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TROPICAL GEOMETRY OF MODULI SPACES OF WEIGHTED STABLE CURVES

MARTIN ULIRSCH

Abstract. Hassett’s moduli spaces of weighted stable curves form an important class of alternate

modular compactifications of the moduli space of smooth curves with marked points. In this article

we define a tropical analogue of these moduli spaces and show that the naive set-theoretic tropi-

calization map can be identified with a natural deformation retraction onto the non-Archimedean

skeleton. This result generalizes work of Abramovich, Caporaso, and Payne treating the Deligne-

Knudsen-Mumford compactification of the moduli space of smooth curves with marked points. We

also study tropical analogues of the tautological maps, investigate the dependence of the tropical

moduli spaces on the weight data, and consider the example of Losev-Manin spaces.
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1. Introduction

Throughout the article we work over an algebraically closed field k that is endowed with

the trivial norm. In [Has03] Hassett introduces a class of modular compactifications Mg,A of

the moduli space Mg,n of smooth curves with n marked points parametrized by an input datum

(g,A) consisting of a non-negative integer g together with a collection A = (a1, . . . , an) of weights

ai ∈ Q ∩ (0, 1] such that

2g− 2 + a1 + · · · + an > 0 .

The moduli space Mg,A parametrizes curves (C, p1, . . . , pn) with nmarked non-singular points

on C that are stable of type (g,A), i.e. nodal curves (C, p1, . . . , pn) with n marked non-singular

points that fulfill the following two conditions:

(1) The twisted canonical divisor KC + a1p1 + . . . + anpn is ample.
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(2) A subset pi1 , . . . , pik of the marked points is allowed to coincide only if the inequality

ai1 + . . . + aik ≤ 1 holds.

In the case (a1, . . . , an) = (1, . . . , 1) this condition is nothing but the traditional notion of an

n-marked stable curve and so the compactification Mg,A is exactly the well-known Deligne-

Knudsen-Mumford compactification Mg,n of Mg,n introduced in [DM69] and [Knu83].

In [Has03, Theorem 2.1] Hassett shows that the moduli spaces Mg,A are connected Deligne-

Mumford stacks that are proper and smooth over SpecZ and whose coarse moduli spaces Mg,A

are projective over SpecZ. Denote by Mg,A the open locus of smooth curves in Mg,A. The

following Theorem 1.1 is well-known to the experts, but, to the best of the author’s knowledge,

it has not appeared in the literature, so far. A discussion of its proof can be found in Section 3.1.

Theorem 1.1. The complement of Mg,A in Mg,A is a divisor with (stack-theoretically) normal crossings.

So the open immersion Mg,A →֒Mg,A has the structure of a toroidal embedding (see [KKMSD73]).

By the work of [Thu07] and [ACP12], associated to this datum there is a natural strong deforma-

tion retraction p from the non-Archimedean analytic space M
an
g,A associated to the coarse moduli

space Mg,A onto a closed subset S(Mg,A) of M
an
g,A, called the skeleton of Mg,A, and this skeleton

naturally carries the structure of an extended generalized cone complex in the sense of [ACP12,

Section 2].

In this article we define a notion of stability of type (g,A) for tropical curves Γ by imitating con-

dition (1). Moreover we construct a set-theoretic moduli space Mtrop
g,A parametrizing isomorphism

classes of tropical curves that are stable of type (g,A). Its natural extension M
trop
g,A admits an in-

terpretation as a set-theoretic moduli space of extended tropical curves that are stable of type

(g,A). The tropical moduli space M
trop
g,A naturally carries the structure of a generalized extended

cone complex.

Moreover, following [BPR11], [Viv13, Section 2.2.3], and [ACP12, Section 1.1], there is a naive

set-theoretic tropicalization map

tropg,A :M
an
g,A −→M

trop
g,A

from the non-Archimedean analytic space M
an
g,A onto the extended tropical moduli space M

trop
g,A

defined as follows:

A point x in M
an
g,A can be represented by a morphism SpecK→Mg,A for a non-Archimedean

field extension K of k. Since Mg,A is a proper algebraic stack over k, the valuative criterion

for properness implies that after a finite base change K ′|K this morphism extends uniquely to a

morphism SpecR ′ →Mg,A, where R ′ denotes the valuation ring of K ′. This datum is equivalent

to a curve C → SpecR ′ that is stable of type (g,A). Denote by Gx the weighted dual graph of the

special fiber Cs of C; it is stable of type (g,A) by Proposition 3.3. At a node pe of Cs corresponding

to an edge e ofGx the curve is defined by xy = fe in formal coordinates, where fe ∈ R
′. Endowing

an edge e with the length l(e) = val(fe), where val denotes the valuation on R ′, defines a tropical

curve Γx and we set

tropg,A(x) = [Γx] ∈M
trop
g,A .

The main result of this article can now be stated as follows:
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Theorem 1.2. There is a natural isomorphism Jg,A : M
trop
g,A

∼
−→ S(Mg,A) of extended generalized cone

complexes such that the diagram

M
an
g,A

S(Mg,A) M
trop
g,A

p tropg,A

Jg,A

∼

commutes.

In the case of A = (1, . . . , 1) Theorem 1.2 is the same as [ACP12, Theorem 1.2.1]. Its proof,

an adaption of the one in [ACP12], can be found in Section 4.3. It relies on a careful analysis

of the stratfication of Mg,A by dual graphs, which is undertaken in Section 3. In the case of

Mg,n this analysis can be found in [ACG11, Section XII.10]. Similar proofs come up in [CMR14]

and in [Ran15] treating moduli spaces of admissible covers of the projective line and of rational

logarithmic stable maps into a toric variety respectively.

From Theorem 1.2 we immediately obtain the following:

Corollary 1.3. The naive set-theoretic tropicalization map tropg,A : M
an
g,A → M

trop
g,A is well-defined and

continuous.

The strong deformation retraction p restricts to a strong deformation retraction

Man
g,A −→ S(Mg,A) ,

where S(Mg,A) =M
an
g,A ∩S(Mg,A) is the non-Archimedean skeleton of Mg,A. Theorem 1.2 there-

fore immediately implies the following:

Corollary 1.4. The isomorphism Jg,A induces an isomorphism M
trop
g,A

∼
−→ S(Mg,A) of generalized cone

complexes such that the diagram

Man
g,A

S(Mg,A) M
trop
g,A

p tropg,A

Jg,A

∼

commutes.

It is a natural question whether the tautological maps of the moduli spaces Mg,A, defined

in analogy with [Knu83, Section 3], have tropical analogues and commute with tropicalization

maps tropg,A. We give a positive answer to this Question in Section 5. In particular we are going

to focus on the forgetful map from [Has03, Theorem 4.3] and the gluing and clutching maps as

defined in [BM09, Proposition 2.1.1] for the moduli spaces of weighted stable maps.

Moreover, for two weight data (g,A) and (g,B) with ai ≥ bi for all 1 ≤ i ≤ nHassett constructs

in [Has03, Section 4] a proper birational reduction morphism

ρA,B : Mg,A →Mg,B
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that contracts those boundary divisors that parametrize A-stable curves that are not B-stable.

These reduction morphisms play a central role in the birational geometry of the Deligne-Knudsen-

Mumford moduli spaces Mg,n, since they form contractions onto certain log-canonical models

of Mg,n. For these developments we refer the reader to [Fed11] and [Moo13] as well as to the

survey [FS13]. In Section 5.1 we define tropical analogues of these morphisms that commute

with the tropicalization map.

In Section 6 we investigate how the tropical moduli spaces M
trop
g,A vary in the weights A based

on how the moduli spaces Mg,A vary in the weights A. In Section 7 we finish with the classical

example of Losev-Manin spaces, as defined in [LM00].

