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ON THE RANK OF HIGHER INCLUSION MATRICES

CODRUŢ GROSU, YURY PERSON, TIBOR SZABÓ

Abstract. Let r ≥ s ≥ 0 be integers and G be an r-graph. The higher inclusion matrix
Mr

s (G) is a {0, 1}-matrix with rows indexed by the edges of G and columns indexed by the
subsets of V (G) of size s: the entry corresponding to an edge e and a subset S is 1 if S ⊆ e

and 0 otherwise. Following a question of Frankl and Tokushige and a result of Keevash,
we define the rank-extremal function rex(n, t, r, s) as the maximum number of edges of an
r-graph G having rkMr

s (G) ≤
(

n
s

)

− t. For t at most linear in n we determine this function
as well as the extremal r-graphs. The special case t = 1 answers a question of Keevash.

1. Introduction

Let n ≥ 1 and suppose F is a collection of k-subsets of [n]. For any p ≥ 1, we can define the
lower p-shadow ∂p

l F of F as the set of all (k−p)-subsets of [n] which are contained in at least
one element of F . If p = 1, we may drop the superscript. A fundamental result in extremal
combinatorics, the Kruskal-Katona theorem, gives a sharp lower bound for the size of ∂p

l F .
In order to state the theorem, we note that for positive integers m and k there are always
unique integers mk > mk−1 > . . . > mj ≥ j > 0 such that m =

(mk
k

)

+
(mk−1

k−1

)

+ . . . +
(mj

j

)

.

We further make the convention that
(x
y

)

= 0 whenever y < 0.

Theorem 1 ([8], [12]). Let k ≥ 1, p ≥ 1 and m ≥ 1. For every F ⊆
([n]
k

)

with m = |F| we
have

|∂p
l F| ≥

(

mk

k − p

)

+

(

mk−1

k − 1− p

)

+ . . . +

(

mj

j − p

)

. (1)

The inequality is best possible for every k, p and m ≤
(n
k

)

. Furthermore, if m =
(mk

k

)

, then

equality holds in (1) if and only if F ≃
([mk]

k

)

.

Theorem 1 also provides a sharp lower bound for the size of the upper p-shadow ∂p
uF ,

which is the set of all (k + p)-subsets of [n] which contain at least one element of F (indeed,
∂p
uF = (∂p

l F
c)c, where Ac is the family obtained by taking the complements of all the sets in

A). For later use, we shall denote

K(n,m, k, p) = min

{

|∂p
uF| : F ⊆

(

[n]

k

)

, |F| = m

}

.

Equivalently, as |∂p
uF| = |∂p

l F
c|, K(n,m, k, p) denotes the minimum size of |∂p

l F|, taken over

all collections F ⊆
( [n]
n−k

)

of size m. By the Kruskal-Katona theorem, if m =
(mn−k

n−k

)

+
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(mn−k−1

n−k−1

)

+ . . .+
(mj

j

)

is the unique decomposition of m, then

K(n,m, k, p) =

(

mn−k

n− k − p

)

+

(

mn−k−1

n− k − 1− p

)

+ . . .+

(

mj

j − p

)

.

A weaker but simpler version of the Kruskal-Katona theorem is due to Lovász ([15], Exercise
13.31(b)): if |F| =

(x
k

)

, for some real number x, then |∂p
l F| ≥

( x
k−p

)

, with equality if and only

if x is an integer and F ≃
([x]
k

)

. Several algebraic versions of Lovász’s result exist [2], [9];
however, no analogue of the full Kruskal-Katona theorem in linear algebra has so far been
obtained.

In this paper we will be mainly concerned with the algebraic generalization due to Keevash
[9]. To state it we will first introduce several definitions.

A hypergraph G is an ordered pair of sets (V,E), where E ⊆ 2V , the elements of V are
called vertices, and the elements of E are called edges. If r ≥ 1 and all elements of E have
the same size r, we say G is an r-uniform hypergraph, or simply an r-graph. Hence 2-graphs
correspond to the usual notion of undirected graphs. We let v(G) denote the number of
vertices, or the order of G, and |G| the number of edges, or the size of G. We denote by
Kr

n the complete r-graph on n vertices and vertex set [n]. For a subset E′ ⊆ E of the edges
of an r-graph G = (V,E) we shall denote by G − E the hypergraph with vertex set V and

edge set E \ E′. Furthermore if F ⊆
([n]
r

)

we shall sometimes identify F with the r-uniform

hypergraph ([n], F ). Finally, if G = (V,E) is any r-graph we let G denote its complement,

i.e. the hypergraph
(

V,
(V
r

)

\ E
)

.

Now let G be an r-graph and s ≤ r. The higher inclusion matrix M r
s (G) is a {0, 1}-matrix

with rows indexed by the edges of G and columns indexed by the subsets of V (G) of size s:
the entry corresponding to an edge e and a subset S is 1 if S ⊆ e and 0 otherwise. Thus
M2

1 (G) is the usual incidence matrix of a graph G.
It is an open problem of Frankl and Tokushige [4] to determine the minimum rank of M r

s (G)
in terms of |G|. A theorem of Gottlieb [7] shows that the matrix M r

s (K
r
n) has full rank.

Theorem 2 (Gottlieb, [7]). For every n ≥ r ≥ s ≥ 0 we have

rkM r
s (K

r
n) = min

{(

n

r

)

,

(

n

s

)}

.

Here and in the following the rank is considered only over the reals (in fact, we can take
any field of characteristic 0). Now the generalization of Lovász’s theorem due to Keevash is
the following.

Theorem 3 ([9]). For every r ≥ s ≥ 0 there is a number nr,s so that if G is an r-graph with

|G| =
(

x
r

)

≥ nr,s then rkM r
s (G) ≥

(

x
s

)

. Furthermore, if r > s > 0 then equality holds if and

only if x is an integer and G ≃ Kr
x.

Theorem 3 implies Lovász’s result, as the rank of M r
s (G) is at most the number of non-zero

columns, which is the size of the lower (r − s)-shadow of E(G). An important step in the
proof of Theorem 3 was provided by the following lemma.

Lemma 4 ([9]). Suppose n ≥ 2r+s. If F ⊆
([n]
r

)

with |F | <
(r
s

)−1( n
r−s

)

then rkM r
s (K

r
n−F ) =

(n
s

)

.
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Keevash further asked ([10], Question 2 (iii)) whether Lemma 4 remains true under the
assumption |F | <

(n−s
r−s

)

, at least for large n. This would be best possible, as removing all
edges of Kr

n containing some fixed s-set creates a 0-column and hence reduces the rank by at
least 1.

Now let r > s ≥ 1, n ≥ r + s and 0 ≤ t ≤
(n
s

)

. In view of the above and the question of
Frankl and Tokushige [4], we define the rank-extremal function

rex(n, t, r, s) := max

{

|G| : G is an r-graph on [n] and rkM r
s (G) ≤

(

n

s

)

− t

}

.

