
ar
X

iv
:1

50
4.

07
44

0v
1 

 [
m

at
h-

ph
] 

 2
8 

A
pr

 2
01

5

POLYNOMIALITY OF ORBIFOLD HURWITZ NUMBERS,

SPECTRAL CURVE, AND A NEW PROOF OF THE

JOHNSON-PANDHARIPANDE-TSENG FORMULA

P. DUNIN-BARKOWSKI, D. LEWANSKI, A. POPOLITOV, AND S. SHADRIN

Abstract. In this paper we present an example of a derivation of an ELSV-
type formula using the methods of topological recursion. Namely, for orbifold
Hurwitz numbers we give a new proof of the spectral curve topological recur-
sion, in the sense of Chekhov, Eynard, and Orantin, where the main new step
compared to the existing proofs is a direct combinatorial proof of their quasi-
polynomiality. Spectral curve topological recursion leads to a formula for the
orbifold Hurwitz numbers in terms of the intersection theory of the moduli
space of curves, which, in this case, appears to coincide with a special case of
the Johnson-Pandharipande-Tseng formula.
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1. Introduction

1.1. Main goal. The main goal of this paper is to present a new important ap-
plication of the procedure that allows to relate in a uniform way a class of combi-
natorial problems to the intersection theory of the moduli space of curves. First,
let us describe this procedure. The logic behind it is the following one:

– We start with a combinatorial problem that depends in a natural way on
a genus parameter g ≥ 0 and a vector ~µ ∈ Zn

>0.
– We consider the generating functions that solve this combinatorial problem.
Quite often we can prove that they can be considered as an expansion of
certain symmetric differentials ωg,n that solve the matrix model topological
recursion [10, 9] for a particular spectral curve data.

– Under some mild assumptions, the expansion of the symmetric differen-
tials obtained via the topological recursion can be represented (up to some
constants) as

∑

l(~µ)=n

r
∑

a1,...,an=1

[

∫

Mg,n

S(a1, . . . , an)
∏n

j=1(1− ψj
d

dxj
)

]

n
∏

j=1

ξaj(xj).

Here r is the number of branching points on the spectral curve, S(a1, . . . , an)
is a certain explicitly described tautological class on the moduli space of
curves, and ξa(x) are some auxiliary functions, a = 1, . . . , r, also explicitly
described [6, 8].

– This way we solve the original combinatorial problem in terms of the inter-
section numbers of the tautological classes on the moduli space of curves,
and the formula that we get is of ELSV-type [7].

The first instance of this way to derive an ELSV-type formula was presented
in [5], where this leads to a new proof of the original ELSV formula for ordinary
Hurwitz numbers.

In this paper we perform this whole procedure for the so-called orbifold Hurwitz
numbers [14, 12, 4, 3]. The orbifold Hurwitz numbers are a special case of double
Hurwitz numbers [13], where the ramification indices in one special fiber are given
by an arbitrary partition µ, and in the other special fiber they are all equal to r.
The intersection formula that we obtain via this procedure was previously derived
by Johnson, Pandharipande, and Tseng [14], and this way we get a new proof of
it.

1.2. The known facts about orbifold Hurwitz numbers. Let us collect here
the known facts about orbifold Hurwitz numbers so that we can summarize all
relevant previous papers about them.

Fact 1: (JPT Formula) The orbifold Hurwitz numbers are given by the intersection
numbers on the moduli space of curves via the Johnson-Pandharipande-
Tseng formula.
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Fact 2: (Quasi-Polynomiality) The orbifold Hurwitz numbers can be represented,
up to a particular combinatorial factor, as the values of a polynomial in n
variables µ1, . . . , µn, whose coefficients depend only on ~µ mod r.

Fact 3: (Cut-and-Join) The orbifold Hurwitz numbers satisfy a simple recursion
with a clear topological meaning, which is called the cut-and-join equa-
tion [11].

Fact 4: (Topological Recursion) The n-point generating functions of orbifold Hur-
witz numbers can be represented as expansions of the correlation differen-
tials obtained via the Chekhov-Eynard-Orantin topological recursion pro-
cedure.

Let us explain what was known before. First of all, we have the Johnson-
Pandharipande-Tseng result itself [14]:

(Definition) ⇒ (JPT formula)

The main results of [3] and [4] can be described as follows:

(JPT formula) ⇒ (Quasi-Polynomiality)

(Quasi-Polynomiality) AND (Cut-and-Join) ⇒ (Topological Recursion).

Here the first implication is obvious; though, until now, there was no other proof
of quasi-polynomiality than its derivation from the structure of the Johnson-
Pandharipande-Tseng formula. So, we see that the JPT formula is used in a
very weak way in these papers; only its general structure appears to be relevant.

In [15] the full power of the JPT formula is employed; as a result it is proved
there that

(JPT formula) ⇔ (Topological Recursion)

In the present paper, we first give a direct proof of the quasi-polynomiality just
from the definition of orbifold Hurwitz numbers. This allows us to use the results
of [3, 4] in order to prove the topological recursion. This allows us to use the
result of [15] in order to prove, in a new way, the Johnson-Pandharipande-Tseng
formula. So, the structure of this paper can be summarized as follows:

(Definition)
[this paper]
=⇒ (Quasi-Polynomiality)

(Quasi-Polynomiality) AND (Cut-and-Join)
following [3, 4]

=⇒ (Topological Recursion)

(Topological Recursion)
using [15]
=⇒ (JPT formula)

The first step here is original and it is the main technical result of the present
paper; in the second step we follow [3, 4], though we try to focus more on the
main structure of the formulas that represent the abstract loop equations rather
than on explicit computations; in the third step we just use the results of [15].
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1.3. Organization of the paper. In Section 2 we introduce our basic technical
tool — the semi-infinite wedge formalism. In Section 3 we develop further this
formalism, in particular, we use it to define the orbifold Hurwitz numbers, and
we represent them, in particular, using the so-called A-operators. In Section 4 we
analyze further the formula for orbifold Hurwitz numbers in terms of A-operators
in order to prove their quasi-polynomiality. In Section 5 we recall the basic setup
of the topological recursion. In Section 6 we show how one can use the quasi-
polynomiality and the cut-and-join equation for orbifold Hurwitz numbers in order
to prove the topological recursion. In Section 7 we use the result of [15] to prove
the Johnson-Pandharipande-Tseng formula in a new way.

Throughout this paper we fix integer r ≥ 1.

