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EXISTENTIALLY CLOSED FIELDS WITH G-DERIVATIONS

DANIEL HOFFMANN† AND PIOTR KOWALSKI♠

Abstract. We prove that the theories of fields with Hasse-Schmidt deriva-
tions corresponding to actions of formal groups admit model companions. We
also give geometric axiomatizations of these model companions.

1. Introduction

In this paper, we describe the model theory of fields with Hasse-Schmidt derivations
(abbreviated as HS-derivations in the sequel) obeying iterativity conditions coming
from the actions of formal groups. We consider “e-dimensional HS-derivations in
a generalized sense” (see e.g. [10, Def. 2.12]). This approach includes the case of
e-tuples of the usual HS-derivations. (Actually, both approaches are equivalent in
the iterative case, see Remark 3.13.)

One could wonder why do the iterativity conditions help to understand the first-
order theories of the fields with HS-derivations. The main reason is that the iter-
ativity conditions enable us to characterize the étale extensions of fields in a first
order fashion, see Lemma 3.22 (originating from [32, Cor. 2.2]). Such a character-
ization is crucial for the quantifier elimination results in Section 4.

We consider both truncated and full HS-derivations. The iterativity rules con-
sidered in this paper are governed by (finite in the truncated case) formal groups.
We describe the model companions of the theories of fields with such HS-derivations
mostly using the ideas from [32]. Then, we extend the results about the geometric

axiomatizations [13] from the case of “additive” iterativity (F = Ĝe
a) to the case

of an arbitrary F -iterative rule (F is a formal group). We address the question
whether the theories we obtain are bi-interpretable with the theory of separably
closed fields with a fixed imperfection invariant (it is the case in [32]). It turns
out that we get such a bi-interpretability result for formal groups which are the
formalizations of algebraic groups. It is not clear for us what happens for the other
formal groups. We also discuss the notion of “canonical G-tuples” (see Definition
6.1), which generalizes Ziegler’s notion of canonical p-basis [32], and possible gen-
eralizations of our methods to the context of [21].

The paper is organized as follows. In Section 2, we introduce the notation and
conventions which will be used in the paper. In Section 3, we develop an algebraic
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theory of (iterative, truncated, multi-dimensional) HS-derivations. In Section 4,
we apply the results from Section 3 to obtain a description of the model complete
theories of fields with different types of HS-derivations. In Section 5, we give geo-
metric axioms for the theories considered in Section 4. In Section 6, we speculate
about possible extensions of the results of this paper to more general contexts.

1.1. Formal group actions and model theory. For convenience of a reader
not familiar with commutative algebra around the theory of formal groups, we
provide in this section an elementary argument (originating from an observation of
Matsumura [19, Section 27]) explaining how formal group scheme actions can be
understood as HS-derivations satisfying an iterativity rule.

For simplicity, we only consider the one-dimensional case. A sequence (Di : R→
R)i∈N is an HS-derivation (over k) if and only if the corresponding map

D : R→ RJXK, D(r) =

∞∑

i=0

Di(r)X
i

is a ring (k-algebra) homomorphism and a section of the projection map RJXK→ R.
The standard iterativity condition may be expressed using the following diagram

R
D //

D

��

RJXK

DJXK

��
RJXK

X 7→X+Y // RJX,Y K,

i.e. D is iterative if and only if the diagram above is commutative. Clearly, the
additive formal group law X + Y is crucial for the standard iterativity rule above.
(A formal group law over k, see e.g. [28, Chapter IV.2], is a power series F over
k in two variables satisfying formally the group axioms, e.g. F (F (X1, X2), X3) =
F (X1, F (X2, X3)).) The diagram above may be interpreted as an action of the
formal additive group scheme on the scheme Spec(R). We explain it below in
an easier case of truncated HS-derivations (see Section 3.1), which correspond to
actions (in the category of schemes) of finite group schemes.
We start from the truncated iterativity diagram, which is just a truncation of the
diagram above expressing the standard iterativity of HS-derivations

R
D //

D

��

R[vm]

D[vm]

��
R[wm]

cR // R[wm, vm].

Here cR(wm) = vm + wm gives a Hopf algebra structure over R. Using the tensor
product over the base field k, we obtain the following diagram.

R
D //

D

��

k[vm]⊗R

idk[vm] ⊗D

��
k[vm]⊗R

c⊗idR // k[vm]⊗ k[vm]⊗R
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Going to the opposite category (of k-schemes), we see that we get exactly the
diagram expressing the mixed associativity of a group scheme action

R g×X
D̃oo

g×X

D̃

OO

g× g×X,
µ×idXoo

idg ×D̃

OO

where X = Spec(R) and g = ker(FrmGa
).

The considerations above lead to an interesting conclusion that actions of groups
with “no points” (i.e. finite local group schemes as above), which seem to be very far
from any model-theoretic considerations, are actually amenable to model-theoretic
treatment; it is the main point of this paper.

2. Definitions, notation and conventions

In this section we introduce the notation and conventions which we are going to
use throughout the paper. We also recall (or refer to) several standard notions.

In the entire paper, k will be a perfect field of characteristic p > 0 (unless we
clearly say that char(k) = 0). The category of affine group schemes over k is the
category opposite to the category of Hopf algebras over k [30, Section 1.4] (or it is
the category of representable functors from k-algebras to groups, see [30, Section
1.2]). A truncated group scheme [3] over k is an affine group scheme whose universe

is isomorphic to Spec(k[X1, . . . , Xe]/(X
pm

1 , . . . , Xpm

e )).

Remark 2.1. If char(k) = 0, then by a theorem of Cartier [30, Section 11.4] all
Hopf algebras over k are reduced, so there are no truncated group schemes.

The category of formal groups over k is the category opposite to the category of
complete Hopf algebras over k (or the category of representable functors from com-
plete k-algebras to groups, see [5, Chapter VII]). There is a correspondence between
smooth formal groups (the underlying complete algebra is the power series algebra
in e variables) and formal group laws, where an e-dimensional formal group law
over k, is a power series in 2e variables formally satisfying the group axioms, see
[5, Sect. 9.1]. Note that a truncated group scheme is both an affine group scheme
and a formal group.

For the rest of the paper we fix the following.

• Let m and e be positive integers.
• LetX denote the tuple of variables (X1, . . . , Xe). For a tuple n = (n1, . . . , ne)
of natural numbers, we denote Xn1

1 . . . Xne
e by Xn.

• Let k[vm] denote the ring k[X]/(Xpm

1 , . . . , Xpm

e ).
• For a positive integer l, let [l] denote the set {0, . . . , l − 1}.
• Let g be a group scheme over k whose underlying scheme is Spec(k[vm]).
• Let R and S be k-algebras.
• Let G be an algebraic group over k.
• Let V be a scheme over k.
• Let F be an e-dimensional formal group law over k.
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2.1. Truncations of group schemes. Let G be an affine group scheme over k,
H the corresponding Hopf algebra and m be the kernel of the counit map H → k
(the augmentation ideal). Using the base-change given by the automorphism Frm :
k → k we get the affine group scheme GFrm over k and a group scheme morphism
FrmG : G → GFrm . Let G[m] be the kernel of FrmG which is a truncated k-group
scheme. (In the case of a commutative group scheme A, A[m] often denotes the
kernel of multiplication by m and “our” A[m] is often denoted by A[Frm]. Since
we do not consider the kernel of multiplication by m in this paper, we prefer our
simplified notation.)

It corresponds to the quotient Hopf algebra

H [m] := H/Frm(m)H.

We get a direct system of truncated k-group schemes (G[n])n∈N. If G = G, then

lim−→(G[n]) coincides with Ĝ, the formal group which is the formalization of G (see

[16, Lemma 1.1]).
Similarly, for a complete Hopf algebra H, we have the analogous quotient H[m]
which is a Hopf algebra and also a complete Hopf algebra. Hence for a formal
group F , we have a direct system of truncated group schemes F [m] and in this case
we get that F = lim

−→
F [m], see [16, Lemma 1.1] again.

Remark 2.2. One may ask whether any truncated group scheme g can be inte-
grated i.e. whether there is a formal group law F such that F [m] = g. For e = 1,
the answer is positive if and only if g is commutative [5, Corollary 5.7.4] (see [5,
Example 5.7.8] for an example of a non-commutative g).