This notion is analogous to the notion of Turán number of hypergraphs (see [11] for a survey),
where the maximum number of edges is sought when the clique number is bounded. Here,
instead, the rank of the higher-inclusion matrix is bounded.

In the current paper we investigate this function for small t and further determine the rank-
extremal r-graphs. As in the case of t = 1, there is a natural construction which provides
a lower bound for given t: fixing t subsets of [n] of size s and removing all edges of Kr

n

containing at least one of them yields an r-graph G with rkM r
s (G) ≤

(n
s

)

− t, as M r
s (G) has

at least t zero columns. Minimizing over all choices of the t s-subsets, we see that

rex(n, t, r, s) ≥

(

n

r

)

−K(n, t, s, r − s),

where recall that K(n, t, s, r−s) is the smallest size of the upper (r−s)-shadow of a collection
of s-subsets of [n] of size t, provided by the Kruskal-Katona theorem.

The content of our main theorem is that equality holds here for t at most linear in n.

2. New Results

We call a collection of s-sets an s-star configuration if their common intersection has size
at least s − 1. Clearly for any t ≤ n − s + 1, there exists a unique (up to isomorphism)
s-star configuration Sn,t,s of size t on ground set [n]. It is easy to see that |∂r−s

u Sn,t,s| =
(

n−s+1
r−s+1

)

−
(

n−s+1−t
r−s+1

)

. Removing all edges of Kr
n containing some element of Sn,t,s gives an

r-graph G(n, t, r, s) with rkM r
s (G(n, t, r, s)) ≤

(

n
s

)

− t, as there are at least t zero columns.
Then we have

rex(n, t, r, s) ≥

(

n

r

)

−K(n, t, s, r−s) ≥ e(G(n, t, r, s)) =

(

n

r

)

−

(

n− s+ 1

r − s+ 1

)

+

(

n− s+ 1− t

r − s+ 1

)

.

(2)
Our main result is the following.

Theorem 5. Let r > s ≥ 1. Then there exist positive constants c0 := c0(r, s) and n0 :=
n0(r, s) such that the following holds. Let n ≥ n0 and 1 ≤ t ≤ c0n be integers. Then

rex(n, t, r, s) =

(

n

r

)

−

(

n− s+ 1

r − s+ 1

)

+

(

n− s+ 1− t

r − s+ 1

)

. (3)

Furthermore, G(n, t, r, s) is the unique rank-extremal r-graph up to isomorphism.

In particular, equality holds everywhere in (2), and soK(n, t, s, r−s) =
(

n−s+1
r−s+1

)

−
(

n−s+1−t
r−s+1

)

.
Now note that for any t ≤ n− s we have

t =

(

n− s

n− s

)

+ . . .+

(

n− s− t+ 1

n− s− t+ 1

)

, (4)
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and so by unicity, the right-hand side of (1) (for k := n− s, p := r− s and m := t) is exactly
(

n−s
n−r

)

+ . . .+
(

n−s−t+1
n−r−t+1

)

=
(

n−s+1
r−s+1

)

−
(

n−s−t+1
r−s+1

)

. Thus we have obtained a linear-algebraic proof

of Theorem 1 for the lower (r − s)-shadow of a collection of (n− s)-sets of size at most c0n.
By taking t := 1 in Theorem 5, we obtain rex(n, 1, r, s) =

(

n
r

)

−
(

n−s
r−s

)

which gives a positive
answer to Keevash’s question.

The main step in the proof of Theorem 5, which might be interesting in its own right, is
an extension of Gottlieb’s Theorem and concerns the robustness or resilience of the rank. It
states that if a limited number of somewhat uniformly distributed r-sets are removed from
the complete r-graph then the rank of the s-inclusion matrix does not decrease.

Theorem 6. For all r ≥ s ≥ 0 there exist positive constants ε := ε(r, s), α := α(r, s) and

n1 := n1(r, s) such that the following holds. If F ⊆
(

[n]
r

)

is a family of at most εn
(

n−s
r−s

)

r-sets

on n ≥ n1 vertices, with the property that every s-set S ∈
([n]
s

)

is contained in less than

α
(n−s
r−s

)

elements of F , then rkM r
s (K

r
n − F ) =

(n
s

)

.

Theorem 5 implies that for t up to some small constant times n, we have
(n
r

)

−rex(n, t, r, s) =
K(n, t, s, r− s). One may wonder what is the maximum value tmax up to which this equality
holds, provided n is large enough. Let us define

tmax(n, r, s) := max

{

1 ≤ t ≤

(

n

s

)

: for any t′ ≤ t,

(

n

r

)

− rex(n, t′, r, s) = K(n, t′, s, r − s)

}

.

Our next theorem shows that our bound on t in Theorem 5 is best possible up to a constant
factor.

Theorem 7. For arbitrary integers r > s ≥ 1 there exists a positive constant n′
0 := n′

0(r, s)
such that for every n ≥ n′

0, tmax(n, r, s) < n− r − 1.

The rest of this paper is organized as follows. In Section 3 we prove Theorem 6. In Section
4 we prove the main theorem. Finally, in Section 5 we prove Theorem 7.

Remark. After completion of this work we were informed by Harout Aydinian that
Ahlswede, Aydinian and Khachatrian considered before the problem of determining rex(n, t, r, 1)
and solved it in [1] for all values of n, t and r. Their proof technique is very different from
ours. In [1] it is also mentioned that the function rex(n, 1, r, 1) was first studied by Longstaff
[14], with the complete determination of its value being made by Odlyzko [16].

3. Resilience of the rank

The main goal of this section is to prove Theorem 6.
For an arbitrary r-graph H and vertex x ∈ V (H) we define two derived hypergraphs. We

shall denote by H/x the (r − 1)-graph on vertex set V (H) − {x} with edge set {A \ {x} :
A ∈ E(H), x ∈ A} and denote by H − x the r-graph on vertex set V (H)− {x} with edge set
{A : A ∈ E(H), x /∈ A}. Observe that for every x ∈ V (H), |H| = |H/x|+ |H − x|.

Let G be any r-graph with vertex set V . For any s-subset S ⊆ V and any r-edge e ∈ E(G),
we shall denote by cS(G) the column corresponding to S in M r

s (G), and by cS(G)e the entry
of M r

s (G) corresponding to the edge e and the s-subset S. A sequence {αS}S∈(Vs)
of real

numbers is called a dependence sequence for G if
∑

S∈(Vs)

αScS(G)e = 0, (5)
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for every e ∈ E(G). If not all the coefficients αS are 0, then the columns of M r
s (G) are linearly

dependent and we call the sequence non-trivial. For a dependence sequence we construct the
associated s-graph G′ on vertex set V (G′) = V (G) with edge set E(G′) = {S ∈

(V
s

)

: αS 6= 0}.
For later use we collect here four simple, but useful observations about an arbitrary depen-

dence sequence {αS}
S∈
(V
s

) and its associated s-graph G′.

Observation 8. If V ′ ⊆ V (G) and H := G[V ′] is the induced r-graph on V ′ then {αS}S∈(V
′

s )
is a dependence sequence for H.