Acknowledgements. P. D.-B., D. L., A. P., and S. S. were supported by the
Netherlands Organization for Scientific Research (NWO). P. D.-B. and A. P. were
also partially supported by the Russian President’s Grant of Support for the
Scientific Schools NSh-3349.2012.2; P. D.-B. was partially supported by RFBR
grants 13-02-00478 and 14-01-31395-mol a, RFBR-India grant 14-01-92691-Ind a
and RFBR-Turkey grant 13-02-91371-St a; A. P. was partially supported by RFBR
grants 13-02-00457 and 14-01-31492-mol a. P. D.-B. was also partially supported
by the Government of the Russian Federation within the framework of a subsidy
granted to the National Research University Higher School of Economics for the
implementation of the Global Competitiveness Program.

2. Semi-infinite wedge formalism

In this section we introduce the semi-infinite wedge formalism. This allows
us in the Section 3 to express r-orbifold Hurwitz numbers in terms of vacuum
expectation of operators acting on the semi-infinite wedge space. For a more
complete introduction see e.g. [16, 18, 13].

Let V be an infinite dimensional vector space with a basis labeled by half-
integers. Denote the basis vector labeled by m/2 by m/2, so V =

⊕

i∈Z+ 1
2
i.

Definition 1. The semi-infinite wedge space
∧∞

2 (V ) = V is defined to be the
span of all of the semi-infinite wedge products of the form

(2.1) i1 ∧ i2 ∧ · · ·

for any decreasing sequence of half-integers (ik) such that there is an integer c with
ik + k− 1

2
= c for k sufficiently large. The constant c is called the charge. We give

V an inner product (·, ·) declaring its basis elements to be orthonormal.

Remark 1. By Definition 1 the charge-zero subspace V0 of V is spanned by semi-
infinite wedge products of the form

λ1 −
1

2
∧ λ2 −

3

2
∧ · · ·
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for some integer partition λ. Hence we can identify integer partitions with the
basis of this space:

V0 =
⊕

n∈N

⊕

λ⊢n

vλ

The empty partition ∅ plays a special role. We call

v∅ = −
1

2
∧ −

3

2
∧ · · ·

the vacuum vector and we denote it by |0〉. Similarly we call the covacuum vector
its dual with respect to the scalar product (·, ·) and we denote it by 〈0|.

Definition 2. The vacuum expectation value or disconnected correlator 〈P〉• of
an operator P acting on V0: is defined to be:

〈P〉• := (|0〉,P|0〉) =: 〈0|P|0〉

We also define

(2.2) ζ(z) = ez/2 − e−z/2 = 2 sinh(z/2)

Definition 3. This is the list of operators we will use:

i) For k half-integer the operator ψk : (i1 ∧ i2 ∧ · · · ) 7→ (k ∧ i1 ∧ i2 ∧ · · · )
increases the charge by 1. Its adjoint operator ψ∗

k with respect to (·, ·)
decreases the charge by 1.

ii) The normally ordered products of ψ-operators

(2.3) Ei,j :=

{

ψiψ
∗
j , if j > 0

−ψ∗
jψi if j < 0 .

preserve the charge and hence can be restricted to V0 with the following
action. For i 6= j Ei,j checks if vλ contains j as a wedge factor and if so
replaces it by i. Otherwise it yields 0. In the case i = j > 0, we have
Ei,j(vλ) = vλ if vλ contains j and 0 if it does not; in the case i = j < 0, we
have Ei,j(vλ) = −vλ if vλ does not contain j and 0 if it does.

iii) The diagonal operators are assembled into the operators

(2.4) Fn :=
∑

k∈Z+ 1
2

kn

n!
Ek,k

We will be particularly interested in F2. The operator F0 is called charge
operator, while F1 is called energy operator. Note that F0 identically van-
ishes on V0, while F1 has the basis vectors vλ as its eigenvectors, with
eigenvalues being |vλ| (we refer to |vλ| as the energy of basis vector vλ).
We also say that operator P, defined on V0, is an operator of energy c ∈ Z if
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−[F1,P] is proportional to P with c being the coefficient of proportionality,
i.e. if

(2.5) − [F1,P] = cP

In other words, if P is an operator of energy c, then it maps a basis element
of energy k into a combination of basis elements that all have energies k−c.
It will be important to us that operators with positive energy annihilate

the vacuum while negative energy operators are annihilated by the covac-
uum, explicitly: let M be any operator, let P have positive energy and N
have negative energy, then 〈MP〉• = 0 and 〈NM〉• = 0. The operator
Ei,j has energy j − i, hence all the Fn’s have zero energy.

iv) For n any integer and z a formal variable one has the energy n operators:

(2.6) En(z) =
∑

k∈Z+1/2

ez(k−
n
2
)Ek−n,k +

δn,0
ζ(z)

.

v) For n any nonzero integer one has the energy n operators:

(2.7) αn = En(0) =
∑

k∈Z+1/2

Ek−n,k

The commutation formula for E operators is:

(2.8) [Ea(z), Eb(w)] = ζ (det [ a z
b w ]) Ea+b(z + w)

Note that:

(2.9) Ek(z)
∣

∣0
〉

=







1

ζ(z)

∣

∣0
〉

, if k = 0

0 if k > 0 .

3. A operators

Let r be a positive natural number. The r-orbifold Hurwitz numbers h
•,[r]
g,µ

enumerate ramified coverings of the 2-sphere by a possibly disconnected genus g
surface, where the ramification profile over infinity is given by a partition µ =
(µ1, . . . , µl(µ)) and the ramification profile over zero is (r, . . . , r), there are simple
ramifications over

b := 2g − 2 + l(µ) +

l(µ)
∑

i=1

µi

r

fixed points, and there are no further ramifications. Clearly r should divide the
degree d = |µ| of the covering.

Definition 4. The genus-generating function of disconnected r-orbifold numbers
is the following formal power series:

(3.1) H•,[r](~µ, u) =
∑

g≥0

h
•,[r]
g,~µ

ub

b!
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The disconnected r-orbifold Hurwitz numbers can be expressed as vacuum ex-
pectation in the following way (see [18, 13, 17]) :

(3.2) H•,[r](~µ, u) =
∑

g≥0

〈

e
αr
r F b

2

l(µ)
∏

i=1

α−µi

µi

〉•
ub

b!
=

〈

e
αr
r euF2

l(µ)
∏

i=1

α−µi

µi

〉•

We want to express the vacuum expectation in a more convenient way using the
so called A operators introduced in [18]. We need the notations:

Notation 1. Recall the Pochhammer symbol:

(x+ 1)n =
(x+ n)!

x!
=

{

(x+ 1)(x+ 2) · · · (x+ n) n ≥ 0
(x(x− 1) · · · (x+ n+ 1))−1 n ≤ 0

.