Remark 2.3. For the truncated group scheme g, we get a finite direct system of
truncated group schemes

0 = g[0] < g[1] < . . . < g[m− 1] < g[m] = g.

The group schemes in this direct system may be described as follows. Let i ∈ [m+1]

and gFr
i

be the group scheme g twisted by the i-th power of the Frobenius map.

Then we have a group scheme morphism Frig : g→ gFr
i

such that

ker(Frig) = g[i], Frig(g) = gFr
i

[m− i].

3. Finite group schemes and iterative HS-derivations

In this section, we develop an algebraic theory of (iterative, truncated) multi-
dimensional HS-derivations.

3.1. Multi-dimensional truncated HS-derivations. We are going to use the
following definition.

Definition 3.1. (1) An e-dimensional HS-derivation on R over k is a k-algebra
homomorphism

D : R→ RJXK

which is a section of the projection map

RJXK→ R, H 7→ H(0).
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(2) An m-truncated e-dimensional HS-derivation on R over k is a k-algebra
homomorphism

D : R→ R[vm]

which is a section of the projection map R[vm]→ R.

Remark 3.2. (1) From any e-dimensional HS-derivation D on R over k and
any positive integer n, we get in an obvious way (i.e. by post-composing
with the quotient map RJXK → R[vn]) an n-truncated e-dimensional HS-
derivation on R which we denote by D[n].

(2) Let us denote D(r) by
∑

i Di(r)X
i. Using such a notation, an e-dimensional

HS-derivation on R over k is a sequence

D = (Di : R→ R)i∈Ne

satisfying the following properties:
• D0 = idR,
• each Di is k-linear,
• for any x, y ∈ R we have

Di(xy) =
∑

j+k=i

Dj(x)Dk(y).

(3) Each e-dimensional HS-derivation D on R gives the following tuple of (1-
dimensional) HS-derivations on R:

D1 := (D(i,0,...,0))i∈N, . . . ,De := (D(0,...,0,i))i∈N.

On the level of k-algebra maps, the above m-truncated HS-derivations cor-
respond to the composition of D : R→ RJXK with the appropriate projec-
tion map RJXK→ RJXK.

(4) On the other hand, each e-tuple of (1-dimensional) HS-derivations on R
gives an e-dimensional HS-derivation on R, e.g. for e = 2 and D1,D2 :
R → RJXK we get the 2-dimensional HS-derivation on R given by the
composition below

R
D1 // RJXK

D2JXK // RJX,Y K.

However, not all e-dimensional HS-derivations on R can be obtained in
such a way. In fact an e-dimensional HS-derivation D is not necessarily
determined by the e-tuple D1, . . . ,De from (3). For example consider the
(truncated) case when p = 2 and m = 1. If ∂ is a non-zero derivation on
R, then the map

D(r) = r + ∂(r)(X + (X2))(Y + (Y 2))

is a non-zero 1-truncated 2-dimensional HS-derivation, but the correspond-
ing 1-truncated 1-dimensional HS-derivations from (3) are the zero maps.

(5) All the above (for n 6 m) applies tom-truncated e-dimensional HS-derivations
(after replacing “N” with “[pm]” and “JXK” with “[vm]”).

(6) We can extend Definition 3.1 to define m-truncated e-dimensional HS-
derivations from R to S (we do not require anything about the sections
here).

(7) Our m-truncated 1-dimensional HS-derivations correspond to the higher
derivations of length pm − 1 from [19].
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For the definition of an étale map/algebra, the reader is advised to consult [19, p.
193] (called “0-étale” there). It is easy to see that the condition “N2 = 0” from
[19, p. 193] may be replaced with the condition “N is nilpotent” (see e.g. Remark
on page 199 of [17]).

Proposition 3.3. Assume that R → S is an étale k-algebra map. Then any
(m-truncated) e-dimensional HS-derivation D on R uniquely extends to an (m-
truncated) e-dimensional HS-derivation D′ on S.

Proof. The proof goes almost exactly as in [19, theorem 27.2], so we will just
sketch the main inductive step which makes clear how the étale assumption is
used. We apply the induction on the truncation degree. Assume that for l ∈ N

(resp. l < m) we have extended D[l] to an l-truncated e-dimensional HS-derivation
D′ := (D′

i)i<[pl]e on S. Consider the following diagram

S[X]/(Xpl

1 , . . . , Xpl

e )

S

D
′

66♠♠♠♠♠♠♠♠♠♠♠♠♠ //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ S[X]/(Xpl+1

1 , . . . , Xpl+1

e )

π
jj❱❱❱❱❱❱❱❱❱❱❱❱❱❱

R
f

hh❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘ D[l+1]

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

where π is the quotient map. Then (ker π)e+1 = 0, so ker(π) is nilpotent. Since the
map R→ S is étale, we get a unique k-algebra map

S → S[X]/(Xpl+1

1 , . . . , Xpl+1

e )

completing the diagram above. �

Remark 3.4. Proposition 3.3 enables us to generalize Definition 3.1 in the following
way.

(1) Since the localization maps are étale (see [19, p. 193]), any (m-truncated)
e-dimensional HS-derivation on R uniquely extends to an (m-truncated)
e-dimensional HS-derivation on a localization of R.

(2) By (1), we get a notion of an (m-truncated) e-dimensional HS-derivation
on any scheme over k.

(3) Proposition 3.3 generalizes to schemes over k.
(4) The notion of an (m-truncated) e-dimensional HS-derivation on a scheme

V is a special case of the notion of a D-structure on a scheme V , see [21].
We will discuss possible generalizations of the results of this paper to the
context of [21] in Section 6.

(5) It is easy to generalize the assumptions of Proposition 3.3 to include the
case of (m-truncated) e-dimensional HS-derivations from R to S.

Definition 3.5. If D is an (m-truncated) e-dimensional HS-derivation on R over
k, then we define the following.

(1) The ring of constants of (R,D) is

ker(D(1,0,...,0)) ∩ . . . ∩ ker(D(0,...,0,1)).

Clearly, Rp is contained in the ring of constants of (R,D).
(2) We call (R,D) strict, if the ring of constants of D coincides with Rp.
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(3) The ring of absolute constants of (R,D) is
⋂

i6=0

ker(Di).

Remark 3.6. If D is an (resp. m-truncated) e-dimensional HS-derivation on R
over k, then Rp∞

(resp. Rpm

) is contained in the ring of absolute constants. It is
easy to see (e.g. in the m-truncated case) considering D : R → R[vm] as a ring
homomorphism and taking the pm-th power.

Notation 3.7. The couple (R,D) will be usually denoted by R and called an
(m-truncated e-dimensional) HS-ring. Similarly, we get the notions of HS-fields,
HS-extension, etc.

3.2. Group scheme actions. We introduce a notion which generalizes the notion
of an m-truncated iterative HS-derivation from [13].

Definition 3.8. (1) A g-derivation on V is a k-group scheme action of g on
V (see Section 12 in [23]).

(2) A g-derivation on R is a g-derivation on Spec(R).
(3) We naturally get the notions of a g-ring, a g-field and a g-extension.

Remark 3.9. A g-derivation on R is the same as an m-truncated e-dimensional
HS-derivation on R over k satisfying a “g-iterativity” rule. It is easy to see that
the trivial action of the unit morphism corresponds to the condition D0 = idR and
the diagram expressing the mixed associativity of the k-group scheme action d is
the following “g-iterativity” diagram

R
d //

d

��

R[vm]

d[vm]

��
R[wm]

c // R[wm,vm]

where wm is another “m-truncated e-tuple of variables” and c is the Hopf algebra
comultiplication given by g. Therefore for an arbitrary k-scheme V , any g-derivation
on V is also an m-truncated e-dimensional HS-derivation on V over k in the sense
of Remark 3.4(2).

Remark 3.10. We will give another interpretation of the g-iterativity condition.
Suppose that the matrix (in the standard basis) of the k-linear comultiplication
map c from Remark 3.9 has the form (cki,j). Suppose also that D = (Di)i is an
m-truncated e-dimensional HS-derivation on R over k. Then D is a g-derivation if
and only if for all i, j we have

Dj ◦Di =
∑

k

cki,jDk.

One easily shows the following.

Fact 3.11. If g = g1× . . .× ge (product of finite group schemes), then we have the
following.