Proof. The proof follows by noting that the submatrix of M r
s (G) indexed by the rows from

E(H) =
(V ′

r

)

∩E(G) and the columns from
(V
s

)

\
(V ′

s

)

has only zero entries, and hence when

(5) is applied to G and e ∈ E(H), all terms of the form αScS(G)e with S /∈
(

V ′

s

)

vanish. That
is, (5) holds for H and e as well. �

An r-subset R ⊆ V (G′) is called a 1-clique if the induced subgraph G′[R] contains exactly
one edge of G′.

Observation 9. No edge of G is a 1-clique.

Proof. Indeed, if R ∈ E(G) is an r-set containing exactly one edge S′ of G′, then αS = 0 for

any S ∈
(R
s

)

− {S′}. Applying (5) to G and R we obtain αS′ = αS′cS′(G)R = 0, so S′ is not
an edge of G′, a contradiction. �

Observation 10. If x ∈ V (G) and E(G′−x) is empty, then the sequence βS′ := α{x}∪S′ , S′ ∈
(V (G/x)

s−1

)

is a dependence sequence for G/x.

Proof. Note that the condition of E(G′ − x) being empty implies αS = 0, for any s-set S not
containing x. Then for any e ∈ E(G/x) we have

∑

S′∈(V (G/x)
s−1 )

βS′cS′(G/x)e =
∑

S′∈(V (G/x)
s−1 )

α{x}∪S′c{x}∪S′(G){x}∪e, by definition,

=
∑

S∈(V (G)
s ),S∋x

αScS(G){x}∪e,

=
∑

S∈(V (G)
s )

αScS(G){x}∪e, as αS = 0 when x /∈ S,

= 0, by (5) applied to G and {x} ∪ e.

So (5) holds for G/x and {βS′} as well. �

Our last observation extends the notion of a 1-clique. A k-semistar with center x and set

of leaves L is an induced subgraph of G′ on the (k+1)-set of vertices {x} ∪L, such that L is

an independent set in G′ of size k and at least one of the s-sets {x}∪S′, S′ ∈
(

L
s−1

)

, is present

in E(G′).

Observation 11. For any (r + s − 2)-semistar Z in G′, with center x and set of leaves L,

at least one of the r-edges {x} ∪R′, R′ ∈
(

L
r−1

)

, must be in F .
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Proof. If s = 1, then V (Z) is a 1-clique, because {x} ∈ E(G′) and V (Z) \ {x} is independent
in G′. Hence V (Z) is in F by Observation 9 and the claim holds.

So we may assume for a contradiction that s ≥ 2 and every edge {x} ∪ R′, R′ ∈
( L
r−1

)

, is

in G. Consider the (r − 1)-graph H induced by G/x on L. Then H ≃ Kr−1
r+s−2 is complete.

Hence M r−1
s−1 (H) has full rank by Gottlieb’s Theorem.

On the other hand, we can first apply Observation 8 to G and V (Z) followed by Observation

10 to x and G[V (Z)], and conclude that the sequence defined by βS′ := α{x}∪S′ , S′ ∈
( L
s−1

)

,

is a dependence sequence for H = G[V (Z)]/x. Since Z is a semistar, at least one of the

s-sets {x} ∪ S′, S′ ∈
(

L
s−1

)

, must be present in E(G′), hence βS′ 6= 0 for some S′ ∈
(

L
s−1

)

.
In conclusion, the dependence sequence is non-trivial and this contradicts the columns of
M r−1

s−1 (H) being linearly independent. �

Before we turn to the proof of Theorem 6, we show a lemma ensuring the existence of a
large independent set in G′ provided the rank drops below

(n
s

)

upon the deletion of a not so
large family F of edges.

Lemma 12. Let F ⊆ E(Kr
n) be such that rkM r

s (K
r
n−F ) <

(

n
s

)

and (n− r−s)
((

n
r

)

− |F |
)

≥

|F |
(r
s

)(n−r+s
s

)

, then any associated s-graph G′ has an independent set of size at least

n−
|F |
(r
s

)(n−r+s
s

)

(n
r

)

− |F |
.

Proof. Let G := Kr
n−F . To begin with, we find an edge R ∈ E(G) intersecting not too many

r-sets e ∈ F in at least r − s elements. We estimate the number of such pairs (R, e) (where
R ∈ E(G), e ∈ F with |e ∩R| ≥ r − s) from above by |F |

(r
s

)(n−r+s
s

)

. Indeed, we can choose

e ∈ F in |F | ways, then specify a subset of e of size r − s in
(

r
r−s

)

ways, and extend it to an

element R ∈
(V (G)

r

)

\ F in at most
(n−r+s

s

)

ways. By averaging, we find a set R ∈ E(G) for
which there are at most

|F |
(

r
s

)(

n−r+s
s

)

(n
r

)

− |F |

r-sets e ∈ F with |e ∩R| ≥ r − s.
We now fix one such edge R ∈ E(G), an arbitrary non-trivial dependence sequence

{αS}S∈(Vs)
, and deduce that the associated s-graph G′ has a large independent set. For

every edge e ∈ F with |e∩R| ≥ r− s, we choose an arbitrary vertex ve ∈ e \R. This is possi-
ble, as e is also an r-subset and e 6= R. Now let A := V (G′) \{ve : e ∈ F and |e∩R| ≥ r− s}.
Note that R ⊆ A. By the assumption of the lemma, we also have that

|A| ≥ n−
|F |
(r
s

)(n−r+s
s

)

(n
r

)

−|F |
≥ r + s.

We claim that A is independent in G′. Suppose for a contradiction that an s-set Q ⊆ A
is an edge in G′. Form a set V ′ ⊆ A on r + s vertices containing R and Q. This is possible,
as |R ∪ Q| ≤ r + s and there are enough vertices in A. By construction, no r-set e ∈ F
is contained in V ′, as otherwise |e ∩ R| ≥ |e| − |V ′ \ R| = r − s hence ve is defined and
ve ∈ e ⊆ V ′ ⊆ A, a contradiction. Therefore G = Kr

n − F induces on V ′ a complete r-graph
(V ′

r

)

, which by Gottlieb’s theorem must have an inclusion matrix M r
s (G[V ′]) of full rank. In

particular, every dependence sequence for G[V ′] must be trivial.
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However, by Observation 8, the coefficients αT , T ∈
(

V ′

s

)

, form a dependence sequence for
the r-graph G[V ′], which is non-trivial, as Q ⊆ V ′ and αQ 6= 0. This is a contradiction,
completing the proof of the lemma. �

We are now ready to prove Theorem 6.

Proof of Theorem 6. Note that for r = s or s = 0, we may simply choose ε := 1, n1 := r and
α := 1. Hence we may assume r > s > 0.

We first set some positive constants, depending on r and s:

ε < min

{

(r − s)!

