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(β)-DISTORTION OF SOME INFINITE GRAPHS

FLORENT BAUDIER AND SHENG ZHANG

Abstract. A distortion lower bound of Ω(log(h)1/p) is proven for embed-
ding the complete countably branching hyperbolic tree of height h into a Ba-
nach space admitting an equivalent norm satisfying property (β) of Rolewicz
with modulus of power type p ∈ (1,∞) (in short property (βp)). Also it

is shown that a distortion lower bound of Ω(ℓ1/p) is incurred when embed-
ding the parasol graph with ℓ levels into a Banach space with an equivalent
norm with property (βp). The tightness of the lower bound for trees is shown
adjusting a construction of Matoušek to the case of infinite trees. It is also ex-
plained how our work unifies and extends a series of results about the stability
under nonlinear quotients of the asymptotic structure of infinite-dimensional
Banach spaces. Finally two other applications regarding metric characteriza-
tions of asymptotic properties of Banach spaces, and the finite determinacy of
bi-Lipschitz embeddability problems are discussed.

1. Introduction

Let (X, dX) and (Y, dY ) be two metric spaces. BX(x, r) denotes the closed ball
centered at x ∈ X with radius r > 0. A map f : X → Y is called a bi-Lipschitz
embedding if it is one-to-one and both f and f−1 are Lipschitz. The distortion of
f is then defined as

dist(f) := Lip(f) · Lip(f−1) := sup
x 6=y∈X

dY (f(x), f(y))

dX(x, y)
. sup
x 6=y∈X

dX(x, y)

dY (f(x), f(y))
.

As usual cY (X) := inf{dist(f) | f : X → Y is a bi-Lipschitz embedding} denotes
the Y -distortion of X . If there is no bi-Lipschitz embedding from X into Y then
we set cY (X) = ∞.

In this article we study Banach spaces that satisfy a geometric property intro-
duced in [30], now known as property (β) of Rolewicz or simply property (β). The
following is an equivalent definition of property (β) according to Kutzarova [18].

Definition 1.1. A Banach space X has property (β) if for any ε > 0 there exists
δ(ε) ∈ (0, 1) so that for every element x ∈ BX and every sequence (yi)

∞
i=1 ⊂ BX

with sep({yi}∞i=1) ≥ ε, there exists i0 ∈ N such that
∥∥∥∥
x− yi0

2

∥∥∥∥ ≤ 1− δ(ε).

The separation constant of the sequence is defined by sep({yi}∞i=1) := inf{‖yn −
ym‖ : n 6= m}. BX denotes the closed unit ball of X . A modulus for the property
(β) was defined in [1] as follows (we follow the notation of [9]):

β̄X(t) = 1− sup

{
inf
i≥1

{
‖x− yi‖

2

}
: x ∈ BX , (yi)

∞
i=1 ⊂ BX , sep({yi}

∞
i=1) ≥ t

}
.
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2 F. BAUDIER AND S. ZHANG

Note that β̄X is a non-decreasing map defined on an interval [0, a] where the con-
stant a ∈ [1, 2] depends on the geometry of the Banach space X . The (β)-modulus
of X is said to have power type p ∈ (1,∞) with constant γ ∈ (0,∞) if β̄X(t) ≥ γtp

for all t ∈ [0, a]. In that case we simply say that X has property (βp). The omitted
definitions and notational conventions from Banach space theory can be found in
[14].

The main concern in this article is the quantitative embedding theory of some
infinite graphs into Banach spaces with property (β). More precisely let p ∈ (1,∞),
and define

C(βp) := {Y has an equivalent norm with property (βp)},

C(β) := {Y has an equivalent norm with property (β)}.

A typical example of a Banach space in C(βp) is any reflexive ℓp-sum of finite di-
mensional Banach spaces, e.g. ℓp. Since property (β) implies reflexivity neither
ℓ1 nor c0 are in C(β). In [8] it was shown that X admits an equivalent norm with
property (β) if and only if X admits an equivalent norm with property (βp) for
some p ∈ (1,∞). In other words,

⋃
p∈(1,∞) C(βp) = C(β). The (βp)-distortion of a

metric space X is the value of the parameter c(βp)(X) := inf{cY (X) : Y ∈ C(βp)}
that measures the best possible embedding of X into a space with property (βp).
It is worth mentioning that the problem of estimating the (βp)-distortion of locally
finite metric spaces has been essentially settled in [5], where it is shown for in-
stance that every locally finite metric space admits a bi-Lipschitz embedding into
(
∑∞

n=1 ℓ
n
∞)ℓp with distortion at most 181. In this article the (βp)-distortion of some

families of non-locally finite graphs is investigated. The content of this article is
now described.

Section 2 is devoted to obtaining lower bounds on the (βp)-distortion of some
families of non-locally finite graphs. In Section 2.1 the family (Tω

h )∞h=1 of complete
countably branching hyperbolic trees is studied. It is proven that if Y ∈ C(βp) then

cY (T
ω
h ) = Ω(log(h)1/p), i.e. cY (T

ω
h ) & log(h)1/p for h big enough, where as usual

the symbol & is meant to hide a constant depending eventually on the geometry
of the receiving space Y but not on h. The proof combines an asymptotic version
of the prong bending lemma from [17] (see also [23] for a similar argument) and a
self-improvement argument à la Johnson and Schechtman [15] which was elegantly
implemented in the case of binary trees by Kloeckner [17]. A similar lower bound
is shown in Section 2.2 for the family of parasol graphs introduced by Dilworth,
Kutzarova, and Randrianarivony [10].

The optimality of the lower bound for trees is discussed in Section 3. Adjusting a
construction of Matoušek [23] to the case of infinite weighted trees, an upper bound
cℓp(T ) = O(log(κ∗(T ))1/p) (i.e. cℓp(T ) . log(κ∗(T ))1/p) is proved where κ∗(T ) is
a coloring parameter related to the combinatorial structure of T . The relationship
between the caterpillar-coloring parameter κ∗(T ) and the strong-coloring parameter
δ∗(T ) introduced by Lee, Naor, and Peres [20] is discussed.

In the last section several applications of the present work is gathered. Regarding
the stability of the asymptotic structure of infinite-dimensional Banach spaces under
nonlinear quotients, it is shown how this work unifies, and extends, a series of results
from [21], [9], [31], and [10]. The quantitative approach devised in this article
takes full advantage of the simple observation that the quantitative theories of bi-
Lipschitz embeddings and Lipschitz quotients coincide, in a precise sense, for trees.
For instance, an elementary proof of the fact that ℓq is not a Lipschitz quotient of a
subset of ℓp when q > p > 1 follows from the work presented here. New insights are
also given regarding the metric characterization of two equivalent classes of Banach
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spaces: the class of reflexive spaces admitting an asymptotically uniformly convex
equivalent norm and an asymptotically uniformly smooth equivalent norm, and the
class of spaces admitting an equivalent norm with property (β). Finally the finite
determinacy of bi-Lipschitz embeddability problems is discussed and it is shown
that a theorem of Ostrovskii [27] cannot be extended to non-locally finite graphs.

2. Embeddability into spaces with property (β)

Recall that a weighted connected simple graph is a connected graph G = (V,E)
with no multiple edges or self-loop, equipped with a positive weight function w : E →
(0,∞). A graph is unweighted if every edge has unit weight. G will always be
equipped with its canonical metric ρG on its set of vertices, where

ρG(x, y) := inf{
∑

e∈P

w(e) : P is a path connecting x to y}.

A weighted tree is an acyclic weighted connected simple graph. In a tree two vertices
are connected by a unique path and a leaf is a vertex of degree 1. For technical
reasons we shall work with rooted trees. When we root a tree at an arbitrary
vertex r the ancestor-descendant relationship between pairs of vertices is then well
defined. The height of a vertex x of a rooted tree T , denoted by h(x), is the number
of edges separating x from the root. The height of a rooted tree T is then defined
by h(T ) := supx∈T h(x). The last common ancestor (in the ancestor-descendant
relationship) of two vertices x and y is denoted by lca(x, y). With this notation the
canonical graph distance on an unweighted rooted tree is given explicitly by

ρT (x, y) = h(x) + h(y)− 2h(lca(x, y)) = ρT (x, lca(x, y)) + ρT (lca(x, y), y).