(1) For any g-derivation D on R and i 6 e, Di from Remark 3.2 is a gi-
derivation and we have

D(i1,...,ie) = D1,i1 ◦ . . . ◦De,ie .
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(2) If for any any i 6 e, Di is an gi-derivation, and we have Di,i′ ◦ Dj,j′ =
Dj,j′ ◦Di,i′ for all i, j 6 e and i′, j′ ∈ N, then the formula

D(i1,...,ie) = D1,i1 ◦ . . . ◦De,ie

defines a g-derivation.

Example 3.12. We give below several examples of g-iterativity rules.

(1) A sequence of e commuting iterative m-truncated HS-derivations from [13]
is the same as a Ge

a[m]-derivation (see Fact 3.11).
(2) Let G be the unipotent algebraic group of dimension 2 given by the cocycle

(X + Y )p −Xp − Y p

p
,

see [26, p. 171].
Assume that p = 2 and D is an m-truncated 2-dimensional HS-derivation.
Then D is a G[m]-derivation if and only if

D(k,l) ◦D(i,j) =

min(j,l)∑

t=0

(i+ k + t)!

i!k!t!

(j + l − 2t)!

(j − t)!(l − t)!
D(i+k+t,j+l−2t).

In particular, we have the following formulas which actually describe the
G[m]-iterativity rule fully:

D(0,j) ◦D(i,0) = D(i,j) = D(i,0) ◦D(0,j),

D(k,0) ◦D(i,0) =

(
i+ k

i

)
D(i+k,0),

D(0,1) ◦D(0,i) = (i + 1)D(0,i+1) +D(1,i−1).

The first author described in [7] a modification of the theory of separably
closed fields with higher derivations from [20] using the iterativity rules
coming from algebraic groups similar to the one considered here (groups of
Witt vectors).

(3) LetG beGa⋊Gm, where the group operation onGm is given byX+Y +XY .
Hence the group operation on G is given by

(X1, Y1) ∗ (X2, Y2) = (X1 +X2 + Y1X2, Y1 + Y2 + Y1Y2).

Let D be an m-truncated 2-dimensional HS-derivation. Then D is a G[m]-
derivation if and only if

D(k,l) ◦D(i,j) =

min(k,j)∑

t=0

min(l,j−t)∑

s=0

(i + k)!

i!(k − t)!t!

(j + l − t− s)!

(j − t− s)!(l − s)!s!
D(i+k,j+l−t−s).

In particular, we have

D(0,l) ◦D(i,0) = D(i,l).

But the above formula does not apply for the other choice of coordinates

D(1,0) ◦D(0,1) = D(1,1) +D(1,0) 6= D(1,1) = D(0,1) ◦D(1,0).

We also have the following “additive coordinate” rule

D(1,0) ◦D(i,0) = (i+ 1)D(1+i,0) = D(i,0) ◦D(1,0),
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and the “multiplicative coordinate” rule

D(0,1) ◦D(0,i) = (i + 1)D(0,i+1) + iD(0,i) = D(0,i) ◦D(0,1).

Remark 3.13. We see that all the e-dimensional HS-derivations in the example
above are determined by the 1-dimensional HS-derivations D1, . . . ,De from Remark
3.2(3). It may be shown (using Lemma 3.14 below) that this is the case for an
arbitrary F -derivation (or a g-derivation).

We will need more precise information about the “structural constants” from Re-
mark 3.10.

Lemma 3.14. Let cki,j be as in Remark 3.10. For a tuple of natural numbers

n = (n1, . . . , ne), the sum n1 + . . . + ne is denoted by |n|. Then we have the
following.

(1) If |k| > |i|+ |j|, then cki,j = 0.

(2) If |k| = |i|+ |j| and k 6= i+ j, then cki,j = 0.

(3) If k = i+ j, then

cki,j =

(
i1 + j1

i1

)
· . . . ·

(
ie + je

ie

)
.

Proof. It is clear for i = 0 or j = 0, so we assume that i, j 6= 0. By a truncated
version of the formula [5, (14.1.1)], we have (in the notation of Remark 3.9)

c(wm) = wm + vm + sm,

where sm = (S1, . . . , Se) for some S1, . . . , Se belonging to the ideal (wm · vm).
Therefore for every r ∈ R we have

∑

i,j

DjDi(r)v
i
mwj

m =
∑

k

Dk(r)(wm + vm + sm)k.

We get the result by comparing the coefficients at vi
mwj

m. �

Remark 3.15. Note that for every i, j 6= 0 we have the following:

Dj ◦Di =

(
i1 + j1

i1

)
· . . . ·

(
ie + je

ie

)
Di+j +O(Dn)0<|n|<|i+j|,

where O(Dn)0<|n|<|i+j| is a k-linear combination of Dn for 0 < |n| < |i + j|. We
consider the quantity O(·) as a “disturbance from the additive iterativity”, because
for the additive iterativity condition this linear combination is always zero. Lemma
3.13 from [8] regards the case of e = 1.

Lemma 3.16. If R = (R,D) is a g-ring, then the ring of constants of R coincides
with the ring of absolute constants of (R,D[1]).

Proof. It follows from Lemma 3.14, that for any i 6= 0, Di is a k-linear combina-
tion of the compositions of the derivations D(1,0,...,0), . . . , D(0,...,0,1) which gives the
result. �

We comment below on a related notion of a restricted Lie algebra action (see [29]).

Remark 3.17. For m = 1, any finite group scheme of the form considered in this
paper (i.e. any finite group scheme of the Frobenius height one) is equivalent to
a restricted Lie algebra in the sense of the theorem on page 139 of [23]. Hence a
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g-derivation (m = 1) on R is equivalent to an action on R of e derivations satis-
fying the commutator and the p-th composition rules given by the corresponding
restricted Lie algebra Lie(g) (see [23]).

We need to know that the unique extension in Proposition 3.3 preserves the g-
iterativity condition.

Proposition 3.18. Assume that R → S is étale and D is a g-derivation on R.
Then the unique extension of D to S in Proposition 3.3 is a g-derivation.

Proof. The proof of the moreover part of [19, theorem 27.2] may be applied here,
similarly as in the proof of Proposition 3.3. �

Remark 3.19. As before, Proposition 3.18 easily generalizes to g-derivations on
k-schemes.

We prove a version of the “Wronskian theorem” [12, Thm. II.1] for the case of
g-derivations.

Proposition 3.20. Let K be a g[1]-field and C be its field of constants. Then for
any positive integer l and any x1, . . . , xl ∈ K, the elements x1, . . . , xl are linearly
independent over C if and only if the rank of the following “Wronskian matrix”

(
Di(xj)

)
i∈[p]e,j6l

is strictly smaller than l.

Proof. Assume that xl = c1x1+. . .+cl−1xl−1 for some c1, . . . , cl−1 ∈ C. By Lemma
3.16, each Di is C-linear. Hence we obtain that the rank of our Wronskian matrix
is smaller than l as in the standard case (see [12, Thm. II.1]).
Let the rank of the matrix

(
Di(xj)

)
i∈[p]e,j6l

be equal to r < l. After reordering

x1, . . . , xl, we may assume that the matrix
(
Di(xj)

)
i∈[p]e,j6r

has rank r. Therefore

there exist λ1, . . . , λr+1 ∈ K, not all equal to 0, such that for each tuple k we have

(∗)

r+1∑

s=1

λsDk(xs) = 0.

Reordering and dividing by cr+1 if need be, we may assume that cr+1 = 1. By
Remark 3.10, there are cki,j ∈ C such that for all tuples i, j we have

Dj ◦Di =
∑

k

cki,jDk.

Hence for 1 := (1, 0, . . . , 0) and every tuple i we get (using (∗) with k = 1 for the
last equality)

0 =

r+1∑

s=1

D1(λs)Di(xs) +

r+1∑

s=1

λsD1(Di(xs))

=
r∑

s=1

D1(λs)Di(xs) +
∑

l

cl1,i

r+1∑

s=1

λsDl(xs)

=

r∑

s=1

D1(λs)Di(xs).
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Thus D(1,0,...,0)(λs) = 0 for every s 6 r. After similar reasoning for the derivations
D(0,1,0,...,0), . . . , D(0,...,0,1) we get λ1, . . . , λr+1 ∈ C. By setting k = 0 in (∗), we
obtain that x1, . . . , xl are linearly dependent over C. �

The next result generalizes the first part of [32, Lemma 2.1] (the second part is
generalized in Proposition 3.22(1)). For a group scheme action interpretation and
more comments, see Remark 3.29.

