.5) provides an equivalent (and more natural) definition of topological
charge. It also explains why the topological charge, initially defined in Section 1
in accordance with formula (1.17), can only take values +1 or −1.

The concept of a teleparallel connection was already defined in Section 1 in
accordance with formula (1.15). This connection can be equivalently defined
via the frame as follows. Suppose we have a vector v based at the point x ∈ M
and we want to construct a parallel vector ṽ based at the point x̃ ∈ M . We
decompose the vector v with respect to the frame at the point x, v = cjej(x), and
reassemble it with the same coefficients cj at the point x̃, defining ṽ := cjej(x̃).

We now define the covariant derivative corresponding to the teleparallel con-
nection. Our teleparallel connection is a special case of an affine connection, so
we are looking at a covariant derivative acting on vector/covector fields in the
usual manner

∇µv
α = ∂vα/∂xµ + Γα

µβ v
β , ∇µwβ = ∂wβ/∂x

µ − Γα
µβ wα .
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The teleparallel connection coefficients are defined from the conditions

∇µej
α = 0 , (3.6)

where the ej are elements of our frame. Formula (3.6) gives a system of 27 linear
algebraic equations for the determination of 27 unknown connection coefficients.
It is known (see, for example, formula (A2) in [5]), that the unique solution of
this system is

Γα
µβ = ek

α(∂ekβ/∂x
µ) , (3.7)

where
ekβ := δkjgβγej

γ . (3.8)

The triple of covector fields ek, k = 1, 2, 3, is called the coframe. The frame and
coframe uniquely determine each other via the relation

ej
αekα = δj

k. (3.9)

Note that our notation for the frame and coframe is taken from [13]. We feel
it necessary to mention this because there is a whole range of different notation
for frames/coframes in mathematics and theoretical physics literature, which
makes the subject somewhat confusing.

One can check by performing explicit calculations that the teleparallel con-
nection has the following two important properties:

∇αgβγ = 0, (3.10)

which means that the connection is metric compatible, and

(∇α∇β −∇β∇α)v
γ = 0 for any vector field v , (3.11)

which means that the Riemann curvature tensor is zero. Properties (3.10) and
(3.11) are the defining properties of a teleparallel connection: a teleparallel
connection is, by definition [18], an affine connection satisfying (3.10) and (3.11).

The tensor characterizing the “strength” of the teleparallel connection is not
the Riemann curvature tensor but the torsion tensor (1.16). The teleparallel
connection is, in a sense, the opposite of the more common Levi-Civita con-
nection: the Levi-Civita connection has zero torsion but nonzero curvature,
whereas the teleparallel connection has nonzero torsion but zero curvature. In
our paper we distinguish these two affine connections by using different notation
for connection coefficients: we write the teleparallel connection coefficients as

Γα
βγ and the Levi-Civita connection coefficients (Christoffel symbols) as

{

α
βγ

}

,

see formula (A.4). It is known, see formula (7.34) in [21], that the two sets of

connection coefficients are related as Γα
βγ =

{

α
βγ

}

+ 1
2 (T

α
βγ + Tβ

α
γ + Tγ

α
β).

Substituting (3.7) into (1.16) we arrive at the following explicit formula for
the torsion tensor of the teleparallel connection

T = ej ⊗ dej , (3.12)
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where the d stands for the exterior derivative. For the sake of clarity we rewrite
formula (3.12) in more detailed form, retaining all tensor indices,

Tα
βγ = ej

α(∂ejγ/∂x
β − ∂ejβ/∂x

γ) . (3.13)

As always, the repeated index j appearing in formulae (3.12) and (3.13) indicates
summation over j = 1, 2, 3.

Torsion is a rank three tensor antisymmetric in the last two indices. Because
we are working in dimension three, it is convenient, as in [3], to apply the Hodge
star in the last two indices and deal with the rank two tensor

∗

Tα
β :=

1

2
Tαγδ εγδβ

√

det gµν (3.14)

instead. Substituting (3.12) into (3.14) we get

∗

T = ej ⊗ curl ej , (3.15)

where

(curl ej)β := (∗dej)β =
1

2
(dej)γδ εγδβ

√

det gµν . (3.16)

4 Relation between curvature of the U(1) connec-

tion and torsion of the teleparallel connection

This section is devoted to the examination of the integrand in formula (2.7).
Recall that the curly brackets in this integrand denote the Poisson bracket on
matrix-functions (2.5).

As explained in Section 5 of [10], the expression −i{[v+]∗, v+} is the scalar
curvature of the U(1) connection generated by the eigenspace span v+ of the
principal symbol. This curvature term appears in the general setting of a first
order elliptic system. A feature of the particular case (1.9)–(1.12) considered
in the current paper is that the scalar curvature of the U(1) connection can
be expressed via torsion of the teleparallel connection. This is a substantial
simplification. The teleparallel connection is a simpler geometric object than
the U(1) connection because the coefficients of the teleparallel connection do
not depend on the dual variable (momentum), i.e. they are “functions” on the
base manifold M . The relationship between the two connections is established
by the following lemma.