For a positive integer h, Tω
h denotes the unweighted complete countably branch-

ing rooted tree of height h, while Tω
ω will be the unweighted complete countably

branching rooted tree of infinite height.

2.1. Complete countably branching trees. Kω,1 denotes the star graph with
countably many branches, i.e. the bipartite graph that has a partition into exactly
two classes, one consisting of a singleton called the center, the other consisting of
countably many vertices called the leaves. In the sequel b will denote the center.
An arbitrary leaf, denoted by r, is chosen, and a labeling (ti)

∞
i=1 of the (countably

many) remaining leaves is fixed. With this labeling in mind Kω,1 can be seen as an
umbel with countably many pedicels, where r stands for root, b for the branching
point on the stem, and (ti)

∞
i=1 is a labeling of the tips of the pedicels. As usual

Kω,1 is equipped with the shortest path metric. The next lemma says that if the
umbel is embedded into a space with property (β) then at least one pedicel has
to bend towards the root, and the distance from its tip to the root is shorter than
expected. It can be seen as an asymptotic analogue of Lemma 2 in [17].

Lemma 2.1 (Umbel pedicel bending lemma). Let Y be a Banach space with prop-
erty (β). Then for every bi-Lipschitz embedding f : Kω,1 → Y there exists i0 ∈ N

such that

(1) ‖f(r) − f(ti0)‖ ≤ 2Lip(f)

(
1− β̄Y

(
2

dist(f)

))
.

Proof. One may assume after an appropriate translation that f(b) = 0. Let x =
f(r)

Lip(f)
and yi =

f(ti)

Lip(f)
. Clearly ‖x‖ ≤ 1, ‖yi‖ ≤ 1 for all i ∈ N, and for n 6= m,

‖yn − ym‖ ≥
2

dist(f)
> 0.
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Since the norm of Y satisfies property (β) there exists i0 ∈ N such that
∥∥∥∥
x− yi0

2

∥∥∥∥ ≤ 1− β̄Y

(
2

dist(f)

)
,

and hence the result follows. �

Remark 2.1. Note that the conclusion of Lemma 2.1 can be strengthened. Since
(1) holds for all but finitely many i’s, there exists an infinite subset M ⊂ N such
that

max

{
sup
i∈M

‖f(r)− f(ti)‖ ; sup
i6=j∈M

‖f(ti)− f(tj)‖

}
≤ 2Lip(f)

(
1− β̄Y

(
2

dist(f)

))
.

The next proposition is a self-improvement argument à la Johnson and Schecht-
man [15]. It is shown that if the countably branching tree of a certain height embeds
into a Banach space with property (β) then the countably branching tree of roughly
half the height embeds as well, but with a slightly better distortion. The vertex

set of Tω
h can be naturally labelled by elements in

⋃h
i=0 N

h, where by convention
N

0 = ∅ is the label assigned to the root. The notation n̄ = (n1, . . . , nr), for some
r ≤ h, designates a generic vertex of Tω

h .

Proposition 2.1. Let Y be a Banach space with property (β). Let k ∈ N, and
assume that Tω

2k bi-Lipschitzly embeds into Y with distortion D. Then Tω
2k−1 bi-

Lipschitzly embeds into Y with distortion at most D(1 − β̄Y (
2
D )).

Proof. Let f : Tω
2k → Y be a bi-Lipschitz embedding with distortion D. In order

to define an embedding of Tω
2k−1 into Y one selects vertices located at even heights

following a simple procedure. The set of all elements of height at most 2 in the tree
Tω
2k can be seen as being formed by countably many umbels. For every n1 ∈ N,

consider the umbel whose root is the vertex ∅ and whose branching point is the
vertex (n1) ∈ Tω

2k . By Lemma 2.1 there is a vertex located at level 2 which is
“close” to the root of the umbel, i.e. there exists t(n1) ∈ N such that

‖f(∅)− f((n1, t(n1)))‖ ≤ 2Lip(f)

(
1− β̄Y

(
2

D

))
.

For every vertex (n1, t(n1)) as above, and for every n2 ∈ N, consider the umbel whose
root is the vertex (n1, t(n1)), and whose branching point is the vertex (n1, t(n1), n2).
Again select using Lemma 2.1, a level-4 vertex that is the tip of the bending pedicel,
i.e. there exists t(n1,n2) ∈ N such that

‖f((n1, t(n1)))− f((n1, t(n1), n2, t(n1,n2)))‖ ≤ 2Lip(f)

(
1− β̄Y

(
2

D

))
.

Repeat this procedure until vertices located in the set of leaves of the tree are
selected. To summarize we have chosen a collection of integers (tn̄)n̄∈Tω

2k−1
such

that for every n̄ = (n1, . . . , nr) ∈ Tω
2k−1 one has

‖f((n1, t(n1), . . . , nr−1, t(n1,...,nr−1)))− f((n1, t(n1), . . . , nr, t(n1,...,nr)))‖ ≤

2Lip(f)

(
1− β̄Y

(
2

D

))
.

Finally define

g : Tω
2k−1 → Y, n̄ = (n1, . . . , nr) 7→

f((n1, t(n1), . . . , nr, t(n1,...,nr)))

2

and g(∅) = 1
2f(∅). Since for a graph it is sufficient to consider adjacent vertices to

estimate the Lipschitz constant, one can easily check that dist(g) ≤ D(1− β̄Y (
2
D )).

�
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Theorem 2.1. Let Y be a Banach space admitting an equivalent norm with prop-
erty (β). Then suph≥1 cY (T

ω
h ) = ∞.

In particular, if Y is a Banach space with property (βp) with p ∈ (1,∞) and constant

γ := γ(Y ) > 0, then cY (T
ω
h ) ≥ 2γ

1
p log(h2 )

1
p .

Proof. Let Dh := cY (T
ω
h ) in the sequel, and assume that suph≥1 Dh = D ∈ (0,∞).

Assume without loss of generality that (Dh)h≥1 is a converging sequence. According
to Proposition 2.1, if Y has property (β) then for every k ≥ 1 one has D2k−1 ≤
D2k(1 − β̄Y (

2
D )); taking the limit in k gives a contradiction. Suppose that Y has

(βp) with p ∈ (1,∞) and constant γ := γ(Y ) > 0. It follows from Proposition 2.1,

that for all j ≤ k one hasD2j−1 ≤ D2j (1−
2pγ
Dp

2j
), where k is such that 2k ≤ h < 2k+1.

Therefore D2j −D2j−1 ≥ 2pγ

Dp−1

2j

and

Dh ≥ D2k ≥ 2pγ
k∑

j=1

D1−p
2j +D1 ≥ 2pγkD1−p

h .

The conclusion follows easily. �

2.2. Parasol graphs. In this section we consider again the graphKω,1 in its umbel
configuration. However, an extra vertex is introduced, denoted by s, and s is
connected to each of the tips of the pedicels by a single edge. Pω

1 denotes the new
graph obtained, which looks like a parasol. Lemma 2.2 is a simple consequence of
Lemma 2.1.

Lemma 2.2 (Parasol top bending lemma). Let Y be a Banach space with property
(β). Then for every bi-Lipschitz embedding f : Pω

1 → Y one has

‖f(r) − f(s)‖ ≤ 3Lip(f)

(
1−

2

3
β̄Y

(
2

dist(f)

))
.

Proof. The inequality follows from Lemma 2.1, the fact that ‖f(ti0) − f(s)‖ ≤
Lip(f), and the triangle inequality. �

The parasol graph Pω
ℓ can be defined as in [10] using a fractal-like procedure. The

parasol graph of level 1 is just the graph Pω
1 . The parasol graph of level 2 is simply

the graph obtained by replacing each edge in Pω
1 with a copy of Pω

1 . Proceeding
recursively Pω

ℓ , the parasol graph of level ℓ, is obtained by replacing each edge in
Pω
ℓ−1 by a copy of Pω

1 . Proposition 2.2 below is the analogue of Proposition 2.1 and
can be used in the same way to prove Theorem 2.2. Indeed, we simply select the
root vertex and the summit vertex in each copy of Pω

1 constituting Pω
ℓ to obtain

a rescaled isometric copy (scaling factor of 3) of Pω
ℓ−1, and we iterate ℓ times to

obtain Theorem 2.2. The details are left to the reader.