Corollary 3.21. Let K be a g-field and C its field of constants. Then we have

[K : C] 6 pe.

Proof. Let l = pe+1 and x1, . . . , xl ∈ K. The rank of the corresponding Wronskian
matrix from Proposition 3.20 is at most pe, since there are only pe operators of the
form Di. By Proposition 3.20, x1, . . . , xl are linearly dependent over C. �

We can generalize now the appropriate results from [32] to the context of g-
derivations. Let K be a field of characteristic p. Then [K : Kp] = pl, where
l ∈ N ∪ {∞}. We call l the degree of imperfection of K. For the definition and
properties of separable algebras/field extensions the reader is referred to [19, Sect.
26]. The next result is a crucial characterization of the étale extensions which we
will need for the quantifier elimination results in Section 4.

Lemma 3.22. Let K ⊆ L be an extension of g-fields. Let CK (resp. CL) be the
constant field of K (resp. L). Then we have the following.

(1) The field K is linearly disjoint from CL over CK .
(2) If K is strict (see Def. 3.5(2)), then the extension K ⊆ L is separable.
(3) If the extension K ⊆ L is étale and K has a finite degree of imperfection,

then K is strict if and only if L is strict.

Proof. For (1), we apply Lemma 3.20 as in the standard case (see [12, Cor. 1, p.
87]).
The item (2) follows directly from (1) using [19, Thm. 26.4].
The right-to-left implication in (3) is clear (and only the condition Lp ∩K = Kp

is used). For the left-to-right implication, the étale assumption implies that [L :
Lp] = [K : Kp] and KLp = L. Since Lp ⊆ CL, by (1) (used for the second equality
below) we get

[L : Lp] = [K : Kp] = [KCL : CL] = [L : CL].

Since [L : Lp] is finite, we get CL = Lp. �

3.3. Formal group actions. Recall that F is a formal group law over k which
may be identified with a direct system of finite group schemes over k and G is an
algebraic group over k.

Definition 3.23. We define the following.

(1) An F -derivation on V is a direct system of F [m]-derivations on V .

(2) A G-derivation is a Ĝ-derivation (see Section 2.1 for the definition of Ĝ).
(3) Similarly we get the notions of an F -derivation and a G-derivation on R.

Remark 3.24. (1) As in Remarks 3.9, 3.10, any F -derivation is an e-dimensional
HS-derivation which satisfies the F -iterativity law.



12 D. HOFFMANN AND P. KOWALSKI

(2) Note that a G-derivation on V (i.e. a direct system of group scheme actions
of G[m] on V ) is not the same as an algebraic action of G on V . Clearly,
any algebraic action of G on V gives a G-derivation by restricting the action
of G to G[m] for each m. The difference between these two notions is easy
to observe for R = k[t] and G = Ga. If D is a Ga-derivation on R (i.e. an
iterative HS-derivation on R), then D comes from a Ga-action on Spec(R)
if and only if there is n such that for all i > n, we have Di(t) = 0.

Example 3.25. Let R = kJXK and K = k((X)). Similarly as in [8, Section 3.2],
we define a canonical F -derivation on R and K. As a k-algebra map, it is defined
on R as follows

DF = evF : R→ RJY1, . . . , YeK, DF (f) = f(F ).

By Proposition 3.18, DF uniquely extends to an F -derivation on K which we also
call canonical and also denote by DF . For any m, we call DF [m] (on R or on K) a
canonical F [m]-derivation.

We point out here that for a given g, there may exist non-isomorphic formal groups
F1, F2 such that F1[m] = g = F2[m].

Proposition 3.26. The canonical F -derivation (equivalently, F [m]-derivation) is
strict.

Proof. We introduce the following notation:

∂F
1 = D(1,0,...,0), . . . , ∂

F
e = D(0,...,0,1).

Let i 6 e and f ∈ K. By the chain rule, we get

(∗) ∂F
i (f) =

(∂Fi

∂Yj
(X, 0)

)
i,j
·
( ∂f

∂X1
, . . . ,

∂f

∂Xe

)
.

Let J denote the Jacobian matrix appearing in (∗). Then J is the matrix of the
derivative (at 0) of the formal map which is the “F -multiplication by X”. Since
this formal map is (formally) invertible, the matrix J is non-singular. Therefore

f belongs to the field of constants if and only if ∂f
∂Xi

= 0 for each i. The latter
condition occurs if and only if f is a p-th power, so the result is proved. �

In the case when F = Ĝ, we can define a canonical F -derivation on a localization
of a k-algebra of finite type.

Example 3.27. Let OG be the local ring of G at the identity. Since G is a smooth
variety over k, OG is a regular local ring. Let x = (x1, . . . , xe) be a sequence of local

parameters in OG. By [19, Thm 30.6(i)], the ring ÔG is the power series ring in

the variables x. If F = Ĝ, then F (x,Y) ∈ OGJYK (the group action is algebraic!).
Hence OG is a G-subring (after identifying x with X) of (kJXK,DF ). Therefore the
field of rational functions k(G) has a natural G-derivation on it which we call the
canonical G-derivation on k(G). We also get a canonical G[m]-derivation on k(G).
If G is affine, then we also have a canonical G-derivation on k[G]. The natural
extensions

k[G] ⊆ KJXK, k(G) ⊆ K((X)),

where the local parameters on G are understood as variables as in [19, Thm 30.6(i)],
are G-extensions by our construction.
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3.4. Strict g-derivations and group scheme actions. In this subsection we will
investigate strict g-rings using group scheme actions. Let us fix D, a g-derivation on
V . For the notion of a (free) action of a group scheme on a scheme and its (good)
quotient, the reader is advised to consult Section 12 of [23].

Theorem 3.28. We have the following.

(1) The quotient scheme V/g exists.
(2) If V = Spec(R), then V/g = Spec(CD), where CD is the ring of absolute

constants of R (see Definition 3.5(3)).

Proof. For (1), we quote [23, Thm 1(A), p. 111].
By the proof of [23, Thm 1(A), p. 111] we have V/g = Spec(C′) where

C′ = {r ∈ R | D(r) = r}.

Clearly C′ coincides with CD giving (2). �

Remark 3.29. Let D be a g[1]-derivation on a field K with the field of constants
C. Using Proposition 3.20, it is easy to see that if x1, . . . , xn ∈ K are linearly
independent over C, then D(x1), . . . ,D(xn) ∈ K[v1] are linearly independent over
K. Therefore the induced K-linear map

D̃ : K ⊗C K → K[v1], D̃(a1 ⊗ b1 + . . .+ an ⊗ bn) = a1D(b1) + . . .+ anD(bn)

is an embedding. Since we have

dimK K ⊗C K = [K : C] 6 pe, dimK K[v1] = pe,

the following are equivalent:

(1) [K : C] = pe,

(2) the map D̃ is onto,

(3) the map D̃ is an isomorphism.

In terms of group scheme actions, the above equivalences mean that the action of
g on Spec(K) is free if and only if [K : C] = pe, and if this action is free, then
the corresponding quotient Spec(C) = Spec(K)/g is a good quotient. Note that
the general theorem about group scheme actions [23, Thm 1(B), p. 112] gives the
left-to-right implication above.

We comment below on an interpretation of the notion of strictness using group
scheme actions.

Remark 3.30. Let V Frm be V twisted by the m-th power of the Frobenius auto-
morphism as in Section 2.1. From the universal property of quotients, there is a
unique morphism Ψ making the following diagram commutative

V

FrmV
��

// V/g

Ψ

ww♣♣♣
♣♣
♣♣
♣♣
♣♣

V Frm .

If V = Spec(R) and m = 1, then R is strict if and only if Ψ is an isomorphism. It
is also easy to see that for a reduced R and arbitrary m, R is strict if and only if
Ψ is an isomorphism.

We will need the following result in Section 4.2.
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Lemma 3.31. Let D be a g-derivation on R and C be the ring of constants of
(R,D). Then we have the following.