From the definition, (x+1)n vanishes for −n ≤ x ≤ −1 an integer, and 1/(x+1)n
vanishes for 0 ≤ x ≤ −(n + 1) an integer. Let

S(z) = ζ(z)/z =
sinh(z/2)

z/2

Moreover we split rational numbers into integer and fractional parts as follows: for
x ∈ Q we have

(3.3) x = ⌊x⌋ + 〈x〉,

where ⌊x⌋ ∈ Z and 0 ≤ 〈x〉 < 1.

Definition 5. The following operators will play a central role in the paper:

(3.4) A[r]
η (z, u) = r−η/r(S(ruz))

z−η
r

∑

k∈Z

(S(ruz))kzk

( z−η
r

+ 1)k
Ekr−η(uz)

Define their coefficients in z by A[r]
η (z, u) =

∑

k∈Z A
[r],(k)
η zk.

Remark 2. Our A-operators are at the same time a specialization of Johnson’s A-
operators in [12] (which we will denote by JA), and a generalization of Okounkov-
Pandharipande ones in [18]. Indeed, we will specialize Johnson’s formulas and
results in [12] using the following assumptions throughout:

(3.5) K = {e} R = Z/rZ

This implies that every irreducible representation of K is identically one. With
these conditions, Equation (5.5) in [12] gives:

JA
1
a
r
(z, u) =

zra/r

z + a
S(ruz)

z+a
r

∑

k∈Z

(S(ruz))kzk
(

z+a
r

+ 1
)

k

Ekr+a(uz)

The two operators agree in the sense that, for µ positive integers:

JA
1
1−〈µ

r
〉(µ, u) = A[r]

r〈µ
r
〉
(µ, u) = r−〈µ

r
〉(S(ruµ))⌊

µ
r ⌋

∑

k∈Z

(S(ruµ))kµk

(
⌊

µ
r

⌋

+ 1)k
Ekr−r〈µ

r
〉(uµ)
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Johnson defines his semi-infinite wedge space to be a tensor product between
usual semi-infinite wedge space and group K. With K specialized to trivial group,
however, his definition reduces to the ordinary semi-infinite wedge space.

Proposition 3.1. The generating function for disconnected orbifold Hurwitz can
be expressed in terms of the A operators by:

(3.6) H•,[r](~µ, u) = r
∑l(~µ)

i=1 〈
µi
r
〉

l(~µ)
∏

i=1

u
µi
r µ

⌊µi
r ⌋−1

i
⌊

µi

r

⌋

!

〈 l(~µ)
∏

i=1

A[r]

r〈
µi
r
〉
(µi, u)

〉•

Proof. Both the operators αr and F2 annihilate the vacuum, hence we can conju-
gate each operator α−µi

in (3.2) by their exponent getting:

(3.7) H•,[r](~µ, u) =
1

∏l(~µ)
i=1 µi

〈 l(~µ)
∏

i=1

e
αr
r euF2α−µi

e−uF2e−
αr
r

〉•

We recall Equation (2.14) in [18]:

euF2α−µe
−uF2 = E−µ(uµ)

Note that the energy is preserved to be −µ. Commutator rule (2.8) gives:

[αr, E−µ(uµ)] = ζ(ruµ)Er−µ(uµ)

We expand the last conjugation in nested commutators of the form above obtain-
ing:

e
αr
r E−µ(uµ)e

−αr
r =

∑

k≥0

(

ζ(ruµ)

r

)k
1

k!
Ekr−µ(uµ) =

∑

k≥0

ukµk(S(ruµ))k

k!
Ekr−µ(uµ)

Rescaling by k −
⌊

µ
r

⌋

7→ k and using the vanishing properties of the Pochhammer
symbol, we can rewrite the last expression as

(uµ)⌊
µ
r ⌋

⌊

µ
r

⌋

!
(S(ruµ))⌊

µ
r ⌋

∑

k∈Z

uk(S(ruµ))kµk

(
⌊

µ
r

⌋

+ 1)k
Ekr−〈µ

r
〉r(uµ)

To match the powers of u we conjugate by the exponent of the energy operator
uF1/r. Since F1 and its adjoint fix the vacuum, this does not affect operator
expectations of products of theA-operators. Since Ej has energy j, the conjugation
removes uk from inside the sum and produces a factor of u〈

µ
r
〉 outside. Thus we

see that the vacuum expectation of the operators in (3.7) can be replaced by the
vacuum expectation of the product of

u
µi
r µ

⌊µi
r ⌋

i
⌊

µi

r

⌋

!
(S(ruµi))

⌊µi
r ⌋

∑

k∈Z

(S(ruµi))
kµk

i

(
⌊

µi

r

⌋

+ 1)k
Ekr−〈

µi
r
〉r(uµi)

for i = 1, . . . , l(~µ). Then, using Equation (3.4) we can rewrite the full formula (3.7)
as (3.6). �
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Following [18], we define the doubly infinite series:

δ(z,−w) =
1

w

∑

k∈Z

(

−
z

w

)k

which is obtained as the difference between the following two expansions:

1

z + w
=

1

w
−

z

w2
+
z2

w3
− . . . , |z| < |w|

1

z + w
=

1

z
−
w

z2
+
w2

z3
− . . . , |z| > |w|

The series δ(z,−w) is a formal δ-function at z + w = 0 in the sense that:

(z + w)δ(z,−w) = 0

We recall the formula for commutators of A, that will be fundamental to prove
polynomiality. Below, by δr(η) we denote the function of an integer argument that
equals to 1 if η ≡ 0 mod r and vanishes otherwise.

Proposition 3.2 (Particular case of Lemma V.4. of [12]). Let η1, η2 be integer
numbers satisfying 0 ≤ η1, η2 ≤ r − 1. We have:

(3.8) [A[r]
η1
(z, u),A[r]

η2
(w, u)] = δr(η1 + η2)zwδ(z,−w)

or equivalently:

(3.9) [A[r],(k)
η1

,A[r],(l)
η2

] = δr(η1 + η2)(−1)lδk+l−1.

