THE DISTRIBUTION OF S-INTEGRAL POINTS ON SL L_{2}-ORBIT CLOSURES OF BINARY FORMS

SHO TANIMOTO AND JAMES TANIS

Abstract

We study the distribution of S-integral points on SL_{2}-orbit closures of binary forms and prove an asymptotic formula for the number of S-integral points. This extends a result of Duke, Rudnick, and Sarnak. The main ingredients of the proof are the method of mixing developed by Eskin-McMullen and Benoist-Oh, Chambert-Loir-Tschinkel's study of asymptotic volume of height balls, and Hassett-Tschinkel's description of log resolutions of SL_{2}-orbit closures of binary forms.

Introduction

The distribution of integral points on homogeneous spaces has been studied by several researchers, and important developments are [DRS93 and EM93, which used different techniques to settle the problem of asymptotic formulae for the number of integral points on affine symmetric spaces. [EM93] uses an ergodic theoretic approach based on mixing and this method is extended to the S-integral points setting in BO12. On the other hand, another approach based on the height zeta functions method, has been developed in CLT12, [CLT10b], [TBT13]. The advantage of this method is that one can analyze more general (D, S)-integral points while ergodic methods are only available when D is the full boundary divisor. However, the height zeta functions method is also limited in that it is only applicable to bi-equivariant compactifications of connected linear algebraic groups.

In this paper, we study (D, S)-integral points on one sided equivariant compactifications of connected semisimple groups assuming that D is the full boundary divisor. Our method is a variant of the method of mixing in EM93 and BO12. To demonstrate our method, we solve the problem of counting S-integral points of bounded height on SL_{2}-orbit closures of binary forms, which is considered in the integral case by Duke, Rudnick and Sarnak in DRS93.

Let us explain the problem in detail. Let V be a two-dimensional vector space over \mathbb{Q} with coordinates x and y. We consider the standard SL_{2} action on V. Let $W_{n}=\operatorname{Sym}^{n}\left(V^{*}\right)$ be the space of binary forms of degree n,

$$
f=a_{0} x^{n}+a_{1} x^{n-1} y+\cdots+a_{n} y^{n},
$$

where $n \geq 3$. Here the left action of SL_{2} on W_{n} is given by

$$
(g \cdot f)\binom{x}{y}=f\left(g^{-1}\binom{x}{y}\right) .
$$

Consider the projective space $\mathbb{P}\left(W_{n}\right) \cong \mathbb{P}^{n}$, and let $[f] \in \mathbb{P}\left(W_{n}\right)(\mathbb{Q})$ be a binary form of degree n with coefficients in \mathbb{Q} and with distinct roots. We define X_{f} to be the Zariski

[^0]closure of the SL_{2}-orbit of $[f]$, i.e,
$$
X_{f}=\overline{\mathrm{SL}_{2} \cdot[f]} \subset \mathbb{P}\left(W_{n}\right)
$$

This is a projective threefold defined over \mathbb{Q}. The complement of the open orbit $U_{f}:=\mathrm{SL}_{2} \cdot[f]$ in X_{f} forms a geometrically irreducible divisor, and set theoretically it is an intersection of X_{f} with the discriminant divisor in $\mathbb{P}\left(W_{n}\right)$.(See MU83, Lemma 1.5].) We denote this Weil divisor by D_{f}. We fix the integral model $\mathbb{P}_{\mathbb{Z}}\left(W_{n}\right)$ of $\mathbb{P}\left(W_{n}\right)$ as

$$
\mathbb{P}_{\mathbb{Z}}\left(W_{n}\right):=\operatorname{Proj}\left(\mathbb{Z}\left[a_{0}, \cdots, a_{n}\right]\right),
$$

and let \mathcal{X}_{f} and \mathcal{D}_{f} be closures of X_{f} and D_{f} in $\mathbb{P}_{\mathbb{Z}}\left(W_{n}\right)$ respectively. They form flat integral models of X_{f} and D_{f} respectively, and we define

$$
\mathcal{U}_{f}=\mathcal{X}_{f} \backslash \mathcal{D}_{f} .
$$

Let S be a finite set of places including the archimedean place, and we denote the ring of S-integers by \mathbb{Z}_{S}. One can consider the counting function of the number of S-integral points with respect to a height function $\mathrm{H}: \mathbb{P}\left(W_{n}\right)(\mathbb{Q}) \rightarrow \mathbb{R}_{>0}$:

$$
N\left(\mathcal{U}_{f}, T\right)=\#\left\{P \in \mathcal{U}_{f}\left(\mathbb{Z}_{S}\right) \mid \mathrm{H}(P) \leq T\right\}
$$

where the height function H is introduced in Section 1. In DRS93, Duke, Rudnick, and Sarnak studied the asymptotic formula of this counting function when S consists of the archimedean place:

Theorem 0.1. [DRS93, Theorem 1.9] When $S=\{\infty\}$, there exists a constant $c \geq 0$ such that

$$
N\left(\mathcal{U}_{f}, T\right) \sim c T^{\frac{2}{n}} .
$$

Duke, Rudnick, and Sarnak studied the counting problem of integral points on affine symmetric spaces([DRS93, Theorem 1.2]) using techniques from automorphic forms. The above remarkable theorem is an example of an asymptotic formula for a non-symmetric space. Their method is based on equidistribution of lattice points in angular sectors on the hyperbolic plane and elementary approximation arguments using the polar decomposition of $\mathrm{SL}_{2}(\mathbb{R})$. In this paper, we give a new proof of Theorem 0.1 and extend their result to any S :

Theorem 0.2. Suppose that $n \geq 5$ and f is general so that the stabilizer of $[f]$ is trivial. Then there exists a constant $c \geq 0$ such that

$$
N\left(\mathcal{U}_{f}, T\right) \sim c T^{\frac{2}{n}}(\log T)^{\# S-1}
$$

Our proof is based on the method of mixing developed in EM93, BO12]. In EM93], Eskin and McMullen introduced axiomatic treatments of the counting problem and the method of mixing. Using mixing, they independently solved the question of distribution of integral points on affine symmetric spaces(\mid EM93, Theorem 1.4]). Benoist and Oh generalized this method to S-adic Lie group settings in $\overline{\mathrm{BO} 12}$, and solved the counting problem of S integral points on affine symmetric spaces $H \backslash G(\mid \mathrm{BO} 12$, Theorem 1.1, Corollary 1.2, Theorem 1.4]). An important property used in their proofs is the wavefront property for symmetric spaces($\overline{\text { BO12 }}$, Definition 3.1, Proposition 3.2]). It is the key to establishing equidistribution of translations of H-orbits. We consider a special height function which is invariant under the action of a compact subgroup H satisfying the wavefront property, and reduce the counting problem on G to the counting problem on $H \backslash G$, where G is a S-adic Lie group associated
to SL_{2}. This proves that the function $N\left(\mathcal{U}_{f}, T\right)$ is approximated by the asymptotic volume of height balls.

The computation of asymptotic volume of height balls is a subject of [CLT10a]. ChambertLoir and Tschinkel showed that the global geometric data, which is so-called the Clemens complex, controls the volume of height balls, and one can compute the asymptotic formula based on that. However, to use their machinery, we need to describe a log resolution of singularities for a pair $\left(X_{f}, D_{f}\right)$. This has been discussed in [HT03]. The variety X_{f} admits a moduli interpretation as a subvariety of a moduli space of stable maps, and Hassett and Tschinkel used this moduli interpretation to construct a log resolution of a pair (X_{f}, D_{f}). We will recall their result and provide its refinement in Section 3. It is straightforward to generalize our method to arbitrary number fields, but we restrict ourselves over the field of rational numbers for notational reasons.

Let us outline the contents of the paper. In Section 1, we define the height function H and discuss its basic properties. Then in Section 2 we explain the method of mixing and its application. In Section 3, we recall the construction of a log resolution of a pair (X_{f}, D_{f}) in [HT03] and explain how moduli spaces of stable curves and stable maps can be used to obtain a \log resolution of $\left(X_{f}, D_{f}\right)$. In Section 4, we recall results of CLT10a and apply them to obtain asymptotic formulae. In Section5, we discuss some generalizations of results in Section 2 .

Acknowledgments. The authors would like to thank Natalie Durgin, Brendan Hassett, Brian Lehmann, Yuri Tschinkel, and Anthony Várilly-Alvarado for useful discussions. The authors also would like to thank Shinya Koyama and Nobushige Kurokawa for teaching us the reference [Bak90] for Liouville numbers.

1. Height functions

In this section, we introduce a height function of $\mathcal{O}(1)$ on $\mathbb{P}\left(W_{n}\right)$ to count S-integral points on \mathcal{U}_{f}. First let us recall some definitions regarding height functions in general.

Definition 1.1. CLT10a, Section 2.1.3] Let F be a locally compact field and X a smooth projective variety defined over F. One can consider $X(F)$ as a compact analytic manifold over F. Let L be a line bundle on X. The $L(F)$ is endowed with the structure of the analytic line bundle on $X(F)$. A metric on $L(F)$ to be a collection of functions $L_{P}(F) \rightarrow \mathbb{R}_{+}$for all $P \in X(F)$, denoted by $l \mapsto\|l\|$, such that

- $\|\cdot\|$ is a norm on the F-vector space $L_{P}(F)$;
- for any open subset $U \subset X(F)$ and any non vanishing analytic section $\mathrm{f} \in \Gamma(U, L(F))$, the function $U \ni P \mapsto\|f(P)\|$ is smooth, i.e., it is locally constant if F is nonarchimedean, otherwise it is C^{∞}.