Lemma 4.1 The scalar curvature of the U(1) connection is expressed via the
torsion of the teleparallel connection, metric and topological charge as

− i{[v+]∗, v+}(x, ξ) =
c

2

∗

Tαβ(x) ξαξβ
(gµν(x) ξµξν)3/2

. (4.1)
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Recall that the topological charge c = ±1 is defined in accordance with
formula (1.17) or, equivalently, in accordance with formula (3.5).

Proof of Lemma 4.1 We give the proof for the case

c = +1 . (4.2)

There is no need to give a separate proof for the case c = −1 as the two cases
reduce to one another by means of a) the observation that torsion (3.12) is
invariant under inversion of the frame and b) the identity

{[v+]∗, v+}+ {[v−]∗, v−} = 0, (4.3)

where v−(x, ξ) is the normalized eigenvector of the principal symbol correspond-
ing to the negative eigenvalue. Formula (4.3) is a special case of formula (1.22)
from [10].

We fix an arbitrary point Q ∈ T ′M and prove formula (4.1) at this point.
As the LHS and RHS of (4.1) are invariant under changes of local coordinates x,
it is sufficient to prove formula (4.1) in Riemann normal coordinates, i.e. local
coordinates such that x = 0 corresponds to the projection of the point Q onto
the base manifold, gµν(0) = δµν and ∂gµν

∂xλ (0) = 0. Moreover, as the formula we
are proving involves only first partial derivatives in x, we may assume, without
loss of generality, that

gµν(x) = δµν (4.4)

for all x in some neighbourhood of the origin. In other words, it is sufficient to
prove formula (4.1) for the case of Euclidean metric.

As both the LHS and RHS of (4.1) have the same degree of homogeneity
in ξ, namely, −1, it is sufficient to prove formula (4.1) for ξ of norm 1. Moreover,
by rotating our Cartesian coordinate system we can reduce the case of general
ξ of norm 1 to the case

ξ =
(

0 0 1
)

. (4.5)

There is one further simplification that can be made: we claim that it is
sufficient to prove formula (4.1) for the case when

ej
α(0) = δj

α, (4.6)

i.e. for the case when at the point x = 0 the elements of the frame are aligned
with the coordinate axes. This claim follows from the observation that the
LHS of formula (4.1) is invariant under rigid special unitary transformations of
the column-function v+, v+ 7→ Rv+ , where “rigid” refers to the fact that the
matrix R ∈ SU(2) is constant. Of course, the column-function Rv+ is no longer
an eigenvector of the original principal symbol, but a new principal symbol
obtained from the old one by the rigid special orthogonal transformation of the
frame (A.14) with the 3 × 3 special orthogonal matrix O expressed in terms
of the 2 × 2 special unitary matrix R in accordance with (A.15). One can
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always choose the special unitary matrix R so that at the point x = 0 the
elements of the new frame are aligned with the coordinate axes (in fact, there
are two possible choices of R which differ by sign). It remains only to note that
direct inspection of formula (3.12) shows that torsion is also invariant under

rigid special orthogonal transformations of the frame, and, hence, the tensor
∗

T
defined by formula (3.14) and appearing in the RHS of formula (4.1) is invariant
under rigid special orthogonal transformations of the frame as well.

Having made the simplifying assumptions (4.4)–(4.6), we are now in a posi-
tion to prove formula (4.1).

Let us calculate the RHS of (4.1) first. In view of (4.6) we have, in the linear
approximation in x,





e1
1(x) e1

2(x) e1
3(x)

e2
1(x) e2

2(x) e2
3(x)

e3
1(x) e3

2(x) e3
3(x)



 =





1 w3(x) −w2(x)
−w3(x) 1 w1(x)
w2(x) −w1(x) 1



 , (4.7)

where w is some smooth vector-function which vanishes at x = 0. Formula (4.7)
is the standard formula for the linearization of an orthogonal matrix about the
identity; see also formula (10.1) in [3]. Note that in Cosserat elasticity literature
the vector-function w is called the vector of microrotations. Substituting (4.7)
into (3.15) and (3.16) we get, at x = 0,

∗

Tαβ = ∂wβ/∂x
α − δαβ divw, (4.8)

which is formula (10.5) from [3]. Here we freely lower and raise tensor indices
using the fact that the metric is Euclidean (in the Euclidean case (4.4) it does
not matter whether a tensor index comes as a subscript or a superscript). Sub-
stituting (4.8) and (4.5) into the RHS of (4.1) we get, at our point Q ∈ T ′M ,