Proposition 2.2. Let Y be a Banach space with property (β). Let ℓ ∈ N, and
assume that Pω

ℓ bi-Lipschitzly embeds into Y with distortion D. Then Pω
ℓ−1 bi-

Lipschitzly embeds into Y with distortion at most D(1 − 2
3 β̄Y (

2
D )).

Theorem 2.2. Let Y be a Banach space admitting an equivalent norm with prop-
erty (β). Then supℓ≥1 cY (P

ω
ℓ ) = ∞.

In particular, if Y is a Banach space with property (βp) with p ∈ (1,∞) and constant

γ := γ(Y ) > 0, then cY (P
ω
ℓ ) ≥ 2(2γ3 )

1
p ℓ

1
p .
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3. Lebesgue distortion of infinite weighted trees

Bourgain [7] gave a simple embedding of the complete hyperbolic binary tree

of height h into ℓ2 with distortion O(
√

log(h)). Bourgain’s construction can be
easily adjusted, and generalized to an arbitrary unweighted tree T , to give an
embedding into ℓp with distortion Op(log(diam(T ))1/p). The notation Op(·) means

that cℓp(T ) ≤ K(log(diamT )1/p) where the constant K ∈ (0,∞) depends only on
p and not on T . This upper bound is already sufficient to show that the lower
bound in Theorem 2.1 is tight and optimal up to constant factors. The case of
weighted trees is significantly more complicated (even for finite trees). Also, it is
clear that an upper bound involving the diameter is not optimal, since an infinite
path embeds isometrically into the real line. Both issues were treated in [22] and
[23] for finite trees. Parts of both arguments rely (implicitly in [22] and explicitly
in [23]) on a combinatorial parameter associated to a combinatorial tree, namely,
the caterpillar dimension. The caterpillar dimension of a tree is related to its
combinatorial structure and does not take into account the edge weights. Linial,
Magen, and Saks showed that the Euclidean distortion of every finite weighted tree
T with l(T ) leaves is bounded above by O(log log(l(T )). Let cdim(T ) denote the
caterpillar dimension of a tree T . By induction it is fairly easy to show that for
every finite tree T one has cdim(T ) = O(log(l(T ))) (cf. [22] or [23]). Theorem 3.1
was proved by Matoušek [23].

Theorem 3.1 ([23]). For any p ∈ (1,∞) and for any finite weighted tree T , there

exists an embedding of T into ℓp with distortion Op(log(cdim(T ))min{ 1
2 ;

1
p
}).

The construction of Matoušek’s embedding is very clever and delicate. It is
mentioned in [23] that the caterpillar dimension can be defined for infinite trees,
and that Theorem 3.1 holds for infinite weighted trees with a finite caterpillar
dimension. The later statement can be misleading when compared to Theorem 2.1
since cdim(Tω

h ) = h for the natural extension of the caterpillar dimension to the
infinitary setting. It is very likely that the mention was meant to say that Theorem
3.2 below, which was proved but not stated in [23], holds for infinite weighted trees
with a finite caterpillar dimension.

Theorem 3.2 ([23]). For any p ∈ (1,∞) and for any finite weighted tree T there

exists a set I and an embedding of T into ℓp(I) with distortion Op(log(cdim(T ))
1
p ).

Theorem 3.1 follows from Theorem 3.2 by classical local arguments from Banach
space theory, that can fail when applied to non-locally finite spaces (cf. Section
4.3). Continuing the investigation from [13], Lee, Naor, and Peres [20] improved
the upper bound in Theorem 3.1, using a coloring parameter that takes into account
the edge weights. In this section, the necessary modifications to prove the infinitary
version of Theorem 3.2 are given. The exposition of the proof follows closely the
one in [20] and is based on a graph coloring approach.

Let T = (V,E) be a tree. Assume that T is rooted at an arbitrary vertex. To
extend the notion of caterpillar decomposition to the infinitary setting one needs to
consider more general paths than just root-leaf paths. A root-leafend path is either
a path from the root to a leaf or a ray starting at the root. A monotone path is
a connected subset of some root-leafend path. Let C be a set with |C| ≥ |E|. An
edge coloring of T is a map χ : E → C. A coloring is monotone if for every c ∈ C
the color class χ−1(c) is a monotone path.

Definition 3.1 (κ-caterpillar coloring). We say that a coloring is κ-caterpillar if
it is monotone, and if every root-leafend path contains at most κ distinct color
classes. Let κ∗(T ) := inf{κ : T admits a κ-caterpillar coloring}
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Since a finite tree does not have rays, every root-leafend path is actually a root-
leaf path, and a κ-caterpillar coloring of a finite tree is a caterpillar decomposition
with width κ in the terminology of Gupta [12]. It follows that κ∗(T ) = cdim(T ) for
finite trees, and the coloring parameter κ∗(T ) can be used to define the caterpillar
dimension of infinite trees. It is easy to see that κ∗(T

ω
h ) = h. Indeed, if one

considers the monotone coloring, where no two distinct edges can be colored with
the same color, then every root-leafend path intersects with exactly h distinct color
classes, and this cannot be improved. Theorem 3.3 is the extension of Theorem 3.2
to the infinitary setting.

Theorem 3.3. Let p ∈ (1,∞). For any weighted tree T there exists a set I and an

embedding of T into ℓp(I) with distortion Op(log(κ∗(T ))
1
p ).

Proof. Let T := (V,E,w) be a weighted tree and assume that T admits a coloring
χ : E → C that is κ-caterpillar with respect to some root r. Denote by (ec)c∈C the
canonical basis in ℓp(C). For x, y ∈ V , P (x, y) ⊂ E denotes the unique path from

x to y. For a vertex x in T denote by (c1(x), . . . , cm(x)(x)) ∈ Cm(x) the sequence of
color classes encountered on the path from the root to x. There are at most κ such
color classes. The distance that the color class cj(x) contributes to the path from
the root to x is

ℓj(x) :=
∑

χ(e)=cj(x)
e∈P (r,x)

w(e).

For a real number α we use the notation α+ := max{0, α}. The embedding f from
T into ℓp(C) is given by

f(x) =

m(x)∑

i=1

ℓi(x)
1/psi(x)

(p−1)/peci(x),

where for 1 ≤ i ≤ m(x),

si(x) :=

m(x)∑

j=i

(
ℓj(x)−

ℓi(x)

2κ

)+

.

The following observation is easy.

Observation 1. For every x, y ∈ T and every i ∈ {1, . . . ,m(x)}

|si(x)− si(y)| ≤ ρT (x, y).

Claim 3.1. Lip(f−1) ≤ 96.

Proof of Claim 3.1: Fix x, y ∈ V , x 6= y. Assume without loss of generality that
ℓi(y) = ℓi(x) for i ∈ {1, . . . , j − 1} and ℓj+1(x) ≥ ℓj+1(y). With this notation

(2) ρT (x, y) = ℓj(x) − ℓj(y) +

m(x)∑

i=j+1

ℓi(x) +

m(y)∑

i=j+1

ℓi(y).

The following simple observation will be used repeatedly.

Observation 2. For all x ∈ T and i ∈ {1, . . . ,m(x)}, si(x) ≥

m(x)∑

i=1

ℓi(x)

2
.

On the other hand,

‖f(x)− f(y)‖pp ≥ |[ℓj(x)]
1/p[sj(x)]

(p−1)/p − [ℓj(y)]
1/p[sj(y)]

(p−1)/p|p

+

m(x)∑

i=j+1

ℓi(x)[si(x)]
p−1 +

m(y)∑

i=j+1

ℓi(y)[si(y)]
p−1.
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Using Observation 2 and the non-decreasingness of t 7→ tp−1 one has:

m(x)∑

i=j+1

ℓi(x)[si(x)]
p−1 ≥

1

2p−1

m(x)∑

i=j+1

ℓi(x)




m(x)∑

h=i

ℓi(x)




p−1

≥
1

2p−1

m(x)∑

i=j+1

∫ ℓi(x)+···+ℓm(x)(x)

ℓi(x)+···+ℓm(x)(x)

tp−1dt

=
1

2p−1

∫ ℓj+1(x)+···+ℓm(x)(x)

0

tp−1dt

=
1

p2p−1




m(x)∑

i=j+1

ℓi(x)




p

.

Similarly,

m(y)∑

i=j+1

ℓi(y)[si(y)]
p−1 ≥

1

p2p−1




m(y)∑

i=j+1

ℓi(y)




p

.