With metrizations, one can define local height functions:
Definition 1.2. CLT10a, Section 2.2.6] Let F be a locally compact field and X a smooth projective variety defined over $F, \mathcal{L}=(L,\|\cdot\|)$ a metrized line bundle on X, and a nonzero section $\mathrm{f} \in \Gamma(X, \mathcal{L})$. Let U be the complement of the support of f . The local height function of \mathcal{L} associated to f is given by

$$
\mathrm{H}: U(F) \rightarrow \mathbb{R}_{+}, \quad P \mapsto\|\mathrm{f}(P)\|^{-1}
$$

We define height functions of $\mathcal{O}(1)$ on $\mathbb{P}\left(W_{n}\right)$. For a nonarchimedean place v, we define a metrization on $\mathcal{O}(1)$ by requiring the following property: for any linear form $f \in$ $\Gamma\left(\mathcal{O}(1), \mathbb{P}\left(W_{n}\right)\right)$, we have

$$
\|\mathbf{f}\|\left(a_{0}, \cdots, a_{n}\right)=\frac{\left|\boldsymbol{f}\left(a_{0}, \cdots, a_{n}\right)\right|_{v}}{\max \left\{\left|a_{0}\right|_{v}, \cdots,\left|a_{n}\right|_{v}\right\}}
$$

At the archimedean place, we define our metrization by

$$
\|\mathfrak{f}\|\left(a_{0}, \cdots, a_{n}\right)=\frac{\left|\mathfrak{f}\left(a_{0}, \cdots, a_{n}\right)\right|_{v}}{\sqrt{\sum_{i=0}^{n}\binom{n}{i}^{-1} a_{i}^{2}}}
$$

For $v=p$ a prime, $\mathcal{O}(1)$ is endowed with the standard metric induced from the integral model $\mathbb{P}_{\mathbb{Z}}\left(W_{n}\right) .([$ CLT10a, Section 2.3])

Let $D \subset \mathbb{P}\left(W_{n}\right)$ be the discriminant divisor and s_{D} the corresponding section of $\mathcal{O}(D)$. The section s_{D} is a homogeneous polynomial of degree $2 n-2$ with \mathbb{Z}-coefficients. Let S be a finite set of places including the archimedean place and $U=\mathbb{P}\left(W_{n}\right) \backslash D$. For each $v \in S$, we define the local height $\mathrm{H}_{v}: U\left(\mathbb{Q}_{v}\right) \rightarrow \mathbb{R}_{>0}$ associated to $\frac{1}{2 n-2} D$ by

$$
\mathrm{H}_{v}\left(a_{0}, \cdots, a_{n}\right)=\frac{\max \left\{\left|a_{0}\right|_{v}, \cdots,\left|a_{n}\right|_{v}\right\}}{\left|s_{D}\left(a_{0}, \cdots, a_{n}\right)\right|_{v}^{\frac{1}{2 n-2}}}
$$

when v is a non-archimedean place, and

$$
\mathrm{H}_{v}\left(a_{0}, \cdots, a_{n}\right)=\frac{\sqrt{\sum_{i=0}^{n}\binom{n}{i}^{-1} a_{i}^{2}}}{\left|s_{D}\left(a_{0}, \cdots, a_{n}\right)\right|_{\infty}^{\frac{1}{2 n-2}}}
$$

when v is the archimedean place, where

$$
\left[a_{0} x^{n}+a_{1} x^{n-1} y+\cdots+a_{n} y^{n}\right] \in U\left(\mathbb{Q}_{v}\right) .
$$

The function H_{v} is the local height function of $\mathcal{O}(1)$ associated to $\frac{1}{2 n-2} D$.
One important property of these local heights is that they are invariant under the action of a maximal compact subgroup:

Lemma 1.3. For $v=p$ a prime, H_{p} is invariant under the action of $\mathrm{SL}_{2}\left(\mathbb{Z}_{p}\right)$. For $v=\infty$, H_{∞} is invariant under the action of $\mathrm{SO}_{2}(\mathbb{R})$.

Proof. Let \mathcal{L} be the metrized line bundle associated to the invertible sheaf $\mathcal{O}(1)$ on $\mathbb{P}\left(W_{n}\right)$. First note that s_{D} is SL_{2}-invariant, i.e., for any $P \in \mathbb{P}\left(W_{n}\right)\left(\mathbb{Q}_{v}\right)$ and $g \in \mathrm{SL}_{2}\left(\mathbb{Q}_{v}\right)$, we have

$$
g^{-1} \cdot\left(s_{D}(g \cdot P)\right)=s_{D}(P)
$$

where the group SL_{2} acts on the line bundle \mathcal{L} in a way that the action is compatible with the one on $\mathbb{P}\left(W_{n}\right)$. Suppose that the place $v=p$ is a non-archimedean place. The group scheme $\mathrm{SL}_{2} / \operatorname{Spec}\left(\mathbb{Z}_{p}\right)$ acts on $\mathbb{P}_{\mathbb{Z}_{p}}\left(W_{n}\right)$ as well as the line bundle $\mathcal{L} / \operatorname{Spec}\left(\mathbb{Z}_{p}\right)$, hence $\mathrm{SL}_{2}\left(\mathbb{Z}_{p}\right)$ acts on the \mathbb{Z}_{p}-bundle $\mathcal{L}\left(\mathbb{Z}_{p}\right)$. This means that the action of $\mathrm{SL}_{2}\left(\mathbb{Z}_{p}\right)$ on $\mathcal{L}\left(\mathbb{Q}_{p}\right)$ is isometric. Thus using the definition of the height function above, we obtain that for $P \in U\left(\mathbb{Q}_{p}\right)$ and $g \in \mathrm{SL}_{2}\left(\mathbb{Z}_{p}\right)$,

$$
\mathrm{H}_{p}(g P)=\left\|s_{D}(g P)\right\|_{p}^{-1}=\left\|g^{-1} \cdot s_{D}(g P)\right\|_{p}^{-1}=\left\|s_{D}(P)\right\|_{p}^{-1}=\mathrm{H}_{p}(P)
$$

For the archimedean place, see [DRS93, Section 4] where this special height function was used to reduce the counting problem on SL_{2} to the counting problem on the hyperbolic plane \mathfrak{H}.

Define $\mathbb{A}_{S}:=\prod_{v \in S} \mathbb{Q}_{v}$, and we call it the S-adic ring. Let $U\left(\mathbb{A}_{S}\right)=\prod_{v \in S} U\left(\mathbb{Q}_{v}\right)$ be a S-adic manifold, and we define the global height $\mathrm{H}: U\left(\mathbb{A}_{S}\right) \rightarrow \mathbb{R}_{>0}$ as the product of local heights :

$$
\mathrm{H}(P):=\prod_{v \in S} \mathrm{H}_{v}\left(P_{v}\right)
$$

where $P=\left(P_{v}\right)_{v \in S} \in U\left(\mathbb{A}_{S}\right)$. This is a continuous function on $U\left(\mathbb{A}_{S}\right)$. A key property of height functions is that the set of S-integral points of bounded height is finite, hence we can count the number of S-integral points of bounded height:

$$
N\left(\mathcal{U}_{f}, T\right)=\#\left\{P \in \mathcal{U}_{f}\left(\mathbb{Z}_{S}\right) \mid \mathrm{H}(P) \leq T\right\}
$$

for any binary form f of degree $n \geq 3$ with distinct roots. We are interested in studying the asymptotic behavior of $N\left(\mathcal{U}_{f}, T\right)$ as $T \rightarrow \infty$.

2. The method of mixing

Let \mathcal{D} be the integral model of the discriminant divisor in $\mathbb{P}_{\mathbb{Z}}\left(W_{n}\right)$ and \mathcal{U} the complement of \mathcal{D}. By a theorem of Borel, Harish-Chandra, there are only finitely many $\mathrm{SL}_{2}\left(\mathbb{Z}_{S}\right)$-orbits on $\mathcal{U}_{f}\left(\mathbb{Z}_{S}\right)$.(See [BHC62, Theorem 6.9] and [PR94, Theorem 5.8].) Also, the stabilizer of f is a finite group. Therefore, our problem concerning the asymptotic of $N\left(\mathcal{U}_{f}, T\right)$ can be reduced to evaluating the asymptotic of

$$
N(f, T)=\#\left\{g \in \mathrm{SL}_{2}\left(\mathbb{Z}_{S}\right) \mid \mathrm{H}(g \cdot[f]) \leq T\right\}
$$

for any $f \in \mathcal{U}\left(\mathbb{Z}_{S}\right)$.
To study this counting function, we will use the method of mixing developed in [EM93] and BO12] for symmetric varieties. Specifically, EM93 used mixing and the so-called wavefront property to study the distribution of integral points for sufficiently "nice" sets, and $\mathrm{BO12}$ developed this theory for S-integral points.

Let $G=\mathrm{SL}_{2}\left(\mathbb{A}_{S}\right)=\prod_{v \in S} \mathrm{SL}_{2}\left(\mathbb{Q}_{v}\right)$ be a S-adic Lie group and $\Gamma=\mathrm{SL}_{2}\left(\mathbb{Z}_{S}\right)$ be diagonally embedded in G. Then Γ is a lattice in G, i.e., Γ is discrete in G and $X:=\Gamma \backslash G$ has finite volume with respect to the invariant measure μ_{X} on X.(See Mar91, Theorem I.3.2.4].) For the group action of G, the mixing property is as follows:

Theorem 2.1. The action of G on X is mixing, i.e., for any $\alpha, \beta \in \mathrm{L}^{2}(X)$, we have

$$
\lim _{g \rightarrow \infty} \int_{X} \alpha(x g) \beta(x) \mathrm{d} \mu_{X}(x)=\frac{\int_{X} \alpha \mathrm{~d} \mu_{X} \int_{X} \beta \mathrm{~d} \mu_{X}}{\mu_{X}(X)}
$$

Proof. This is a consequence of BO12, Proposition 2.4]. To apply BO12, Proposition 2.4], one needs to check two conditions: (i) our S-adic Lie group G satisfies the Howe-Moore property; (ii) our lattice Γ is irreducible.