1

2

∗

Tαβξαξβ
(gµνξµξν)3/2

= −
1

2
(∂w1/∂x1 + ∂w2/∂x2) . (4.9)

Let us now calculate the LHS of (4.1). The equation for the eigenvector
v+(x, ξ) of the principal symbol is

(

e3
αξα − ‖ξ‖ (e1 − ie2)

αξα
(e1 + ie2)

αξα −e3
αξα − ‖ξ‖

)(

v+1
v+2

)

= 0 . (4.10)

In view of (4.5) and (4.6) the (normalized) solution of (4.10) at our point

Q ∈ T ′M is v+ =

(

1
0

)

. Of course, our v+(x, ξ) is defined up to the gauge

transformation
v+ 7→ eiφ

+

v+, (4.11)

where
φ+ : T ′M → R (4.12)
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is an arbitrary smooth function, however the LHS of (4.1) is invariant under
this gauge transformation. We now perturb equation (4.10) about the point
Q ∈ T ′M , that is, about x = 0, ξ =

(

0 0 1
)

, making use of formula (4.7),
which gives us the following equation for the increment δv+ of the eigenvector
v+(x, ξ) of the principal symbol:

(

0 0
0 −2

)(

δv+1
δv+2

)

+

(

0 −w2(x) − iw1(x)
−w2(x) + iw1(x) 0

)(

1
0

)

+

(

0 δξ1 − iδξ2
δξ1 + iδξ2 −2δξ3

)(

1
0

)

= 0,

or, equivalently,

δv+2 =
1

2
(−w2(x) + iw1(x) + δξ1 + iδξ2). (4.13)

Formula (4.13) has to be supplemented by the normalization condition
‖v+(x, ξ)‖ = 1, which in its linearized form reads

Re δv+1 = 0. (4.14)

Formulae (4.14) and (4.13) define δv+ modulo an arbitrary Im δv+1 , with this
degree of freedom being associated with the gauge transformation (4.11), (4.12).
Without loss of generality we may assume that the gauge is chosen so that

Im δv+1 = 0. (4.15)

Combining formulae (4.14), (4.15) and (4.13) we get

δv+ =
1

2

(

0
−w2(x) + iw1(x) + δξ1 + iδξ2

)

. (4.16)

Recall that the w appearing in this formula is some smooth vector-function
which vanishes at x = 0.

Differentiation of (4.16) gives us

∂v+

∂xα
=

1

2

(

0
−∂w2/∂xα + i∂w1/∂xα

)

, (4.17)

∂v+

∂ξ1
=

1

2

(

0
1

)

,
∂v+

∂ξ2
=

1

2

(

0
i

)

,
∂v+

∂ξ3
= 0. (4.18)

Formulae (4.17) and (4.18) imply that at our point Q ∈ T ′M

− i{[v+]∗, v+} = −
1

2
(∂w1/∂x1 + ∂w2/∂x2). (4.19)

Comparing formulae (4.9) and (4.19) and recalling (4.2), we arrive at the
required result (4.1). �
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5 Integration of the curvature term

Substituting (4.1) into (2.7) we get

b2(x) =
9c

4

∫

h+(x,ξ)<1

∗

Tαβ(x) ξαξβ
gµν(x) ξµξν

d̄ξ . (5.1)

Recall that h+(x, ξ) is given by formula (1.14).

The tensor
∗

T can be decomposed into pure trace and trace-free pieces, i.e.

∗

Tαβ =
1

3
gαβ

∗

T γ
γ +

(

∗

Tαβ −
1

3
gαβ

∗

T γ
γ

)

. (5.2)

It is easy to see that the trace-free piece (second term in the RHS of (5.2)) does
not contribute to the integral in (5.1), hence formula (5.1) becomes

b2(x) =
3c

4

∗

T γ
γ(x)

∫

h+(x,ξ)<1

d̄ξ =
c

8π2

(
∗

T γ
γ

√

det gαβ
)

(x) . (5.3)

But formulae (1.20), (3.4) and (3.14) imply that

∗

T γ
γ = 3 ∗ T ax. (5.4)

Combining formulae (2.2), (2.8), (5.3) and (5.4) we arrive at formula (1.19).
This completes the proof of Theorem 1.1.

6 The subprincipal symbol of the massless Dirac

operator

In this section we calculate the subprincipal symbol of the massless Dirac opera-
tor, which prepares the ground for the proof of Theorem 1.2 in the next section.
In view of Remark 2.1.10 from [22], defining the subprincipal symbol for the
massless Dirac operator on spinors (A.3) is problematic, hence, we work with
the massless Dirac operator on half-densities (A.19). For the sake of brevity we
denote the massless Dirac operator on half-densities by A rather than by W1/2 .