We define Ω ⊂ Cn by

Ω =

{

(z1, . . . , zn) ∈ Cn

∣

∣

∣

∣

∀k, |zk| >
k−1
∑

i=1

|zi|

}

.

Specializing Theorem V.2 of [12] with the convention (3.5) (see also Section 2.4
in [5]) we have the following:

Proposition 3.3. For any integer numbers η1, . . . , ηn, 0 ≤ η1, . . . , ηn ≤ r− 1, the
Laurent series expansion of

〈

A[r]
η1 (z1, u) · · ·A

[r]
η1 (z1, u)

〉•

in u, z1, . . . , zn converges to an analytic function for (z1, . . . , zn) ∈ Ω and suffi-
ciently small u 6= 0.

Notation 2. For brevity in the rest of the paper we denote A[r]
η (z, u) by Aη(z).

4. Quasi-polynomiality

In this section we derive quasi-polynomiality of r-orbifold Hurwitz numbers
(Theorem 4.7). The argument that we use is a suitable generalization of an argu-
ment of [5].
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4.1. Connected vacuum expectations. Proposition 3.1 expresses the genus-
generating function of disconnected orbifold Hurwitz in terms of vacuum expec-
tation of A-operators. Our first goal is have a similar expression for connected
orbifold Hurwitz numbers

Definition 6. We define the connected correlators 〈Aη1(z1) · · ·Aη1(z1)〉
◦ in terms

of the disconnected correlators 〈· · · 〉• via the inclusion-exclusion formula.

The inverse form of the inclusion-exclusion formula reads (cf. [5]):
(4.1)

〈Aη1(z1) . . .Aηn(zn)〉
•
k =

∑

y∈Yn,k

h(y)
∏

i=1

〈

Aηci,1(y)
(zci,1(y)) . . .Aηci,li(y)

(y)
(zci,li(y)(y))

〉◦

λi(y)

Here Yn,k is the finite set of {1, . . . , n}-Young tableaux y with the following prop-
erties:

(1) The numbers in the rows should be ascending: ci,j(y) is the number in
the i-th row and j-th column, then for any i and for any j1 < j2 we
have ci,j1(y) < ci,j2(y). Each row corresponds to an individual connected
correlator.

(2) For rows of the same length, just for the first column the numbers should
be ascending: li(y) is length of the i-th row, then if li1(y) = li2(y) and
i1 < i2, then ci1,1(y) < ci2,1(y).

(3) h(y) is the number of rows. Rows are labelled by the vector {λi(y) ∈

{−1, 0, 1, . . .}}i with
∑h(y)

i=1 λi(y) = k. The vector ~λ corresponds to the
vector of Euler characteristics of correlators with sign exchanged.

Trivial example

-1 1 2 3 4 5

0 6 7 8 9

1 10 11 12 13

2 14

More complicated example
(allowed disorder marked blue)

-1 2 5 6 7 8

0 1 9 12 13

1 4 10 11 14

2 3

Incorrect example
(errors marked red)

-1 2 5 7 6 8

0 4 9 12 13

1 1 10 11 14

2 3

Remark 3. For n = 1 we have that connected and disconnected correlators coin-
cide, hence we just write 〈Aη(z)〉.

The connected correlators can be used to express the generating function for
connected orbifold Hurwitz numbers:

(4.2) H◦,[r](~µ, u) :=
∑

g≥0

h
◦,[r]
g,~µ .

ub

b!
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Proposition 4.1. Generating function for connected orbifold Hurwitz numbers
equals:

(4.3) H◦,[r](~µ, u) = r
∑l(~µ)

i=0 〈
µi
r
〉

l(~µ)
∏

i=1

u
µi
r µ

⌊µi
r ⌋−1

i
⌊

µi

r

⌋

!

〈 l(~µ)
∏

i=1

Ar〈
µi
r
〉(µi)

〉◦

Proof. This follows from (3.6) and the observation that taking ub-coefficient in H◦

corresponds to the coefficient of u2g−2+l(~µ) in 〈
∏

A〉◦. �

4.2. Unstable terms. In this Section we compute explicitly the coefficients of the
connected vacuum expectations that correspond to the orbifold Hurwitz number
for g = 0 and n = 1, 2.

First, let us introduce some convenient notations.

Notation 3. For any operator P(u) define

〈P(u)〉•k := [uk] 〈P(u)〉• (the coefficient of uk in 〈P(u)〉•)(4.4)

〈P(u)〉◦k := [uk] 〈P(u)〉◦ (the coefficient of uk in 〈P(u)〉◦)

Notation 4. We denote by Aη,+(z) the positive power part in z of the Aη(z) oper-
ator to be:

(4.5) Aη,+(z) :=
∑

k≥1

A(k)
η zk

The terms that we want to compute are

(4.6) 〈Aηi(zi)〉
◦
−1 and

〈

Aηi(zi)Aηj (zj)
〉◦

0

Lemma 4.2. Let η, η1, η2 be integer number, 0 ≤ η ≤ r − 1. We have:

〈Aη(z)〉
◦
−1 =

δη,0
z
,(4.7)

〈Aη1(z1)Aη2(z2)〉
◦
0 = δr(η1 + η2)z1

∑

k≥0

(

−
z1
z2

)k

.(4.8)

Proof. In the vacuum expectation of a single operator Aη(z) only zero-energy term
can give non-trivial contribution. Since Ei has energy i, we have:

(4.9) 〈Aη(z)〉 = δη,0
ζ(ruz)z/r

(ruz)z/r
1

ζ(uz)
=

[

1

uz
+
z(rz − 1)

24
u+O(u2)

]

δη,0

This implies the formula for the genus-zero one-point correlator. The rest of the
proof is devoted to the genus-zero two-pointed correlator.