The condition (i) is stated in [BO12, Theorem 2.5] which claims the Howe-Moore property for any S-adic Lie group associated to a semisimple group.

To check the condition (ii), see [BO12, Lemma 9.4] whose assumptions are all satisfied by SL_{2}.

To count S-integral points, we consider the height balls:

$$
\mathrm{B}(T)=\{g \in G \mid \mathrm{H}(g \cdot[f]) \leq T\} .
$$

We denote the volume of these height balls with respect to the Haar measure μ_{G} on G by $V(T)$. Here we assume that $\mu_{G}=\mu_{X}$ holds locally. The asymptotic of this volume function will be studied in Section 4. To apply results of (BO12], these height balls need to satisfy the following condition:

Proposition 2.2. For any $\epsilon>0$, there exists a neighborhood U of the identity e in G such that

$$
(1-\epsilon) \mu_{G}\left(\cup_{g \in U} \mathrm{~B}(T) g\right) \leq V(T) \leq(1+\epsilon) \mu_{G}\left(\cap_{g \in U} \mathrm{~B}(T) g\right),
$$

for all $T \gg 1$.
Proof. The above condition is refereed as well-roundedness in EM93 and BO12. This follows from the precise asymptotic formula in Corollary 4.5. Indeed for any $\epsilon>0$, there exists $\delta>0$ such that

$$
\frac{V(T+\delta)}{V(T)}<\frac{1}{1-\epsilon}, \quad \frac{V(T)}{V(T-\delta)}<1+\epsilon
$$

for sufficiently large $T \gg 1$. Now choose a neighborhood U of e so that

$$
\cup_{g \in U} \mathrm{~B}(T) g \subset \mathrm{~B}(T+\delta), \quad \mathrm{B}(T-\delta) \subset \cap_{g \in U} \mathrm{~B}(T) g
$$

Our assertion follows from this.
Let $\chi_{\mathrm{B}(T)}$ be the characteristic function of the height ball $\mathrm{B}(T)$. Consider the counting function:

$$
F_{T}(g)=\sum_{\gamma \in \Gamma} \chi_{\mathrm{B}(T)}(\gamma g)=\# \Gamma \cap\left(\mathrm{~B}(T) g^{-1}\right) .
$$

This defines a function on $X=\Gamma \backslash G$. Our goal in this section is to prove the following theorem:

Theorem 2.3. Let $V^{*}(T)=V(T) / \mu_{X}(X)$. Then we have point-wise convergence

$$
\frac{F_{T}\left(g_{0}\right)}{V^{*}(T)} \rightarrow 1 \quad \text { as } T \rightarrow \infty
$$

for any $g_{0} \in G$.
To prove this theorem, we consider a compact subgroup of G satisfying the wavefront property as in BO12, Definition 3.1]:

Definition 2.4. Let \mathcal{G} be a locally compact group, and \mathcal{H} a closed subgroup of \mathcal{G}. The group \mathcal{G} has the wavefront property in $\mathcal{H} \backslash \mathcal{G}$ if there exists a Borel subset F such that $\mathcal{G}=\mathcal{H} F$ and, for every neighborhood U of the identity in \mathcal{G}, there exists a neighborhood V of the identity such that

$$
\mathcal{H} V g \subset \mathcal{H} g U
$$

for all $g \in F$.
This property first appeared in EM93 to establish equidistribution of \mathcal{H}-orbits:

Theorem 2.5. BO12, Theorem 4.1] Let \mathcal{G} be a locally compact group, $\mathcal{H} \subset \mathcal{G}$ a closed subgroup, $\Gamma \subset \mathcal{G}$ a lattice such that $\Gamma_{\mathcal{H}}=\Gamma \cap \mathcal{H}$ is a lattice in \mathcal{H}. Set $\mathcal{X}:=\Gamma \backslash \mathcal{G}$ and $\mathcal{Y}:=\Gamma_{\mathcal{H}} \backslash \mathcal{H}$, and we denote the invariant measures on \mathcal{X} and \mathcal{Y} by $\mu_{\mathcal{X}}$ and $\mu_{\mathcal{Y}}$ respectively.

Suppose that the action of \mathcal{G} on \mathcal{X} is mixing and that \mathcal{G} has the wavefront property on $\mathcal{H} \backslash \mathcal{G}$. Then the translates $\mathcal{Y} g$ become equidistributed in \mathcal{X} as $g \rightarrow \infty$ in $\mathcal{H} \backslash \mathcal{G}$, i.e., for any $\psi \in C_{c}(\mathcal{X})$, we have

$$
\frac{1}{\mu_{\mathcal{Y}}(\mathcal{Y})} \int_{\mathcal{Y}} \psi(y g) \mathrm{d} \mu_{\mathcal{Y}}(y) \rightarrow \frac{1}{\mu_{\mathcal{X}}(\mathcal{X})} \int_{\mathcal{X}} \psi \mathrm{d} \mu_{\mathcal{X}}
$$

as the image of g in $\mathcal{H} \backslash \mathcal{G}$ leaves every compact subset.
Define a subgroup H of G by

$$
H=\prod_{p \in S_{\mathrm{fin}}} \mathrm{SL}_{2}\left(\mathbb{Z}_{p}\right) \times \mathrm{SO}_{2}(\mathbb{R})
$$

where $S_{\text {fin }}=S \backslash\{\infty\}$. Note that Lemma 1.3 implies that our height function H is invariant under the action of the subgroup H, i.e.,

$$
\mathrm{H}(h g \cdot[f])=\mathrm{H}(g \cdot[f])
$$

for $g \in G$ and $h \in H$. Moreover, we have
Lemma 2.6. The group G has the wavefront property in $H \backslash G$.
Proof. For $\mathrm{SO}(2)$, this property is established in EM93, Theorem 3.1]. It follows from the definition of the wavefront property that $\mathrm{SL}_{2}\left(\mathbb{Q}_{p}\right)$ has the wavefront property in $\mathrm{SL}_{2}\left(\mathbb{Z}_{p}\right) \backslash \mathrm{SL}_{2}\left(\mathbb{Q}_{p}\right)$ because $\mathrm{SL}_{2}\left(\mathbb{Z}_{p}\right)$ is open. Now our assertion follows from BO12, Proposition 3.5] which claims that if each factor satisfies the wavefront property, then their product also satisfies the wavefront property.

We consider any sequence of non-negative integrable functions φ_{n} on G satisfying

- each φ_{n} has a compact support,
- $\max _{n}\left\|\varphi_{n}\right\|_{\infty}<\infty$,
- $\lim _{n \rightarrow \infty} \int_{G} \varphi_{n} \mathrm{~d} \mu_{G}=\infty$,
- $\varphi_{n}(h g)=\varphi_{n}(g)$ for any $g \in G$ and $h \in H$.

The sequence $\left\{\chi_{\mathrm{B}\left(T_{n}\right)}\right\}$ is an example. We define a function $F_{\varphi_{n}}$ on $X=\Gamma \backslash G$ by

$$
F_{\varphi_{n}}(x):=\sum_{\gamma \in \Gamma} \varphi_{n}(\gamma g),
$$

where $x=\Gamma g$. Let $I_{n}:=\int_{G} \varphi_{n} \mathrm{~d} \mu_{G} / \mu_{X}(X)$. The following proposition is essentially proved in [BO12, Proposition 5.3]. The only difference is that we are not counting S-integral points on $\overline{H \backslash G}$, but on G.

Proposition 2.7. $F_{\varphi_{n}} / I_{n}$ converges weakly to 1 as $n \rightarrow \infty$.
Proof. Let $\alpha \in C_{c}(X)$. We want to prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{I_{n}} \int_{X} F_{\varphi_{n}}(x) \alpha(x) \mathrm{d} \mu_{X}(x)=\int_{X} \alpha(x) \mathrm{d} \mu_{X}(x)
$$

Let μ_{H} and $\mu_{H \backslash G}$ be the Haar measure and the invariant measure on H and $H \backslash G$ respectively such that $\mu_{G}=\mu_{H} \mu_{H \backslash G}$ and $\mu_{H}(H)=1$.

$$
\begin{aligned}
\int_{X} F_{\varphi_{n}} \alpha \mathrm{~d} \mu_{X} & =\int_{\Gamma \backslash G} \sum_{\gamma \in \Gamma} \varphi_{n}(\gamma g) \alpha(\Gamma g) \mathrm{d} \mu_{X}(\Gamma g) \\
& =\int_{G} \varphi_{n}(g) \alpha(g) \mathrm{d} \mu_{G}(g) \\
& =\int_{H \backslash G} \varphi_{n}(H g) \int_{H} \alpha(h g) \mathrm{d} \mu_{H}(h) \mathrm{d} \mu_{H \backslash G}(H g) \\
& =\# \Gamma_{H} \int_{H \backslash G} \varphi_{n}(H g) \int_{\Gamma_{H} \backslash H} \alpha\left(\Gamma_{H} h g\right) \mathrm{d} \mu_{H}(h) \mathrm{d} \mu_{H \backslash G}(H g),
\end{aligned}
$$

where $\Gamma_{H}=\Gamma \cap H$. Note that since H is compact, Γ_{H} is a finite group and a lattice in H. Since the action of G on X is mixing and G has the wavefront property in $H \backslash G$, the translates $\Gamma_{H} \backslash H g$ become equidistributed in X as $g \rightarrow \infty$ in $H \backslash G$ (Theorem 2.5). This means that

$$
\int_{\Gamma_{H} \backslash H} \alpha\left(\Gamma_{H} h g\right) \mathrm{d} \mu_{H}(h) \rightarrow \frac{\mu_{H}(H)}{\# \Gamma_{H} \mu_{X}(X)} \int_{X} \alpha \mathrm{~d} \mu_{X},
$$

as $g \rightarrow \infty$. Since φ_{n} is uniformly bounded, our assertion follows from the dominated convergence theorem.