Lemma 6.1 The subprincipal symbol of the massless Dirac operator on half-
densities (A.19) is

Asub(x) =
3c

4

(

∗T ax(x)
)

I , (6.1)

where c = ±1 is the topological charge (3.5), T ax is axial torsion (1.20), ∗ is
the Hodge star (3.4) and I is the 2× 2 identity matrix.
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Proof We give the proof of (6.1) for the case (4.2). There is no need to give
a separate proof for the case c = −1 as the two cases reduce to one another by
inversion of the frame: the full symbol of the massless Dirac operator on half-
densities changes sign under inversion of the frame and hence its subprincipal
symbol changes sign under inversion of the frame, whereas torsion (3.12) is
invariant under inversion of the frame.

According to formula (1.2) from [12] the subprincipal symbol is defined as

Asub := A0 +
i

2
(A1)xαξα , (6.2)

where A1(x, ξ) and A0(x) are the homogeneous (in ξ) components of the full
symbol A(x, ξ) = A1(x, ξ) + A0(x) of our first order differential operator, with
the subscript indicating degree of homogeneity. For the massless Dirac operator
on half-densities (A.19) these homogeneous components read (3.1) and

A0(x) = −
i

4
σασβ

(

∂σβ

∂xα
+

{

β

αγ

}

σγ

)

+
i

2
σα

{

β

αβ

}

(6.3)

respectively. Note that in writing down (6.3) we used the standard formula

1

2 det gκλ

∂ det gµν
∂xα

=

{

β

αβ

}

.

Our task is to substitute (3.1) and (6.3) into (6.2).
We fix an arbitrary point P ∈ M and prove formula (6.1) at this point. As

the LHS and RHS of (6.1) are invariant under changes of local coordinates x, it
is sufficient to check the identity (6.1) in Riemann normal coordinates, i.e. local
coordinates such that x = 0 corresponds to the point P , gµν(0) = δµν and
∂gµν

∂xλ (0) = 0. Moreover, as the principal symbol is linear in ξ and the formula we
are proving involves only first partial derivatives in x, we may assume, without
loss of generality, that we have (4.4) for all x in some neighbourhood of the
origin. In other words, it is sufficient to prove formula (6.1) for the case of
Euclidean metric. Furthermore, by rotating our Cartesian coordinate system we
can achieve (4.6), which opens the way to the use, in the linear approximation
in x, of formula (4.7).

Substituting (4.7) into (A.1), we get, in the linear approximation in x,

σ1 =

(

w2 1 + iw3

1− iw3 −w2

)

= σ1 ,

σ2 =

(

−w1 −i+ w3

i+ w3 w1

)

= σ2 ,

σ3 =

(

1 −iw1 − w2

iw1 − w2 −1

)

= σ3 . (6.4)

Recall that the w appearing in this formula is some smooth vector-function
which vanishes at x = 0.
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Substitution of (6.4) into (3.1) and (6.3) gives us

A1(x, ξ) =

(

ξ3 ξ1 − iξ2
ξ1 + iξ2 −ξ3

)

+

(

w2ξ1 − w1ξ2 iw3ξ1 + w3ξ2 + (−iw1 − w2)ξ3
−iw3ξ1 + w3ξ2 + (iw1 − w2)ξ3 −w2ξ1 + w1ξ2

)

, (6.5)

A0(0) = −
i

4

(

0 1
1 0

)(

0 1
1 0

)(

∂w2/∂x1 i∂w3/∂x1

−i∂w3/∂x1 −∂w2/∂x1

)

+ . . . . (6.6)

Here formula (6.5) is written in the linear approximation in x, whereas formula
(6.6) displays, for the sake of brevity, only one term out of nine (the one cor-
responding to α = β = 1 in (6.3)), with the remaining eight terms concealed
within the dots . . .. Note also that the Christoffel symbols disappeared because
of our assumption that the metric is Euclidean.

Substituting (6.6) and (6.5) into (6.2), we get

Asub(0) = −
1

2
(divw) I. (6.7)

But, according to (4.8),
∗

T γ
γ(0) = −2 divw. (6.8)

Formulae (6.7), (6.8), (5.4) and (4.2) imply formula (6.1) at x = 0. �

7 Proof of Theorem 1.2

As Theorem 1.2 is an if and only if theorem, our proof comes in two parts.

Part 1 of the proof Let A be a massless Dirac operator on half-densities.
We need to prove that a) the subprincipal symbol of this operator, Asub(x), is
proportional to the identity matrix and b) the second asymptotic coefficient of
the spectral function, b(x), is zero. The required result follows from Lemma 6.1
and Theorem 1.1.

Part 2 of the proof Let A be a differential operator such that a) the sub-
principal symbol of this operator, Asub(x), is proportional to the identity matrix
and b) the second asymptotic coefficient of the spectral function, b(x), is zero.
We need to prove that A is a massless Dirac operator on half-densities.