It remains to consider two cases:

Case 1.
ℓj(x)−ℓj(y)

3 ≤
∑m(y)

i=j+1 ℓi(y). In this case, it follows from (2) that

ρT (x, y)
p ≤ 4p




m(x)∑

i=j+1

ℓi(x) +

m(y)∑

i=j+1

ℓi(y)




p

≤ 4p · 2p−1






m(x)∑

i=j+1

ℓi(x)




p

+




m(y)∑

i=j+1

ℓi(y)




p


≤ p42p−1 · ‖f(x)− f(y)‖pp

≤ 32p · ‖f(x)− f(y)‖pp.

Case 2.
ℓj(x)−ℓj(y)

3 >
∑m(y)

i=j+1 ℓi(y). In this case observe that

sj(y) ≤ (1−
1

2κ
)ℓj(y) +

m(y)∑

i=j+1

ℓi(y) ≤
2κ− 1

2κ
ℓj(y) +

ℓj(x) − ℓj(y)

3
.

Let K = 2κ−1
2κ ∈ [ 12 , 1). Since sj(x) ≥ (1 − 1

2κ)ℓj(x) = K · ℓj(x), one has

|[ℓj(x)]
1/p[sj(x)]

(p−1)/p − [ℓj(y)]
1/p[sj(y)]

(p−1)/p|

≥ K(p−1)/pℓj(x)−K(p−1)/pℓj(y)

(
1 +

ℓj(x)− ℓj(y)

3K · ℓj(y)

) p−1
p

≥ K(p−1)/pℓj(x)−K(p−1)/pℓj(y)

(
1 +

ℓj(x)− ℓj(y)

3K · ℓj(y)

)

≥ (ℓj(x) − ℓj(y))K
(p−1)/p(1−

1

3K
)

≥ (ℓj(x) − ℓj(y))K(1 −
1

3K
)

≥
ℓj(x)− ℓj(y)

6
.
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It follows that

‖f(x)− f(y)‖pp

≥
1

6p
(ℓj(x) − ℓj(y))

p +
1

p42p−1




m(x)∑

i=j+1

ℓi(x)




p

+
1

p42p−1




m(y)∑

i=j+1

ℓi(y)




p

≥
1

32p · 3p−1



(ℓj(x)− ℓj(y))
p +




m(x)∑

i=j+1

ℓi(x)




p

+




m(y)∑

i=j+1

ℓi(y)




p



≥
1

96p


ℓj(x) − ℓj(y) +

m(x)∑

i=j+1

ℓi(x) +

m(y)∑

i=j+1

ℓi(y)



p

≥

(
ρT (x, y)

96

)p

.

Claim 3.2. Lip(f) ≤ (6 log2(2κ))
1
p .

Proof of Claim 3.2: It is sufficient to consider adjacent vertices x and y, and one
shall assume without loss of generality that y is the vertex that is the farthest
from the root. In this case c1(y) = c1(x), . . . , cm(y)−1(y) = cm(y)−1(x), and m(y) ∈
{m(x),m(x)+ 1}. It follows that ℓi(y) = ℓi(x) for i ∈ {1, . . . ,m(y)− 1}. When the
edge connecting x and y is of a different color than cm(y)−1(y) set ℓm(y)(x) = 0 as
a matter of convenience. Then,

‖f(x)−f(y)‖pp = ‖

m(y)∑

i=1

ℓi(x)
1/psi(x)

(p−1)/peci(x) −

m(y)∑

i=1

ℓi(y)
1/psi(y)

(p−1)/peci(y)‖
p
p

≤

m(y)−1∑

i=1

ℓi(y)|[si(x)]
(p−1)/p − [si(y)]

(p−1)/p|p + ρT (x, y)
p

(
1−

1

2κ

)p−1

.

The following observations are crucial in the sequel.

Observation 3. Let x and y be adjacent vertices such that y is the farthest vertex
from the root. Then, for all i ∈ J := {j ∈ {1, . . . ,m(y)− 1} : sj(y) 6= sj(x)}

si(y) ≥ si(x) and ℓm(y)(y) >
ℓi(y)

2κ
.

It follows from the first inequality in Observation 3 and the inequality as − bs ≤
as−1(a− b) that holds for every s ∈ [0, 1] and a > b > 0, that

|[si(x)]
(p−1)/p − [si(y)]

(p−1)/p| ≤
si(y)− si(x)

[si(y)]1/p
.

By Observation 1 and Observation 2 one gets

m(y)−1∑

i=1

ℓi(y)|[si(x)]
(p−1)/p − [si(y)]

(p−1)/p|p ≤

m(y)−1∑

i=1

ℓi(y)
|si(y)− si(x)|p

si(y)

≤ ρT (x, y)
p
∑

i∈J

ℓi(y)

si(y)

≤ 2ρT (x, y)
p
∑

i∈J

ℓi(y)

ℓi(y) + · · ·+ ℓm(y)−1(y) + ℓm(y)(y)
.
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Since t 7→ t+ 1 is decreasing, for every x1, . . . , xk > 0 one has

k∑

n=1

xn

xn + · · ·+ xn+1 + · · ·+ xk + 1
≤

∫ x1+···+xk+1

0

dt

t+ 1
≤ log(x1 + · · ·+ xk + 1),

and it follows that
∑

i∈J

ℓi(y)∑m(y)
j=i ℓj(y)

≤
∑

i∈J

ℓi(y)/ℓm(y)(y)∑

j∈J;j≥i

ℓj(y)/ℓm(y)(y)) + 1

≤ log

(
∑

i∈J

ℓi(y)

ℓm(y)(y)
+ 1

)
.

The second inequality in Observation 3 implies that

‖f(x)− f(y)‖pp ≤ 2ρT (x, y)
p log(

∑

i∈J

ℓi(y)

ℓm(y)(y)
+ 1) + ρT (x, y)

p

(
2κ− 1

2κ

)p−1

≤ 2ρT (x, y)
p log(2κ|J |+ 1) + ρT (x, y)

p

(
2κ− 1

2κ

)p−1

≤ (2 log(2κ2 + 1) + 1)ρT (x, y)
p

≤ 6 log(2κ)ρT (x, y)
p.

Claim 3.2, together with Claim 3.1, concludes the proof of Theorem 3.3. �

Let cdiam(T ) denotes the combinatorial diameter of a weighted tree T , i.e. the
diameter of T for the metric induced by unit weights. The monotone coloring of
every weighted tree that assign a different color to every edge being cdiam(T )-
caterpillar, Corollary 3.1 follows.

Corollary 3.1. Let p ∈ (1,∞). For any weighted tree T there exists a set I and

an embedding of T into ℓp(I) with distortion Op(log(cdiam(T ))
1
p ).

Corollary 3.1 may be known to the experts but we could not locate a proof in
the literature.

Remark 3.1. The caterpillar dimension of a finite tree can be estimated in polyno-
mial time using dynamic programming, while estimating the combinatorial diameter
can be done in linear time with an algorithm using a breadth-first search approach.

Strong colorings were defined for finite trees in [20]. The definition is readily
extendable to arbitrary trees once the monotonicity of a path is defined for root-
leafend paths and not only for root-leaf paths. A coloring χ : E → C of a weighted
tree T = (V,E,w) is δ-strong in the sense of [20] if it is monotone, and for every
x, y ∈ V , at least half of the shortest path connecting x and y is covered by color
classes of length at least δρT (x, y), i.e.

∑

c∈C

ℓχc (x, y) · 1{c : ℓχc (x,y)≥δρT (x,y)} ≥
1

2
ρT (x, y),

where

ℓχc (x, y) :=
∑

χ(e)=c
e∈P (x,y)

w(e).

Let δ∗(T ) := sup{δ : T admits a δ-strong coloring}. As already mentioned in [20]
for finite trees, a caterpillar coloring is a strong coloring.
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Lemma 3.1. Let T be a weighted tree and κ ∈ N. A κ-caterpillar coloring of T is
also a 1

4κ -strong coloring. Therefore, δ∗(T ) ≥ 1
4κ∗(T ) .

Proof. Let χ : E → C be a κ-caterpillar coloring of T = (V,E) and assume that χ
is not a 1

4κ -strong coloring. Then there exist x, y ∈ V such that
∑

c∈C

ℓχc (x, y) · 1{c : ℓχc (x,y)≥
ρT (x,y)

4κ }
<

1

2
ρT (x, y).