Finally we prove Theorem 2.3 .
Proof. The following proof mirrors the proof of [BO12, Proposition 6.2]. Fix $\epsilon>0$. Let U be a symmetric neighborhood of the identity e such that

$$
(1-\epsilon) \mu_{G}\left(\cup_{g \in U} \mathrm{~B}(T) g\right) \leq V(T) \leq(1+\epsilon) \mu_{G}\left(\cap_{g \in U} \mathrm{~B}(T) g\right)
$$

The existence of such U is guaranteed by Proposition 2.2. We consider the functions $\varphi_{T}^{ \pm}$on G given by

$$
\varphi_{T}^{+}(g)=\sup _{u \in U} \chi_{\mathrm{B}(T)}\left(g u^{-1}\right), \quad \varphi_{T}^{-}(g)=\inf _{u \in U} \chi_{\mathrm{B}(T)}\left(g u^{-1}\right)
$$

We let $I_{T}^{ \pm}=\int_{G} \varphi_{T}^{ \pm} \mathrm{d} \mu_{G} / \mu_{X}(X)$. Then we have

$$
(1-\epsilon) I_{T}^{+} \leq V^{*}(T) \leq(1+\epsilon) I_{T}^{-}
$$

On the other hand, we define

$$
F_{T}^{ \pm}(g)=\sum_{\gamma \in \Gamma} \varphi_{T}^{ \pm}(\gamma g)
$$

It is easy to verify that

$$
F_{T}^{-}(g u) \leq F_{T}(g) \leq F_{T}^{+}(g u),
$$

for all $g \in G$ and $u \in U$. Pick a non-negative continuous function α on X such that $\int_{G} \alpha \mathrm{~d} \mu_{G}=1$ and the support of α is included in $g_{0} U$. Then we have

$$
\int_{X} \alpha F_{T}^{-} \mathrm{d} \mu_{X} \leq F_{T}\left(g_{0}\right) \leq \int_{X} \alpha F_{T}^{+} \mathrm{d} \mu_{X}
$$

Applying Proposition 2.7 to $\varphi_{T}^{ \pm}$we obtain that for $T \gg 1$

$$
(1-\epsilon) I_{T}^{-} \leq \underset{8}{F_{T}}\left(g_{0}\right) \leq(1+\epsilon) I_{T}^{+}
$$

We can conclude that for $T \gg 1$

$$
\frac{1-\epsilon}{1+\epsilon} \leq \frac{F_{T}\left(g_{0}\right)}{V^{*}(T)} \leq \frac{1+\epsilon}{1-\epsilon} .
$$

Thus $F_{T}\left(g_{0}\right) / V^{*}(T)$ converges to 1 .

3. Moduli interpretations

In HT03, using moduli interpretations, Hassett and Tschinkel constructed a partial desingularization of a pair $\left(X_{f}, D_{f}\right)$ to give a geometric explanation for the result of Duke, Rudnick and Sarnak (Theorem 0.1). This is not exactly what we need, however their geometry is quite important for establishing the asymptotic formula for $V(T)$, the volume of height balls. In this section, we recall the geometry of $\left(X_{f}, D_{f}\right)$ described in HT03, and then provide its refinement. We assume that the ground field is an algebraically closed field of characteristic zero throughout this section.

First let us recall some definitions of stable curves and stable maps. In this paper, a curve of genus zero is a connected projective curve C such that (i) C is the union of a finite number of \mathbb{P}^{1} 's; (ii) each component of C meets with other components transversally; (iii) C is a tree of smooth rational curves, i.e., there are no loops of rational curves.

A curve of genus zero with n marked points is a curve C of genus zero together with mutually distinct n smooth points on C. A special point on a curve C of genus zero with n marked points $\left(p_{1}, \cdots, p_{n}\right)$ is either a marked point p_{i} or an intersection of two irreducible components of C. A stable curve of genus zero with n marked points is a curve of genus zero together with n marked points

$$
\left(C, p_{1}, \cdots, p_{n}\right)
$$

such that each component has at least three special points. This condition is equivalent to say that the automorphism group of $\left(C, p_{1}, \cdots, p_{n}\right)$ is finite.

A stable map of degree one from genus zero curves with n marked points to \mathbb{P}^{1} is a tuple

$$
\left(C, p_{1}, \cdots, p_{n}, \mu: C \rightarrow \mathbb{P}^{1}\right)
$$

such that (1) $\left(C, p_{1}, \cdots, p_{n}\right)$ is a curve of genus zero with n marked points; (ii) the morphism μ has degree one, i.e., all components except one component L are collapsed by μ and the restriction of μ to L is an isomorphism to \mathbb{P}^{1}; (iii) all components except L has at least three special points. Again this condition (iii) is equivalent to say that the automorphism group of $\left(C, p_{1}, \cdots, p_{n}, \mu\right)$ is finite.

Fix $n \geq 3$. Let $\overline{\mathcal{M}}_{0, n}$ be the Knudsen-Mumford moduli space of stable curves of genus zero with n marked points. Let $\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right)$ denote the Kontsevich moduli space of stable maps of degree one from genus zero curves with n marked points to \mathbb{P}^{1}. The action of SL_{2} on $\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right)$ is defined by

$$
g \cdot\left(C, p_{1}, \cdots, p_{n}, \mu\right)=\left(C, p_{1}, \cdots, p_{n}, g \circ \mu\right) .
$$

We consider the forgetting map

$$
\begin{aligned}
\psi: \overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right) & \rightarrow \overline{\mathcal{M}}_{0, n} \\
\left(C, p_{1}, \cdots, p_{n}, \mu\right) & \mapsto\left(C^{\prime}, p_{1}, \cdots, p_{n}\right)
\end{aligned}
$$

where C^{\prime} is formed from C by collapsing the irreducible components that are destabilized, i.e., irreducible components with at most two special points.

For each subset $S \subset N=\{1, \cdots, n\}$ such that $|S| \geq 2$, consider stable maps of degree one $\mu: C \rightarrow \mathbb{P}^{1}$ such that

- C is the union of two $\mathbb{P}^{1} \mathrm{~s}$,
- marked points in S are on the one component, and remaining marked points are on another component,
- The component containing marked points in S is collapsed by μ.

The Zariski closure of the locus of such stable maps becomes an irreducible divisor $B_{S} \subset$ $\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right)$. For $s=2, \cdots n$, we define

$$
B[s]:=\sum_{|S|=s} B_{S}, \quad B:=\sum_{s=2}^{n} B[s] .
$$

Theorem 3.1. The moduli spaces $\overline{\mathcal{M}}_{0, n}$ and $\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right)$ are smooth projective algebraic varieties, and the boundary divisor B is a divisor with strict normal crossings.

The evaluation map ev

$$
\begin{aligned}
\mathrm{ev}: \overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right) & \rightarrow\left(\mathbb{P}^{1}\right)^{n} \\
\left(C, p_{1}, \cdots, p_{n}, \mu\right) & \mapsto\left(\mu\left(p_{1}\right), \cdots, \mu\left(p_{n}\right)\right)
\end{aligned}
$$

is an SL_{2}-equivariant birational morphism. This is because for any $\left(p_{1}, \cdots, p_{n}\right) \in\left(\mathbb{P}^{1}\right)^{n}$ such that p_{i} 's are mutually distinct, its preimage by ev is simply

$$
\left(\mathbb{P}^{1}, p_{1}, \cdots, p_{n}, \mathrm{id}\right)
$$

so ev is an isomorphism on this locus. The divisor $B[2]$ is the proper transform of the big diagonal Δ and other boundary divisors $B[s](s \geq 3)$ are contracted by the evaluation map ev. The symmetric group \mathfrak{S}_{n} acts on $\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right)$ by permuting marked points. Note
that the actions of SL_{2} and \mathfrak{S}_{n} commute. We consider \mathfrak{S}_{n}-quotients of ev to obtain an SL_{2}-equivariant birational map:

$$
\varrho: \tilde{X}=\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right) / \mathfrak{S}_{n} \rightarrow\left(\mathbb{P}^{1}\right)^{n} / \mathfrak{S}_{n} \cong \mathbb{P}\left(W_{n}\right)
$$

Let $\tilde{D}[s]$ be the image of $B[s]$. Then $\tilde{D}[2]$ is the proper transform of the discriminant divisor $D \subset \mathbb{P}\left(W_{n}\right)$ and other boundary divisors $\tilde{D}[s](s \geq 3)$ are contracted by ϱ. We write \tilde{D} for $\sum_{s=2}^{n} \tilde{D}[s]$.