Note that the following formula for the action of Aη(z) on covacuum holds

(4.10) 〈0|Aη(z) =
δη,0
uz

〈0|+ 〈0|Aη,+(z),

which follows directly from Equation (3.4) and two observations:
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• Ekr−η(uz) annihilates the covacuum when kr − η < 0
• Among the terms that do not annihilate the covacuum, only the term with
E0(uz) is singular in z at z = 0

Equation (4.1) implies that

〈Aη1(z1)Aη2(z2)〉
◦
0 = 〈Aη1(z1)Aη2(z2)〉

•
0 − 〈Aη1(z1)〉−1 〈Aη2(z2)〉1
−〈Aη1(z1)〉1 〈Aη2(z2)〉−1

Applying (4.10) to the first term in the right-hand side we get:

〈Aη1(z1)Aη2(z2)〉
•
0 = 〈Aη1,+(z1)Aη2(z2)〉

•
0 + 〈Aη1(z1)〉−1 〈Aη2(z2)〉1

In the same way, we observe that

〈Aη1,+(z1)Aη2(z2)〉
•
0 = 〈[Aη1,+(z1),Aη2(z2)]〉

•
0 + 〈Aη2,+(z2)Aη1,+(z1)〉

•
0

+ 〈Aη1(z1)〉1 〈Aη2(z2)〉−1

Therefore,

〈Aη1(z1)Aη2(z2)〉
◦
0 = 〈Aη2,+(z2)Aη1,+(z1)〉

•
0 + 〈[Aη1,+(z1),Aη2(z2)]〉

•
0

The second term here is equal to the right hand side of Equation (4.8) (this follows
the commutation rule for coefficients given by Equation (3.9)). In order to complete
the proof of the lemma we have to prove that the first term vanishes.

In other words, we consider

(4.11) r
η1+η2

r

〈

Aη2(z2)Aη1(z1)
〉•

= (S(ruz2))
z2−η2

r (S(ruz1))
z1−η1

r ×

×
∑

k,l∈Z

(S(ruz2))
kz2

k(S(ruz1))
lz1

l

( z2−η2
r

+ 1)k(
z1−η1

r
+ 1)l

〈

Ekr−η2(uz2)Elr−η1(uz1)
〉•

We want to show that the coefficient of u0 in this expression does not contain terms
of expansion in z1, z2 that have positive degrees in both variables. This implies
directly that 〈Aη2,+(z2)Aη1,+(z1)〉

•
0 = 0.

There are two cases:

• kr − η2 = kr − η2 = 0, which implies k = l = η1 = η2 = 0. In this case the
expression (4.11) is equal to

S(ruz2)
z2
r S(ruz1)

z1
r

ζ(uz2)ζ(uz1)
=

1

u2z1z2
+

1

24z1z2

(

rz31 + rz32 − z21 − z22
)

+O(u2),(4.12)

hence all terms in the coefficient of u0 have negative degree either in z1 or
in z2.

• kr − η2 6= 0 and lr − η1 6= 0, which implies kr − η2 + lr − η1 = 0. In this
case all factors are formal power series in u, so we can expand all factors
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in u up to O(u1). The summand with particular k and l in (4.11) is equal
to

zk2z
l
1

( z2−η2
r

+ 1)k(
z1−η1

r
+ 1)l

+O(u)(4.13)

The condition kr − η2 + lr − η1 = 0 is satisfied in one of the two possible
cases:

– η1 = η2 = 0, k + l = 0, k, l 6= 0;
– η1 + η2 = r, k + l = 1.

In both cases either k or l is non-positive. Without loss of generality, let’s
assume that l ≤ 0 (the other case is symmetric). Then

zl1
( z1−η1

r
+ 1)l

= zl1

(

z1 − η1
r

· · · · ·

(

z1 − η1
r

+ l + 1

))

(4.14)

contains no positive powers of z1.

�

4.3. Vacuum expectations without unstable terms. In this section we give
a formula for the disconnected vacuum expectations, where all unstable terms,
that is, 〈Aη(z)〉

◦
−1 and 〈Aη1(z1)Aη2(z2)〉

◦
0, are dropped. This is a straightforward

generalization of the similar formula in [5], which is based on the following simple
recursion rules:

Lemma 4.3. We can recursively decompose disconnected correlators as follows:

〈Aη(z)
∏

i

Aηi(zi)〉
•
k = 〈Aη(z)〉

◦
−1〈

∏

i

Aηi(zi)〉
•
k+1 + 〈Aη,+(z)

∏

i

Aηi(zi)〉
•
k(4.15)

〈Aη,+(z)Aσ(w)
∏

i

Aηi(zi)〉
•
k = 〈Aη(z)Aσ(w)〉

◦
0〈
∏

i

Aηi(zi)〉
•
k(4.16)

+ 〈Aσ(w)Aη,+(z)
∏

i

Aηi(zi)〉
•
k

Proof. Equation (4.10) and the formula for the one-point correlator (4.7) together
prove the first equality. The second equality follows from the computation of the
two-points correlator (4.8). �

This implies the following proposition.

Proposition 4.4. We have:

〈Aη1,+(z1) . . .Aηk,+(zn)〉
•
k(4.17)

=
∑

y∈Ystab
n,k

h(y)
∏

i=1

〈

Aηci,1(y)
(zci,1(y)) . . .Aηci,li(y)

(y)
(zci,li(y)(y))

〉◦

λi(y)
.
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where

(4.18) Ystab
n,k =

{

y ∈ Yn,k

∣

∣ li(y) = 1 ⇒ λi(y) 6= −1, li(y) = 2 ⇒ λi(y) 6= 0
}

In other words, 〈Aη1,+(z1) · · ·Aηn,+(zn〉
•
k is equal to 〈Aη1(z1) · · ·Aηn(zn)〉

•
k with all

the unstable terms dropped.

Proof. The proof of this proposition is completely analogous to the proof of Propo-
sition 2.21 in [5]. It is based on the recursion that expresses 〈Aη1(z1) · · ·Aηn(zn)〉

•
k

in terms of the unstable vacuum expectations and A+-operators using only Equa-
tions (4.15) and (4.16). Though the operators here are more general, the recursion
rules are still the same, so the same argument can be applied. �

Remark 4. Let us give some example to explain the difference between Yn,k and
Ystab

n,k . The first example below belongs to Y3,−1 but not to Ystab
3,−1, and the second

one belongs to Ystab
3,−1:

Unstable

0 1 2

-1 3

Stable

-1 1 2

0 3

4.4. Polynomiality. In this section we prove the quasi-polynomiality property for
orbifold Hurwitz numbers. First, we show that 〈Aη1,+(z1) . . .Aηn,+(zn)〉

•
k/(z1 · · · zn)

is a symmetric polynomial in z1, . . . , zn (excluding unstable cases of k = −1, n = 1,
and k = 0, n = 2). This implies that 〈Aη1(z1) . . .Aηn(zn)〉

◦
k /(z1 · · · zn) is a sym-

metric polynomial in z1, . . . , zn (again, excluding unstable cases). This, in turn,
implies quasi-polynomiality of orbifold Hurwitz numbers.