2r!
,

1

4
(r
s

)2 ,
1

r!22r−s

}

, (6)

δ = 2ε

(

r

s

)2

, (7)

α <

(

1− 2δ

2(r − s)

)r−s

, (8)

n1 =

⌈

4r
1
2 − δ

⌉

. (9)

Note that, by (6), δ < 1/2, hence α and n1 can indeed be chosen to be positive.
Suppose for a contradiction that Theorem 6 is false. Then there exists a family F ⊂ E(Kr

n)
of r-subsets on n ≥ n1 vertices, with |F | < εn

(n−s
r−s

)

and every s-set S ⊆ V (G) is contained

in less than α
(n−s
r−s

)

members of F , such that for G := Kr
n − F we have rkM r

s (G) <
(n
s

)

. Let

{αS}
S∈
(

V
s

) be a non-trivial dependence sequence for G and let G′ be the associated s-graph.

Note that E(G′) is non-empty, as the sequence is non-trivial.

Since s ≥ 1 and ε < (r−s)!
2r! we have that

(

n

r

)

> 2εn

(

n− s

r − s

)

> 2|F |.

Then

|F |
(

r
s

)(

n−r+s
s

)

(n
r

)

− |F |
≤ 2εn

(

n− s

r − s

)(

r

r − s

)(

n− r + s

s

)(

n

r

)−1

≤ 2ε

(

r

s

)2

n = δn,

so by Lemma 12, G′ contains an independent set A of maximum size at least (1− δ)n. Define
B := V (G′) \ A. Then B is non-empty, because {αS}S∈(V (G)

s ) is non-trivial.

In the following we will reach the desired contradiction by showing that the size of F is
larger than assumed.

For x ∈ B we call S′ ∈
( A
s−1

)

an x-leaf if {x} ∪ S′ ∈ E(G′). Let dA(x) be the number of

x-leaves. We also let µA(x) be the number of vertices in A covered by the x-leaves. Note that

for s > 1 we have dA(x) ≥
µA(x)
s−1 ≥ 1, since otherwise A ∪ {x} would be a larger independent

set, contradicting the maximality of A.
First assume that for some x ∈ B we have µA(x) ≤ n/2. Fix this x and let Sx be any

x-leaf. Note that for s = 1, we have Sx = ∅.
If T is any (r−s)-subset of A not intersecting any x-leaf then {x}∪Sx∪T forms a 1-clique,

because Sx ∪ T ⊆ A is an independent set. By Observation 9, this shows that there are at
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least
(|A|−µA(x)

r−s

)

elements of F containing the s-set {x} ∪ Sx. This is a contradiction to the
choice of F , because

(

|A| − µA(x)

r − s

)

≥

(

|A| − µA(x)

r − s

)r−s

≥

(

1− 2δ

2(r − s)

)r−s

nr−s > αnr−s > α

(

n− s

r − s

)

.

Here we use the fact that |A| − µA(x) ≥ (12 − δ)n1 ≥ 4r ≥ r − s by (9).
Hence for any x ∈ B we have that µA(x) > n/2. In particular, s > 1.

We double-count the triples (x, S,R) where x ∈ B, S is an x-leaf, and R ∈
( A
r−1

)

with

R ∩ S = ∅. Note that for any such triple, {x} ∪ S ∪ R is an (r + s − 2)-semistar with

center x, and their number is
∑

x∈B dA(x)
(|A|−s+1

r−1

)

. On the other hand, by Observation 11,

for any (r + s − 2)-star Z with center x we can fix an r-set RZ such that x ∈ RZ and

RZ ∈
(V (Z)

r

)

∩ F . Now, for any such r-set R∗ ∈ F the number of those triples (x, S,R) for

which R{x}∪S∪R = R∗ is at most
(

|A|−r+1
s−1

)

. Note that given R∗, the center x is determined

uniquely, provided |R∗ ∩B| = 1 (otherwise there is no appropriate triple at all).
These imply the following lower bound for the size of F :

|F | ≥
∑

x∈B

dA(x)

(

|A| − s+ 1

r − 1

)(

|A| − r + 1

s− 1

)−1

≥

(

∑

x∈B

dA(x)

)

1

(r − 1)!
(|A| − s− r + 3)r−1 (s− 1)!

|A|s−1

≥
(s− 1)!

(r − 1)!2r−1
|A|r−s

(

∑

x∈B

dA(x)

)

, as |A| ≥ 2(r + s− 3),

≥
(s− 1)!

(r − 1)!2r−1
|A|r−s

(

∑

x∈B

µA(x)

s− 1

)

≥
(s− 2)!

(r − 1)!22r−s
nr−s+1, because µA(x) ≥

n

2
and hence |A| ≥ n/2.

> εnr−s+1, by (6)

≥ εn

(

n− s

r − s

)

This contradicts the assumption on the size of F and finishes the proof of Theorem 6. �

Remark 13. The argument above can be adapted to show that in the case t = 1 of Theorem 5

n0 can be taken 25r.

4. Proof of the main result

For any r ≥ s ≥ 1 and 0 ≤ t ≤ n we define

N(n, t, r, s) :=

(

n− s+ 1

r − s+ 1

)

−

(

n− s+ 1− t

r − s+ 1

)

. (10)

Then for any s > 1 it holds that

N(n− 1, t, r − 1, s − 1) = N(n, t, r, s). (11)



ON THE RANK OF HIGHER INCLUSION MATRICES 9

Further note that

N(n, t, r, s) =

t
∑

i=1

(

n− s+ 1− i

r − s

)

. (12)

We shall need the following two technical results about the behaviour of N(·).

Lemma 14. Let r > s ≥ 1 and α ∈ (0, 1). Then there exist positive constants γ0 < γ1 < 1
and n2 such that the following holds. For any n ≥ n2, t ≤ γ0n and p ≥ γ1n we have that

αN(n, p, r, s) > N(n, t, r, s). (13)

Proof. By definition of N(·) it is enough to prove the following

(1− α)

(

n− s+ 1

r − s+ 1

)

<

(

n− s+ 1− t

r − s+ 1

)

−

(

n− s+ 1− p

r − s+ 1

)

.

The left hand side is at most

(1− α)
nr−s+1

(r − s+ 1)!
,

while the right hand side is at least

1

(r − s+ 1)!

(

(n− s+ 1− t− (r − s))r−s+1 − ((1− γ1)n)
r−s+1

)

.

Provided n2 ≥
r−1
γ0

, this is at least

nr−s+1

(r − s+ 1)!

(

(1− 2γ0)
r−s+1 − (1− γ1)

r−s+1
)

.

Hence it is enough if 1 − α < (1 − 2γ0)
r−s+1 − (1 − γ1)

r−s+1, which clearly has a solution
(γ0, γ1) ∈ (0, 1)2 as desired. �

Lemma 15. Let r > s ≥ 1 and α ∈ (0, 1). Then there exist positive constants σ < 1 and n3

such that the following holds. For any n ≥ n3 and t ≤ σn it holds that

N(n, t, r, s)− α

(

n− s

r − s

)

< N(n− 1, t, r, s). (14)

Proof. It is equivalent to show
(

n− s− t

r − s

)

> (1− α)

(

n− s

r − s

)

,

which holds for n3 >
r−1
σ and σ such that (1− 2σ)r−s > 1− α. �

We shall frequently use the following inequality, whose simple proof forms part of Lemma
12 in [9].