During the work on this project the author learned about the article [CHMR14], which contains

the g = 0 case of Theorem 1.2 in [CHMR14, Theorem 3.15]. The main goal of [CHMR14], however,

is to treat the tropicalization of M0,A from the point of view of geometric tropicalization, as

developed in [HKT09] and further studied in [Cue11]. For this the authors of [CHMR14] embed

M0,A into a toric variety X and study the tropicalization TropX(M0,A) of M0,A with respect to

X. By [Uli13, Theorem 1.1 and 1.2] as well as Theorem 1.2 there is a natural continuous and

surjective map

M
trop
0,A −→ TropX(M0,A)

that is, in general, not injective, as can be seen in [CHMR14, Figure 4]. The main result of

[CHMR14] is a characterization of those weights A for which this map is a bjiection, i.e. for

which the geometric tropicalization of M0,A faithfully represents the full tropical moduli space

M
trop
0,A .

1.1. Acknowledgements. The author would like to express his gratitude to Dan Abramovich

for his constant support and encouragement. Thanks are also due to Renzo Cavalieri, Noah

Giansiracusa, Simon Hampe, Diane MacLagan, Steffen Marcus, and Dhruv Ranganathan for

several discussions related to this project. Finally, we would also like to thank the anonymous

referee for many helpful remarks and suggestions.

2. Weighted stable tropical curves and their moduli

In this section we define tropical versions of Hassett’s moduli spaces Mg,A of weighted stable

curves. Our treatment of tropical moduli spaces in this section is strongly inspired by [Cap13,

Section 3] and [ACP12, Section 4].

2.1. A-stability for weighted graphs. Recall (e.g. [ACP12, Section 3.2], [Cap13, Definition 2.1],

or [Man99, Definition 2.3 and 2.4]) that a weighted graph G with n marked legs is a sextuple
(
V(G), F(G), r, i,m, h

)

consisting of:

• a finite set of vertices V(G),

• a finite set of flags F(G) together with a root map r : F(G)→ V(G) associating to a flag of G

the vertex it emanates from,

• an involution i : F(G)→ F(G) inducing a decomposition of F(G) into the set L(G) of fixed

points of i, called the legs of G, and a finite union of pairs of points, called the edges of G,

• a marking of L(G), i.e. a bijection m : {1, . . . , n}
∼
−→ L(G) given by L(G) = {l1, . . . , ln}, and
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• a weight function h : V(G) → N associating to every vertex a nonnegative integer h(v),

referred to as the genus of v.

We write E(G) for the set of edges of G. Whenever there is no risk of confusion we sometimes

drop the reference to G from our notation and, for example, denote the set of vertices of G by V

instead of V(G).

The genus g(G) of G is defined to be

g(G) = b1(G) +
∑

v∈V

h(v) , (1)

where b1(G) = dimQH
1(G,Q) = #E(G)−#V(G)+1 is the first Betti number ofG. An automorphism

γ ∈ Aut(G) consists of bijective maps V(G)
∼
−→ V(G) and F(G)

∼
−→ F(G) making the obvious

diagrams commute. So, in particular, we have g
(
γ(v)

)
= g(v) for all vertices v ∈ V(G), the

induced map L(G)
∼
−→ L(G) is the identity, and γ preserves incidences between edge and vertices

as well as legs and vertices.

For a vertex v ∈ V , we write L(v) for the set of marked legs emanating from v and |v|E for the

number of flags emanating from v that are contained in an edge, i.e. the number of edges starting

at v counting loops with multiplicity two. Moreover, given an input datum (g,A), consisting of a

non-negative integer g together with a collection A = (a1, . . . , an) of numbers ai ∈ Q∩ (0, 1] such

that

2g− 2 + a1 + · · · + an > 0 ,

we set |v|A =
∑
li∈L(v)

ai for a vertex v ∈ V .

Definition 2.1. Let (g,A) be an input datum. A weighted graph G with n legs is said to be stable

of type (g,A), if it has genus g and for all vertices v ∈ V(G) we have:

2h(v) − 2 + |v|E + |v|A > 0 .

If G is stable of type (g,A) with A = (1, . . . , 1) we simply call it stable.

A weighted graph contraction π : G → G ′ is a composition of edge contractions that preserves

the weight function in the sense that

h ′(v ′) = g
(
π−1(v ′)

)

for all vertices v ′ ∈ V ′ = V(G ′), where we consider π−1(v ′) as a subgraph of G. Observe that, if

G is stable of type (g,A), the contracted graph G ′ is stable of type (g,A) as well.

Definition 2.2. Let (g,A) be an input datum. The category of Gg,A of weighted graphs that are

stable of type (g,A) is defined as follows:

• Its objects are isomorphism classes of weighted graphs G that are stable of type (g,A).

• The morphisms in Gg,A are generated by weighted graph contractions π : G → G ′ and

automorphisms Aut(G) of every graph G.

Note hereby that the set of isomorphisms between two weighted graphs G1 and G2 is either

empty or a natural Aut(Gi)-torsor for both i = 1, 2. In particular, a choice of an isomorphism

G1 ≃ G2 induces natural identifications between their automorphism groups Aut(Gi) and their

weighted graph contractions πi : Gi → G ′
i .
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Remarks 2.3. (i) The datum of the weight function h : V → N should be thought of as having

h(v) infinitely small loops at each vertex v. This, in particular, explains why the genus of G

is defined as in (1).

(ii) Expanding on [BN07] we can define a Q-divisor on G as a formal sum
∑
v∈V av(v) with

coefficients av ∈ Q. In this language a weighted graph G is stable of type (g,A) if and only

if it has genus g and the coefficients of the twisted canonical divisor

KG,A =
∑

v∈V

(
2h(v) − 2+ |v|E + |v|A

)
(v)

on G are strictly positive.

(iii) A theory similar to the one developed in this section has already been developed in [BM09,

Section 5]. We, in particular, refer the reader to [BM09, Definition 5.1.6] which is equivalent

to Definition 2.1. Nevertheless note that the notion of a contraction in [BM09, Definition

5.1.5] is different from ours, since the authors of [BM09] also allow legs to be merged.

2.2. Tropical moduli spaces. Following [Cap13, Definition 2.2] and [ACP12, Section 4.1] a tropical

curve Γ of genus g with n legs consists of a weighted graph G of genus g with n legs together with

a length function l : E(G) → R>0. By identifying an edge e with an interval of length l(e) we can

associate to Γ a metric space |Γ |, which is called the geometric realization of Γ .

If we allow the length function l to attain values in R>0 = R>0 ⊔ {∞}, we say that Γ is an

extended tropical curve of genus g with n legs. Its geometric realization has the structure of an

extended metric space by identifying an edge e with l(e) =∞ with the double infinite line

(
R≥0 ⊔ {∞}

)
∪
(
R≤0 ⊔ {−∞}

)
,

where the two points∞ and −∞ are identified.

±∞

l(e) =∞

We denote the category of rational polyhedral cone complexes as defined in [Uli13, Section

3.2] by RPCC.

Definition 2.4. Let (g,A) be an input datum. We define a natural contravariant functor

Σ : Gg,A −→ RPCC

as follows:

• Associated to an isomorphism class of a weighted graph G that is stable of type (g,A) is

the rational polyhedral cone σG = R
E(G)
≥0 .

• A weighted edge contraction π : G→ G ′ induces the natural embedding iπ : σG ′ →֒ σG of

a face of σG .

• An automorphism of G induces an automorphism of σG.