Let f be a binary form of degree n with distinct roots. As we defined in introduction, X_{f} is the Zariski closure of the SL_{2}-orbit of f in $\mathbb{P}\left(W_{n}\right)$. Let $\tilde{X}_{f} \subset \tilde{X}$ denote the strict transform of X_{f}, and define $\tilde{D}_{f}=\tilde{X}_{f} \cap \tilde{D}$. Here the intersection is the set theoretic intersection. A pair $\left(\tilde{X}_{f}, \tilde{D}_{f}\right)$ is a partial desingularization of $\left(X_{f}, D_{f}\right)$ constructed by Hassett and Tschinkel, and in particular $\left(\tilde{X}_{f}, \tilde{D}_{f}\right)$ is \log canonical for a generic $f($ HT03, Proposition 2.8]). Write $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ for distinct roots of f, and let $C_{\alpha} \in \overline{\mathcal{M}}_{0, n}$ be the corresponding pointed rational curve

$$
C_{\alpha}=\left(\mathbb{P}^{1}, \alpha_{1}, \cdots, \alpha_{n}\right) .
$$

We define Y_{α} to be $\psi^{-1}\left(C_{\alpha}\right)$. Then \tilde{X}_{f} is a finite quotient of Y_{α}, and Y_{α} is an equivariant compactification of PGL_{2}. More precisely, consider the stabilizer of C_{α} in the symmetric group \mathfrak{S}_{n} :

$$
\mathfrak{H}=\left\{\sigma \in \mathfrak{S}_{n} \mid \sigma \cdot C_{\alpha} \cong C_{\alpha}\right\} .
$$

Then \tilde{X}_{f} is isomorphic to the quotient $Y_{\alpha} / \mathfrak{H}$. When $n \geq 5$ and f is general, the stabilizer \mathfrak{H} is trivial. Hence for such f, we have $\tilde{X}_{f} \cong Y_{\alpha}$. Each Y_{α} only meets with $B[n]$ and $B[n-1]$. Indeed, for any stable map $C=\left(C, p_{1}, \cdots, p_{n}, \mu\right) \in B[s]$ such that $s \leq n-2$, the image of the forgetting map $\psi(C)$ has at least two irreducible components, and hence it cannot be equal to C_{α}. The following theorem will be used later:

Theorem 3.2. HT03, Proposition 2.6] Y_{α} is smooth and its boundary has strict normal crossings contained in $B[n-1] \cup B[n]$.

The proof of the above theorem gives us an explicit description of the Y_{α}. When $n=3$, then $Y_{\alpha}=\overline{\mathcal{M}}_{0,3}\left(\mathbb{P}^{1}, 1\right)$. The evaluation map ev : $\overline{\mathcal{M}}_{0,3}\left(\mathbb{P}^{1}, 1\right) \rightarrow\left(\mathbb{P}^{1}\right)^{3}$ is the blow-up of $\left(\mathbb{P}^{1}\right)^{3}$ along the small diagonal $\Delta_{\text {small }}$, and $E:=B[3]$ is the exceptional divisor. Since the normal bundle $\mathcal{N}_{\Delta_{\text {small }}}$ is isomorphic to $\mathcal{O}(2) \oplus \mathcal{O}(2), E$ is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Let

$$
\pi_{1}: E \rightarrow \mathbb{P}^{1}
$$

be the projection to the cross-ratio of marked points and the node, and let

$$
\pi_{2}: E \rightarrow \mathbb{P}^{1}
$$

be the projection to the image of marked points.
For arbitrary n, write E for the intersection of Y_{α} and $B[n]$. This is the Zariski closure of the locus of stable maps ($C, p_{1}, \cdots, p_{n}, \mu$) such that

- C is the union of two $\mathbb{P}^{1} \mathrm{~s}$,
- every marked point is on the collapsed component,
- $\psi\left(C, p_{1}, \cdots, p_{n}, \mu\right) \cong C_{\alpha}$.

We define F_{i} for $i=1, \cdots, n$ as the intersection of Y_{α} and $B_{N \backslash\{i\}}$. Then F_{i} is the Zariski closure of the locus of stable maps $\left(C, p_{1}, \cdots, p_{n}, \mu\right)$ such that

- C is the union of two $\mathbb{P}^{1} \mathrm{~s}$,
- every marked point except i-th marked point is on the collapsed component, and i-th marked point is on the component which is isomorphically mapped to \mathbb{P}^{1} by μ,
- $\psi\left(C, p_{1}, \cdots, p_{n}, \mu\right) \cong C_{\alpha}$.

Consider the sequence of the forgetting maps:

$$
Y_{\alpha_{1}, \cdots, \alpha_{n}} \rightarrow Y_{\alpha_{1}, \cdots, \alpha_{n-1}} \rightarrow \cdots \rightarrow Y_{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}} \rightarrow Y_{\alpha_{1}, \alpha_{2}, \alpha_{3}} \cong \overline{\mathcal{M}}_{0,3}\left(\mathbb{P}^{1}, 1\right) .
$$

Each morphism is a SL_{2}-equivariant birational morphism, and $\phi_{i}: Y_{\alpha_{1}, \cdots, \alpha_{i}} \rightarrow Y_{\alpha_{1}, \cdots, \alpha_{i-1}}$ contracts a divisor F_{i} onto \mathbb{P}^{1}. Indeed, for PGL_{2}-equivariant compactifications, the number of boundary components is equal to Picard rank of the underlying variety (HTT14, Proposition 5.1]), so each birational morphism ϕ_{i} must be an extremal contraction. Moreover F_{i} is contracted by ϕ_{i} because if we forget α_{i}, then we cannot recover the value $\mu\left(\alpha_{i}\right)$. Hence ϕ_{i} is a divisorial contraction contracting F_{i}. On $Y_{\alpha_{1}, \alpha_{2}, \alpha_{3}}, E$ is identified with $B[3]$ and $F_{1}+F_{2}+F_{3}$ is identified with $B[2]$. Then each ϕ_{i} can be considered as the blow-up of the proper transform of $\pi_{1}^{-1}\left(\alpha_{i}\right) \subset B[3]$.

This blow-up description shows that E, F_{1}, \cdots, F_{n} form a basis for $\operatorname{Pic}\left(Y_{\alpha}\right)_{\mathbb{Q}}$, and the canonical bundle is equal to

$$
K_{Y_{\alpha}}=-\sum_{i=1}^{n} F_{i}-2 E .
$$

Consider the morphism

$$
\beta: Y_{\alpha} \subset \overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right) \rightarrow \tilde{X} \rightarrow \mathbb{P}\left(W_{n}\right)
$$

and let $L:=\beta^{*} \mathcal{O}_{\mathbb{P}\left(W_{n}\right)}(1)$. We have
Proposition 3.3. HT03, Lemma 3.3] The pullback of the hyperplane class is of the form

$$
L=\frac{n-2}{2} \sum_{i=1}^{n} F_{i}+\frac{n}{2} E .
$$

Proof. We include a proof for completeness. Since L is the pullback from a \mathfrak{S}_{n}-quotient of $\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right), L$ must take the form

$$
L=a \sum_{i=1}^{n} F_{i}+b E .
$$

Note that the scheme-theoretic intersection $Y_{\alpha} \cap B_{N \backslash\{i\}}$ is reduced. Indeed, the divisor $B_{N \backslash\{i\}}$ is isomorphic to $\overline{\mathcal{M}}_{0, n} \times \overline{\mathcal{M}}_{0,2}\left(\mathbb{P}^{1}, 1\right)$, so the intersection $Y_{\alpha} \cap B_{N \backslash\{i\}}$ is isomorphic to $\overline{\mathcal{M}}_{0,2}\left(\mathbb{P}^{1}, 1\right) \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Let $R \subset E$ be the proper transform of the general fiber of $\pi_{2}: E \rightarrow \mathbb{P}^{1}$. Then we have

$$
F_{i} \cdot R=1, \quad \text { and } \quad\left(E+F_{4}+\cdots+F_{n}\right) \cdot R=-1 .
$$

The second identity follows from Har77, Theorem 8.24(c)]. Hence we find $E . R=2-n$. On the other hand, R is contracted by β, so we have $L . R=0$. Thus we conclude that L is of the form

$$
L=c\left((n-2) \sum_{i=1}^{n} F_{i}+n E\right)
$$

Next, let $C \subset E$ be the proper transform of the general fiber of $\pi_{1}: E \rightarrow \mathbb{P}^{1}$. The β maps C isomorphically onto its image and the image has degree n. Thus we obtain
$L . C=n$. It is easy to see that $F_{i} . C=0$. Moreover, since $\mathcal{N}_{\Delta_{\text {small }}} \cong \mathcal{O}(2) \oplus \mathcal{O}(2)$, it follows from Har77, Proposition 7.12 and Theorem 8.24(c)] that

$$
\left.\mathcal{O}(E)\right|_{C} \cong \mathcal{O}(2)
$$

Therefore, we find $E . C=2$ and we conclude that $c=\frac{1}{2}$.
Let Z be any smooth equivariant compactification of SL_{2}. The degree 2 map $\mathrm{SL}_{2} \rightarrow \mathrm{PGL}_{2}$ extends to a SL_{2}-equivariant rational $\operatorname{map} \varphi: Z \rightarrow Y_{\alpha}$. After applying SL_{2}-equivariant resolution, if necessary, we may assume that φ is an honest SL_{2}-equivariant morphism and the boundary divisor of Z is a divisor with strict normal crossings.