Lemma 16. Suppose G is an r-graph, x is a vertex of G and 1 ≤ s ≤ r − 1. Then

rkM r
s (G) ≥ rkM r

s (G− x) + rkM r−1
s−1 (G/x). (15)

Note that in Lemma 16, if G/x has no edges, then G− x has the same edge set as G and
rkM r

s (G − x) = rkM r
s (G). We will always assume that for an r-graph G with no edges,

rkM r
s (G) = 0.

We will now prove the following equivalent version of Theorem 5.
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Theorem 17. For every r > s ≥ 1, there exist positive constants c0 := c0(r, s) and n0 :=
n0(r, s) such that the following holds. For arbitrary integers n and t with n ≥ n0 and 1 ≤ t ≤
c0n and r-graph F on n vertices, we have that

(i) if |F | < N(n, t, r, s), then rkM r
s (F ) >

(n
s

)

− t

(ii) |F | = N(n, t, r, s) and rkM r
s (F ) ≤

(n
s

)

− t if and only if F is the upper (r− s)-shadow
of an s-star configuration of size t.

Remark. Observe that part (i) implies that if F is the upper (r − s)-shadow of an s-star
configuration of size t, then rkM r

s (K
r
n − F ) =

(

n
s

)

− t. Indeed, |F | = N(n, t, r, s), hence

deleting any one set from F will make the rank strictly larger than
(n
s

)

− t, but the addition
of a single row can not increase the rank by more than one.

Remark. Note that Theorem 17 indeed implies Theorem 5 with the same constants c0
and n0. Let n ≥ n0, 1 ≤ t ≤ c0n and G be any r-graph on [n] with rkM r

s (G) ≤
(

n
s

)

− t.

We define F = G. By part (i) of Theorem 17, we must then have |F | ≥ N(n, t, r, s), so
rex(n, t, r, s) ≤

(n
r

)

− N(n, t, r, s). Part (ii) shows that rex(n, t, r, s) =
(n
r

)

−N(n, t, r, s) and

the unique family G with e(G) = rex(n, t, r, s) and rkM r
s (G) ≤

(

n
s

)

− t is the complement of
the upper (r − s)-shadow of an s-star configuration of size t.

Proof of Theorem 17. Recall first that we have already seen the “if” part of (ii) in the intro-
duction: The upper (r−s)-shadow of an s-star configuration of size t has size N(n, t, r, s) and
for its complement G = G(n, t, r, s) (cf. the discussion before Theorem 5) rkM r

s (G) ≤
(n
s

)

− t,
since the matrix contains t 0-columns.

For (i) and the “only if” part of (ii) we apply double induction, first on s and then on a
parameter measuring how far the hypergraph is from Theorem 6 being applicable. For the
second induction we need to prove a somewhat more technical statement requiring a bit of
preparation.

Let α := α(r, s) be the constant given by Theorem 6; we may assume that α < 1. For
every r-graph F ′ = (V,E), we define Λ(F ′, s) as the smallest integer ℓ ≥ 0, such that there
exists a (possibly empty) sequence v1, . . . , vℓ ∈ V of the vertices, such that for every i =
1, . . . , ℓ vi is of maximum degree in Fi−1 = F − {v1, . . . , vi−1} and the maximum degree of

Fℓ = F − {v1, . . . , vℓ} is at most α
(

|V (Fℓ)|−s
r−s

)

. This function is finite, because the maximum

degree of Kr
r−1 is 0 = α

(r−1−s
r−s

)

. By the definition of Λ, if Λ(F ′, s) > 0 then there exists a

vertex x ∈ V (F ′) of maximum degree such that

Λ(F ′, s) = Λ(F ′ − x, s) + 1.

The rôle of Λ(F ′, s) will become clear in Claim 1 below, where, intuitively, if zero, it will
allow us to appeal to Theorem 6 immediately, and otherwise it measures “how far” we are
from being able to do so.

Let r > s ≥ 1 be integers. The base case s = 1 will be similar to the induction step, so
we will treat them parallel, but will always clearly distinguish which case we deal with. If
s ≥ 2 we assume that the induction hypothesis (i.e. Theorem 17) holds for all r′ > s′ with
1 ≤ s′ < s, in particular that the appropriate constants n0(r − 1, s − 1) and c0(r − 1, s − 1)
exist.

For our technical claim we now define two positive constants n′ := n′(r, s) and c′ := c′(r, s)
for every r > s ≥ 1. In the definition we will need ε = ε(r, s) and n1 = n1(r, s), the two other
constants (besides α) as asserted by Theorem 6, and σ = σ(r, s, α) and n3 = n3(r, s, α) the
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constants in Lemma 15. For s = 1, we set

n′ = max{r + s+ 1, n1, n3},

c′ < min{ε, σ}.

For s > 1, we set

n′ = max{r + s+ 1, n1, n3, n0(r − 1, s − 1) + 1},

c′ < min{ε, σ,
1

2
c0(r − 1, s − 1)}.

Recall that s is now fixed. The following claim is formulated using the constants defined
above.

Claim 1. Let t ≥ 0 be an integer and F be an r-graph on n vertices with n − Λ(F, s) ≥
max

{

n′, t
c′

}

. Then

(i) if |F | < N(n, t, r, s), then rkM r
s (F ) >

(n
s

)

− t.

(ii) if |F | = N(n, t, r, s) and rkM r
s (F ) ≤

(n
s

)

− t then F is the upper (r− s)-shadow of an

s-star configuration of size t.

Let us discuss shortly how this claim implies the induction statement for s. Recall that
γ0 = γ0(r, s, α) < γ1 = γ1(r, s, α) and n2 = n2(r, s, α) are the constants given by Lemma 14.
We set

n0 = n0(r, s) = max

{

n′

1− γ1
, n2

}

,

c0 = c0(r, s) = min{c′(1− γ1), γ0}.

Let n ≥ n0, 1 ≤ t ≤ c0n and F ⊆
([n]
r

)

be from Theorem 17. Then n − n′ ≥ γ1n. We can
also assume that Λ(F, s) < γ1n, as otherwise by the definition of Λ, (12), and by Lemma 14,

|F | > α

γ1n
∑

i=1

(

n− s+ 1− i

r − s

)

= αN(n, γ1n, r, s) > N(n, t, r, s).

Therefore c′(n − Λ(F, s)) > c′(1 − γ1)n ≥ c0(r, s)n ≥ t, so the assumptions of Claim 1 are
satisfied, hence (i) and (ii) both hold for F .

Proof of Claim 1. If t = 0, then (i) is vacuously true, while (ii) holds because the ∅ is the
upper shadow of itself.