But,

ρT (x, y) =
∑

c∈C

ℓχc (x, y) · 1{c : ℓχc (x,y)≥
ρT (x,y)

4κ }
+
∑

c∈C

ℓχc (x, y) · 1{c : ℓχc (x,y)<
ρT (x,y)

4κ }

<
1

2
ρT (x, y) + 2κ

ρT (x, y)

4κ
= ρT (x, y),

a contradiction. �

However a strong coloring is not necessarily a caterpillar coloring. Indeed,
consider a ray with countably many edges, and assign the sequence of weights
(12 ,

1
4 , . . . ,

1
2k
, . . . ) to the edges starting from the root. If every edge is colored with

a different color, the monotone coloring obtained is not a κ-caterpillar coloring for
any finite κ but is a 1

2 -strong coloring. Proposition 3.1 shows that the inequality
in Lemma 3.1 cannot be reversed in full generality.

Proposition 3.1. There exists a weighted tree T with δ∗(T ) ≥ 1
4 and κ∗(T ) = ∞.

Proof. Consider the combinatorial binary tree with infinite height B∞. It is clear
that κ∗(B∞) = ∞. Put the weight 1

2n on every edge e = (x, y) whose vertices
x and y are at distance respectively n − 1 and n to the root. The edge coloring
where every edge has a different color is 1

4 -strong. Let x, y ∈ B∞. Let lca(x, y)
denotes the last common ancestor of x and y, and ℓ(x) (resp. ℓ(y)) the length of
the edge attached to lca(x, y) and pointing toward x (resp. y). Note that every ray
starting at the root is assigned the sequence of weights (12 ,

1
4 , . . . ,

1
2n , . . . ), and hence

ℓ(x) = ℓ(y) = 1
2k

for some k ∈ N. Since for every n ∈ N,
∑∞

i=n 2
−i = 2−k+1, one

has ρB∞(lca(x, y), x) < 2−k+1, ρB∞(lca(x, y), y) < 2−k+1, and hence ρB∞(x, y) <
2−k+2. It follows that

ℓ(x) + ℓ(y) = 2−k + 2−k >
ρB∞(lca(x, y), x)

2
+

ρB∞(lca(x, y), y)

2
=

ρB∞(x, y)

2
,

but min{ℓ(x); ℓ(y)} >
ρB∞(x, y)

4
. �

4. Applications

4.1. Stability of the asymptotic structure under nonlinear quotients. Co-
Lipschitz maps were introduced by Gromov in [11] in the context of geometric
group theory. Later, Lipschitz quotients and uniform quotients were introduced
and studied in the framework of Banach spaces by Bates, Johnson, Lindenstrauss,
Preiss, and Schechtman [2]. A map f : X → Y between metric spaces X and Y is
called a uniform quotient map, and Y is simply said to be a uniform quotient of X ,
if there exist non-decreasing functions ρ, ω : R+ → R+ satisfying limt→0 ω(t) = 0
and ρ(t) > 0 for all t > 0 so that for all x ∈ X and r ∈ (0,∞) one has

(3) BY (f(x), ρ(r)) ⊂ f(BX(x, r)) ⊂ BY (f(x), ω(r)).

If only the left inclusion in (3) is satisfied then f is said to be co-uniformly contin-
uous. If the non-decreasing functions satisfy ω(r) ≤ Lr and ρ(r) ≥ r/C for some
L,C > 0, then f is called a Lipschitz quotient map, and Y is said to be a Lipschitz
quotient of X . Note that the right inclusion in (3) with ω(r) ≤ Lr is equivalent
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to f being Lipschitz with Lip(f) ≤ L. If the left inclusion in (3) is satisfied with
ρ(r) ≥ r/C, f is said to be co-Lipschitz, and the infimum of all such C’s, denoted
by coLip(f), is called the co-Lipschitz constant of f . We define the codistortion of
a Lipschitz quotient map f as codist(f) := Lip(f) · coLip(f).

In the sequel mainly nonlinear quotient maps defined on some subset of a metric
space are considered. We say that Y is a Lipschitz (resp. uniform) subquotient of
X if Y is a Lipschitz (resp. uniform) quotient of a subset of X . In particular a
quantitative analysis of Lipschitz subquotients, similar to the quantitative theory
of bi-Lipschitz embeddings, is emphasized.

Definition 4.1. Let X,Y be two metric spaces. Y is a said to be a Lipschitz
subquotient of X with codistortion α ∈ [1,∞) (or simply Y is an α-Lipschitz
subquotient of X) if there is a subset Z ⊂ X and a Lipschitz quotient map f : Z →
Y such that codist(f) ≤ α. We define the X-quotient codistortion of Y as

qcX(Y ) := inf{α : Y is an α-Lipschitz subquotient of X}.

We set qcX(Y ) = ∞ if Y is not a Lipschitz quotient of any subset of X .

Remark 4.1. Lipschitz subquotients have already been implicitly touched upon (e.g.
in [25], [21], [10]). A “dual” notion was considered by Mendel and Naor in [24],
where given α ∈ [1,∞) they say that X has an α-Lipschitz quotient in Y if there is
a subset S ⊂ Y and a Lipschitz quotient map f : X → S such that codist(f) ≤ α.

Observe that if f is a bi-Lipschitz embedding from X into Y , then f−1 is a Lip-
schitz quotient map from f(X) onto X , with codist(f−1) = dist(f). Therefore we
have qcY (X) ≤ cY (X). A crucial and known observation for the ensuing discussion
is that the previous inequality is actually an equality for trees.

Proposition 4.1. Let Y be a metric space and T a weighted tree. Then qcY (T ) =
cY (T ).

Proof. Let Z be a subset of Y and f : Z → T a Lipschitz quotient map. Equip
T with its canonical graph metric ρT and root T at an arbitrary vertex r so that
the height of the tree is well defined. By induction on the height of the tree it
is possible to select a collection of points (zv)v∈T ⊂ Z such that f(zv) = v, and
for every pair of adjacent vertices (v, w) one has dY (zv, zw) ≤ coLip(f)ρT (v, w).
Since for a weighted graph it is sufficient to consider pairs of adjacent vertices to
estimate the Lipschitz constant of a map, the injective map g : v 7→ zv is Lipschitz
with Lip(g) ≤ coLip(f). We conclude by simply observing that Lip(g−1) ≤ Lip(f),
and hence dist(g) ≤ codist(f). �

Recently, the stability under nonlinear quotients of the asymptotic structure of
infinite-dimensional Banach spaces has been investigated ([21], [9], [31], [10]). The
common feature of these articles is the implementation of a delicate and technical
argument (or some slight variations of it) called “fork argument”, which describes
the behavior of a nonlinear lifting of points that are approximately in a fork config-
uration. This behavior depends heavily on the asymptotic geometry of the spaces
and can rule out the existence of certain nonlinear quotient maps. As explained in
[21], the general idea is to built a collection of points approximately in a fork con-
figuration in the target space whose set of pre-images contains a fork of comparable
size, and then use the quantification of property (β) to get a contradiction. Our
work unifies, and extends, a series of results from [21], [9], [31], and [10], which we
now describe.

The main motivation of Lima and Randrianarivony was to solve a long-standing
open problem raised in [2]. They proved that a Banach space that is a uniform
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quotient of ℓp for 1 < p < 2 must be isomorphic to a linear quotient of ℓp. The key
ingredient was to show that ℓq cannot be a uniform quotient of ℓp if 1 < p < q < ∞.
The authors already noticed that their proof will work equally well for Lipschitz
subquotients. The following refinement of the Lima-Randrianarivony result appears
in [9].

Theorem 4.1 ([9]). Let X be a linear quotient of a subspace of an ℓp-sum of finite-
dimensional spaces, where p ∈ (1,∞). Assume that a Banach space Y is a uniform
subquotient of X, where the uniform quotient map is Lipschitz for large distances.
Then Y does not contain a subspace isomorphic to ℓq for any q > p.

Another implementation of the “fork argument” by Lima and Randrianarivony
gives the following theorem.

Theorem 4.2 ([21]). c0 is not a uniform quotient (or a Lipschitz subquotient) of
a Banach space with property (β).