Lemma 3.4. $\varphi: Z \rightarrow Y_{\alpha}$ is ramified along E and F_{i} for each i.
Proof. We prove that E is ramified. Recall that the forgetting map $Y_{\alpha} \rightarrow Y_{\alpha_{1}, \alpha_{2}, \alpha_{3}}=$ $\overline{\mathcal{M}}_{0,3}\left(\mathbb{P}^{1}, 1\right)$ is a SL_{2}-equivariant birational morphism and E is identified with $B[3]$. Moreover, the evaluation map ev : $\overline{\mathcal{M}}_{0.3}\left(\mathbb{P}^{1}, 1\right) \rightarrow\left(\mathbb{P}^{1}\right)^{3}$ is the blow-up along the small diagonal $\Delta_{\text {small }}$ and E is the exceptional divisor of this blow up. Thus, we only need to consider $Z \rightarrow$ $\overline{\mathcal{M}}_{0,3}\left(\mathbb{P}^{1}, 1\right)$ and prove that the exceptional divisor $B[3]$ is ramified. After changing a base point, if necessary, we may assume that the map $\mathrm{SL}_{2} \rightarrow\left(\mathbb{P}^{1}\right)^{3}$ is given by

$$
\mathrm{SL}_{2} \ni g \mapsto\left(g\binom{1}{0}, g\binom{0}{1}, g\binom{1}{1}\right) \in\left(\mathbb{P}^{1}\right)^{3}
$$

The function field of Z is $k(a, b, c, d)$ where k is the ground field and a, b, c, d satisfy $a d-b c=$ 1. Then the function field of PGL_{2} is a subfield of $k(a, b, c, d)$:

$$
k\left(\frac{a}{c}, \frac{b}{d}, \frac{a+b}{c+d}\right) .
$$

Let $x=a / c, y=b / d$, and $z=(a+b) /(c+d)$. The divisor E is the exceptional locus over the small diagonal $\Delta_{\text {small }}$ defined by $x-y=0$ and $y-z=0$. Write t for $(y-z) /(x-y)$. Then the local ring \mathcal{O}_{E} at E is

$$
k[t, x, y]_{(x-y)} .
$$

Note that $k(a, b, c, d)=k(x, y, z)\left(c^{-1}\right)$ and c^{-1} satisfies

$$
c^{-2}=-(x-y)\left(1+t^{-1}\right)
$$

Therefore, we conclude that E is ramified. The divisors F_{i} can be studied similarly.
Let $Z \rightarrow \tilde{Z} \rightarrow Y_{\alpha}$ be the stein factorization of $\varphi: Z \rightarrow Y_{\alpha}$. We denote a SL_{2}-equivariant birational map $Z \rightarrow \tilde{Z}$ by h and a degree 2 finite morphism $\tilde{Z} \rightarrow Y_{\alpha}$ by $\tilde{\varphi}$. Let \tilde{E} and \tilde{F}_{i} be inverse images of E and F_{i} on \tilde{Z} respectively, and we identify them with proper transforms of \tilde{E} and \tilde{F}_{i} on Z respectively. Write $\left\{G_{j}\right\}$ for exceptional divisors of h. Define M to be a sum of \tilde{E}, \tilde{F}_{i} 's and G_{j} 's so that M is the boundary divisor of Z. Consider a divisor $\frac{2}{n} \varphi^{*} L+K_{Z}+M$, and write it as a linear combination of components of M :

$$
\frac{2}{n} \varphi^{*} L+K_{Z}+M=a \tilde{E}+\sum_{i=1}^{n} b_{i} \tilde{F}_{i}+\sum_{j} c_{j} G_{j}
$$

Lemma 3.5. We have

$$
a=0, \quad b_{i}>0, \quad \text { and } \quad c_{j}>0
$$

Proof. It follows from KM98, Corollary 2.31] that a pair $\left(Y_{\alpha}, E+\sum_{i} F_{i}\right)$ is \log canonical. Then Kol92, Proposition 20.2 and Proposition 20.3] implies that a pair $\left(\tilde{Z}, \tilde{E}+\sum_{i} \tilde{F}_{i}\right)$ is also \log canonical. We obtain that

$$
\frac{2}{n} \varphi^{*} L+K_{Z}+M=\frac{2}{n} \varphi^{*} L+h^{*}\left(K_{\tilde{Z}}+\tilde{E}+\sum_{i} \tilde{F}_{i}\right)+\sum_{j} d_{j} G_{j}
$$

where $d_{j} \geq 0$. Then again it follows from Kol92, Proposition 20.2] that

$$
\frac{2}{n} \varphi^{*} L+K_{Z}+M=\varphi^{*}\left(\frac{2}{n} L+K_{Y_{\alpha}}+E+\sum_{i} F_{i}\right)+\sum_{j} d_{j} G_{j}
$$

Now Proposition 3.3 implies that $a=0$ and $b_{i}>0$. Next we prove that $c_{j}>0$. If $h\left(G_{j}\right) \subset \cup_{i} \tilde{F}_{i}$, then the support of $\varphi^{*}\left(\frac{2}{n} L+K_{Y_{\alpha}}+E+\sum_{i} F_{i}\right)$ contains G_{j} so $c_{j}>0$ follows. Suppose that $h\left(G_{j}\right) \not \subset \cup_{i} \tilde{F}_{i}$. Let $V=Y_{\alpha} \backslash \cup_{i} \tilde{F}_{i}$. It follows from KM98, Corollary 2.31] that (V, E) is purely \log terminal. Hence [Kol92, Proposition 20.2 and Proposition 20.3] show that a pair $\left(\tilde{\varphi}^{-1}(V), \tilde{E}\right)$ is also purely \log terminal. Thus we obtain that $d_{j}>0$.

4. Asymptotic volume of height balls

In this section, we recall the results of CLT10a and apply them to study the volume function $V(T)$ defined in Section 2 .
4.1. Clemens complexes and height zeta functions. Let F be a local field of characteristic zero and we fix an algebraic closure $F \subset \bar{F}$. Consider a smooth projective variety X defined over F with a reduced effective divisor D over F. Let

$$
D_{\bar{F}}=\cup_{\alpha \in \overline{\mathcal{A}}} D_{\alpha},
$$

be the irreducible decomposition of $D_{\bar{F}}$. We assume that $D_{\bar{F}}=\sum_{\alpha \in \overline{\mathcal{A}}} D_{\alpha}$ is a divisor with strict normal crossings. For any $A \subset \overline{\mathcal{A}}$, define $D_{A}=\cap_{\alpha \in A} D_{\alpha}$. Note that $D_{\emptyset}=X_{\bar{F}}$. Because of strict normal crossings, D_{A} is a disjoint union of smooth projective varieties of codimension $|A|$. We define the geometric Clemens complex $\mathcal{C}_{\bar{F}}(D)$ as the set of all pairs (A, Z) where $A \subset \overline{\mathcal{A}}$ and Z is an irreducible component of D_{A} (CLT10a, Section 3.1.3]). The geometric Clemens complex is endowed with the following partial order relation: $(A, Z) \prec\left(A^{\prime}, Z^{\prime}\right)$ if $A \subset A^{\prime}$ and $Z \supset Z^{\prime}$. Thus, $\mathcal{C}_{\bar{F}}(D)$ is a poset and its elements are called faces. When $a \prec b$, we say that a is a face of b. The Galois group $\operatorname{Gal}(F)$ acts on $\mathcal{C}_{\bar{F}}(D)$ naturally. Since F is a pe rfect field, an integral scheme Z of $X_{\bar{F}}$ is defined over F if and only if Z is fixed by the Galois action $\operatorname{Gal}(\mathrm{F})$. We define the rational Clemens complex $\mathcal{C}_{F}(D)$ as the sub-poset of $\mathcal{C}_{\bar{F}}(D)$ consisting of $\operatorname{Gal}(F)$-fixed faces([CLT10a, Section 3.1.4]). For any $(A, Z) \in \mathcal{C}_{F}(D), D_{A}$ and Z are defined over F, so $Z(F)$ makes sense. We define the analytic Clemens complex $\mathcal{C}_{F}^{\text {an }}(D)$ to be a sub-poset of $\mathcal{C}_{F}(D)$ consisting of pairs $(A, Z) \in \mathcal{C}_{F}(D)$ such that $Z(F) \neq \emptyset .($ CLT10a, Section 3.1.5]). In general, let \mathcal{P} be a poset. The dimension of a face $p \in \mathcal{P}$ is defined as the supremum of the lengths n of chains $p_{0} \prec \cdots \prec p_{n}$, where p_{i} are distinct and $p=p_{n}$. The dimension of \mathcal{P} is the supremum of all dimensions of all faces.