For t ≥ 1 we prove Claim 1 by induction on Λ = Λ(F, s). Let F be an r-graph on n vertices
with n− Λ(F, s) ≥ max

{

n′, t
c′

}

and |F | ≤ N(n, t, r, s). Set G := F .
We first consider the base case Λ(F, s) = 0. Then the maximum degree of F is at most

α
(n−s
r−s

)

. So every s-subset of V (G) is contained in at most α
(n−s
r−s

)

elements of F . Also note

that (12) implies

|F | ≤ N(n, t, r, s) ≤ t

(

n− s

r − s

)

≤ c′n

(

n− s

r − s

)

≤ εn

(

n− s

r − s

)

.

As n ≥ n′ ≥ n1, the conditions of Theorem 6 are satisfied. Hence the matrix M r
s (G) has

rank
(n
s

)

, which proves both parts (i) and (ii) because t ≥ 1.
Let us assume now that Λ(F, s) ≥ 1 and the claim holds for hypergraphs F ′ with Λ(F ′, s) <

Λ(F, s).
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Let x ∈ [n] be a vertex of maximum degree in F , such that Λ(F − x, s) = Λ(F, s) − 1.
Hence

|V (F − x)| − Λ(F − x, s) = n− Λ(F, s) ≥ max

{

n′,
t

c′

}

,

so Claim 1 can be applied to F − x and any integer t′, 0 ≤ t′ ≤ t by the induction on Λ.
When s > 1 we can also apply the induction of Theorem 17 for s − 1 with r − 1 > s − 1

and F/x, as |V (F/x)| ≥ n′− 1 ≥ n0(r− 1, s− 1) and for n ≥ 2 by the definition of c′ we have

t ≤ c′n < c0(r − 1, s − 1)|V (F/x)| = c0(r − 1, s− 1)(n − 1).

We shall now distinguish two cases according to how large degF (x) is.

Case 1:
(n−s
r−s

)

≤ degF (x) ≤ N(n, t, r, s).

We first deal with the case s = 1. Then degF (x) =
(

n−1
r−1

)

, so G/x is just the empty graph,

and hence rkM r−1
0 (G/x) = 0. To estimate the rank of the matrix of rkM r

1 (G − x) we use
Claim 1 for F − x and t− 1. If |F | < N(n, t, r, 1), then

|F − x| = |F | −

(

n− 1

r − 1

)

< N(n, t, r, 1) −

(

n− 1

r − 1

)

= N(n− 1, t− 1, r, 1),

and by part (i) rkM r
1 (G−x) > (n− 1)− (t− 1) = n− t. Lemma 16 then implies rkM r

1 (G) =
rkM r

1 (G − x) > n − t. For part (ii) let |F | = N(n, t, r, 1) and rkM r
1 (G) ≤ n − t. Then

|F −x| = N(n− 1, t− 1, r, 1) and rkM r
1 (G−x) ≤ n− t. Hence by part (ii) of Claim 1, F −x

is the upper (r − 1)-shadow of a 1-star configuration S of size t− 1. Because all r-subsets of
V (G) containing x are edges of F , F is the upper (r − 1)-shadow of a 1-star configuration of
size t (namely S ∪ {{x}}). This finishes the proof of Case 1 when s = 1.

Now assume s > 1. Let p, 1 ≤ p ≤ t be the largest integer such that

|F/x| = degF (x) ≥

p
∑

i=1

(

n− s+ 1− i

r − s

)

= N(n, p, r, s) = N(n− 1, p, r − 1, s− 1).

Whenever p < t, we can apply part (i) of Theorem 17 to s − 1 < r − 1, F/x and p + 1.
Since |F/x| < N(n− 1, p+ 1, r − 1, s− 1) by the definition of p, we conclude that

rkM r−1
s−1 (G/x) ≥

(

n− 1

s− 1

)

− p. (16)

Whenever |F −x| < N(n−1, t−p, r, s) we can apply part (i) of Claim 1 to F −x and t−p
and conclude that

rkM r
s (G− x) >

(

n− 1

s

)

− (t− p). (17)

If we assume |F | < N(n, t, r, s) we certainly have p < t, as well as

|F − x| = |F | − |F/x| < N(n, t, r, s) −N(n, p, r, s) =

t
∑

i=p+1

(

n− s+ 1− i

r − s

)

≤

t−p
∑

i=1

(

n− s− i

r − s

)

= N(n− 1, t− p, r, s), (18)

so both (16) and (17) apply. Hence by Lemma 16 we obtain rkM r
s (G) >

(

n
s

)

− t and the proof
of our part (i) is complete.
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For part (ii) we assume that rkM r
s (G) ≤

(n
s

)

−t. Then p = t or |F−x| = N(n−1, t−p, r, s),
otherwise both (16) and (17) apply, contradicting our rank assumption.

Assume first that |F − x| = N(n − 1, t − p, r, s). In this case we must also have equality
everywhere in (18): |F/x| = N(n, p, r, s) = N(n− 1, p, r − 1, s− 1) and p = 1. We will arrive
at a contradiction.

Applying Theorem 17 to s− 1 < r− 1, F/x and p, we get that rkM r−1
s−1 (G/x) ≥

(n−1
s−1

)

− p

and applying Claim 1 to F −x and t− p we have rkM r
s (G−x) ≥

(n−1
s

)

− (t− p). This means

that, in order to avoid contradiction with rkM r
s (G) ≤

(n
s

)

− t, we must have equalities in
both rank-inequalities. Then by part (ii) of our induction F/x is the upper (r − s)-shadow
of an (s − 1)-star configuration of size p and F − x is the upper (r − s)-shadow of an s-star
configuration of size (t− p). Now we use that p = 1: there must be a vertex z ∈ V (G) \ {x}
which occurs in all members of F/x. Since F −x is an upper shadow, the degree of z in F −x
is at least 1. Hence z has degree at least |F/x|+1 =

(n−s
r−s

)

+1 in F . As p = 1, the maximum

degree in F should only be N(n, 1, r, s) =
(n−s
r−s

)

, a contradiction.

Assume now p = t. Then degF (x) = N(n, t, r, s) = |F |, so every edge of F contains x.
Hence G− x ≃ Kr

n−1, so by Gottlieb’s Theorem we have

rkM r
s (G− x) =

(

n− 1

s

)

as n′ > r + s.
We apply Theorem 17 for s−1 with r−1, F/x, and t. By (11) |F/x| = N(n−1, t, r−1, s−1),

so we conclude that

rkM r−1
s−1 (G/x) ≥

(

n− 1

s− 1

)

− t, (19)

with equality only if |F/x| = N(n − 1, t, r − 1, s − 1) = N(n, t, r, s) and F/x is the upper
(r − s)-shadow of an (s− 1)-star configuration S of size t. By Lemma 16,

rkM r
s (G) ≥ rkM r

s (G− x) + rkM r−1
s−1 (G/x) ≥

(

n

s

)

− t,

and for equality to hold we must have equality in (19), that is |F | = |F/x| = N(n, t, r, s) and
F is the upper (r−s)-shadow of an s-star configuration of size t (x appended to each member
of S). This finishes the proof in Case 1.