Theorem 1.1 implies that the subprincipal symbol of our operator A is given
by formula (6.1). Let ej be the frame corresponding to the principal symbol of
the operator A, see formulae (3.1) and (3.2). Now, let B be the massless Dirac
operator on half-densities corresponding to the same frame. Then the principal
symbols of the operators A and B coincide. But Lemma 6.1 implies that the
subprincipal symbols of the operators A and B coincide as well. A first order
differential operator is determined by its principal and subprincipal symbols,
hence, A = B. �
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8 Explicit formula for axial torsion

Torsion is a rank three tensor antisymmetric in the last two indices. It is known
[3, 18] that torsion has three irreducible pieces. Only one of the three irreducible
pieces of torsion, namely, the piece which theoretical physicists label by the
adjective “axial”, appears in our spectral theoretic results, see Theorem 1.1 and
Lemma 6.1. It is also interesting that axial torsion is the irreducible piece which
is used when one models the massless neutrino [11] or the electron [6] by means
of Cosserat elasticity.

Axial torsion is defined as the totally antisymmetric piece of the torsion
tensor, see formula (1.20). This means that axial torsion is a 3-form. In view of
the importance of axial torsion, we give an explicit formula for its Hodge dual in
terms of the principal symbol A1(x, ξ). Formulae (3.15), (3.16) and (5.4) imply

∗ T ax =
δkl
3

√

det gαβ
[

ek1 ∂e
l
3/∂x

2 + ek2 ∂e
l
1/∂x

3 + ek3 ∂e
l
2/∂x

1

− ek1 ∂e
l
2/∂x

3 − ek2 ∂e
l
3/∂x

1 − ek3 ∂e
l
1/∂x

2
]

. (8.1)

Here the coframe ek is determined from the principal symbol in accordance with
formulae (3.1), (3.2) and (3.9), whereas the contravariant metric tensor gαβ is
determined from the principal symbol in accordance with formula (1.13).
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A The massless Dirac operator

Let M be a 3-dimensional connected compact oriented manifold equipped with
a Riemannian metric gαβ, α, β = 1, 2, 3 being the tensor indices. Note that we
are more prescriptive in this appendix than in the main text of the paper: in the
main text orientability emerged as a consequence of the existence of a principal
symbol and the metric was defined via the principal symbol, whereas in this
appendix orientability and metric are introduced a priori.

We work only in local coordinates with prescribed orientation.
It is known [25, 19] that a 3-dimensional oriented manifold is paralleliz-

able, i.e. there exist smooth real vector fields ej , j = 1, 2, 3, that are linearly
independent at every point x of the manifold. (This fact is often referred to
as Steenrod’s theorem.) Each vector ej(x) has coordinate components ej

α(x),
α = 1, 2, 3. Note that we use the Latin letter j for enumerating the vector
fields (this is an anholonomic or frame index) and the Greek letter α for enu-
merating their components (this is a holonomic or tensor index). The triple
of linearly independent vector fields ej , j = 1, 2, 3, is called a frame. Without
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loss of generality we assume further on that the vector fields ej are orthonor-
mal with respect to our metric: this can always be achieved by means of the
Gram–Schmidt process.

Define Pauli matrices
σα(x) := sj ej

α(x) , (A.1)

where

s1 :=

(

0 1
1 0

)

= s1 , s2 :=

(

0 −i
i 0

)

= s2 , s3 :=

(

1 0
0 −1

)

= s3 . (A.2)

In formula (A.1) summation is carried out over the repeated frame index j =
1, 2, 3, and α = 1, 2, 3 is the free tensor index.

The massless Dirac operator is the matrix operator

W := −iσα

(

∂

∂xα
+

1

4
σβ

(

∂σβ

∂xα
+

{

β

αγ

}

σγ

))

, (A.3)

where summation is carried out over α, β, γ = 1, 2, 3, and
{

β

αγ

}

:=
1

2
gβδ

(

∂gγδ
∂xα

+
∂gαδ
∂xγ

−
∂gαγ
∂xδ

)

(A.4)

are the Christoffel symbols. Here and throughout this appendix we raise and
lower tensor indices using the metric. Note that we chose the letter “W ” for
denoting the massless Dirac operator because in theoretical physics literature it
is often referred to as the Weyl operator.

Formula (A.3) is the formula from [11], only written in matrix notation
(i.e. without spinor indices). Note that in the process of transcribing formulae
from [11] into matrix notation we used the identity

ǫσαǫ = (σα)T , (A.5)

α = 1, 2, 3, where

ǫ :=

(

0 −1
1 0

)

(A.6)

is the “metric spinor”. The identity (A.5) gives a simple way of raising/lowering
spinor indices in Pauli matrices in the non-relativistic (α 6= 0) setting.