Later, the second author of this article introduced in [31] the notion of coarse
quotient map and proved Theorem 4.3 below, as well as a coarse analogue of The-
orem 4.2, using a coarse version of the “fork argument”.

Theorem 4.3 ([31]). Let X be a Banach space with property (βp) for some p ∈
(1,∞). Assume that a Banach space Y is a coarse quotient of a subset of X, where
the coarse quotient map is Lipschitz for large distances. Then Y does not contain
a subspace isomorphic to ℓq for any q > p.

In [10], Dilworth, Kutzarova, and Randrianarivony proved a nice rigidity result.

Theorem 4.4 ([10]). If Y is a separable Banach space that is a uniform quotient
of a Banach space X that has an equivalent norm with property (β), then Y must
be reflexive and admits an equivalent norm with property (β).

The fact that Y must be reflexive is a consequence of one of the numerous James’
characterizations of reflexivity. The core of their proof relies on Theorem 4.5 below.

Theorem 4.5 ([10]). Tω
ω is not a Lipschitz subquotient of any Banach space ad-

mitting an equivalent norm with property (β).

Even though our approach is based on similar ideas, we circumvent the technical
“fork argument” by splitting its proof mechanism into two distinct quantitative
problems, interesting in their own right, that can be treated by rather elementary
techniques. For instance, the proof in [10] of Theorem 4.5 is very clever but somehow
delicate. The argument requires the introduction of the parasol graph with infinitely
many levels and the implementation of the “fork argument” with respect to a certain
type of liftings. Our alternative proof of Theorem 4.5, which is a direct consequence
of Theorem 2.1 and Proposition 4.1, is elementary and avoids this highly technical
and lengthy argument. It will also be clear in a moment that Theorem 4.1, Theorem
4.2, and Theorem 4.3 to a certain extent, fit naturally into the same framework.

Definition 4.2. LetX and Y be metric spaces and I a subinterval of [0,∞). A map
f : X → Y is called an I-range Lipschitz quotient map if there exist C,L ∈ (0,∞)
depending on I such that for all r ∈ I and x ∈ X one has

BY (f(x),
r

C
) ⊂ f(BX(x, r)) ⊂ BY (f(x), Lr).(4)

We say that f is I-range Lipschitz (resp. I-range co-Lipschitz) if the right (resp.
left) inclusion in (4) is satisfied for all r ∈ I and x ∈ X .

In particular, we say that f is Lipschitz (resp. co-Lipschitz) for large distances
if it is [s,∞)-range Lipschitz (resp. [s,∞)-range co-Lipschitz) for every s ∈ (0,∞).
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f is called a large scale Lipschitz quotient map, and we say that Y is a large scale
Lipschitz quotient of X if f is a [s,∞)-range Lipschitz quotient map for every
s ∈ (0,∞).

Recall also that a metric space X is said to be metrically convex if for every
x0, x1 ∈ X and t ∈ (0, 1) there exists xt ∈ X so that dX(x0, xt) = tdX(x0, x1) and
dX(x1, xt) = (1 − t)dX(x0, x1). It is a classical fact that a uniform quotient map
between metrically convex spaces is actually a large scale Lipschitz quotient map
(cf. [6] Proposition 1.11 and Lemma 11.11). The quantitative stand that we have
taken turns out to be extremely efficient due to Proposition 4.2 below, a qualitative
version of which (in the special case where Gn = Tω

ω ) is implicit in [10].

Proposition 4.2. Let X and Y be Banach spaces such that Y is a uniform sub-
quotient of X, where the uniform quotient map is Lipschitz for large distances. Let
(Gn)

∞
n=1 be a sequence of unweighted connected simple graphs. Then qcX(Gn) =

O(qcY (Gn)) for all n ∈ N.

Proof. Let Z be a subset of X and let f : Z → Y be a uniform quotient map that
is Lipschitz for large distances. Assume that for every n ≥ 1, Sn is a subset of Y
and gn : Sn → Gn is a Lipschitz quotient map. By a scaling of the set Sn we may
without loss of generality assume that Lip(gn) = 1. Let fn denote the restriction
of f to Zn := f−1(Sn) and Lipt(f) := sup{‖f(x) − f(y)‖Y : ‖x − y‖X ≥ t} the
Lipschitz constant of f for distances larger than t. Then for every n ≥ 1 and every
t ∈ (0,∞), Lipt(fn) ≤ Lipt(f) < ∞. Next it is shown that the maps hn := gn ◦ fn
are Lipschitz quotient maps from Zn onto Gn.

Claim 4.1. There exists δ ∈ (0,∞) such that Lip(hn) ≤ Lipδ(f) for all n ∈ N.

Proof of Claim 4.1. Since f is uniformly continuous, there exists δ ∈ (0,∞) so
that ‖f(x) − f(y)‖Y < 1 whenever ‖x − y‖X < δ. For every x, y ∈ Zn such that
‖x− y‖ < δ one has hn(x) = hn(y) since

ρGn
(hn(x), hn(y)) ≤ ‖fn(x)− fn(y)‖ < 1.

If ‖x− y‖ ≥ δ then

ρGn
(hn(x), hn(y)) ≤ ‖fn(x)− fn(y)‖ ≤ Lipδ(f)‖x− y‖.

Claim 4.2. There exists c ∈ (0,∞) such that coLip(hn) ≤ (c+ 1)coLip(gn) for all
n ∈ N.

Proof of Claim 4.2. Denote coLip(gn) := Dn ∈ [1,∞). Since Y is a Banach space
it is metrically convex, and hence f as well as its restrictions to Zn are co-Lipschitz
for large distances, there exists c ∈ (0,∞) such that for all n ≥ 1, for all x ∈ Zn,
and for all r ≥ 1,

BSn
(fn(x),

r

c
) ⊂ fn(BZn

(x, r)).

For every x ∈ Zn one has

BGn
(hn(x), 1) ⊂ gn(BSn

(fn(x), Dn))

⊂ gn

(
BSn

(
fn(x),

(c+ 1)Dn

c

))
⊂ hn(BZn

(x, (c+ 1)Dn)).

It follows that coLip(hn) ≤ (c + 1)coLip(gn) since the Gn’s are connected graphs.
Indeed, to show that the maps hn are co-Lipschitz with constant, say C, it is
sufficient to show that BGn

(hn(x), 1) ⊂ hn(BZn
(x,C)).

Therefore there exist δ, c ∈ (0,∞) so that codist(hn) ≤ (c+ 1)Lipδ(f)codist(gn)
for every n ∈ N. �
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In regards of Proposition 4.2 and Proposition 4.1, our alternative proofs of
(stronger forms) of Theorem 4.1 and Theorem 4.2 simply boil down to exhibit-
ing a discrepancy between the Y -distortion and the X-distortion of the complete
countably branching trees. This discrepancy is exhibited by comparing the lower
bound from Theorem 2.1 with the upper bound from Corollary 3.1.

Theorem 4.6. Let X be a Banach space admitting an equivalent norm with prop-
erty (βp) for some p ∈ (1,∞). Assume that a Banach space Y is a uniform subquo-
tient of X, where the uniform quotient map is Lipschitz for large distances. Then
ℓq is not a uniform subquotient of Y for any q > p such that the uniform quotient
map is Lipschitz for large distances.

Proof. If X is a Banach space with property (βp) for some p ∈ (1,∞), then

cX(Tω
h ) = Ω(log(h)

1
p ). Now, if ℓq is a uniform subquotient of Y for some q > p

such that the uniform quotient map is Lipschitz for large distances and if Y is a
uniform subquotient of X , where the uniform quotient map is also Lipschitz for
large distances, then it follows from Proposition 4.1, Proposition 4.2 and Corollary

3.1 that cX(Tω
h ) = O(log(h)

1
q ). There is a contradiction for h big enough. �

Theorem 4.7. c0 is not a uniform subquotient of a Banach space admitting an
equivalent norm with property (β) such that the uniform quotient map is Lipschitz
for large distances.