Case 2: α
(n−s
r−s

)

≤ degF (x) <
(n−s
r−s

)

.

In this case we show that if |F | ≤ N(n, t, r, s), then rkM r
s (G) >

(

n
s

)

− t, concluding the
proof of Claim 1.

We first show that rkM r−1
s−1 (G/x) =

(

n−1
s−1

)

.

If s = 1, we have rkM r−1
0 (G/x) = 1, since degF (x) <

(n−1
r−1

)

.

If s > 1 we apply part (i) of Theorem 17 to r − 1, s − 1, F/x and t = 1. Since |F/x| =
degF (x) < N(n− 1, 1, r − 1, s − 1) we conclude that rkM r−1

s−1 (G/x) =
(n−1
s−1

)

.

For rkM r
s (G − x) we apply Claim 1 to F − x and t. Since n′ ≥ n3 and t ≤ c′n < σn, we

may apply Lemma 15 to obtain |F − x| ≤ N(n, t, r, s)− α
(n−s
r−s

)

< N(n− 1, t, r, s). Hence we

conclude that rkM r
s (G− x) >

(n−1
s

)

− t.

Consequently by Lemma 16 we obtain rkM r
s (G) >

(n
s

)

− t. �

By the remarks following the statement of Claim 1, this implies Theorem 17. �
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5. Tightness of the main result

Fix r and s and suppose n ≥ n′
0(r, s) is large enough. Recall the definition of tmax :=

tmax(n, r, s). It is the maximum value of t ≤
(n
s

)

such that for any t′ ≤ t,
(n
r

)

− rex(n, t′, r, s)
equals K(n, t′, s, r− s), the lower bound given by the Kruskal-Katona theorem for the upper
(r − s)-shadow of a collection of s-subsets of [n] of size t.

We will show that tmax < n− r − 1. The first step is provided by the following lemma.

Lemma 18. Let r > s ≥ 1. For any n ≥ r + 2 there exists an r-graph R := R(n, r, s) on n
vertices with rkM r

s (R) ≤
(n
s

)

− (n− r − 1), but
(n
r

)

− |R| < N(n, n− (r + 1), r, s).

Proof. The proof of this lemma is partially based on a construction of Keevash from [9].
We prove the lemma by induction on s.
First assume s = 1.
If r = 2, we define R(4, 2, 1) := C4. Then R(4, 2, 1) verifies the conditions of the lemma.
If r > 2, we define R := R(r+2, r, 1) as the complete r-graph on the set [r+2], from which

all the edges spanned by the vertices {1, . . . , r+1} were removed. Then αi := 1, 1 ≤ i ≤ r+1,
and αr+2 := −(r − 1), is a dependence sequence for R, showing that rkM r

1 (R) < r + 2. As
(r+2

r

)

−|R| =
(r+1

r

)

<
(r+1
r−1

)

= N(r+2, 1, r, 1) by (10), the graph R also verifies the conditions
of the lemma.

For any n > r + 2, we let R(n, r, 1) have the same edges as R(r + 2, r, 1), but extend the
vertex set to [n]. Then R(n, r, 1) has rank of the associated inclusion matrix at most r + 1,
and

(

n

r

)

− |R(n, r, 1)| <

(

n

r

)

−

(

r + 1

r

)

= N(n, n− (r + 1), r, 1).

Hence the claim holds for s = 1.
Now assume s > 1 and the claim holds for any pair (s′, r′) with s′ + r′ < s+ r.

We define the edge-set of R(n, r, s) as the collection
(

[n−1]
r

)

, to which we add all sets {n}∪e,
where e is an edge in R(n− 1, r − 1, s− 1).

Note that

rkM r
s (R(n, r, s)) ≤

(

n− 1

s

)

+ rkM r−1
s−1 (R(n− 1, r − 1, s− 1)). (20)

Indeed, from the columns corresponding to the s-sets containing n we can pick at most
rkM r−1

s−1 (R(n − 1, r − 1, s − 1)) linearly independent ones, to which we may further add at

most
(n−1

s

)

columns, to form a linearly independent collection of size rkM r
s (R(n, r, s)).

Therefore,
(

n

s

)

− rkM r
s (R(n, r, s)) ≥

(

n− 1

s− 1

)

− rkM r−1
s−1 (R(n− 1, r − 1, s− 1)) ≥ n− (r + 1).

Furthermore, by construction,
(

n

r

)

− |R(n, r, s)| =

(

n− 1

r − 1

)

− |R(n − 1, r − 1, s − 1)| < N(n− 1, n− (r + 1), r − 1, s − 1),

where the last inequality follows by the induction hypothesis. The proof now follows from
(11). �

We are now in position to prove Theorem 7.
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Proof of Theorem 7. Let r > s ≥ 1. We set n′
0(r, s) := r + 2 and let n ≥ n′

0(r, s).
We first claim that for t = n − r − 1, the lower bound provided by the Kruskal-Katona

theorem is still equal to N(n, t, r, s). As n − r − 1 ≤ n − s, by (4) we have t =
(n−s
n−s

)

+

. . . +
(n−s−t+1
n−s−t+1

)

. In the same manner as in the Introduction we obtain that the lower bound

provided by the Kruskal-Katona theorem for the upper (r − s)-shadow of a collection of

s-subsets of [n] of size t equals
(n−s+1
r−s+1

)

−
(n−s+1−t

r−s+1

)

= N(n, t, r, s), hence the claim.

However, by Lemma 18, for n ≥ r + 2 and t = n − r − 1,
(

n
r

)

− rex(n, t, r, s) is no longer
equal to N(n, t, r, s). Therefore tmax < n− r − 1, as desired. �

6. Concluding remarks

We close our discussion with several remarks and questions.

6.1. Rank-extremal function for graphs and other ranges of t. In the particular case of
s = 1 and r = 2 the rank-extremal function as well as the rank-extremal graphs can be
completely determined for all values of t ≤ n. Indeed, since the rank of a graph G is the
sum of the ranks of its components, and a component C of G has full rank |V (C)| if it is not
bipartite and has rank |V (C)| − 1 otherwise, one obtains the following. For any graph G on
n vertices, rkM2

1 (G) = n − b(G), where b(G) is the number of bipartite components of G.
With this characterization at hand, it is not difficult to compute rex(n, t, 2, 1) and the rank-
extremal graphs: if G is a rank-extremal graph with n vertices and rkM2

1 (G) = n − t, then
G consists of t bipartite components and of possibly one non-bipartite complete subgraph.
All one has to do now is to choose the sizes of components such that the number of edges is
maximized. We omit the straightforward details, but describe briefly rex(n, t, 2, 1) for n ≥ 6.
Let G be maximal such that rkM2

1 (G) ≤ n− t. Remove all isolated vertices from G to form
a new graph H. The structure of H is now easy to describe. If t < n− 4 then H = Kn−t. If
t = n−4 then H is either K2,3 or K4, while if t = n−3, H must be C4. Finally, for t = n−2,
H is either P2 or two disjoint edges, for t = n− 1, H is just K2 and for t = n, H is the empty
graph. In particular, Theorem 5 does not hold for t = n − r − 2, as there are two extremal
graphs.