Our definition (A.3) of the massless Dirac operator is a special case of the
definition from [13]. The two definitions coincide when we work with a Spin
connection as opposed to a Spinc connection, see Propositions 2.14 and 2.15 in
[13] for details.

Throughout this paper we work in dimension 3. The definition of the mass-
less Dirac operator acting over a Riemannian manifold of arbitrary dimension
can be found, for example, in [16, 14, 15].

Physically, our massless Dirac operator (A.3) describes a single massless
neutrino living in a 3-dimensional compact universe M . The eigenvalues of the
massless Dirac operator are the energy levels.

19



The massless Dirac operator (A.3) acts on 2-columns v =
(

v1 v2
)T

of
complex-valued scalar functions. In differential geometry this object is referred
to as a (Weyl) spinor so as to emphasize the fact that v transforms in a particular
way under transformations of the orthonormal frame ej . However, as in our
exposition the frame ej is assumed to be chosen a priori, we can treat the
components of the spinor as scalars. This issue will be revisited below when we
state Property 4 of the massless Dirac operator.

We now list the main properties of the massless Dirac operator. We state
these without proofs. The proofs can be found in Appendix 3.A of [9] or in [13].

Property 1. The massless Dirac operator is invariant under changes of
local coordinates x, i.e. it maps 2-columns of smooth scalar functions M → C2

to 2-columns of smooth scalar functions M → C2 regardless of the choice of
local coordinates.

Property 2. The massless Dirac operator is formally self-adjoint (symmet-
ric) with respect to the inner product

∫

M

w∗v
√

det gαβ dx (A.7)

on 2-columns of smooth scalar functions v, w : M → C
2.

Property 3. The massless Dirac operator W commutes

C(Wv) = WC(v) (A.8)

with the antilinear map
v 7→ C(v) := ǫv, (A.9)

where ǫ is the “metric spinor” (A.6). In theoretical physics the transformation
(A.9) is referred to as charge conjugation [4, 13].

Formula (A.8) implies that v is an eigenfunction of the massless Dirac op-
erator corresponding to an eigenvalue λ if and only if C(v) is an eigenfunction
of the massless Dirac operator corresponding to the same eigenvalue λ. Hence,
all eigenvalues of the massless Dirac operator have even multiplicity. Moreover,
any eigenfunction v and its “partner” C(v) make the same contribution to the
spectral function (1.3) at every point x of the manifold M .

If, as in [13], we introduce a magnetic field, then we lose the commutation
property (A.8) and the double eigenvalues split up. This indicates that the
double eigenvalues of the massless Dirac operator correspond to the two different
spins.

Property 4. This property has to do with a particular behaviour under
SU(2) transformations. Let R : M → SU(2) be an arbitrary smooth special
unitary matrix-function. Let us introduce new Pauli matrices

σ̃α := RσαR∗ (A.10)

20



and a new operator W̃ obtained by replacing the σ in (A.3) by σ̃. It turns out
(and this is Property 4) that the two operators, W̃ and W , are related in exactly
the same way as the Pauli matrices, σ̃ and σ, that is,

W̃ = RWR∗. (A.11)

We now examine the geometric meaning of the transformation (A.10). Let
us expand the new Pauli matrices σ̃ with respect to the basis (A.2):

σ̃α(x) = sj ẽj
α(x). (A.12)

Formulae (A.1), (A.12) and (A.10) give us the following identity relating the
new vector fields ẽj and the old vector fields ej :

RskR∗ek = sj ẽj . (A.13)

Resolving (A.13) for ẽj we get

ẽj = Oj
kek , (A.14)

where the real scalars Oj
k are given by the formula

Oj
k =

1

2
tr(sjRskR∗) . (A.15)

Note that in writing formulae (A.13) and (A.14) we chose to hide the tensor
index, i.e. we chose to hide the coordinate components of our vector fields. Say,
formula (A.14) written in more detailed form reads ẽj

α = Oj
kek

α.
The scalars (A.15) can be viewed as elements of a real 3× 3 matrix-function

O with the first index, j, enumerating rows and the second, k, enumerating
columns. It is easy to check that this matrix-function O is special orthogonal.
Hence, the new vector fields ẽj are orthonormal and have the same orientation as
the old vector fields ej . We have shown that the transformation (A.10) has the
geometric meaning of switching from our original oriented orthonormal frame
ej to a new oriented orthonormal frame ẽj .