Similarly there is also a natural functor Σ from Gg,A into the category of extended rational

polyhedral cone complexes that is given by G 7→ σG = R
E(G)
≥0 . We denote the image of Gg,A in

RPCC simply by Σg,A and the category of its extensions by Σg,A.
6



Definition 2.5. The moduli space Mtrop
g,A of A-stable tropical curves of genus g with n marked legs is

defined to be the colimit

M
trop
g,A = lim

−→
σG ,

taken over (Gg,A)
op. The moduli space M

trop
g,A of extended A-stable tropical curves of genus g with n

marked legs is defined to be the colimit

M
trop
g,A = lim

−→
σG

taken over (Gg,A)
op.

The tropical moduli spaces Mtrop
g,A and M

trop
g,A naturally carry the structure of a generalized

cone complex and an extended generalized cone complex in the sense of [ACP12, Section 2]

respectively.

Fix a weighted graph G of genus g with n legs. We write σ◦G for the open cone R
E(G)
>0 . The set

of tropical curves Γ with underlying weighted graph isomorphic to G can be parametrized by

the quotient

M
trop
G = σ◦G/Aut(G) ,

the moduli space of tropical curve of combinatorial type G. Similarly, if we replace σ◦G by the extended

open cone σ◦G = R
E(G)
>0 , we obtain the set-theoretic moduli space

M
trop
G = σ◦G/Aut(G)

of extended tropical curves of combinatorial type G.

From this point of view one can interpret the quotients σG/Aut(G) (or σG/Aut(G)) as moduli

spaces of tropical curves (or extended tropical curves), where we allow the edges to have zero

length. For a weighted edge contraction π : G → G ′ the faces iπ : σG ′ →֒ σG and iπ : σG ′ →֒ σG
parametrize those tropical curves, or extended tropical curves respectively, that have edge length

zero for the edges that are collapsed by π.

As an immediate consequence of the construction we have:

Proposition 2.6. There are decompositions

M
trop
g,A =

⊔

G∈Gg,A

M
trop
G =

⊔

G∈Gg,A

σ◦G/Aut(G)

as well as

M
trop
g,A =

⊔

G∈Gg,A

M
trop
G =

⊔

G∈Gg,A

σ◦G/Aut(G) .

3. Dual graphs and the boundary of Mg,A

We study the structure of the boundary Mg,A−Mg,A of Mg,A, i.e. the complement of the locus

of non-singular curves, using the machinery of dual graphs. The main result of this section is the

proof of Theorem 1.1 which states that the boundary has (stack-theoretically) normal crossings.
7



3.1. Proof of Theorem 1.1. The author is aware of at least two different proofs of Theorem 1.1.

Following [Has03, Section 3.3] one can undertake a detailed analysis of the formal deformation

spaces of weighted stable curves, using the deformation theory of maps, as developed in [Ran89].

This approach has been carried out in an earlier version of this article.

Here we present an alternative approach to the proof of Theorem 1.1 that is much shorter and

more elementary. The author would like to thank Dan Abramovich for communicating this proof

to him. It essentially reduces Theorem 1.1 to the analogous theorem for the Deligne-Knudsen-

Mumford moduli spaces Mg,n, a case that has already been discussed in [Knu83, Theorem 2.7].

Set N = dimMg,A = 3g − 3 + n. Let ok be either equal to k, if char k = 0, or to the unique

complete regular local ring with residue field k and and maximal ideal generated by p, if chark =

p 6= 0. Theorem 1.1 immediately follows from the following.

Theorem 3.1. Let z be a point of Mg,A corresponding to an A-stable curve (C, p1, . . . , pn) with nodes

x1, . . . , xk. Then there are formal coordinates t1, . . . tN around z such that the complete local ring ÔMg,A,z

is isomorphic to okJt1, . . . , tNK and the locus where xi stays a node is given by ti = 0 for 1 ≤ i ≤ k.

Proof. Denote by Sg,n the algebraic stack of nodal curves of genus g with n (possibly singular)

marked points, as introduced in [Ols07, Section 5]. Note that Sg,n is locally of finite type over k.

Consider the universal curve Cg of Sg and denote by Csmg the open substack of Cg = Sg,1 where

the marked point is not singular. We can identifiy Mg,A with an open substack of the n-fold

fibered product Csmg ×Sg · · · ×Sg C
sm
g , since A-stability is an open condition. Therefore the natural

forgetful morphism f : Mg,A → Sg is smooth.

Denote the image of z in Sg by z ′ and let N ′ = 3g − 3 = N − n. By [Ols07, Lemma 5.1] there

are formal coordinates t ′1, . . . , t
′
N ′ around z ′ such that

ÔSg,z ′ ≃ okJt
′
1, . . . , t

′
N ′K

and the locus where xi stays a node is given by t ′i = 0 for 1 ≤ i ≤ k. Since f : Mg,A → Sg is

smooth, there are formal coordinates t1, . . . , tN around z such that

ÔMg,A,z
≃ okJt1, . . . , tNK

and f∗t ′i = ti for all 1 ≤ i ≤ N ′. Therefore the locus where xi stays a node is given by ti = 0. �

Remark 3.2. In general, the complement of the smaller open subset Mg,n ⊆ Mg,A in Mg,A does

not have normal crossings. This is due to the fact that marked points pi1 , . . . , pik are allowed

to coincide whenever the weights fulfill ai1 + . . . + aik ≤ 1 without changing the combinatorial

type of the curve. We refer the reader to the example of Losev-Manin spaces Ln = M0,A with

A =
(
1, 1
n
, . . . , 1

n
, 1
)
∈ Qn+2 ∩ (0, 1]n+2 discussed in Section 7 below, where the complement of

M0,n+2 in Ln clearly does not have normal crossings (see Example 7.2).

3.2. Stratification by dual graphs. Let (C, p1, . . . , pn) be a complete and connected nodal curve

of genus g with n marked points. We can associate to C its dual graph GC, a weighted graph with

n marked legs that is defined as follows:

• The set V = V(G) of vertices of G is the set of irreducible components Ci of C.

• The set of edges E = E(G) is the set of nodes of C, where an edge e connects two vertices

vi and vj if and only if the corresponding components Ci and Cj meet each other in the

node corresponding to e.
8



• The set of legs L = L(G) is the set of marked points of C. A leg li emanates from a

vertex v if and only if the marked point pi corresponding to li lies in the component Cv
corresponding to v.

• The weight function h : V → N is defined by associating to a vertex v the genus g(Cv) of

the corresponding component Cv.

It is well-known (see e.g. [Man99, Proposition 2.6]) that g(C) = g(GC) and that there is a

natural homomorphism

Aut(C, p1, . . . , pn) −→ Aut(GC)

of automorphism groups.

Proposition 3.3. Let (g,A) be an input datum. For a complete and connected nodal curve (C, p1, . . . , pn)

of genus g with n marked points the following properties are equivalent:

(i) The twisted canonical divisor KC + a1p1 + . . . + anpn on C is ample.

(ii) The dual graph GC of C is stable of type A.

Proof. The twisted canonical divisor KC+a1p1+. . .+anpn on C is ample if and only if its pullback

to the normalization of each irreducible component of C is effective and this is equivalent to

2h(v) − 2 + |v|E + |v|A > 0

for all vertices v of GC. But this is the exact definition of GC being stable of type (g,A). �

Fix an input datum (g,A). For a weighted graph G of genus g with n legs that is stable of

type A we denote by MG the locally closed substack of Mg,A consisting of those A-stable curves

C whose dual graph GC is equal to G. The closure of MG in Mg,A will be denoted by MG.

Note that, if G is the unique graph {∗}g,n of genus g with n legs and one vertex, the stack M{∗}g,n

exactly parametrizes those A-stable curves that are smooth and therefore coincides with Mg,A.