(1) C is a g-subring.
(2) A g-action on Spec(C) naturally induces a g[m− 1]Fr-action on Spec(C),

hence C is naturally a g[m− 1]Fr-ring.

Proof. We work on the level of group scheme actions. By Theorem 3.28(2), we have
Spec(C) = Spec(R)/g[1]. As in the case of the usual group actions (one can work
it out on the level of rational points), we get the induced action of D on Spec(C)
(since g[1] is normal in g) giving (1).

For (2), a similar argument gives a natural action of g/g[1] on Spec(C). By
Remark 2.3, we have

g[m− 1]Fr ∼= g/g[1],

which proves (2). �

Remark 3.32. We can describe the g[m − 1]Fr-action on Spec(C) from Lemma
3.31(2) more specifically, since it is given by (Dpj|C)j∈[pm−1]×e . Hence for any c ∈ C

and i, j ∈ [pm−1]×e, we get the following:

Dpj(Dpi(c)) =
∑

k∈[pm−1]×e

(
cki,j

)p
Dpk(c).

The next result (Proposition 3.34) is rather easy in the case of full HS-derivations
and turned out to be quite problematic for us in the restricted case. The proof
follows the lines of the proof of [13, Fact 2.5], but, in the general case here, a
different set of values of the highest order operators needs to be taken (see Remark
3.35). Firstly, we need a general lemma.

Lemma 3.33. For i 6 e and j < m, we define (pj)i ∈ [pm]×e as a sequence
consisting of zeroes, except for the i-th coordinate where it has pj. Assume R is a
g-ring and let P be a subset of [pm]×e such that

{(pj)i | i 6 e, j < m} ⊆ P .

Then for any B ⊂ R, the ideal generated by the set

BP = {Dk(b) | b ∈ B,k ∈ P}

is an HS-ideal.

Proof. It follows from Remark 3.10 and Lemma 3.14. �

Proposition 3.34. Any g-field K has a strict g-field extension.

Proof. We consider the theory of g-fields as a universal theory in the language of
g-fields (containing − and ÷). Then any g-field embeds into an existentially closed
g-field. Therefore, it is enough to prove that existentially closed g-fields are strict,
so we may assume that K is existentially closed. Assume that K is not strict, i.e.
there is a ∈ K \Kp which is a constant of K. To reach a contradiction (with the
assumption that K is existentially closed), it is enough to find a g-extension K ⊆ L

such that a1/p ∈ L. Let C denote the field of constants of K and B be a p-basis of
C over Kp such that a ∈ B.

Claim 1



EXISTENTIALLY CLOSED FIELDS WITH G-DERIVATIONS 15

There is a g[m − 1]-derivation on C1/p extending the one we have on K and such
that for each b ∈ B and each j ∈ [pm−1]×e, we have

Dj(b
1/p) = (Dpj(b))

1/p.

Proof of Claim 1. By Lemma 3.31(2) and Remark 3.32,

D′ := (Dpj|C)j∈[pm−1]×e

is a g[m− 1]Fr-derivation on C. Let Fr−1
C : C ∼= C1/p, and D′′ be D′ transported to

C1/p using Fr−1
C . Then D′′ is a g[m−1]-derivation on C1/p and by the construction

it has the required properties (see also Lemma 4.7 and the proof of Proposition
4.8). �

We consider the following rings (the set B indexes the variables):

R := K
[
X

(i)
b | i ∈ [pm]×e, b ∈ B

]
,

R′ := K
[
X

(j)
b | j ∈ [pm−1]×e, b ∈ B

]
;

where for each b ∈ B, Xb is identified with X
(0,...,0)
b . We put a g-ring structure on

R which is g-extending K in the following way:

Dj

(
X

(i)
b

)
:=

∑

f∈[pm]×e

cfi,jX
(f)
b .

Then R′ is a g[m− 1]-subring of R. Let us define a subset W ⊂ R′ as follows:

W :=
{(

X
(j)
b

)p

−Dpj(b) | j ∈ [pm−1]×e, b ∈ B
}
.

We define the following K-algebra map

Ψ : R′ → C1/p, Ψ
(
X

(j)
b

)
= Dpj(b)

1/p

and let m = ker(Ψ). By Claim 1, Ψ is a g[m− 1]-map, so m is a maximal g[m− 1]-
ideal of R′ containing W . We will show that the g-ideal J in R which is g-generated
by m is prime (then we can take L as the field of fractions of R/J). Let us order
the set [pm−1]×e as k(1), . . . ,k(p(m−1)e) such that for i 6 j, we have |k(i)| 6 |k(j)|

(in particular k(1) = (0, . . . , 0)). We also order B = (bs)s<κ such that b0 = a.

Claim 2

There is a set of generators of m consisting of elements of the following two types:

(
X

(j)
b

)p

−Dpj(b), X
(k(j))

bs
−

j−1∑

i=1

p−1∑

l=0

αt,i,l

(
X

(k(i))

bs

)l

−
∑

t<s

∑

j∈[pm−1]×e

βt,jX
(j)
bt

;

where b ∈ B, s < κ, j ∈ [pm−1]×e, j ∈ {1, . . . , p(m−1)e} and αi,l, βt,j ∈ K.

Proof of Claim 2. We construct a required set of generators in p(m−1)e · κ steps.
In Step (0,1), we add Xp − b0 to the (so far empty) set of generators.
In Step (0,2), we consider two cases.

Case 1: Dpk(2)
(b0) /∈ Kp(b0).

In this case, we add the element
(
X

(k(2))

b0

)p

−Dpk(2)
(b0)
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to the set of generators.
Case 2: Dpk(2)

(b0) ∈ Kp(b0).
In this case

Dpk(2)
(b0) =

p−1∑

l=0

αp
l b

l
0,

for some α0, . . . , αp−1 ∈ K, and we add the element

X
(k(2))

b0
−

p−1∑

l=0

αp
lX

l
b0

to the set of generators.
In Step (0,3), we proceed as in Step (0,2) with the field Kp(b0, Dpk(2)

(b0)) re-

placing the field Kp(b0).
Continuing like this, after p(m−1)e steps we obtain our desired set of generators

for b0. We continue in a similar way (although e.g. Step (1,1) already consist of
two cases) for (bi)i>0. �

By Lemma 3.33, it is enough to apply to the generators from Claim 2 the op-
erators Di, where i ∈ [pm−1]×e or where i is of the form (pm−1)i (see Lemma 3.33
for the definition of (pm−1)i). If i ∈ [pm−1]×e then we get elements of m, so we
may focus on the other case. To treat the first type of the generators from Claim
2, we just need to use that there is l ∈ [pm−1]×e such that i = pl. We obtain the
following:

Dpl

((
X

(j)
b

)p

−Dpj(b)
)
=

(
Dl

(
X

(j)
b

))p

−Dpl (Dpj(b))

=


 ∑

k∈[pm−1]×e

cki,jX
(k)
b




p

−
∑

k∈[pm−1]×e

(cki,j)
pDpk(b)

=
∑

k∈[pm−1]×e

(
cki,j

)p ((
X

(k)
b

)p

−Dpk(b)
)
,

where the second equality holds by Remark 3.32, since b ∈ C. Hence we get that

Dpl((X
(j)
b )p−Dpj(b)) belongs to the ideal generated by W in R′, so it also belongs

to m.
After applying Di to the second type of generators, by Lemma 3.14 we get the

following:

Di


X

(k(j))

bs
−

j−1∑

i=1

p−1∑

l=0

αi,l

(
X

(k(i))

bs

)l

−
∑

t<s

∑

j∈[pm−1]×e

βt,jX
(j)
bt


 =

(
k(j) + i

i

)
X

(k(j)+i)

bs
+

j−1∑

i=1

p−1∑

l=0

di,l

(
X

(k(i)+i)

bs

)l

+Q,

for some di,l ∈ K, where
(
i+ j

i

)
:=

(
i1 + j1

i1

)
· . . . ·

(
ie + je

ie

)
,

and where

Q ∈ K
[
X

(r)
bt

, X
(j)
bs
| t < s, r ∈ [pm]×e, j ∈ [pm−1]×e

]
.
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We forget now about the HS-differential structure on R and J . The obtained set
of generators of J is of the form J1 ∪ J2, where J1 ⊆ m and J2 ⊆ R′[Xγ ]γ∈I (after
renaming variables), and

I := κ× {1, . . . , e} × (ki)i∈{1,...,p(m−1)e}

with the lexicographical order. Moreover, there is a subset I0 ⊂ I such that without

loss of generality (since p does not divide
(
k(j)+i

i

)
), we have

J2 = {Xγ −Qγ | γ ∈ I0},

where for each γ ∈ I0, Qγ ∈ R′[Xδ]δ<γ . Therefore, the ring R/J is isomorphic to
a polynomial ring over R′/m, so the ideal J is prime. �

Remark 3.35. (1) The proof above may seem to be technical, but the idea is
very simple. For j ∈ [pm−1]×e, the value Dj(a

1/p) is determined by Claim

1. For i 6 e, we set D(pm−1)i(a
1/p) as a new formal variable. The values of

the remaining operators on a1/p are determined by the g-iterativity rule.
(2)
(3) The above proof may be also used to show that a g-field is strict if and

only if it is differentially perfect, i.e. each of its differential extension is
separable. This generalizes a result of Kolchin (see Chapter II, Section 3.,
Proposition 5.(a) in [12]).