Proposition 4.5. The function

(4.19)
〈Aη1,+(z1) . . .Aηn,+(zn)〉

•
k

z1 · · · zn

is a symmetric polynomial in z1, . . . , zn for (n, k) 6= (1,−1), (2, 0) .

Proof. We follow the proof of Proposition 9 in [18]. We have:

i) Boundedness from below: 〈Aη1,+(z1) . . .Aηn,+(zn)〉
•
k has strictly positive

powers in all its variables z1, . . . , zn, as it follows from the definition of
Aη,+(z) given by Equation (4.5). So, we can divide by

∏n
i=1 zi, and we

still have only non-negative powers of z1, . . . , zn in the expansion of the
quotient.

ii) Symmetry holds because A+ operators commute which each other, which
is a direct consequence of the commutation formula (3.9).
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iii) Boundedness from above: Since it is a symmetric function, it is enough
to show that the power of zn is bounded. From the definition of the A-
operator we have the following

Aη(z)|0〉 = r−η/rS(ruz)(z−η)/r
∞
∑

k=0

S(ruz)−kz−k

(

z−η
r

+ 1
)

−k

E−kr−η(uz)|0〉(4.20)

where we used the change of summation index k 7→ −k since the operators
Ei with positive i annihilate the vacuum.
Since each factor in each summand in (4.20) has at most first order

pole in u, it is sufficient to do the following. We expand each factor of
each summand in (4.20) in u up to O(um+1), and we show that the degree
of z in this expansion is bounded from above. Indeed, in this case, the
highest possible power of z in E−kr−η(uz) is m; in S(ruz)−k it is again m;
in S(ruz)(z−η)/r is it equal to 2m (one m comes from argument of S, while
the other estimates power of z in the binomial coefficient in the expansion
of (1+x)(z−η)/r; finally, the highest possible power of z in z−k/

(

z−η
r

+ 1
)

−k

is equal to 0.

�

Proposition 4.6. For (n, k) 6= (1,−1), (2, 0), the function

(4.21)
〈Aη1(z1) . . .Aηn(zn)〉

◦
k

z1 · · · zn

is a symmetric polynomial in z1, . . . , zn.

Proof. We follow the proof of Proposition 2.23 in [5]. We prove the statement
by induction on the number of operators in the vacuum expectation. It holds for
n = 1. Suppose it holds for vacuum expectations with any number of operators
less than n, and we want to prove it for n operators as well. Let y′ be the single-
row Young tableau. Consider the partition Ystab

n,k = {y′} ∪
(

Ystab
n,k \ {y′}

)

. Then
Equation (4.17) implies:

〈Aη1(z1) . . .Aηn(zn)〉
◦
k

z1 · · · zn
=

〈Aη1,+(z1) . . .Aηn,+(zn)〉
•
k

z1 · · · zn
(4.22)

−
∑

y∈Ystab
n,k

\{y′}

h(y)
∏

i=1

〈

Aηzci,1(y)
(zci,1(y)) . . .Aηci,li(y)

(y)
(zci,li(y)(y))

〉◦

λi(y)

zci,1(y) · · · zci,li(y)(y)
.

The first term on the right hand side is symmetric polynomial in z1, . . . , zn by
Proposition 4.5, the second term is symmetric polynomial by induction hypothesis.

�

Now we are ready to prove the quasi-polynomiality of orbifold Hurwitz numbers.
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Theorem 4.7. The orbifold Hurwitz numbers h
◦,[r]
g,µ for (g, n) 6= (0, 1), (0, 2) can be

expressed as follows:

(4.23) h◦,[r]g;µ = (2g − 2 + l(µ) + |µ|/r)!





n
∏

i=1

µ
⌊µi

r ⌋
i
⌊

µi

r

⌋

!



 P
〈 ~µ
r
〉

g,n (µ1, . . . , µn),

where P~ǫ
g,n(µ1, . . . , µn) are some polynomials in µ1, . . . , µn, whose coefficients de-

pend on the parameters ~ǫ = (ǫ1, . . . , ǫn), 0 ≤ ǫ1, . . . , ǫn ≤ r−1 (we have ǫi = 〈µi

r
〉).

Proof. This is a direct corollary of Equation (4.3) and Proposition 4.6. �

5. Topological Recursion

In this section we recall the topological recursion of Chekhov, Eynard, and
Orantin tailored for our use. For a more detailed introduction we refer to [10, 9].

Definition 7. A spectral curve is a triple (Σ, x, y), where Σ is a Riemann surface
(which we assume from now on to be CP1) and x, y : Σ → C are meromorphic
functions, such that the zeroes of dx are disjoint from the zeroes of dy. Moreover
the zeros of dx are simple:

In a neighborhood of a point α ∈ Σ such that dx(α) = 0 we can define an
involution τα that preserves function x (deck transformation).

Furthermore, Σ × Σ is equipped with a meromorphic symmetric 2-differential
with a second order pole on the diagonal, which is called the Bergman kernel. In
the case of CP1 the Bergman kernel is unique and in a global coordinate z it reads

B =
dz1dz2

(z1 − z2)2
.

Definition 8. By topological recursion we call a recursive procedure that asso-
ciates to a spectral curve data (Σ, x, y, B) a family of symmetric meromorphic
differentials, called correlation differentials ωg,n(z1, . . . , zn) defined on Σn, g ≥ 0,
n ≥ 1.

The first two correlation differentials are given by explicit formulas:

(5.1) ω0,1(z) =
y dx

x
ω0,2(z1, z2) =

dz1dz2
(z1 − z2)2

The correlation differentials ωg,n, 2g − 2 + n > 0, are given by:

(5.2) ωg,n(z1, zS) =
∑

α∈Σ
dx(α)=0

Res
z=α

K(z1, z)

[

ωg−1,n+1(z, τα(z), zS)+

′
∑

g1+g2=g
I⊔J=S

ωg1,|I|+1(z, zI)ωg2,|J |+1(τα(z), zJ )

]

,
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where S = {2, . . . , n}, and in the second sum we exclude the cases when (g1, |I|+1)
or (g2, |J |+ 1) is equal to (0, 1). The recursion kernel K is defined in the vicinity
of each point α, dx(α) = 0 by the formula

(5.3) K(z1, z) :=

∫ τα(z)

z
ω0,2(·, z1)

2(ω0,1(τα(z))− ω0,1(z))

In our case (Σ = CP1, z is a global coordinate), we can use the following formula:

(5.4) K(z1, z) =
x(z)

2(y(τα(z))− y(z))x′(z)

(

1

z − z1
−

1

τα(z)− z1

)

dz1
dz

In the stable range, 2g − 2 + n > 0, the correlation differentials ωg,n have poles
only at the zeros of dx. They can be expressed as the sum of their principle parts :

(5.5) ωg,n(z1, zS) =
∑

α∈Σ
dx(α)=0

[ωg,n(z1, zS)]α

where by principal part [η(z1)]α of a 1-form η(z1) we mean the projection defined
as a version of Cauchy formula, where we use B instead of the Cauchy kernel:

(5.6) [η(z1)]α := Res
z=α

η(z)

∫ z

α

B(·, z1).