Let $\mathcal{A}=\overline{\mathcal{A}} / \operatorname{Gal}(\mathrm{F})$ be the quotient of $\overline{\mathcal{A}}$ by the Galois group $\operatorname{Gal}(\mathrm{F})$. This set can be identified with the set of irreducible components of D. For each $\alpha \in \mathcal{A}$, we denote the corresponding divisor by Δ_{α}. Let $\mathcal{L}=(L,\|\cdot\|)$ be a metrized line bundle with a global section f_{L} whose support coincide with the support of D (see Section 1 for a definition of
metrized line bundles). Let ω be a non-vanishing top degree differential form on $U=X \backslash D$. We are interested in the following height zeta function:

$$
\mathrm{Z}(s)=\int_{U(F)}\left\|\mathrm{f}_{L}\right\|^{s} \mathrm{~d}|\omega|
$$

where s is a complex number and $|\omega|$ is a measure associated to ω (see [CLT10a, Section 2.1.7] for a definition). The connection between height zeta functions and asymptotic volume of height balls is given by Tauberian theorems [CLT10a, Appendix A].
Theorem 4.1. CLT10a, Theorem A.1] Suppose that $\mathrm{Z}(s)$ admits a meromorphic continuation to the half plane $\{\Re(s)>a-\delta\}$, where $a>0$ and $\delta>0$, with the unique pole at $s=a$ of order b. Then the volume function

$$
V(T)=\int_{\left\{\mathrm{H}_{f_{L}}(P)=\left\|\mathrm{f}_{L}(P)\right\|^{-1} \leq T\right\}} \mathrm{d}|\omega|
$$

behaves like $\Theta T^{a} \log (T)^{b-1}$ as $T \rightarrow \infty$.
Hence the meromorphic continuation of $\mathbf{Z}(s)$ is the key to understand the asymptotic behavior of volume of height balls, and its properties are governed by Clemens complexes of D. More precisely write

$$
\operatorname{div}\left(\mathrm{f}_{\mathrm{L}}\right)=\sum_{\alpha \in \mathcal{A}} \lambda_{\alpha} \Delta_{\alpha}, \quad-\operatorname{div}(\omega)=\sum_{\alpha \in \mathcal{A}} \kappa_{\alpha} \Delta_{\alpha} .
$$

Note that we are assuming that $\lambda_{\alpha}>0$ for any $\alpha \in \mathcal{A}$. Define

$$
a(L, \omega)=\max _{\alpha \in \mathcal{A}} \frac{\kappa_{\alpha}-1}{\lambda_{\alpha}}
$$

Then $\mathbf{Z}(s)$ is holomorphic when $\Re(s)>a(L, \omega)$ (CLT10a, Lemma 4.1]). Let $\mathcal{A}(L, \omega)$ denote the set of all $\alpha \in \mathcal{A}$ where the maximum is obtained, i.e., $a(L, \omega)=\left(\kappa_{\alpha}-1\right) / \lambda_{\alpha}$. Let $\mathcal{C}_{F,(L, \omega)}^{\text {an }}(D)$ be a subposet of $\mathcal{C}_{F}^{\text {an }}(D)$ consisting of (A, Z) such that $A \subset \mathcal{A}(L, \omega)$. CLT10a, Proposition 4.3 and Corollary 4.4] claims that the height zeta function $\mathrm{Z}(s)$ admits a meromorphic continuation extended to a half plane $\Re(s)>a(L, \omega)-\delta$ for some $\delta>0$ and its order of the pole at $s=a(L, \omega)$ is given by $1+$ the dimension of the poset $\mathcal{C}_{F,(L, \omega)}^{\text {an }}(D)$. We summarize the above discussion in the following theorem:

Theorem 4.2. CLT10a, Lemma 4.1, Proposition 4.3, and Corollary 4.4] The height zeta function $\mathrm{Z}(s)$ is holomorphic on a half plane $\Re(s)>a(L, \omega)$. Moreover, it admits a meromorphic continuation extended to a half plane $\Re(s)>a(L, \omega)-\delta$ for some $\delta>0$ and the order of the pole at $s=a(L, \omega)$ is

$$
1+\operatorname{dim} \mathcal{C}_{F,(L, \omega)}^{\mathrm{an}}(D)
$$

4.2. Asymptotic volume. We retain the notations in Section 1 and Section 3. For our arithmetic applications, we need to construct moduli spaces $\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right)$ and $\overline{\mathcal{M}}_{0, n}$ over $\operatorname{Spec}(\mathbb{Q})$. This is done in Bal08. In fact, the moduli spaces of stable maps are constructed over $\operatorname{Spec}(\mathbb{Z})$ via geometric invariant theory.

Let $[f] \in \mathbb{P}\left(W_{n}\right)(\mathbb{Q})$ be a binary form of degree n with \mathbb{Q}-coefficients and distinct roots. Then X_{f} is the Zariski closure of the SL_{2}-orbit of $[f]$ and it is defined over \mathbb{Q}. We consider
the SL_{2}-equivariant birational morphism

$$
\varrho: \tilde{X}=\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right) / \mathfrak{S}_{n} \rightarrow \mathbb{P}\left(W_{n}\right)
$$

which is a \mathfrak{S}_{n}-quotient of the evaluation map ev : $\overline{\mathcal{M}}_{0, \mathrm{n}}\left(\mathbb{P}^{1}, 1\right) \rightarrow\left(\mathbb{P}^{1}\right)^{\mathrm{n}}$. We denote the quotient map $\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}\right) \rightarrow \tilde{X}$ by q. Let $\tilde{X}_{f} \subset \tilde{X}$ be the strict transform of X_{f} which is again defined over \mathbb{Q}. Write F_{f} for the splitting field of f and $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ for roots of f. Then the pointed rational curve $C_{\alpha}=\left(\mathbb{P}^{1}, \alpha_{1}, \cdots, \alpha_{n}\right)$ is defined over F_{f}, hence $Y_{\alpha}=\psi^{-1}\left(C_{\alpha}\right)$ is defined over F_{f} where $\psi: \overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right) \rightarrow \overline{\mathcal{M}}_{0, n}$ is the forgetting map. Define

$$
A[n]=\tilde{X}_{f} \cap \tilde{D}[n], \quad A[n-1]=\tilde{X}_{f} \cap \tilde{D}[n-1] .
$$

Note that since $\tilde{D}[n]$ and $\tilde{D}[n-1]$ are defined over $\mathbb{Q}, A[n]$ and $A[n-1]$ are also defined over \mathbb{Q}. The divisor $A[n]$ is geometrically irreducible, but $A[n-1]$ may not be. We have
Lemma 4.3. The set $A[n](\mathbb{Q})$ is Zariski dense in $A[n]$.
Proof. Let $\left(C, \alpha_{1}, \cdots, \alpha_{n}, \mu\right)$ be a stable map such that

- C is the union of two $\mathbb{P}^{1} \mathrm{~s}$ and both $\mathbb{P}^{1} \mathrm{~S}$ are defined over \mathbb{Q},
- marked points $\alpha_{1}, \cdots, \alpha_{n}$ are on the collapsed component,
- a map μ is also defined over \mathbb{Q}.

Then (C, α, μ) is a stable map defined over the splitting field F_{f} and it corresponds to a F_{f}-rational point P on $\overline{\mathcal{M}}_{0, n}\left(\mathbb{P}^{1}, 1\right)$. Consider a Galois action $\sigma \in \operatorname{Gal}\left(F_{f} / \mathbb{Q}\right)$. A point σP corresponds to $(C, \sigma \alpha, \mu)$, hence we have $q(P)=q(\sigma P)$. This means that $q(P)$ is $\operatorname{Gal}\left(F_{f} / \mathbb{Q}\right)$ fixed, thus $q(P)$ is a \mathbb{Q}-rational point. Now we can vary the intersection of C and the value of μ so that $A[n](\mathbb{Q})$ is Zariski dense.

Let Z be a smooth SL_{2}-equivariant compactification of SL_{2} defined over \mathbb{Q}. We have a SL_{2}-equivariant rational map $\varphi: Z \rightarrow \tilde{X}_{f}$ mapping $\mathrm{SL}_{2} \ni g \mapsto g[f] \in X_{f}$ and after applying SL_{2}-equivariant resolution, if necessary, we may assume that φ is an honest morphism. We denote the morphism from $Z \rightarrow X_{f}$ by φ too. Write ω for the top invariant differential form on SL_{2}. Let S be a finite set of places including the archimedean place. For each $v \in S$, we are interested in the following height zeta function:

$$
\mathrm{Z}_{v}(s)=\int_{Z\left(\mathbb{Q}_{v}\right)} \mathrm{H}_{v}(\varphi(z))^{-s} \mathrm{~d}|\omega|_{v}(z)
$$

where H_{v} is the local height function defined in Section 1. We have
Theorem 4.4. Assume that either

- $n \geq 5$ and f is general enough so that $Y_{\alpha} \cong \tilde{X}_{f} \otimes F_{f}$, or
- all roots of f are \mathbb{Q}-rational.

Then the height zeta function $Z_{v}(s)$ is holomorphic on a half plane $\Re(s)>\frac{2}{n}$ and it admits a meromorphic continuation extended to a half plane $\Re(s)>\frac{2}{n}-\delta$ for some $\delta>0$. Moreover the order of the pole at $s=\frac{2}{n}$ is 1 .
Proof. Suppose that $n \geq 5$ and f is general. Let $\left\{\Delta_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ be the irreducible decomposition of the boundary divisor D of Z. Let f be the pullback of the discriminant divisor on Z. Let

$$
\operatorname{div}(\mathrm{f})=\sum_{\alpha \in \mathcal{A}} \lambda_{\alpha} \Delta_{\alpha}, \quad-\operatorname{div}(\omega)=\sum_{\alpha \in \mathcal{A}} \kappa_{\alpha} \Delta_{\alpha}
$$

Then Lemma 3.5 implies that

$$
\max _{\alpha \in \mathcal{A}}\left\{\frac{\kappa_{\alpha}-1}{\lambda_{\alpha}}\right\}=\frac{2}{n}
$$

Moreover, the Clemens complex $C_{\mathbb{Q}_{v},(L, \omega)}^{\text {an }}(D)$ consists of one element corresponding to $A[n]$; indeed, Lemma 4.3 implies that $A[n]$ has a dense set of rational points, and Lemma 3.4 concludes that the ramification divisor \tilde{E} above $A[n]$ also has a dense set of rational points. This means that this ramification divisor \tilde{E} is an element of the analytic Clemens complex. Lemma 3.5 guarantees that \tilde{E} is the only divisor which achieves $\frac{\kappa_{\alpha}-1}{\lambda_{\alpha}}=\frac{2}{n}$. Now our assertion follows from Theorem 4.2,

Assume that all roots of f are \mathbb{Q}-rational. Then the Y_{α} is defined over \mathbb{Q} and the divisor $E=Y_{\alpha} \cap B_{N}$ contains Zariski dense \mathbb{Q}-rational points. Thus our assertion follows from Lemma 3.4, Lemma 3.5 and Theorem 4.2.