We need one more lemma for the proof of the amalgamation property for a class of
g-fields.

Lemma 3.36. Assume that R and S are g-rings. Then there is a unique g-ring
structure on R ⊗k S such that the natural maps R → R ⊗k S, S → R ⊗k S are
g-homomorphisms.

Proof. It is convenient to show a more general result. Assume that V,W are schemes
over k and DV and DW are g-derivations on V and W respectively. As in the case
of the usual group actions, we get a unique g-derivation on V ×W such that the
projections V ×W → V,W are g-invariant. By considering the affine schemes and
dualizing, we get what we need. �

Proposition 3.37. Let K ⊆ L1,K ⊆ L2 be g-field extensions and assume that K
is strict. Then L1 and L2 can be g-amalgamated over K into a g-field.

Proof. By Proposition 3.18, we can assume that L1, L2 are separably closed (since
separable algebraic extensions are étale). Then Ksep is a subfield of L1 and L2. By
Remark 3.4(5), it is a g-subfield. By Lemma 3.22 (using Corollary 3.21), the g-field
structure on Ksep is strict. Therefore we can assume that K is separably closed as
well.
The proof will be finished exactly as in [32, Prop. 2.6]. We can assume that L1, L2

are subfields of a big field Ω and that they are algebraically disjoint over K. By
Lemma 3.22, the extension K ⊆ L1 is separable. Since K is separably closed, this
extension is regular (see [15, p. 367]). By [15, Thm. VIII 4.12], L1 and L2 are
linearly disjoint over K, thus L1 ⊗K L2 is a domain. By Lemma 3.36, there is a
g-structure on L1⊗K L2 extending those on L1 and L2. By Proposition 3.18 again,
we get the required g-structure on the field of fractions of L1 ⊗K L2. �
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4. Model companions

In this section we turn our attention to the model-theoretic properties of (truncated)
HS-fields. Our results here generalize the corresponding results from [32] and [13],
and our proofs do not differ much.

4.1. Existentially closed g-fields. In this subsection, we assume that g is of the
form W [m] for a formal group law W (see Remark 2.2).

Let K be a field of characteristic p and λ be the following p-th root function:

λ : K → K, λ(x) =

{
x1/p for x ∈ Kp,

0 for x /∈ Kp.

We introduce several languages.

• Let Lλ be the language of rings expanded by a unary function symbol λ.
• Let Le,m be the language of k-algebras (so there are constants in the lan-
guage for the elements of k) withm-truncated e-dimensional HS-derivations.
• Let Lλ

e,m = Lλ ∪ Le,m.

Lemma 4.1. Each field of characteristic p has a natural Lλ-structure and we have
the following.

(1) A field extension K ⊆ L is an Lλ-extension if and only if Lp ∩K = Kp.
(2) If K ⊆ L is an Le,m-extension and K is strict, then K ⊆ L is an Lλ

e,m-
extension.

(3) Suppose R is a subring of a field L, K is the field of fractions of R and
R ⊆ L is an Lλ-extension. Then K ⊆ L is an Lλ-extension.

Proof. The item (1) is clear and (2) follows from Lemma 3.22(2). The last item
follows by an easy computation. �

We need the following well-known description of elementary extensions of separably
closed fields.

Lemma 4.2. Let us assume that K and L are g-fields such that K and L are
separably closed and that K has finite imperfectness degree. Then the following are
equivalent.

(1) The fields K and L have the same (absolute) p-basis.
(2) The K-algebra L is étale.
(3) The extension K ⊆ L is elementary (in the language of rings).
(4) The extension K ⊆ L is Lλ

e,m-elementary.
(5) The extension K ⊆ L is Le,m-elementary.

Proof. By the proof of [4, Theorem 2.1] and by [4, Claim 2.2], the extension K ⊆ L
is elementary if and only if K and L have the same (absolute) p-basis. By [19,
Theorem 26.7], it happens if and only if this extension is étale, so we get the
equivalence of (1), (2) and (3).
Since both the λ-function and the g-derivation are defined (over the field of the
pm-th powers) using the field operations and the elements of a p-basis, we get the
equivalence of (3) with (4) and (5). �

We introduce now several theories.
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• Let g−DF be the theory of g-fields in the language Le,m.
• Let g−DFλ be the theory of strict g-fields in the language Lλ

e,m i.e. g−DFλ

contains the natural interpretation of λ and the following extra axiom:

∀x
(
(x 6= 0 ∧ λ(x) = 0) → (D(1,0,...,0)(x) 6= 0 ∨ . . . ∨D(0,...,0,1)(x) 6= 0)

)
.

• Let g−DCF be the theory g−DF with the extra axioms for strict g-fields,
and for separably closed fields of imperfectness degree e.
• Similarly for g−DCFλ.

Lemma 4.3. The theories g−DCF and g−DCFλ are consistent.

Proof. We take the canonical F -derivation DF on the field K from Example 3.25.
By Proposition 3.26, K is strict and clearly the imperfection degree of K is e. By
Proposition 3.18, DF extends to the separable closure of K (a separable algebraic
extension is étale, see [19, Thm. 26.7]). By Lemma 3.22(3), this extension is still
strict. Since it is étale, the degree of imperfection does not change. �

The main technical result needed for quantifier elimination is the proposition below.
It does not differ much from [32, 3.1] where the case of full (i.e. non-truncated)
HS-derivations is considered. For reader’s convenience we include a proof following
the lines of the proof of [32, 3.1].

Proposition 4.4. Let us take L |= g−DCFλ, F being a strict g-field and assume
that K is an Lλ

e,m-substructure of both F and L. Then there is an Lλ
e,m-embedding

of F over K into an elementary extension of L.

Proof. By Remark 3.4(1), Proposition 3.18 and Lemma 4.1(3), we can assume that
K is a field. By Lemma 4.1(1), we have Kp = Lp ∩ K. Since L |= g − DCFλ, L
is strict and hence K is strict as well. By Proposition 3.37 and Lemma 4.1(2), we
can Lλ

e,m-amalgamate F and L over K into a strict g-field F′. Since the extension
L ⊆ F ′ is separable, by [4, Claim 2.2] there is an elementary extension in the
language of fields L 4 L′ and a field embedding Υ : F ′ → L′ over L. The situation
is described in the following diagram:

L′

F′

Υ

88rrrrrrrrrrrr

F

88rrrrrrrrrrrr
L

ff▼▼▼▼▼▼▼▼▼▼▼▼

4

OO

K.

88qqqqqqqqqqqq

ff▲▲▲▲▲▲▲▲▲▲▲▲

By Lemma 4.2, the extension L ⊆ L′ is étale. The g-field F′ is strict, so by Corollary
3.21, we have [F ′ : (F ′)p] 6 pe. Since the extension L ⊆ F ′ is separable and
[L : Lp] = pe, by the equivalence between (1) and (2) in Lemma 4.2, the extension
L ⊆ F ′ is étale. Then the extension F ′ ⊆ L′ is étale as well. By Proposition 3.18,
there is a g-derivation on L′ extending the one on F ′ (hence also extending the
one on L). By Lemma 4.2, the extension L ⊆ L′ is Lλ

e,m-elementary and we are
done. �
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We are ready to prove the main result of this subsection.

Theorem 4.5. We have the following.