In fact, there is an equivalent way to reformulate the topological recursion. We
say that the symmetric meromorphic differentials satisfy the topological recursion
if they satisfy the property (5.5) for 2g − 2 + n > 0, and also solve the abstract
loop equations:

ωg,n(z, zS) + ωg,n(τα(z), zS) is holomorphic for z → α(5.7)

ωg−1,n+1(z, τα(z), zS) +
∑

g1+g2=g
I⊔J=S

ωg1,1+|I|(z, zI)ωg2,1+|J |(τα(z), zJ)(5.8)

is holomorphic for z → α with at least double zero at α.

A proof of that can be found in [1, 2].

6. The Spectral Curve

In this section we prove the spectral curve for orbifold Hurwitz numbers using the
quasi-polynomiality property proved in Section 4 and the cut-and-join equation.
It is important to stress that we do not use the Johnson-Pandharipande-Tseng [14]
formula in this Section.

We consider the n-point function for orbifold Hurwitz numbers for fixed genus
g:

(6.1) H◦,[r]
g,n (x1, . . . , xn) =

∑

~µ:l(µ)=n

h
◦,[r]
g;µ

b!
xµ1

1 · · ·xµn
n .
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Theorem 6.1. Consider the correlation differentials ωg,n, g ≥ 0, n ≥ 1, for the
spectral curve (Σ = CP1, z, y), where

(6.2) x(z) = z exp(−zr) and y(z) = zr

in some global coordinate z. They have the following analytic expansion near
x1 = x2 = · · · = xn = 0:

(6.3) ωg,n(x1, . . . , xn) =
∂

∂x1
· · ·

∂

∂xn
H◦,[r]

g,n (x1, . . . , xn)dx1 ⊗ · · · ⊗ dxn.

for all (g, n) 6= (0, 2) For (g, n) = (0, 2) we have:

ω0,2(x1, x2) =
dz(x1)⊗ dz(x2)

(z(x1)− z(x2))2
(6.4)

=
∂

∂x1

∂

∂x2
H

◦,[r]
0,2 (x1, x2)dx1 ⊗ dx2 +

dx1 ⊗ dx2
(x1 − x2)2

.

This theorem is proved in [4] and [3] using the Johnson-Pandharipande-Tseng
formula and the cut-and-join equation for the orbifold Hurwitz numbers. We
show below that it is enough to use the quasi-polynomiality property given in
Theorem 4.7 instead of the Johnson-Pandharipande-Tseng formula.

Since, except for the first few steps that have to be adjusted, the arguments
of [4] and [3] still work, we refer to these papers for complete computations. Here,
after a careful analysis of the consequences of quasi-polynomiality, we just sketch
the main big steps of computation in order to give the reader an idea how the
abstract loop equations emerge in this context.

Proof of Theorem 6.1. First of all, we have to check the formulas for ω0,1 and ω0,2.
This can be done by direct inspection, see [3, 4].

We have the following expression for connected numbers where the sum over
~j ∈ Zn

+ is finite because of quasi-polynomiality:

h◦,[r]g,µ =

(

2g − 2 + l(µ) +
|µ|

r

)

! ·
n
∏

i=1

µ
⌊µi

r ⌋
i
⌊

µi

r

⌋

!

∑

~j∈Zn
+

c
〈 ~µ
r
〉

g,n,~j
µj1
1 · · ·µjn

n .

Here c
〈 ~µ
r
〉

g,n,~j
are the coefficients of the polynomial P

〈 ~µ
r
〉

g,n (µ1, . . . , µn) in Theorem 4.7.

Hence the partition function reads:

H◦,[r]
g,n (x1, . . . , xn) =

∑

~µ
l(~µ)=n

∑

~j∈Zn
+

c
〈 ~µ
r
〉

g,n,~j





n
∏

i=1

µ
⌊µi

r ⌋+ji
i
⌊

µi

r

⌋

!



xµ1

1 · · ·xµn
n

Now we apply the Euclidean division to each µi with the notations:

µi = r
⌊µi

r

⌋

+ r
〈µi

r

〉

σi =
⌊µi

r

⌋

, ηi = r
〈µi

r

〉
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The coefficients c
〈 ~µ
r
〉

g,n,~j
only depends on the residue of the µi modulo r. Writing

[r − 1] for {0, . . . , r − 1} we get:

H◦,[r]
g,n (x1, . . . , xn) =

∑

~β∈[r−1]n

∑

~j∈Zn
+

cβ
g,n,~j

n
∏

i=1

∑

rσi+ηi>0

(rσi + ηi)
σi+ji

σi!
xrσi+βi

i

Lemma 6.2. The n-point functions H
◦,[r]
g,n (x1, . . . , xn) are local expansions around

(x1, . . . , xn) = (0, . . . , 0) of rational functions in (z1, . . . , zn), where

x(z) = ze−zr .

Proof. It is proved in [19, Equation (46)] that

(6.5)

∞
∑

σ=0

(rσ + η′)σ

σ!
xrσ+η′ =

zη
′

1− rzr
, η′ = 1, . . . , r

(note that here we use η′ = 1, . . . , r instead of η = 0, . . . , r − 1 in order to take
uniformly the sum over σ ≥ 0 rather than rσ+η > 0). This is obviously a rational
function in z, as well as

(6.6)

∞
∑

σ=0

(rσ + η)σ+j

σ!
xrσ+η =

(

x
d

dx

)j
zη

1− rzr
=

(

z

1− rzr
d

dz

)j
zη

1− rzr
.