We define

$$
G=\prod_{v \in S} \mathrm{SL}_{2}\left(\mathbb{Q}_{v}\right)
$$

and consider the height ball

$$
\mathrm{B}(T)=\{g \in G \mid \mathrm{H}(g \cdot[f]) \leq T\} .
$$

where H is the global height function defined by $\mathrm{H}=\prod_{v \in S} \mathrm{H}_{v}$. Let $\mu_{G}=\prod_{v \in S}|\omega|_{v}$ be a Haar measure. We denote the volume function of the height ball $\mathrm{B}(T)$ with respect to a Haar measure μ_{G} by $V(T)$. Then we have

Corollary 4.5. Suppose that $n \geq 5$ and f is general, or all roots of f are \mathbb{Q}-rational. Then we have

$$
V(T) \sim c T^{\frac{2}{n}}(\log T)^{\# S-1}
$$

for some $c>0$.
Proof. To prove this corollary, we need to consider the following height zeta function:

$$
\int_{G} \mathrm{H}(g \cdot[f])^{-s} \mathrm{~d} \mu_{G}=\prod_{v \in S} \int_{\mathrm{SL}_{2}\left(\mathbb{Q}_{v}\right)} \mathrm{H}_{v}\left(g_{v} \cdot[f]\right)^{-s} \mathrm{~d}|\omega|_{v}=: \prod_{v \in S} \mathrm{Z}_{v}(s) .
$$

Then it follows from Theorem 4.4 that this zeta function has a pole at $s=2 / n$ of order $\# S$. If S consists of the real place, then we can apply Theorem 4.1 to conclude our assertion. However when S contains a non-archimedean place p, then the local zeta function $\mathbf{Z}_{p}(s)$ is $\frac{2 \pi i}{\log p}$-periodic and we cannot apply Theorem 4.1 since $Z_{p}(s)$ has infinitely many poles on the vertical line $\Re(s)=2 / n$. More precisely the following function

$$
\left(1-p^{-\left(s-\frac{2}{n}\right)}\right) Z_{p}(s)
$$

admits an analytic continuation to the half plane $\left\{\Re(s)>\frac{2}{n}-\delta\right\}$ for some $\delta>0$ (CLT10a, Proposition 4.2]). Instead, we apply CLT10a, Theorem A.7] to Z(s). To apply this theorem, one needs to verify that $\log p / \log q$ is not Liouville number for distinct primes p, q. This fact is proved in Bak90. Bak90, Theorem 3.1] claims that the irrationality measure of $\frac{\log p}{\log q}$ is bounded by a constant depending on p, q. Thus our assertion follows.

5. Generalizations

The method to prove the main result in Section 2 generalizes to semisimple groups. Let F be a number field and G a simply connected, almost F-simple group. Let S be a finite set of places containing all archimedean places v such that $G\left(F_{v}\right)$ is non-compact. We denote the ring of integers of F by \mathfrak{o}_{F} and the ring of S-integers of F by $\mathfrak{o}_{F, S}$. We fix an integral model of G so that $G\left(\mathfrak{o}_{F}\right)$ makes sense. Denote the S-adic Lie group $\prod_{v \in S} G\left(F_{v}\right)$ by G_{S}. We embed $G\left(\mathfrak{o}_{F, S}\right)$ into G_{S} diagonally. Then $G\left(\mathfrak{o}_{F, S}\right)$ is a lattice in G_{S}. Let X be a smooth projective equivariant compactification of G defined over F and $\mathcal{L}=(L,\|\cdot\|)$ an adelically metrized big line bundle on X with a global section s whose support coincides with $X \backslash G$. We define local height functions $\mathrm{H}_{v}: G\left(F_{v}\right) \rightarrow \mathbb{R}_{>0}$ and the global height $\mathrm{H}: G_{S} \rightarrow \mathbb{R}_{>0}$ by

$$
\mathrm{H}_{\mathcal{L}, s, v}\left(P_{v}\right)=\left\|s\left(P_{v}\right)\right\|^{-1}, \quad \mathrm{H}_{\mathcal{L}, s}\left(\left(P_{v}\right)_{v \in S}\right)=\prod_{v \in S} \mathrm{H}_{\mathcal{L}, s, v}\left(P_{v}\right) .
$$

We suppose that for any archimedean place $v \in S$, the local height function $\mathrm{H}_{\mathcal{L}, s, v}$ is invariant under the action of a maximal compact subgroup K_{v}. It is always possible to choose a metrization to satisfy this property. It is also a property of height functions that for any non-archimedean place v, the local height $\mathrm{H}_{\mathcal{L}, s, v}$ is invariant under the action of a compact open subgroup K_{v}. We are interested in a counting function $N(T)$ of $G\left(\mathfrak{o}_{F, S}\right)$ with respect to $\mathrm{H}_{\mathcal{L}, s}$,

$$
N(T)=\#\left\{\gamma \in G\left(\mathfrak{o}_{F, S}\right) \mid \mathrm{H}_{\mathcal{L}, s}(\gamma) \leq T\right\} .
$$

When X is a biequivariant compactification of G, this counting function has been studied in [TBT13] and [BO12]. However, the case of one-sided equivariant compactifications remained open. Our technique in Section 2 can solve this case.

The action of G_{S} on $Y:=G\left(\mathfrak{o}_{F, S}\right) \backslash G_{S}$ is mixing (BO12, Proposition 2.4]). We define

$$
H_{S}=\prod_{v \in S} K_{v}
$$

Then G_{S} has the wavefront property in $H_{S} \backslash G_{S}$. Thus translates of H_{S}-orbits are equidistributed in $Y\left(\right.$ Theorem 2.5). Let μ_{S} be a haar measure on G_{S} and μ_{Y} an invariant measure on Y such that $\mu_{S}=\mu_{Y}$ holds locally. We consider height balls

$$
\left.\mathrm{B}(T)=\left\{g \in G_{S}\right) \mid \mathrm{H}_{\mathcal{L}, s}(g) \leq T\right\} .
$$

We denote the volume function of these height balls by $V(T)$. Now the discussion in Section 2 leads to the following theorem:

Theorem 5.1. Let $V^{*}(T)=V(T) / \mu_{Y}(Y)$. Then we have

$$
\frac{N(T)}{V^{*}(T)} \rightarrow 1 \quad \text { as } T \rightarrow+\infty
$$

References

[Bak90] Alan Baker. Transcendental number theory. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1990.
[Bal08] Elizabeth Baldwin. A GIT construction of moduli spaces of stable maps in positive characteristic. J. Lond. Math. Soc. (2), 78(1):107-124, 2008.
[BHC62] Armand Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. of Math. (2), 75:485-535, 1962.
[BO12] Yves Benoist and Hee Oh. Effective equidistribution of S-integral points on symmetric varieties. Ann. Inst. Fourier (Grenoble), 62(5):1889-1942, 2012.
[CLT10a] Antoine Chambert-Loir and Yuri Tschinkel. Igusa integrals and volume asymptotics in analytic and adelic geometry. Confluentes Mathematici, 2, no. 3:351-429, 2010.
[CLT10b] Antoine Chambert-Loir and Yuri Tschinkel. Integral points of bounded height on toric varieties, 2010. arXiv 1006. 3345.
[CLT12] Antoine Chambert-Loir and Yuri Tschinkel. Integral points of bounded height on partial equivariant compactifications of vector groups. Duke Math. J., 161(15):2799-2836, 2012.
[DRS93] William Duke, Zeév Rudnick, and Peter Sarnak. Density of integer points on affine homogeneous varieties. Duke Math. J., 71(1):143-179, 1993.
[EM93] Alex Eskin and Curt McMullen. Mixing, counting, and equidistribution in Lie groups. Duke Math. J., 71(1):181-209, 1993.
[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[HT03] Brendan Hassett and Yuri Tschinkel. Integral points and effective cones of moduli spaces of stable maps. Duke Math. J., 120(3):577-599, 2003.
[HTT14] Brendan Hassett, Sho Tanimoto, and Yuri Tschinkel. Balanced line bundles and equivariant compactifications of homogeneous spaces. Internat. Math. Res. Notices, 2014.
[KM98] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
[Kol92] János Kollár. Flips and abundance for algebraic threefolds. Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992).
[Mar91] Grigori A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. SpringerVerlag, Berlin, 1991.
[MU83] Shigeru Mukai and Hiroshi Umemura. Minimal rational threefolds. In Algebraic geometry (Tokyo/Kyoto, 1982), volume 1016 of Lecture Notes in Math., pages 490-518. Springer, Berlin, 1983.
[PR94] Vladimir Platonov and Andrei Rapinchuk. Algebraic groups and number theory, volume 139 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen.
[TBT13] Ramin Takloo-Bighash and Yuri Tschinkel. Integral points of bounded height on compactifications of semi-simple groups. Amer. J. Math., 135(5):1433-1448, 2013.

Department of Mathematics, Rice University, MS 136, Houston, Texas 77251-1892, USA
E-mail address: sho.tanimoto@rice.edu
Department of Mathematics, Rice University, MS 136, Houston, Texas 77251-1892, USA
E-mail address: jt13@rice.edu

[^0]: Date: October 20, 2018.