(1) The theory g−DCFλ has quantifier elimination in the language Lλ
e,m.

(2) Each model of g−DF embeds into a model of g−DCF.
(3) The theory g−DCF is a model companion of the theory g−DF.
(4) The theory g−DCFλ is a model completion of the theory g−DFλ.

Proof. For (1), we use the criterion from [25, Theorem 13.1] (and Proposition 4.4)
exactly as in [32, 3.1].
For (2), let us take any g-field F. By Proposition 3.34, we may assume that F is
strict. By Lemma 4.3, there is L |= g−DCFλ. Clearly, k with the trivial g-structure
is a common Lλ

e,m-substructure of both F and L. By Proposition 4.4, F embeds
into an elementary extension of L, which is clearly a model of g−DCFλ as well.
By (1), g − DCFλ is model complete, so using Lemma 4.1(2) and Lemma 4.2, we
get that g−DCF is model complete as well. By (2), g−DCF is a model companion
of the theory g−DF, so we get (3).
By Proposition 3.37 and the item (1), we get (4). �

Remark 4.6. (1) The theory g−DF does not have the amalgamation property.
The theory g − DCF does not have quantifier elimination and the theory
g−DCF is not a model completion of the theory g−DF.

(2) We have (after taking k = Fp)

Ge
a[m]−DCF = SCHp,e,m,

where SCHp,e,m is the theory considered in [13].
(3) If we take the algebraic group U from Example 3.12(2), then a U(1)-field

is the same as a field with two derivations ∂1, ∂2 such that ∂
(p)
1 = ∂2 and

∂
(p)
2 = 0. Hence U(1)− DCF corresponds to Wood’s theory 2 − DCF, see

[31]. It should be possible to find algebraic groups governing the iterative
rules for Wood’s theories m−DCF for an arbitrary m.

(4) After dropping the iterativity assumptions rather strange things happen. In
the case of characteristic zero, model companions exist and are analyzed in
[22]. In the case of positive characteristic, it is shown in [22, Prop 7.2] that
(in our terminology) the theory of fields with m-truncated e-dimensional
HS-derivations has a model companion if and only if m = 1.

4.2. Existentially closed F -fields. Let Le be the language of k-algebras with e-
dimensional HS-derivations. The main model-theoretic advantage of HS-derivations
(over truncated HS-derivations) is that we do not need to consider the extra oper-
ator λ to get quantifier elimination results.
We define two Le-theories.

• Let F −DF be the theory of F -fields.
• Let F−DCF be the theory F−DF with the extra axioms for strict F -fields,
and for separably closed fields of imperfection degree e.

The main algebraic difference between g-derivations and F -derivations is given by
the proposition below which generalizes [32, Lemma 2.4]. First we need an obvious
lemma which is a general fact about group scheme actions.
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Lemma 4.7. Let f ∈ Aut(k) and let ϕ : R → S be an isomorphism of rings
extending f . For any g-derivation D on R, we define:

Dϕ : S → S[vm], Dϕ := ϕ[vm] ◦ D ◦ ϕ−1.

Then Dϕ is a gf -derivation, where gf is the group scheme g twisted by f .

Proposition 4.8. Let K = (K,D) be an F -field. Then there is a smallest strict
F -field extending K.

Proof. Let C be the field of constants of K. It is enough to show that there is a
unique F -derivation D′ on C1/p extending D. By Lemma 3.31(1), C is an F -subfield
of K. For i ∈ N

e and a ∈ C1/p, we have the only option (as in [32, Lemma 2.4]):

D′
i(a) := (Dpi(a

p))1/p.

Clearly, each D′
i extends Di. We need to show that D′ = (D′

i)i∈Ne is an F -
derivation. By Lemma 3.31(2), the sequence of maps

D′′ := (Dpi(b))i∈[pm]e

is an F [m− 1]Fr-derivation on C. It is easy to see that D′[m− 1] coincides with D′′

“transported” to C1/p using the ring isomorphism Fr−1
C : C → C1/p. By Lemma

4.7, D′[m − 1] is an F [m − 1]-derivation. Since it happens for all m ∈ N, we get
that D′ is an F -derivation. �

Proceeding similarly as in the proof of [32, Prop. 2.6] (or Proposition 3.37) and
using Proposition 4.8 one shows the following.

Proposition 4.9. The class of F -fields has the amalgamation property.

We can conclude now as in Section 4.1.

Theorem 4.10. The theory F −DCF is a model completion of the theory F −DF
(so it eliminates quantifiers).

Remark 4.11. (1) The extra property which makes the theory F −DF nicer
than the theory g − DF is the existence of the smallest strict extensions
(Proposition 4.8). It gives the amalgamation property for all (i.e. not
necessarily strict) F -fields (Proposition 4.9) and the quantifier elimination
for F −DCF.

(2) In this context, quantifier elimination for F − DCF implies elimination of
imaginaries for F −DCF exactly as in Section 4 of [32].

Theorem 4.12. The theories F [m]−DCF form an increasing chain and we have

F −DCF =

∞⋃

m=1

F [m]−DCF .

Proof. It follows just by inspecting the axioms of the theories in question. �

4.3. Bi-interpretability with a theory of separably closed fields. Clearly,
each model of F − DCF restricts to a model of SCFp,e. In this subsection, we
discuss the opposite problem: can any model of SCFp,e be expanded to a model of
F − DCF? The same question can be asked for g in place of F . Ziegler showed

in [32] that the answer is affirmative for F = Ĝe
a. The second author showed the

same in [13] for g = Ge
a[m]. In this subsection, we generalize the above results to

the case when F is of the form Ĝ and g of the form G[m].



22 D. HOFFMANN AND P. KOWALSKI

We actually show more, i.e. we will see that (after adding some extra constants)
the theory G − DCF is extension by definitions (see [27, page 59]) of the theory
SCFp,e.

By L, we denote the language of k-algebras, and by SCFp,e, the theory of sep-
arably closed k-algebras with the degree of imperfection e in the language L (so
our notation does not reflect the dependence on k, we hope it will not cause any
confusion). Recall that Le denotes the language of k-algebras with e-dimensional
HS-derivations. We introduce two new languages (obtained after adding e extra
constant symbols):

Lb := L ∪ {b1, . . . , be}, Lb
e := Le ∪ {b1, . . . , be}.

Let β be a sentence in the language Lb saying that b1, . . . , be form a p-basis. Now
we add β to the theory SCFp,e and to the theory F −DCF to obtain the theory

SCFb
p,e := SCFp,e ∪ {β}

in the language Lb, and the theory

F −DCFb := F −DCF ∪ {β}

in the language Lb
e .

Lemma 4.13. There are x1, . . . , xe ∈ k(G) algebraically independent over k such
that the field extension k(x1, . . . , xe) ⊆ k(G) is finite and separable.

Proof. Let x1, . . . , xe ∈ OG be a sequence of local parameters (see Example 3.27).
By Example 3.27, [19, 30.6(ii)] and Proposition on page 276 of [17], {x1, . . . , xe}
is a p-basis of OG, so it is also a p-basis of k(G). Hence the field extension
k(x1, . . . , xe) ⊆ k(G) is finite and separable. �

Let x1, . . . , xe be as in Lemma 4.13. By Abel’s theorem, there is y ∈ k(G) such
that k(G) = k(x1, . . . , xe, y). Let H(X1, . . . , Xe, Y ) ∈ k[X1, . . . , Xe, Y ] be such
that H(x1, . . . , xe, y) = 0 and the polynomial H(x1, . . . , xe, Y ) is irreducible.

We need to add one more constant to the languages we consider to obtain the
following languages:

Lb,c := L ∪ {b1, . . . , be, c}, Lb,c
e := Le ∪ {b1, . . . , be, c}.

The meaning of this extra constant c is that it generates the field k(G) over k
extended by the chosen p-basis. Formally, we specify one more axiom γ in the
language Lb,c

γ := β ∧ (H(b1, . . . , be, c) = 0).

We define the following theories.

SCFb,c
p,e := SCFp,e ∪ {γ}, F −DCFb,c := F −DCF ∪ {γ}.

Theorem 4.14. The theory G−DCFb,c is an extension by definitions of the theory
SCFb,c

p,e .