Proof. Assume that c0 is a uniform subquotient of a Banach space X admitting
an equivalent norm with property (β) such that the uniform quotient map is Lip-
schitz for large distances. Then it follows from Proposition 4.2 that qcX(Tω

h ) =
O(qcc0(T

ω
h )) for all h ∈ N, but it is easy to show using the summing basis that

cc0(T
ω
h ) ≤ 2 (actually that cc0(T

ω
h ) = 1 follows from Theorem 6.3 in [16]). Since

qcX(Tω
h ) = cX(Tω

h ) and qcc0(T
ω
h ) = cc0(T

ω
h ) by Proposition 4.1, one has cX(Tω

h ) =
O(cc0(T

ω
h )) = O(1) for all h ∈ N, but this contradicts Theorem 2.1. �

Remark 4.2. The conclusion of Theorem 4.6 (resp. Theorem 4.7) can be strength-

ened. Indeed, only the fact that Y satisfies cY (T
ω
h ) = o(log(h)

1
p ) is needed (resp.

c0 can be replaced by any Banach space Y such that cY (T
ω
h ) = o(log(h)

1
p ) for every

p ∈ (1,∞)).

The case of coarse quotients is a bit more delicate. A map f : X → Y between
two metric spaces X and Y is said to be coarsely continuous if ωf(t) < ∞ for all
t > 0, where ωf is the expansion modulus of f defined by

ωf (t) := sup{dY (f(x), f(y)) : dX(x, y) ≤ t}.

f is said to be co-coarsely continuous with constant K ∈ [0,∞) if for every ε > 0
there exists δ := δ(ε) > 0 so that for every x ∈ X ,

BY (f(x), ε) ⊂ f(BX(x, δ))K ,

where for a subset Z of a metric space Y the notation ZK means theK-neighborhood
of Z, i.e., ZK := {y ∈ Y : dY (y, z) ≤ K for some z ∈ Z}. A map f is then said to
be a coarse quotient map if f is both co-coarsely continuous and coarsely continu-
ous, and in that case we say Y is a coarse quotient of X . Y is said to be a coarse
subquotient of X if Y is a coarse quotient of a subset of X .

The technical lemma below is needed to prove an analogue of Proposition 4.2 in
the coarse setting. The proof can be found in [31] in a slightly different context.
Roughly speaking it says that a subset of a quotient is actually a quotient of a
subset. Note that this argument is straightforward in the uniform case, but in the
coarse setting it requires some effort. For the sake of completeness the proof is
presented here.
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Lemma 4.1. Let X and Y be metric spaces and f : X → Y a coarse quotient map
with constant K. Assume that Y is metrically convex and S is a subset of Y . Then
there exist a subset Z ⊂ X and a map g : Z → S satisfying the following:

(i) If K = 0, then for every ε > 0 there exists c1 := c1(ε) > 0 such that for all
x ∈ Z and r ≥ ε,

BS(g(x), r) ⊂ g(BZ(x, c1r)).(5)

(ii) If K > 0, then there exists c2 := c2(K) > 0 such that for all x ∈ Z and r > 0,

BS(g(x), r) ⊂ g(BZ(x, c2r))
4K .(6)

Proof. First we claim that f satisfies the following property:

For every ε > 2K, there exists c := c(ε) > 0 so that for all x ∈ X and r ≥ ε,

BY (f(x), r) ⊂ f(BX(x, cr))K .

Indeed, let n be the positive integer so that (n − 1)ε ≤ r < nε and assume that
y ∈ BY (f(x), r). Since Y is metrically convex, there exist {yi}2ni=0 with y0 = f(x)
and y2n = y such that d(yi, yi−1) ≤ ε

2 for all i. It follows from the definition of
co-coarse continuity that there exists δ := δ(ε) > 0 such that y1 ∈ BY (f(x), ε) ⊂
f(BX(x, δ))K , so dY (y1, f(x1)) ≤ K for some x1 ∈ BX(x, δ), and hence it follows
from the triangle inequality that y2 ∈ BY (f(x1), ε). We proceed inductively to get
{xi}2ni=1 such that dX(xi, xi−1) ≤ δ and dY (yi, f(xi)) ≤ K for all i. This implies

y ∈ f(BX(x, 2nδ))K ⊂ f(BX(x, cr))K , where c := c(ε) = 4δ(ε)
ε .

Define p : SK → S by p(a) = a if a ∈ S and p(a) = sa otherwise, where sa is
any point in S within distance K from a. We now show that in both cases (i) and

(ii) one can take Z = f−1(SK) and g = p ◦ f̃ , where f̃ : Z → SK is the restriction
of f to Z.

Indeed, in case (i) when K = 0, the map p becomes the identity map on S and
hence g : Z → S is the restriction of f to Z = f−1(S). Thus (5) follows with
c1(ε) = c(ε) by the above claim.

In case (ii) when K > 0, first observe that the claim still holds for ε = 2K, i.e.
there exists c̃ = c(2K) > 0 so that for all x ∈ X and r ≥ 2K one has BY (f(x), r) ⊂

f(BX(x, c̃r))K . Now for x ∈ Z and r ≥ 2K, suppose that y ∈ BSK (f̃(x), r). Then
there exists u ∈ BX(x, c̃r) such that dY (y, f(u)) ≤ K, and y ∈ SK implies that
dY (y, s) ≤ K for some s ∈ S, so

s ∈ BY (f(u), 2K) ⊂ f(BX(u, 2Kc̃))K .

Thus there exists v ∈ BX(u, 2Kc̃) such that dY (s, f(v)) ≤ K and hence v ∈ Z. It

follows that dY (y, f̃(v)) ≤ 2K and v ∈ BZ(x, 2Kc̃+ c̃r) ⊂ BZ(x, 2c̃r), so we have

shown that the map f̃ : Z → SK satisfies

BSK (f̃(x), r) ⊂ f̃(BZ(x, 2c̃r))
2K

for all x ∈ Z and r ≥ 2K. Therefore for every x ∈ Z and r ≥ 4K we have

BS(g(x), r) ⊂ p(BSK (f̃(x), r +K)) ⊂ p(BSK (f̃(x), 2r))

⊂ p
(
f̃(BZ(x, 4c̃r))

2K
)
⊂
(
p ◦ f̃(BZ(x, 4c̃r))

)ωp(2K)

⊂ g(BZ(x, 4c̃r))
4K .

This implies that (6) holds for c2 := c2(K) = 4c̃. �

Remark 4.3. The map g is actually a coarse quotient map with constant 4K even
if Y is not metrically convex.
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The next proposition is the analogue of Proposition 4.2 that is needed in the
coarse case.

Proposition 4.3. Let X and Y be Banach spaces such that Y is a coarse subquo-
tient of X, where the coarse quotient map is Lipschitz for large distances. Then
there exists k ∈ N (independent of n) so that qcX(Tω

2n) = O(qcY (T
ω
2n+k)) for all

n ∈ N.

Proof. Let Z be a subset of X and let f : Z → Y be a coarse quotient map
with constant K that is Lipschitz for large distances, i.e. Lipt(f) < ∞ for all
t ∈ (0,∞). We claim that k can be chosen as the smallest positive integer so that
2k > ωf (1) + 4K + 1. Assume that Sn is a subset of Y and gn : Sn → Tω

2n+k is a
Lipschitz quotient map. By a scaling of the set Sn we may without loss of generality
assume that Lip(gn) = 1. There exist a subset T (n) ⊂ Tω

2n+k , whose distance

between points in T (n) is at least 2k and a rescaled isometry in : T (n) → Tω
2n so that

ρTω
2n
(in(u), in(v)) = 2−kρTω

2n+k
(u, v) for every u, v ∈ T (n). Let S̃n := g−1

n (T (n)).

By Lemma 4.1 there exists c > 0 depending only on K, so that for every n ∈ N

there exist sets Zn ⊂ Z and coarse quotient maps fn : Zn → S̃n satisfying for all
x ∈ Zn and r ≥ 4K + 1,

BS̃n
(fn(x), r) ⊂ fn(BZn

(x, cr))4K .

The following diagram summarizes the situation:

X
∪

Z
f

−−−−−−→ Y
∪

Sn
gn

−−−−−−→ Tω
2n+k

∪ ∪ ∪

Zn
fn

−−−−−−→ S̃n

g̃n:=gn|S̃n−−−−−−→ T (n)
in−−−−−−→ Tω

2n .

Consider the map hn := in ◦ g̃n ◦ fn : Zn → Tω
2n , where g̃n is the restriction of

gn to S̃n.

Claim 4.3. For every n ∈ N, Lip(hn) ≤ 2−k(2K + Lip1(f)).