The case of n = 4, s = 1, r = 2 and C4 also shows that Theorem 5 may fail to hold for small
values of n, even under the additional assumption that n ≥ r + s. Hence the constant n0 in
the theorem statement is necessary. It would be interesting to determine the best constant
c0 in Theorem 5. Our argument only shows it is at most 1.

Using Theorem 3, we can determine rex(n, t, r, s) asymptotically. Indeed, for any large

enough real x ∈ [0, n], we have that
(

x
r

)

≥ rex(n,
(

n
s

)

−
(

x
s

)

, r, s) >
(

x−1
r

)

. The upper bound
follows from the definition and Theorem 3, while the lower bound follows by considering the r-

graph G on [n] and edge set
(

[⌊x⌋]
r

)

. Consequently the rank-extremal function is asymptotically
like xr/r!. However, the error of this approximation becomes very large when x approaches n,
exactly the case covered by our Theorem 5. In general, the exact values of the rank-extremal
function as well as the structure of the rank-extremal hypergraphs are still an open problem.

6.2. Constructive proof of Theorem 5 for s = 1. The proof of Theorem 5 is non-constructive
in the sense that we only show that for an r-graph G with more than rex(n, t, r, s) edges there
exist some

(n
s

)

− t+ 1 linearly independent rows in the inclusion matrix M r
s (G). In the case

t = s = 1 we can show that M r
s (G) has full (column) rank by finding a particular subgraph

of G with n edges, whose rows are linearly independent, as follows.
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Let H ′ be an (r− 1)-tight Hamilton cycle on [n′] with n′ ≡ r− 1 mod r and n′ ≥ n− r+1
(this tight Hamilton cycle has its edges being any r consecutive elements from [n′] modulo
n′). The r-graph H on the vertex set [n] is obtained by adding to H ′ (n − n′) new vertices
n′ + 1, . . . , n and adding new disjoint edges en′+1, . . . , en such that ei contains vertex i and
(r − 1) further consecutive vertices from the cycle H ′. It is not difficult to see that M r

s (H)
has full rank n (the inclusion matrix of the (r− 1)-tight Hamilton cycle H ′ on n′ vertices has
full rank and adding each of the edges ei increases the rank each time by 1). It follows then
from the work in [6] on the extremal number of Hamilton cycles that any r-graph G on n

vertices with rex(n, 1, r, 1) + 1 =
(n
r

)

−
(n−1
r−1

)

+ 1 edges must contain a copy of H.
This can be seen as the generalization of the graph argument described above: a graph

with
(n−1

2

)

+ 1 edges and n vertices (n ≥ 5) is clearly connected and not bipartite, yielding
that its inclusion matrix has full column rank. It would be interesting to investigate what
structures will replace the bipartite components for r-graphs when t > 1 and to look for
minimal structures whose inclusion matrices have full rank in the case r > s > 1.

6.3. Random inclusion matrices. Lots of research in random graphs dealt recently with
questions of transferring results from extremal combinatorics to a probabilistic setting. Given

a random r-graph G(n, p) which is the product probability space {0, 1}
(

n
r

)

where Pr(G) =

p|G|(1 − p)

(

n
r

)

−|G|. The basic question one might ask is the following: what is the threshold
for the property that rkM r

s (G(n, p)) =
(n
s

)

?

In the graph case (r = 2, s = 1), the inclusion matrix M2
1 (G(n, p)) gets full column rank,

exactly at the very moment when G(n, p) becomes connected (since it contains a connected
spanning subgraph with an odd cycle and with n edges - and its inclusion matrix already has
full rank). Further, the threshold p is sharp and equals lnn

n . For r > s ≥ 1, rkM r
s (G(n, p))

stays clearly below
(n
s

)

if there is a zero column. It is further easy to see that the threshold

p for the property that M r
s (G(n, p)) has no zero columns is precisely at s(r−s)! lnn

nr−s , which is
a standard first moment-second moment calculation. This gives us a lower bound on the
threshold for M r

s (G(n, p)) to possess full rank.

On the other hand, it is not hard to prove the upper bound on p = O( ln
2 n

nr−s ) which is only
slightly apart from the lower bound. Here is a rough sketch. First, from Theorem 3 and some
straightforward estimates for binomial coefficients one can obtain the following lemma.

Lemma 19. If G is an r-uniform hypergraph with n vertices and at least
(n
r

)

− tnr−s edges,

then

rkM r
s (G) ≥

(n
s

)

− c · t,

where c > 0 depends on r only.

Next, suppose that we are given G with n vertices and of the rank
(n
s

)

− ct− 1. Then, by

Lemma 19, we obtain Pr
[

rkM r
s (G ∪G(n, p)) <

(n
s

)

− c · t
]

≤ (1 − p)tn
r−s

= exp(−ptnr−s).

Thus, starting with the empty hypergraph on n vertices, and performing at most
(

n
s

)

times
multi-round exposure, we obtain

Pr
[

rkM r
s (∪iG(n, pi)) <

(n
s

)]

≤

(

n
s

)

∑

i=1

exp(−piin
r−s). (21)
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Therefore, it is enough to choose pi =
C logn
inr−s for C sufficiently large, so that the sum in (21) is

o(1). Moreover, since
∑

(

n
s

)

i=1 pi = O( log
2 n

nr−s ), the upper bound on the threshold for M r
s (G(n, p))

to possess full rank follows.
Finally, it should be mentioned, that Friedgut’s theorem [5] implies that the property

rkM r
s (G(n, p)) =

(

n
s

)

has a sharp threshold, since the phase transition happens between lnn
nr−s

and ln2 n
nr−s and thus p does not have a rational exponent. It would be interesting to determine

the precise threshold for the property above. In fact, we believe it should match the lower
bound.

6.4. Local resilience of the rank. The study of graph resilience was initiated by Sudakov
and Vu in [17]. In view of Theorem 6, one can formulate a similar question about the rank
of Kr

n.

Let r ≥ s ≥ 0. If F ⊆
(

[n]
r

)

and S ∈
(

[n]
s

)

we define degF (S) as the number of elements of
F containing S. Then one has the following problem.

Problem 1. For n sufficiently large, determine the maximum value m(n, r, s) such that for

any F ⊆
([n]
r

)

with degF (S) ≤ m(n, r, s),∀S ∈
([n]
s

)

, we have rkM r
s (K

r
n − F ) =

(n
s

)

.

Theorem 6 shows that for r ≥ 2s − 1 we have m(n, r, s) ≥ cnr+1−2s, for some c > 0.

6.5. Fields of finite characteristic. It turns out that the inclusion matrix of the complete
hypergraph does not necessarily possess the full rank. In the case of GF(2) the rank was
computed by Linial and Rothschild [13] and in the case of GF(p) by Wilson [18], see also
Frankl [3].
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