It is not hard to see that the locally closed substacks MG are the strata of a stratification of

Mg,A, i.e.

Mg,A =
⊔

G

MG ,

where the disjoint union is taken over all isomorphism classes of weighted graphs G of genus g

with n legs that are stable of type A. As an immediate consequence of Theorem 1.1 we have:

Corollary 3.4. The codimension of the locally closed stratum MG is equal to the number of edges of the

A-stable weighted graph G.

Proof. The number k = #E(G) of edges of GC corresponds to the number of nodes of an A-stable

curve C in Mg,A. By Theorem 3.1 the complete local ring ÔMg,A,x at a point x =
[
(C, p1, . . . , pn)

]

of MG is equal to okJt1, . . . , tNK, where the coordinates t1, . . . , tN can be chosen such that the

locus of the closure of MG is given by t1 · · · tk = 0. This implies

codimMG = k = #E(G) .

�

An alternative proof of Corollary 3.4 can be found at the end of Section 3.3 below.
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Remark 3.5. Stratifications of Mg,A parametrized by the combinatorial data associated to weighted

stable curves have already appeared in [BM09], [AG08], and [MM10], all of which deal with

moduli spaces of weighted stable maps. The crucial difference between their constructions and

our approach is that their discrete data also contains information on whether marked points

agree. Taking only dual graphs, we conveniently ”forget” this information in order to obtain the

stratification induced by the normal crossing boundary Mg,A −Mg,A.

3.3. Clutching and gluing. In this section we study analogues of the clutching and gluing mor-

phisms originally defined in [Knu83, Section 3] for Mg,n. This construction is a special case of

[BM09, Proposition 2.1.1], where these maps are defined for moduli spaces of weighted stable

maps.

For a vertex v of G we denote by A(v) the tuple

(ai1 , . . . aik , 1, . . . , 1)

consisting of those ai that correspond to legs li emanating from v and a 1 for every flag of an

edge incident to v. Moreover we write nv for the number of entries of A(v), i.e. the number of

legs and edges emanating from v.

Proposition 3.6. For every weighted graph G that is stable of type (g,A) there is a natural clutching

and gluing morphism

φG :
∏

v∈V(G)

Mh(v),A(v) −→MG ⊆ Mg,A

of the moduli stacks that associates to a tuple consisting of stable curves (Cv, pv1, . . . , p
v
nv
) of type

(
h(v),A(v)

)

the stable curve (C, p1, . . . , pn) obtained by identifying two marked points, whenever they correspond to

two flags defining an edge of G.

Proof. Let S be scheme and (Cv) be a tuple of complete nodal curves over S with sections

pv1, . . . , p
v
n such that each (Cv, pv1, . . . , p

v
nv
) is stable of type

(
h(v),A(v)

)
. Then we can define

a curve C over S by gluing the Cv over two sections corresponding to two flags that are con-

nected by an edge of G. Note that these sections do not intersect any other section, since

they all have weight one and the (Cv, pv1, . . . , p
v
nv
) are stable of type

(
h(v),A(v)

)
. The resulting

curve (C, p1, . . . , pn) over S is stable of type (g,A), since each (Cv, pv1, . . . , p
v
nv
) is stable of type(

h(v),A(v)
)

and the graph Γ is stable of type (g,A). This association commutes with arbitrary

base changes S ′ → S and therefore defines a morphism of stacks. �

Corollary 3.7. (i) Suppose (g1,A1) and (g2,A2) are two weight data. Set g = g1 + g2 and A =

A1 ∪ A2. There is a natural clutching morphism

κ = κg1,A1,g2,A2
: Mg1,A1⊔{1} ×Mg2,A2⊔{1} −→Mg,A

that associates to a tuple consisting of the two Ai ∪ {1}-stable curves (Ci, p
i
1, . . . , p

i
ni+1

) the A-stable

curve (C, p11, . . . , p
1
n1
, p21, . . . , p

2
n2
) obtained by identifying the two points p1n1+1

and p2n2+1
in a

node.

(ii) Fix an input datum (g,A) with g > 0. There is a natural gluing morphism

γ : Mg−1,A⊔{1,1} −→Mg,A

obtained by gluing together the last two marked points of an A∪ {1, 1}-stable curve (C, p1, . . . , pn+2)

of genus g− 1.

10



Proof. Both Part (i) and Part (ii) are special cases of Proposition 3.6. For Part (i) we take the graph

G to consist of two vertices v1 and v2 with weights g1 and g2 connected by an edge and having

n1 or n2 legs incident to v1 or v2 respectively. For Part (ii) the graph G consists only one vertex

with weight g, from which n legs are emanating, and a loop. �

Set

M̃G =
∏

v∈V(G)

Mh(v),A(v)

and note that the clutching and gluing morphism φG restricts to a morphism

M̃G →MG .

Proposition 3.8. For a weighted graph G that is stable of type (g,A) the clutching and gluing morphism

φG : M̃G →MG induces an isomorphism
[
M̃G

/
Aut(G)

]
≃ MG .

Our proof of Proposition 3.8 is a generalization of the proof of [ACG11, Proposition 10.11].

Proof. We are going to show that both
[
M̃G

/
Aut(G)

]
and MG have the same groupoid presen-

tation.

By the construction in [ACG11, Example 8.15] we can find a Aut(G)-invariant surjective étale

morphism s, t : U → M̃G. In this case a groupoid presentation of
[
M̃G

/
Aut(G)

]
is given by

Y1 ⇒ Y0, where

Y1 = Aut(G)× Y0 ×MG
Y0 .

The étale atlas Y0 is étale locally isomorphic to a product
∏
v∈V(G)Uv, where Uv are local slices

of the ’exhausting family’ of Mh(v),A(v) around curves Cv as introduced in [Has03, Section 3.4].

The clutching and gluing map is induced by the morphism
∏
v∈V(G)Uv → U into a slice U of the

’exhausting family’ of Mg,A around C = φG
(
(Cv)v∈V(G)

)
that is determined by isomorphically

mapping Uv to one of the branches of UG, the locus in U parametrizing curves with dual graph

G. In particular the composition Y0 →MG is surjective and étale.

The morphism Y0 → M̃G gives rise to a family η : C → Y0 of curves with dual graphs equal to

G. In this case we have natural isomorphisms

Y1 = Aut(G)× Y0 ×M̃G
Y0 ≃ Aut(G)× IsomG

Y0×Y0
(s∗η, t∗η) ≃ Y0 ×MG

Y0 ,

where IsomG denotes isomorphisms preserving the dual graph G. �

Alternative proof of Corollary 3.4. The Betti number b1(G) can be can calculated by b1(G) = #E(G)−

#V(G) + 1 and by Proposition 3.8 we have dimMG = dimM̃G. Using g = b1(G) +
∑
v h(v) as

well as
∑
v nv = n + 2 · #E(G), we therefore obtain:

dimMG = dimM̃G =
∑

v∈V(G)

3h(v) − 3+ nv

= 3
(
b1(G) +

∑

v∈V(G)

h(v)
)
− 3
(
#V(G) − b1(G)

)
+
∑

v∈V(G)

nv

= 3g− 3 + n+ 2 · #E(G) − 3 · #E(G)

= dimMg,A − #E(G) .
11
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4. Deformation retraction onto the non-Archimedean skeleton

The goal of this section is to prove our main result, Theorem 1.2. We begin with a quick review

of the construction of the deformation retraction onto the skeleton of a simple toroidal scheme

from [Thu07, Section 3.1] in Section 4.1 and more generally of a toroidal Deligne-Mumford stack

from [ACP12, Section 6] in Section 4.2. Section 4.3 contains the proof of Theorem 1.2.