Proof of Claim 4.3. For every x, y ∈ Zn such that ‖x − y‖ < 1 one has hn(x) =
hn(y) since

ρTω
2n
(hn(x), hn(y)) ≤ 2−k‖fn(x) − fn(y)‖ ≤ 2−k(2K + ‖f(x)− f(y)‖) < 1.

If ‖x− y‖ ≥ 1 then

ρTω
2n
(hn(x), hn(y)) ≤ 2−k(2K + ‖f(x)− f(y)‖) ≤ 2−k(2K + Lip1(f))‖x− y‖.

Therefore Lip(hn) ≤ 2−k(2K + Lip1(f)).

Claim 4.4. For every n ∈ N, coLip(hn) ≤ 2kc · coLip(gn).

Proof of Claim 4.4. Denote coLip(gn) := Dn ∈ [1,∞). For every x ∈ Zn one has

BTω
2n
(hn(x), 1) = in

(
BT (n)(g̃n ◦ fn(x), 2

k)
)
⊂ in ◦ g̃n

(
BS̃n

(fn(x), 2
kDn)

)

⊂ in ◦ g̃n
(
fn
(
BZn

(x, 2kDnc)
)4K)

⊂ in

((
g̃n ◦ fn

(
BZn

(x, 2kDnc)
))4K)

= hn(BZn
(x, 2kDnc)),

which implies that coLip(hn) ≤ 2kDnc.
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Thus hn is a Lipschitz quotient map from Zn onto Tω
2n , with codist(hn) ≤ c(2K +

Lip1(f))codist(gn), where the constant c(2K +Lip1(f)) depends only on f and K.
�

Now a combination of Proposition 4.3, Proposition 4.1, Corollary 3.1, and The-
orem 2.1 gives:

Theorem 4.8. Let X be a Banach space admitting an equivalent norm with prop-
erty (βp) for some p ∈ (1,∞). Assume that a Banach space Y is a coarse subquo-
tient of X, where the coarse quotient map is Lipschitz for large distances. Then ℓq
is not a coarse subquotient of Y for any q > p such that the coarse quotient map is
Lipschitz for large distances.

Theorem 4.9. c0 is not be a coarse subquotient of a Banach space admitting an
equivalent norm with property (β) so that the coarse quotient map is Lipschitz for
large distances.

4.2. Metric characterization of asymptotic properties. It is a celebrated
result of Bourgain [7] that superreflexivity can be characterized in terms of the bi-
Lipschitz embeddability of the complete hyperbolic binary trees. Since then other
characterizations have been discovered [3], [15], [28]. The asymptotic analogue of
Bourgain’s characterization was proved by the first author, Kalton, and Lancien
[4]. The definitions of the asymptotic versions of uniform convexity and uniform
smoothness are briefly recalled. Let (X, ‖ · ‖) be a Banach space and t > 0. We
denote by SX its unit sphere. For x ∈ SX and Y a closed linear subspace of X , we
define

ρ(t, x, Y ) := sup
y∈SY

‖x+ ty‖ − 1 and δ(t, x, Y ) := inf
y∈SY

‖x+ ty‖ − 1,

and

ρ(t) := sup
x∈SX

inf
dim(X/Y )<∞

ρ(t, x, Y ) and δ(t) := inf
x∈SX

sup
dim(X/Y )<∞

δ(t, x, Y ).

The norm ‖ · ‖ is said to be asymptotically uniformly smooth (a.u.s. in short) if

lim
t→0

ρ(t)

t
= 0.

It is said to be asymptotically uniformly convex (a.u.c. in short) if

∀t > 0 δ(t) > 0.

These moduli were introduced by Milman in [26]. We recall the main result from
[4].

Theorem 4.10 ([4]). Let X be a reflexive Banach space. The following assertions
are equivalent:

(i) X is a.u.s. renormable and X is a.u.c. renormable,
(ii) suph≥1 cX(Tω

h ) = ∞,
(iii) cX(Tω

ω ) = ∞.

Theorem 4.11, which is partially explicit in [9], follows from the proof of Theorem
4 in [19].

Theorem 4.11 ([9],[19]). Let X be a separable Banach space. The following asser-
tions are equivalent:

(i) X admits an equivalent norm with property (β),
(ii) X admits an equivalent norm with property (βp) for some p ∈ (1,∞),
(iii) X is reflexive, a.u.s. renormable, and a.u.c. renormable.
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The same equivalences also hold without the separability assumption [8]. If
one uses a combination of Theorem 4.10 and Theorem 4.11 to prove that, for
every Banach space Y admitting an equivalent norm with property (β) one has
limh→∞ cY (T

ω
h ) = ∞, then one does not obtain an optimal estimate on the rate of

growth of (cY (T
ω
h ))h≥1. Moreover the proof in [4] of the fact that limh→∞ cY (T

ω
h ) =

∞ for every reflexive Banach space Y that is a.u.s. renormable and a.u.c. renormable
is rather technical and escapes geometric intuition. The advantage of using The-
orem 2.1 stems for the fact that it gives a simple, geometric, and direct proof of
the former fact, and it provides an optimal estimate on the rate of growth. New
problems are also uncovered. Indeed, we showed that limℓ→∞ cY (P

ω
ℓ ) = ∞, but

the following related embedding problem is open.

Problem 4.1. If Y does not admit any equivalent norm with property (β), do we
have supℓ≥1 cY (P

ω
ℓ ) < ∞?

4.3. Finite determinacy of bi-Lipschitz embeddability problems. Let λ ∈
[1,∞). A metric space X is λ-finitely representable in another metric space Y if
cY (F ) ≤ λ for every finite subset F of X . X is crudely finitely representable (resp.
finitely representable) in Y if it is λ-finitely representable in Y for some λ ∈ [1,∞)
(resp. for every λ ∈ (1,∞)).

Let C be a class of metric spaces. Given a metric space X , we say that its bi-
Lipschitz embeddability problem in the class C is finitely determined if for every
Y ∈ C, X admits a bi-Lipschitz embedding into Y whenever X is crudely finitely
representable in Y . Ostrovskii’s finite determinacy theorem [27] says that for every
locally finite metric space X , its bi-Lipschitz embeddability problem in the class of
Banach spaces is finitely determined. It is folklore that the local finiteness condition
in Ostrovskii’s theorem cannot be removed. For instance, ℓ2 is finitely representable
in ℓ1, but it is a well-known fact in nonlinear Banach space theory that ℓ2 does not
bi-Lipschitzly embed into ℓ1. If one restricts ones attention to the class of graph
metrics it becomes a tricky task to find examples of non-locally finite graphs whose
bi-Lipschitz embeddability problem in the class of Banach spaces is not finitely
determined. Such an example can be provided appealing to Theorem 2.1. Indeed,
if Y = (

∑∞
n=1 ℓ

n
∞)2, then Tω

ω is finitely representable in Y but it does not admit any
bi-Lipschitz embedding into Y . Therefore Ostrovskii’s finite determinacy theorem
does not hold even for structurally simple graphs such as (non-locally finite) trees.
Ostrovskii’s proof actually gives a more precise quantitative statement.

Theorem 4.12 ([27]). There exists µ ∈ (0,∞) such that for every locally finite
metric space M and every Banach space Y the inequality cY (M) ≤ µλ holds when-
ever M is λ-finitely representable in Y .

The bi-Lipschitz embeddability problem for the space Tω
h seems to be more

elusive. In the next proposition it is shown that an analogue of the quantitative
statement above does not hold for the sequence (Tω

h )h≥1.

Proposition 4.4. Let p ∈ (1, 2). There does not exist a constant µ ∈ (0,∞) such
that for every h ≥ 1 the inequality cℓp(T

ω
h ) ≤ µλ holds whenever Tω

h is λ-finitely
representable in ℓp.

Proof. Assume that there exists a finite constant µ > 0 such that for every h ∈ N,
one has cℓp(T

ω
h ) ≤ µλ whenever Tω

h is λ-finitely representable in ℓp. Let F be a

finite subset of Tω
h . It follows from Corollary 3.1 that cℓ2(F ) = O(

√
log(h)) and

hence cℓp(F ) = O(
√

log(h)) by Dvoretzky’s theorem. But Theorem 2.1 says that

cℓp(T
ω
h ) = Ω(log(h)

1
p ). Therefore µ & log(h)

1
p
− 1

2 which is a contradiction when h
is large enough. �
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