Formula (A.15) means that the special unitary matrix R is, effectively, a
square root of the special orthogonal matrix O. It is easy to see that for a given
matrix O ∈ SO(3) formula (A.15) defines the matrix R ∈ SU(2) uniquely up
to sign. This observation allows us to view the issue of the geometric meaning
of the transformation (A.10) the other way round: given a pair of orthonormal
frames, ej and ẽj, with the same orientation (i.e. with sgn det ej

α = sgn det ẽj
α),

we can recover the special orthogonal matrix-function O(x) from formula (A.14)
and then attempt finding a smooth special unitary matrix-function R(x) satis-
fying (A.15). Unfortunately, this may not always be possible due to topological
obstructions. We can only guarantee the absence of topological obstructions
when the two frames, ej and ẽj , are sufficiently close to each other, which is
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equivalent to saying that we can only guarantee the absence of topological ob-
structions when the special orthogonal matrix-function O(x) is sufficiently close
to the identity matrix for all x ∈ M .

We illustrate the possibility of a topological obstruction by means of an
explicit example. Consider the unit torus T3 parameterized by cyclic coordinates
xα, α = 1, 2, 3, of period 2π. The metric is assumed to be Euclidean. Define a
pair of orthonormal frames

ej
α := δj

α (A.16)

and

ẽ1
α :=





cos k3x
3

sink3x
3

0



 , ẽ2
α :=





− sink3x
3

cos k3x
3

0



 , ẽ3
α :=





0
0
1



 , (A.17)

where k3 is an odd integer. Let W and W̃ be the massless Dirac operators
corresponding to the frames (A.16) and (A.17) respectively. We claim that
there does not exist a smooth matrix-function R : T3 → SU(2) which would
give (A.15), where O(x) is the special orthogonal matrix-function defined by
formula (A.14). We justify this claim in two different ways.

Justification 1. Resolving the system (A.14)–(A.17) locally for R, we get

R(x3) = ±

(

e
i
2
k3x

3

0

0 e−
i
2
k3x

3

)

, (A.18)

and this solution is unique modulo choice of sign; here the freedom in the choice
of sign is not surprising as SU(2) is the double cover of SO(3). Formula (A.18)
defines a continuous single-valued matrix-function on the unit torus T3 if and
only if the integer k3 is even, which it is not.

Justification 2. It is sufficient to show that the two operators, W and W̃ ,
have different spectra. Straightforward separation of variables shows that zero
is an eigenvalue of the operator W but not an eigenvalue of the operator W̃ .

One can generalize the above example by introducing rotations in three
different directions, which leads to eight genuinely distinct parallelizations. See
also [24] page 524 or [2] page 21.

Let us emphasize that the topological obstructions we were discussing have
nothing to do with Stiefel–Whitney classes. We are working on a parallelizable
manifold and the Stiefel–Whitney class of such a manifold is trivial. The topo-
logical issue at hand is that our parallelizable manifold may be equipped with
different spin structures.

We say that two massless Dirac operators, W and W̃ , are equivalent if there
exists a smooth matrix-function R : M → SU(2) such that the corresponding
Pauli matrices, σα and σ̃α, are related in accordance with (A.10). In view of
Property 4 (see formula (A.11)) all massless Dirac operators from the same
equivalence class generate the same spectral function (1.3) and the same count-
ing function (1.4), so for the purposes of our paper viewing such operators as
equivalent is most natural.
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As explained above, there may be many distinct equivalence classes of mass-
less Dirac operators, the difference between which is topological. Studying the
spectral theoretic implications of these topological differences is beyond the
scope of our paper. The two-term asymptotics (1.22) and (1.23) derived in the
main text of our paper do not feel this topology.

In theoretical physics the SU(2) freedom involved in defining the massless
Dirac operator is interpreted as a gauge degree of freedom. We do not adopt
this point of view (at least explicitly) in order to fit the massless Dirac operator
into the standard spectral theoretic framework.

We defined the massless Dirac operator (A.3) as an operator acting on 2-
columns of scalar functions, i.e. on 2-columns of quantities which do not change
under changes of local coordinates. This necessitated the introduction of the
density

√

det gαβ in the formula (A.7) for the inner product. In spectral theory
it is more common to work with half-densities. Hence, we introduce the operator

W1/2 := (det gκλ)
1/4 W (det gµν)

−1/4 (A.19)

which maps half-densities to half-densities. We call the operator (A.19) the
massless Dirac operator on half-densities.

B The spectrum for the torus and the sphere

In this appendix we examine the massless Dirac operator on the unit torus
T3 and the unit sphere S3 and compare our asymptotic formulae (1.22) and
(1.23) with known explicit formulae. The torus is assumed to be equipped with
Euclidean metric (see also Appendix A) whereas the sphere is assumed to be
equipped with metric induced by the natural embedding of S3 in Euclidean space
R

4. Note that in view of the obvious symmetries of the torus and the sphere
the scalar function e(λ, x, x)/

√

det gαβ(x) is constant (see also Remark 1.2), so
formulae (1.22) and (1.23) are in this case equivalent, in the sense that they
follow from one another. Hence, we will be dealing with formula (1.23) only.