4.1. Skeletons of simple toroidal schemes. Suppose that X0 →֒ X is a simple toroidal embed-

ding, that is an open embedding such that for every point x ∈ X there is an open neighborhood

U of x and an étale morphism γ : U → Z into a toric variety Z with big torus T such that

γ−1(T) = X0 ∩U. In [Thu07, Section 3.2] Thuillier defines a strong deformation retraction p from

the non-Archimedean analytic space Xi as defined in [Thu07, Section 1] onto a closed subset

S(X) of Xi, the non-Archimedean skeleton of X.

We denote by S+ the sheaf monoids associating to an open subset U of X the monoid S+(U) of

effective Cartier divisors with support fully contained in X−X0. As shown in [Thu07, Section 3.1]

the natural stratification of the toric varieties Z by T -orbits lifts to give a well-defined stratification

of X by locally closed subsets, henceforth called the toroidal strata of X. Note that the unique open

subset of this stratification is X0. Denote by FX the set of generic points of the toroidal strata

together with the induced topology and endowed with the restriction of the S+. By [Kat94,

Proposition 9.2] the monoidal space FX has the structure of what is called a Kato fan in [Uli13]

and comes with a natural characteristic morphism φX : (X, S+) → FX sending every point in a

toroidal stratum to its generic point. We refer the reader to [Uli13] for details on this construction.

In particular, by [Uli13, Theorem 1.2] Thuillier’s strong deformation retraction can be described

as follows:

• The skeleton S(X) is naturally homeomorphic to the set ΣX = FX(R≥0) of R≥0 = R≥0⊔{∞}-

valued points.

• A point x in Xi gives rise to a morphism x : SpecR→ (X, S+) of monoidal spaces, where

R is some non-Archimedean extension of k, and the image of x in ΣX is given by the

composition

SpecR≥0
val#

−−−−→ SpecR
x

−−−−→ (X, S+)
φX

−−−−→ FX,

where val# is the morphism induced by the valuation of R.

4.2. Skeletons of toroidal Deligne-Mumford stacks. Suppose now that X0 →֒ X is toroidal

embedding of separated Deligne-Mumford stacks of finite type over k, i.e. an open embedding

of Deligne-Mumford stacks admitting a surjective étale morphism U → X such that the base

change U0 →֒ U is a simple toroidal embedding. The toroidal stratification of U induces a

natural toroidal stratification of X by locally closed substacks E that does not depend on the

choice of U. We write S+ for the étale sheaf of effective Cartier-divisors with support in X − X0.

The Keel-Mori Theorem [KM97] implies that the stack X has a coarse moduli space X, which

has the structure of separated algebraic space. By [CT09] the analytification Xan of X exists in

the category of analytic spaces and, following [ACP12, Definition 6.1.2], we can define Xi as the

subspace of Xan that is locally given by unit balls in Xan. Note that the valuative criterion for

properness yields Xi = Xan, whenever X is proper over k.
12



In Section [ACP12, Section 6.1] the authors extend Thuillier’s [Thu07] construction and show

that this datum defines a strong deformation retraction p of Xi onto a closed subset S(X ) of Xi,

which is again called the non-Archimedean skeleton of X .

Consider now the category HX defined as follows:

• Its objects are the generic points of the toroidal strata of X .

• The morphisms in HX are generated by the natural homomorphisms (S+)η → (S+)ξ,

whenever η specializes to ξ, and the monodromy groups Hξ at ξ.

Recall that the sheaf S+ is étale locally trivial on the toroidal strata of X by [ACP12, Proposition

6.2.1]. The monodromy group Hξ consists of those automorphisms of (S+)η that are induced by the

operation of πet1 (Eξ, ξ) on (S+)ξ, where Eξ is the unique toroidal stratum containing ξ.

There is a natural functor Σ : HX → RPCC given by

• the association ξ→ σξ = Hom
(
(S+)ξ,R≥0

)
,

• the embedding of a face ση →֒ σξ, whenever η specializes to ξ, and

• an automorphism of σξ for every automorphism of the monodromy group Hξ.

This functor naturally extends to a functor Σ into the category of extended rational polyhedral

complexes, given by ξ→ σξ = Hom
(
(S+)ξ,R≥0

)
.

We can now rephrase [ACP12, Proposition 6.2.6] as follows:

Proposition 4.1 ( [ACP12] Proposition 6.2.6). The skeleton S(X ) is the colimit

S(X ) = lim
−→

σξ ,

taken over the category HX . Let x ∈ Xi be represented by a morphism x : SpecR → X from a valuation

ring extending k and write px for the image of the closed point in X . Then (S+)px = (S+)ξx for the generic

point ξx of the unique stratum containing px and the image p(x) in σξx = Hom
(
(S+)ξx ,R≥0

)
is given

by the composition

SpecR≥0
val#

−−−−→ SpecR −−−−→ Spec ÔX ,px −−−−→ Spec(S+)px .

Remark 4.2. Suppose that X is a proper toroidal Deligne-Mumford stack of finite type over k.

By [Uli14, Section 1.5] the skeleton S(X ) is actually a deformation retract of the underlying

topological space |X an | of the analytic stack X an associated to X .

4.3. The skeleton of Mg,A. By Theorem 1.1 the open embedding Mg,A →֒ Mg,A defines a

toroidal structure on Mg,A. Note the toroidal stratification is exactly the stratification of Mg,A by

dual graphs introduced in Section 3.2. Denote by ξG the generic point of the stratum MG. The

following Lemma 4.3 is a generalization of [ACP12, Proposition 7.2.1].

Lemma 4.3. The association G 7→ ξG defines a natural equivalence between the categories (Gg,A)
op and

HMg,A
.

Proof. Note first that weighted graph contraction G ′ → G are in an unique order-reversing one-

to-one correspondence with the specialization relations ξG → ξG ′ . Therefore it is enough to show

that the image of πet1 (Mg,A, ξG) acting on the the (S+)ξG is precisely Aut(G). Consider the Galois

cover M̃G → MG. The operation of πet1 (Mg,A, ξG) on the sheaf pullback of S+ to M̃G is trivial

and it therefore factors through its quotient Aut(G). �
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Proof of Theorem 1.2. Recall that M
trop
g,A is defined as the colimit

M
trop
g,A = lim

−→
σG

taken over the category (Gg,A)
op and that by Proposition 4.1 the skeleton S(Mg,A) is given as the

colimit

S(Mg,A) = lim
−→

σξ

taken over the category HMg,A
. Therefore Lemma 4.3 immediately implies that there is an iso-

morphism

Jg,A :M
trop
g,A −→ S(Mg,A) .

of generalized extended cone complexes.

We finally show that the strong deformation retraction p : M
an
g,A → S(Mg,A) can be given a

modular interpretation as stated in the introduction. By the valuative criterion of properness a

point x ∈M
an
g,A can be represented by a morphism SpecR →Mg,A, which, in turn, gives rise to

a (g,A)-stable curve Cx → SpecR over R. Denote the dual graph of its special fiber Cs by Gx and

the image of the closed point in SpecR in Mg,A by px.

By Theorem 3.1 we can choose coordinates t1, . . . , tN in ÔMg,A,px
such that the locus, where

Cs remains singular is given by t1 . . . tk = 0. In formal coordinates we can describe C around a

node qi of Cs by xy = fi, where the fi ∈ R are precisely the images of ti in R. Now both the

deformation retraction p and tropg,A are given by associating to x the element in S(Mg,A) =

M
trop
g,A represented by

(
val(f1), . . . ,val(fk), 0, . . . , 0

)
in σGx . This shows p(x) = tropg,A(x) and

finishes the proof of Theorem 1.2. �

5. Tropical tautological maps

The purpose of this section is to define tropical analogues of the tautological maps between

the moduli spaces Mg,A generalizing the constructions in [ACP12, Section 8]. We require the

tropical tautological maps to commute with the tropicalization map

tropg,A :M
an
g,A −→M

trop
g,A

as a basic principle to justify that our definitions make sense.