So, H
◦,[r]
g,n (x1, . . . , xn) is an expansion of a finite linear combination of products of

rational functions in z1, . . . , zn. �

Let us denote by p1, . . . , pr the critical points of the function x(z). It is obvious
that each function zη

′

/(1− rzr) is a linear combination with constant coefficients
of the functions 1/(z− z(pi)), i = 1, . . . , r, up to an additive constant (where said
additive constant is not of interest to us, since we are dealing with the differentials
of these functions). This implies that all functions given by Equation (6.6) are
linear combinations of 1/(z − z(pi))

a, i = 1, . . . , r, a ≥ 1. So, we have:

Lemma 6.3. The symmetric differentials ωg,n := (d1 ⊗ · · · ⊗ dn)H
◦,[r]
g,n (x1, . . . , xn)

are equal to the sum of their principal parts in the coordinate z at the points
p1, . . . , pn.

This Lemma immediately implies Equation (5.5) for the standard Cauchy kernel
in the coordinate z given by B(z1, z2) = dz1dz2/(z1 − z2)

2.

Lemma 6.4. The differentials ωg,n(z1, . . . , zn) satisfy the linear loop equation (5.7),
namely, ωg,n(z1, . . . , zn)+ωg,n(τiz1, z2, . . . , zn) is holomorphic for z1 → pi, where by
τi we denote the deck transformation of function x near the point pi, i = 1, . . . , r.

Proof. It is sufficient to proof this lemma for the differentials of the functions given
by Equation (6.6). Observe that the operator x d

dx
preserves this property, namely,
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if df(z)+ df(τiz) is holomorphic for z → pi, then d(x
d
dx
)f(z)+ d(x d

dx
)f(τiz) is also

holomorphic for z → pi. It is proved in [19, Equation (4.5)] that

zη
′

1− rzr
=

(

x
d

dx

)

zη
′

η′
, η′ = 1, . . . , r.

The functions zη
′

are holomorphic, so their differentials satisfy the linear loop
equation. Therefore, the differentials of all the functions given by Equation (6.6)
satisfy this property as well. �

Now we have to explain how we derive the quadratic loop equation (5.8). The
cut-and-join equation for double Hurwitz numbers [11] (see also [4]) can be written
in the following form:

0 = −(2g − 2 + n)H◦,[r]
g,n (x[n])−

n
∑

i=1

(xi
d

dxi
)H◦,[r]

g,n (x[n])(6.7)

+
1

2

∑

i 6=j

[

xi
xj − xi

(xj
d

dxj
)H

◦,[r]
g,n−1(x[n]\{i}) +

xj
xi − xj

(xi
d

dxi
)H

◦,[r]
g,n−1(x[n]\{j})

]

+
1

2

n
∑

i=1

[

(x′
d

dx′
)(x′′

d

dx′′
)H

◦,[r]
g−1,n+1(x

′, x′′, x[n]\{i})

]

x′=x′′=xi

+
1

2

n
∑

i=1

∑

g1+g2=g

I⊔J=[n]\{i}

[

(xi
d

dxi
)H

◦,[r]
g1,|I|+1(xi, xI)

] [

(xi
d

dxi
)H

◦,[r]
g2,|J |+1(xi, xJ)

]

.

Consider the symmetrization of this expression in variable x1 with respect to the
deck transformation near the point pi. Apply further the operator

∏n
j=2(

d
dxj

) to it

and cancel the terms that do not contribute to the polar part of this expression at
z(x1) → pi. The obstruction for the derived expression to be holomorphic at pi is
precisely the quadratic loop equation (5.8).

This computation implicitly contained in [4] and [3] as the first step of the
derivation of the topological recursion, see also [5] for a special case of that. We
refer here also to [2, Section 2.4], where it is shown how to derive the topological
recursion from the abstract loop equations in general situation, where one can
easily recognize the general pattern of the argument in [4] for this particular case.

�

7. Johnson-Pandharipande-Tseng formula

In this section we give a new proof of a special case of the Johnson-Pandhari-
pande-Tseng formula for orbifold Hurwitz numbers. This is a simple corollary of
Theorem 6.1, and the results obtained in [15].

We consider the space Mg,−~µ(BZr) of stable maps to the classifying space BZr

of the cyclic group of order r, where the vector −~µ in the notation corresponds to
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the prescribing the monodromy data (−µ1 mod r, . . . ,−µn mod r) at the marked
points of source curves. One can think about the elements of this space as ad-
missible covers of curves in Mg,n with given monodromy at the marked points.

Denote by p the forgetful map Mg,−~µ(BZr) → M.
Consider the action of Zr on the H0(C, ωC), where C is the covering curve.

Consider its irreducible component that corresponds to the character U : Zr → C∗

that send a generator to exp(2πi/r). This component gives us a vector bundle
over Mg,−~µ(BZr), whose Chern classes we denote by λi, i ≥ 0. We denote by S(~µ)
the class

(7.1) S(〈~µ/r〉) := r1−g+
∑
〈µi

r 〉p∗
∑

i≥0

(−r)iλi.

Theorem 7.1. We have:

h
◦,[r]
g;~µ

b!
=

l(~µ)
∏

i=1

µ
⌊µi

r ⌋
i

⌊µi

r
⌋!

∫

Mg,l(~µ)

S(〈~µ/r〉)
∏l(~µ)

j=1(1− µjψj)
(7.2)

Remark 5. This is a special case of the Johnson-Pandharipande-Tseng formula
proved in [14], see also [12, 4, 3] for further explanation of the class S(~µ) used in
it.

Remark 6. Note that this formula looks exactly as formula (4.23), but now the

coefficients of the polynomial P
〈 ~µ
r
〉

g,n (µ1, . . . , µn) are explicitly represented as inter-
section numbers.

We give here a new proof of Theorem 7.1.

Proof. The proof consists of two simple observations. On the one hand, Theo-
rem 6.1 says that the expressions

d1 ⊗ · · · ⊗ dn
∑

l(~µ)=n

h
◦,[r]
g;~µ

b!
xµ1
1 · · ·xµn

n

are expansions of the symmetric differentials ωg,n(z1, . . . , zn) that satisfy the topo-
logical recursion for the spectral curve data (CP1, x = ze−zr , y = zr). On the other
hand, it is proved in [15] that the expansion of the correlation differentials for this
spectral curve is given by

d1 ⊗ · · · ⊗ dn
∑

l(~µ)=n

∫

Mg,n

S(〈~µ/r〉)
∏n

j=1(1− µjψj)

n
∏

i=1

µ
⌊µi

r ⌋
i

⌊µi

r
⌋!
xµi

This identifies the left hand side and the right hand side of Equation (7.2). �
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