We have VolT3 = (2π)3, so for the torus formula (1.23) reads

N(λ) =
4

3
πλ3 + o(λ2). (B.1)

The nonperiodicity condition (see Definitions 8.3 and 8.4 in [10]) is fulfilled for
the torus, so, according to Theorem 8.4 from [10], the asymptotic formula (B.1)
holds as it is, without mollification.

In order to test formula (B.1) we calculate the spectrum of the massless Dirac
operator on T3 explicitly. We do this first for the spin structure associated with
the frame (A.16). Then the spectrum is as follows.

• Zero is an eigenvalue of multiplicity two.

• For each m ∈ Z3 \ {0} we have the eigenvalue ‖m‖ and unique (up to
rescaling) eigenfunction, with eigenfunctions corresponding to different m
being linearly independent.
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• For each m ∈ Z3 \ {0} we have the eigenvalue −‖m‖ and unique (up to
rescaling) eigenfunction, with eigenfunctions corresponding to different m
being linearly independent.

Hence, N(λ) + 1 is the number of integer lattice points inside a 2-sphere of
radius λ in R3 centred at the origin. According to [17] the latter admits the
asymptotic expansion

4

3
πλ3 +Oε(λ

21/16+ε) (B.2)

as λ → +∞, with ε being an arbitrary positive number. This agrees with our
asymptotic formula (B.1).

Let us now consider the spin structure associated with the frame (A.17).
Then the spectrum is as follows.

• For each m ∈ Z3 we have the eigenvalue ‖m− (0, 0, 1/2)‖ and unique (up
to rescaling) eigenfunction, with eigenfunctions corresponding to different
m being linearly independent.

• For each m ∈ Z3 we have the eigenvalue −‖m−(0, 0, 1/2)‖ and unique (up
to rescaling) eigenfunction, with eigenfunctions corresponding to different
m being linearly independent.

Hence, N(λ) is the number of integer lattice points inside a 2-sphere of radius
λ in R

3 centred at (0, 0, 1/2). Here the sphere is shifted from the origin so
one cannot apply the result from [17]. However, as the shift is rational, one
can reduce the problem to counting integer lattice points in a rational ellipsoid
centred at the origin, and an application of the result from [8] gives us for the
shifted sphere the same asymptotic expansion (B.2) as for the sphere centred at
the origin.

As explained in Appendix A, the unit torus T3 admits a total of eight dif-
ferent spin structures. For each of these the problem of counting positive eigen-
values of the massless Dirac operator reduces to counting integer lattice points
inside a 2-sphere of radius λ in R3 (possibly, shifted from the origin by a ra-
tional shift), so in all eight cases we do get (B.1). In fact, we can replace the
remainder o(λ2) in (B.1) by Oε(λ

21/16+ε) and this holds for all eight different
spin structures.

In the remainder of this appendix we examine the massless Dirac operator
on the unit sphere S3. We have VolS3 = 2π2, so for the sphere formula (1.23)
reads

N(λ) =
λ3

3
+ o(λ2). (B.3)

The nonperiodicity condition fails for the sphere because all geodesics are closed
with period 2π, so formula (B.3) cannot be used in its original form and has to
be mollified, see Remark 1.1. We will deal with the mollification issue later and
give explicit formulae for the eigenvalues first.

It is known that S3 admits a unique spin structure, see Section 5 in [2].
The spectrum of the massless Dirac operator on S3 has been computed by
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different authors using different methods [26, 27, 1, 2] and reads as follows: the
eigenvalues are

±

(

k +
1

2

)

, k = 1, 2, . . . , (B.4)

and their multiplicity is
k(k + 1). (B.5)

The mollification procedure from Section 7 of [10] goes as follows. Put
N(λ) := 0 for λ ≤ 0 and take an arbitrary real-valued even function ρ(λ) from
Schwartz space S(R) whose Fourier transform ρ̂(t) satisfies conditions ρ̂(0) = 1
and supp ρ̂ ⊂ (−2π, 2π). Then, according to Theorem 7.2 from [10], the mollified
version of formula (B.3) reads

∫

N(λ− µ) ρ(µ) dµ =
λ3

3
+O(λ)

and this result holds notwithstanding the failure of the nonperiodicity condition.
However, for the sphere there is a much simpler way of testing our asymptotic
formula. Let λ ≥ 2 be integer. Taking an integer λ puts us exactly in the middle
of the gap between two consecutive clusters of eigenvalues, see formulae (B.4)
and (B.5), and achieves the same averaging effect as convolution with a function
from Schwartz space. For integer λ ≥ 2 we get

N(λ) =

λ−1
∑

k=1

k(k + 1) =
λ3

3
−

λ

3

which agrees with our asymptotic formula (B.3).
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