5.1. Forgetful and reduction morphisms. Fix an input datum (A, g) and let B = (b1, . . . , bn) be

another tuple of weights such that bi ≤ ai for all 1 ≤ i ≤ n. In [Has03, Theorem 4.1] Hassett

constructs a natural birational reduction morphism

ρA,B : Mg,A −→Mg,B

that takes an element (C, p1, . . . , pn) of Mg,A and collapses all the components along which the

divisor KC = b1p1 + . . . + bnpn fails to be ample.

Moreover consider a subset A ′ = {ai1 , . . . , air } ⊆ A such that 2g − 2 + ai1 + . . . + air > 0. By

[Has03, Theorem 4.3] there is a natural forgetful morphism

φA,A ′ : Mg,A −→Mg,A ′

that can be described by associating to an A-stable curve (C, p1, . . . , pn) in Mg,A the curve

φA,A ′(C, p1, . . . , pn) given by deleting the marked points pi with i /∈ A ′ and successively col-

lapsing the components of C such that KC + ai1pi1 + . . . + airpir is not ample.
14



Proposition 5.1. There is a natural tropical reduction map

ρ
trop
A,B :M

trop
g,A −→M

trop
g,B

and a natural tropical forgetful map

φ
trop
A,A ′ :M

trop
g,A −→M

trop
g,A ′

making the diagrams

M
an
g,A

tropg,A
−−−−→ M

trop
g,A

ρan
A,B

y
yρtropA,B

M
an
g,B

tropg,B
−−−−→ M

trop
g,B

M
an
g,A

tropg,A
−−−−→ M

trop
g,A

φan
A,A′

y
yφtrop

A,A′

M
an
g,A ′

tropg,A′

−−−−−→ M
trop
g,A ′

commutative.

Proposition 5.1 is an immediate consequence of Hassett’s description of the forgetful and

reduction morphisms for Mg,A in [Has03, Section 4.1] as well as the reasoning in [ACP12, Section

8.2]. We provide a proof in our language for the convenience of the reader.

Proof of Propostion 5.1. We shall prove both statements simultaneously using the notation ψA,B

for both the reduction morphism and the forgetful morphism. To make this notation consistent

we follow [Has03, Section 4.1] and formally set B = A ′ ∪ {0, . . . , 0} as well as:

• Mg,B = Mg,A ′

• M
trop
g,B =M

trop
g,A ′

• Gg,B = Gg,A ′

• Σg,B = Σg,A ′

Our approach is to define natural functors

ψG
A,B : Gg,A → Gg,B

and

ψΣA,B : Σg,A → Σg,B

that will induce ψtropA,B by the universal property of colimits.

Let G be a A-stable weighted graph. If G is not B-stable we find ourselves in one of the

following two situations:

(i) There is a vertex v ∈ V(G∗) such that h(v) = 0, |v|E = 1, and

2h(v) − 2 + |v|E + |v|B = |v|B − 1 ≤ 0 .

In this case we contract the unique edge e incident to v and attach all the legs of G∗ incident

to v to the vertex on the other end of e.

(ii) There is a vertex v ∈ V(G∗) such that h(v) = 0, |v|E = 2, and

2h(v) − 2+ |v|E + |v|B = |v|B = 0 .

In this case the graph G does not have any legs of positive weight incident to v and we

replace the two adjacent edges e1 and e2 by one edge connecting the two vertices v1 and v2
on the other end of v.

15



Applying the algorithm described in (i) and (ii) possibly multiple times and deleting legs of

zero weight we obtain a functor

ψG
A,B : Gg,A −→ Gg,B

G 7−→ G∗ ,

since automorphisms of G induce automorphisms of G∗ and weighted edge contractions of G

naturally induced weighted edge contractions of G∗. Moreover, the projection maps σG → σG∗

induce a functor ψΣA,B : Σg,A → Σg,A making the diagram

Gg,A
Σg,A

−−−−→ Σg,A

ψG

A,A′

y
yψΣ

A,A′

Gg,A ′

Σg,A′

−−−−→ Σg,A ′

commutative.

The map ψtropA,B is defined to be the map M
trop
g,A → M

trop
g,B induced by ψG

A,B and ψΣA,B using the

universal property of colimits.

Now note that the morphism ψA,B induces a functor ψH
A,B : HMg,A

→ HMg,B
making the

natural diagram

HMg,A

≃
←−−−− (Gg,A)

op

ψH

A,A′

y
yψG

A,A′

HMg,B

≃
←−−−− (Gg,B)

op

commutative. Because of that and Theorem 1.2 the diagrams in the statement of Theorem 5.1

commute. �

Proposition 5.2. The tropical reduction morphism φ
trop
A,B has a section identifying the moduli space M

trop
g,B

with the subcomplex of M
trop
g,A given by removing those extended relatively open cones σ◦G such that G is

not B-stable.

Proof. Suppose that G is weighted graph that is stable of type (g,A) but not of type (g,B). Then

all other weighted graphs G ′ that can be contracted to G are also not stable of type (g,B). On

the other hand all graphs G that are stable of type (g,B) are also stable of type (g,A) and their

reduction ρA,B(G) is equal to G itself. �

Remark 5.3. Similar sections exists for the forgetful morphism in both the algebraic and the tropi-

cal world (see [ACP12, Proposition 8.2.4] for the case A = (1, . . . , 1)). Unlike this case, the section

of the reduction morphism constructed in Proposition 5.2 does not have an algebraic analogue.

One can, however, define a continuous section of φA,B on the level of underlying topological

spaces.

5.2. Clutching and gluing. Let (g,A) be a fixed input datum and G be a weighted graph that is

stable of type (g,A). Recall from Section 3.3 that for a vertex v of G we denote by A(v) the tuple

(ai1 , . . . aik , 1, . . . , 1)

consisting of those ai that correspond to legs li emanating from v and a 1 for every flag of an

edge incident to v.
16



Definition 5.4. In analogy with the algebraic situation in Section 3.3 we define the tropical clutch-

ing and gluing map

φ
trop
G :

∏

v∈V(G)

M
trop
h(v),A(v) −→M

trop
g,A

given by connecting two legs of tropical curves [Γv] ∈M
trop
h(v),A(v) by a bridge at infinity whenever

the corresponding flags in G are connected by an edge.

Proposition 5.5. The natural diagram

∏
v∈V(G)M

an
h(v),A(v)

∏
troph(v),A(v)

−−−−−−−−−→
∏
v∈V(G)M

trop
h(v),A(v)

φan
G

y
yφtrop

G

M
an
g,A

tropg,A
−−−−→ M

trop
g,A

is commutative

Proof. Let (Cv, pv1, . . . , p
v
nv
) be families of

(
h(v),A(v)

)
stable curves over a valuation ring R ex-

tending k and denote the tropical curves associated to this data by Γv. Observe that the clutching

and gluing map φG applied to the (Cv, pv1, . . . , p
v
nv
) exactly corresponds to connecting two legs

of the Γv, whenever they correspond to an edge in G. Since φG
(
(Cv, pv1, . . . , p

v
nv
)
)

has a node

over all of SpecR, whenever two marked points have been glued, the special fiber is given by

xy = 0 in formal coordinates and therefore the connecting edge in φtropG

(
(Γv)

)
has to be of infinite

length. �

As special cases of Definition 5.4 we obtain the following two maps:

• The tropical clutching map

κtrop = κ
trop
g1,A1,g2,A2

:M
trop
g1,A1∪{1}

×M
trop
g2,A2∪{1}

−→M
trop
g,A

is given by sending a pair of extended tropical curves Γ1 and Γ2 inM
trop
g1,A1∪{1}

andM
trop
g2,A2∪{1}

respectively to the extended tropical curve Γ that is obtained by connecting the two legs

ln1+1 and ln2+1 at infinity.

• The tropical gluing map

γtrop :M
trop
g−1,A∪{1,1} −→M

trop
g,A

is defined by sending an extended tropical curve Γ in Mg−1,A∪{1,1} to the tropical curve Γ̃

obtained by connecting the two legs ln+1 and ln+2 at infinity.

Using this notation Proposition 5.5 yields the following generalization of [ACP12, Theorem 1.2.2]:

Corollary 5.6. The natural diagrams

M
an
g1,A1∪{1}

×M
an
g2,A2∪{1}

tropg1,A1∪{1} × tropg2,A2∪{1}

−−−−−−−−−−−−−−−−−−→ M
trop
g1,A1∪{1}

×M
trop
g2,A2∪{1}

κan

y
yktrop

M
an
g,A

tropg,A
−−−−→ M

trop
g,A
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and

M
an
g−1,A∪{1,1}

tropg−1,A∪{1,1}
−−−−−−−−−→ M

trop
g−1,A∪{1,1}

γan
y

yγtrop

M
an
g,A

tropg,A
−−−−→ M

trop
g,A

are commutative.

6. Variations of weight data

6.1. Chamber decompositions. In this section we compare how, given a fixed genus g, the two

functions A 7→ Mg,A and A 7→ M
trop
g,A vary in A. Fix a genus g ≥ 0 and a number n ≥ 0. We

denote by Dg,n the set of possible weight data

Dg,n =
{
(a1, . . . , an) ∈ (0, 1]n ∩Qn

∣∣a1 + . . . + an > 2 − 2g
}
.

As in [Has03, Section 5] a chamber decomposition W of Dg,n consists of a finite set of hyperplanes

wS ⊆ Dg,n. We refer to the wS as the walls of the chamber decomposition W and to connected

components of the complement of the wS as the open chambers of W.

In [Has03, Section 5] Hassett studies chamber decompositions of Dg,n with the property that

the functions A 7→Mg,A and A 7→ Cg,A are constant on every open chamber, where Cg,A denotes

the universal curve of Mg,A.

Proposition 6.1. Suppose that W is a chamber decomposition of Dg,n such that A 7→ Cg,A is constant on

open chambers. Then A 7→M
trop
g,A is constant on the open chambers of W as well.

Proof. If the two universal curves Cg,A and Cg ′,A ′ are isomorphic, there is an isomorphism between

the moduli stacks Mg,A and Mg ′,A ′ that preserves the stratifications by dual graphs. Using

Theorem 1.2 we see that the tropical moduli spaces M
trop
g,A and M

trop
g ′,A ′ are isomorphic. �

Moreover Hassett considers the coarse chamber decomposition, which is given by

Wc =
{∑

j∈S

aj = 1
∣∣S ⊆ {1, . . . , n} and 2 < |S| ≤ n − 2δg,0

}
,

as well as the fine chamber decomposition, which is given by

Wf =
{∑

j∈S

aj = 1
∣∣S ⊆ {1, . . . , n} and 2 ≤ |S| ≤ n− 2δg,0

}
.

Hereby δi,j denotes the Kronecker delta

δi,j =

{
1 if i = j

0 else.

In [Has03, Proposition 5.1] Hassett shows that Wc is the coarsest chamber decompostion of

Dg,n such that A 7→ Mg,A is constant on every open chamber and Wf is the coarsest cham-

ber decomposition of Dg,n such that the map A 7→ Cg,A is constant. Therefore Proposition 6.1

immediately implies that the association A 7→M
trop
g,A is constant on the fine chambers of Dg,n.

The following Proposition 6.2 is a partial analogue of [Has03, Proposition 5.1] in the tropical

world.
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Proposition 6.2. The fine chamber decomposition Wf is the coarsest chamber decomposition of Dg,n such

that A 7→M
trop
g,A is constant on every open chamber.

Proof. The map A 7→M
trop
g,A is constant on the fine chambers of Dg,n. So it is enough to note that

M
trop
g,A changes whenever we cross a wall of the fine chamber decomposition Wf.

Suppose first that g ≥ 1. Let S ⊆ {1, . . . , n} with 2 ≤ |S| ≤ n. Consider the graph GS containing

one edge between two vertices v0 and vg, one of weight 0 and the other of weight g, and legs li
incident to v0, whenever i ∈ S and incident to vg, whenever i /∈ S.

0

v0

g

vg

i ∈ S i /∈ S

If
∑
i∈S ai > 1, then GS is stable of type (g,A), since |v0| = 1 +

∑
i∈S ai > 2 and h(vg) ≥ 1. But if

∑
i∈S ai ≤ 1, the graph GS is not stable of type (g,A).

Consider now the case g = 0. Let S ⊆ {1, . . . , n} with 2 ≤ |S| ≤ n − 2 and consider again the

same graph GS as above with two vertices of weight 0 connected by an edge and legs incident to

vi depending on whether they are in S or not.

0 0

i ∈ S i /∈ S

Suppose that
∑
i∈S ai ≤ 1. Then

∑n
i=1 ai > 2 implies

∑
i /∈S ai > 1. So when crossing the wall

∑
i∈S ai = 1 without changing the ai with i /∈ S we obtain that GS is stable of type (0,A), if

∑
i∈S ai > 1, and not, if

∑
i∈S ai ≤ 1. �

Remarks 6.3. (i) As noted in [AG08, Remark 2.3] there is a typographical error in the definitions

of coarse and fine chamber decompositions in [Has03, Section 5]. We fix this typo following

the notation of [BM09, Section 0.4].

(ii) In [AG08, Definition 2.8] Alexeev and Guy propose an alternative to chamber decomposi-

tions: They associate a simplicial complex ∆A to the weights A that has a |S|-dimensional

simplex for every subset S ⊆ {1, . . . , n} with
∑
i∈S ai ≤ 1. As seen in [AG08, Section 4]

crossing a single wall from A to B with B ≥ A in Wg,n corresponds to adding a simplex to

∆A in order to obtain ∆B.

6.2. Kapranov’s construction of M0,n. By Theorem 5.1 we can realize Mg,n as a composition of

tropical reduction maps starting at a Mg,A with a low weights A and Proposition 5.2 ensures that

while we are crossing a wall in Wf from lower weight data to bigger ones, we are only adding

additional extended cones.
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l3 l5

l4l1

l2

ln−2

ln−1

ln
. . .

Figure 1. A graph with 0 vertex weights that is stable of type
(
0, (1, . . . , 1)

)
but

not of type
(
0,An−3,1[n]

)
, whenever n ≥ 5.

In [Has03, Section 6.1] Hassett identifies Kapranov’s classical blow-up construction of M0,n

(see [Kap93a] and [Kap93b, Section 4.3]) with a sequence of reduction maps. The weights of this

sequence are given by

Ar,s[n] =

(
1

n − r− 1
, . . . ,

1

n− r − 1︸ ︷︷ ︸
n−r−1 times

,
s

n − r− 1
, 1, . . . , 1︸ ︷︷ ︸
r times

)

for r = 1, . . . , n − 3 and s = 1, . . . , n − r − 2. The sequence starts with M0,A1,1[n] ≃ Pn−3, at the

r-th step the sequence of reduction maps is given by

M0,Ar,n−r−2 [n] −−−−→ . . . −−−−→ M0,Ar,2[n] −−−−→ M0,Ar,1 [n] ,

and Kapranov has shown that at the last step M0,An−3,1 [n] is isomorphic to M0,n.

Example 6.4. The final weights in Hassett’s interpretation of Kapranov’s construction are given

by

An−3,1[n] =

(
1

2
,
1

2
,
1

2
, 1, . . . , 1︸ ︷︷ ︸
n−3 times

)
.

Let n ≥ 5. As seen in Figure 1, there is a rational weighted graph that is stable of type(
0, (1, . . . , 1)

)
but not of type

(
0,An−3,1[n]

)
. Therefore the tropical moduli space M

trop
0,n contains

an extended cone corresponding to this graph, but M
trop
0,An−3,1

does not and thus these two spaces

cannot be isomorphic.

The explanation for this behavior is that, although we have an isomorphism

M0,An−3,1 [n] ≃M0,n ,

the universal curves C0,An−3,1 [n] and C0,n of these two moduli spaces are not isomorphic. In other

words M0,An−3,1[n], the locus parametrizing smooth curves in M0,An−3,1[n], is bigger than M0,n.

One can, of course, deal with this phenomenon by further increasing the weights and, by the

following example, a minimal increase will be enough.
20



Example 6.5. Let us now consider the weights

Aǫ =

(
1

2
+ ǫ,

1

2
+ ǫ,

1

2
+ ǫ, 1, . . . , 1︸ ︷︷ ︸

n−3 times

)
.

for 0 < ǫ ≤ 1
2 . Every rational stable tropical curve is also stable of type Aǫ and the tropical

reduction map therefore induces a natural isomorphism

M
trop
0,n ≃M

trop
0,Aǫ

.

This, together with the fact that for every rational Aǫ-stable n-marked curve none of the marked

points are allowed to coincide, shows that there is also a natural isomorphism

C0,n ≃ C0,Aǫ

between the universal curves.

7. Losev-Manin spaces

Let g = 0. We are now going to consider the special case that the weights A = {a0, . . . , an+1}

for n ≥ 1 fulfill the two conditions:

(i) a0 + ai > 1 and an+1 + ai > 1 for each i ∈ {1, . . . , n}, and

(ii) ai1 + . . . + air ≤ 1 for all {j1, . . . , jr} ⊆ {1, . . . , n}.

We begin with the following easy observation:

Lemma 7.1. For n ≥ 2 and g = 0 there is a unique fine chamber in D0,n+2 determined by the conditions

(i) and (ii) above.

Proof. We have to show that for every S ⊆ {0, . . . , n + 1} with 2 ≤ |S| ≤ n the above conditions

imply that either
∑
i∈S ai ≤ 1 or

∑
i∈S ai > 1.

If 0 /∈ S and n+ 1 ∈ S or if 0 ∈ S and n+ 1 /∈ S Condition (i) immediately yields
∑
i∈S Sai > 1,

since ai ≥ 0 for all i. In the case that both 0 /∈ S and n + 1 /∈ S we have
∑
i∈S ai ≤ 1 by condition

(ii). Now consider the case S ⊇ {0, n + 1}. By Condition (i) we obtain

a0 + ai + aj + an+1 > 2

for some 1 ≤ i, j ≤ n. Since n ≥ 2 we may assume i < j. It follows from Condition (ii) that

ai + aj ≤ 1 and therefore we obtain a0 + an+1 > 1, which, in turn, implies
∑

i∈S

ai ≥ a0 + an+1 > 1 ,

since ai ≥ 0 for all i.

A tuple of weights that fulfills Conditions (i) and (ii) is e.g. given by

A =

(
1,
1

n
, . . . ,

1

n
, 1

)

and therefore this chamber is non-empty. �

In [Has03, Section 6.4] Hassett has identified the fine moduli spaces M0,A with the moduli

spaces Ln, studied by Losev and Manin in [LM00], parametrizing chains C of projective lines

connecting the two end points p0 and pn+1 with n additional marked points p1, . . . , pn such that
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• the p1, . . . , pn are allowed to mutually coincide, but not to coincide with p0, pn+1, or the

nodes, and

• the normalization of every component of C contains at least three special points.

By [LM00] the moduli space Ln is isomorphic to the smooth projective toric variety defined by

the (n − 2)-dimensional permutohedron Pn−1 as defined in [Kap93c, Definition 1.3] and the big

torus T = Gn−1m exactly parametrizes the locus of smooth curves in Ln.

Example 7.2. Let us now consider the case n = 3. We may choose coordinates (p, q) on T ≃ G2m
such that up to P1-automorphism (p0, p1, p4) = (0, 1,∞) and (p, q) = (p2, p3) are free variables.

In these coordinates the toric prime divisors are given by p = 0, p =∞, q = 0, q =∞, p = q = 0,

as well as p = q = ∞, and the toric boundary has normal crossings. The complement of M0,5

in L3, however, also contains the divisors p = 1, q = 1, and p = q, which all intersect at (1, 1).

Therefore L3 −M0,5 does not have normal crossings, as indicated in Remark 3.2 above.

q =∞

q = 0

p
=
∞

p
=
0

p
=
q
=
∞

p
=
q
=
0

p
=
1

q = 1

p
=
q

Recall from [Kap93c, Definition 1.3] that the (n − 1)-dimensional permutohedron Pn is the lattice

polytope in Rn given as the convex hull of the points
(
s(1), . . . , s(n)

)
, where s runs through all

elements in the symmetric group Sn. As explained in [LM00, Definition 2.5.1] the l-dimensional

cones of its dual fan ∆n are labelled by (l + 1)-partitions of {1, . . . , n} and therefore naturally

carries the structure of a moduli space Ltropn of stable rational tropical chain curves with n + 2 legs

connecting the legs l0 and ln+1. Its canonical compactification L
trop
n parametrizes stable rational

extened tropical chain curves with n+ 2 legs connecting the legs l0 and ln+1.

Moreover, there is a natural set-theoretic tropicalization map

tropn : Lann −→ L
trop
n

defined analogously to tropg,A in the introduction.

Now recall that Kajiwara [Kaj08, Section 1] and, independently, Payne [Pay09, Section 3] con-

struct a tropicalization map

trop∆ : X(∆)an −→ NR(∆)

into a partial compactification NR(∆) of NR for all toric varieties X = X(∆) defined by a rational

polyhedral fan ∆ in NR, where N denotes the cocharacter lattice of the big torus T of X. On an
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l2

l8

l5l1

l0

l3

l4 l6

l7

Figure 2. A stable rational tropical chain curve with nine legs.

(1, 2, 3)

(2, 1, 3)

(2, 3, 1)

(3, 2, 1)

(3, 1, 2)

(1, 3, 2)

Figure 3. The tropical Losev-Manin space Ltrop3 . We indicate the corners of the

permutohedron P3 dual to 2-dimensional cones.

T -invariant open affine subset U = Speck[P] the partial compactifcation NR(P) of NR is given by

Hom(P,R) and tropP by

tropP : U
an −→ NR(P) = Hom(P,R)

x 7−→
(
p 7→ − log |p|x

)

We also refer the reader to [Rab12, Section 3] for further details on this construction.

Corollary 7.3. There is a natural homeomorphism Jn : L
trop
n

∼
−→ NR(∆n) such that the diagram

Lann

NR(∆n) L
trop
n

trop∆n
tropn

Jn

∼

commutes.

Proof. In view of [Uli13, Theorem 1.2] and [Uli13, Proposition 7.1] we can naturally identify

trop∆n
with the deformation retraction p, since Ln is proper over k and thus the fan ∆n is com-

plete. Then the statement immediately follows from Theorem 1.2. �
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