Proof. Take x1, . . . , xe ∈ k(G) as in Lemma 4.13, denote (x1, . . . , xe) by x and let
y ∈ k(G) be separable algebraic over k(x) such that k(x, y) = k(G) (such y exists
by Lemma 4.13 and Abel’s theorem). Then for any i, j ∈ N

e, there are polynomials
Fj,i, Hj,i ∈ k[X, Y ] such that for the canonical F -derivation DF = (DF

j )j∈Ne on

k(G), we have

DF
j (x

i) =
Fj,i(x, y)

Hj,i(x, y)
∈ k(G).
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We describe now an extension by definitions of the theory SCFb,c
p,e coinciding with

the theory G−DCFb,c. To ease the notation, we will also denote by b the tuple (of
constant symbols or elements of a model) (b1, . . . , be). Take j = (j1, . . . , je) ∈ Ne,

for every n > max{j1, . . . , je} we add to the theory SCFb,c
p,e the following defining

axiom

(♣) Dj(x) = y ↔
(
∃i∈[pn]e αi

)

x =

∑

i∈[pn]e

αpn

i bi ∧ y =
∑

i∈[pn]e

αpn

i

Fj,i(b, c)

Hj,i(b, c)


 .

Take any (K,b, c) |= SCFb,c
p,e . It is not hard to verify that the defining axioms (♣)

determine well-defined functions on K. The axioms β, γ guarantee that

k(b, c) ∼=k k(G)

and that D := (Dj)j∈Ne restricted to k(b, c) corresponds to the canonical G-
derivation on k(G). Because b is a p-basis of K, the extension k(b) ⊆ K is étale
(see [19, Theorem 26.8]). Hence the extension k(b, c) ⊆ K is also étale. Due to
Proposition 3.3, we can extend the canonical G-derivation from k(G) to the field

K. Let D′ =
(
D′

j

)
j∈Ne

denote the G-derivation on K extending the canonical

G-derivation on k(G).
Note that D′

j(x) = Dj(x) for every x ∈ K, hence D′ = D. Moreover the canonical

G-derivation on k(G) is strict, so also D′|k(b,c) is strict. Lemma 3.22 implies that

D′ = D is strict, so (K,D,b, c) |= G−DCFb,c. �

Remark 4.15. In many cases, the theory G−DCFb is an extension by definitions
of the theory SCFb

p,e, so in such cases the constant symbol c is not necessary. For
example, it is the case for G being the group of Witt vectors, see [7].

It is unclear to us how to proceed in the case of an arbitrary formal group F .
The crucial question is whether the canonical derivation on k((X)) can be restricted
to k(X) or to k(X)sep. This question has been investigated in [9] (it is related to
Matsumura’s integrability question). To prove a partial result (Theorem 4.17), we
need the following lemma.

Lemma 4.16. Assume that F1 and F2 are one-dimensional formal group laws over
k such that F1

∼= F2. Then the theory F1 − DCF is an extension by definitions of
the theory F2 −DCF.

Proof. Let f ∈ XkJXK be an isomorphism between F1 and F2. For any F1-
derivation D : K → KJXK, the following composition

K
D // KJXK

evf // KJXK

is an F2-derivation. It is easy to see that for each positive integer n, there are
cn,1, . . . , cn,n ∈ k such that if D = (Di)i∈N then the corresponding F2-derivation
evf ◦D is of the form

(id, c1,1D1, c2,1D1 + c2,2D2, . . .),

hence the result follows. �

Using [11] and [1] (which we needed to prove the crucial [9, Thm. 4.3]), we can
now show the following.
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Theorem 4.17. Suppose that F is a one-dimensional formal group law over an
algebraically closed field k (in particular e = 1). Then the theory F −DCFb is an

extension by definitions of the theory SCFb
p,1.

Proof. By [9, Thm. 4.3], there is a formal group law F̃ over k such that F ∼= F̃

and the canonical F̃ -derivation restricts to k[X ]. By Lemma 4.16, we can assume

that F = F̃ . We can repeat now the proof of Theorem 4.14 (and we do not need
to worry about the extra constant c). �

Remark 4.18. Passing from the base field k to its algebraic closure expands the
language with extra constants. But any existentially closed F -field is separably
closed, so its field of absolute constants contains kalg. Hence such an expansion is
not important for the theories we consider, since the models of F − DCF in the
language with constants for elements of k are the same as models of F − DCF
in the language with constants for elements of kalg. Therefore, the assumption in
Theorem 4.17 that k is algebraically closed is harmless.

5. Geometric axioms

In this section, we give geometric axioms for the theories g−DCF and F − DCF.
The presentation follows the one in [13], however (unlike in [13]) we notice here
that the existence of canonical p-bases (see Section 6.1) is not necessary for the
geometric axioms. We do not assume in this section that g is of the form W [m] for
a formal group law W .

5.1. Prolongation and comultiplication. The notions introduced in this sub-
section are special cases of the notions considered in [21]. These notions originate
from Buium [2] and also appeared (among others) in [24] and [14].

We fix a field K with a g-derivation D. Our first definitions do not use the g-
iterativity condition.

• Let D be the functor from the category of K-algebras to the category of
K[vm]-algebras defined in the following way:

D(R) = R ⊗K,D K[vm].

Since D commutes with localizations, it also defines a functor from K-
schemes to K[vm]-schemes.
• The functor D considered as a functor from K-algebras to K-algebras has
a left-adjoint functor ∇ which extends to K-schemes. A crucial natural
bijection is the following one:

(∇V )(R)←→ V (D(R)).

• For any K-scheme V we have a (non-algebraic!) map

DV : V (K)→ V (D(K)) = ∇V (K)

induced by the K-algebra homomorphism D : K → K[vm] = D(K).

Remark 5.1. Our notation here differs from the notation used in [2] and [21],
where the left-adjoint functor considered above is denoted τ , and the notation ∇ is
used for DV .

The second set of definitions uses the g-iterativity condition.
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• We have a natural transformation (of functors on the category ofK-algebras)
given by the Hopf algebra comultiplication (coming from g)

µ : D → D ◦ D.

• We define a natural transformation of functors on the category of K-
schemes

c : ∇ → ∇ ◦∇

using the commutative diagram below

V (D(R))
V (µ) // V (D(D(R)))

∇V (R)

∼=

OO

cV // ∇(∇V )(R).

∼=

OO

Below we give explicit descriptions of the maps DV and cV .
For any positive integer n, our HS-derivation D naturally extends to the following
HS-derivation

(
Dj : K[X1, . . . , Xn]→ K[X

(i)
1 , . . . , X(i)

n | i ∈ [pm]e ]
)
j∈[pm]e

, Dj(X) = X(j),

where X
(0)
k = Xk and for j 6= 0, X

(j)
k is a new variable. We will use the following

notation

K{X1, . . . , Xn} := K[X
(i)
1 , . . . , X(i)

n | i ∈ [pm]e ].

If R = K[X1, . . . , Xn]/I, then ∇(R) = K{X1, . . . , Xn}/(D(I)). Hence, for an affine
variety V = Spec(R), the variety ∇(V ) is defined by the ideal (D(I)) and DV is
given in coordinates as the n-th Cartesian product of D (considered as a map from
K to Kpme

).
Let cn denote cAnpme . For every (bi,1, . . . , bi,n)i∈[pm]e ∈ Knpme

we have

cn
(
(bi,1, . . . , bi,n)i∈[pm]e

)
=


 ∑

k∈[pm]e

cki,jbk,1, . . . ,
∑

k∈[pm]e

cki,jbk,n




i,j∈[pm]e

,

where cki,j are the “structural constants” from Remark 3.10. We will need the
following.

Lemma 5.2. Let V be a K-scheme and suppose that (K,D) ⊆ (L,D′) is an ex-
tension of m-truncated e-dimensional HS-fields. Then for any a ∈ V (L), we have
D′

V (a) ∈ ∇V (L).

Proof. It is enough to notice that if D′ extends D, then the k-algebra map D′ : L→
D(L) is K-linear. �

The following lemma corresponds to [13, Lemma 1.1(ii)] and is a direct consequence
of the g-iterativity condition.

Lemma 5.3. For any K-scheme V we have the following:

D∇(V ) ◦ DV = cV ◦ DV .
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Let us fix a |K|+-saturated algebraically closed field Ω containing K. We want to
describe possible extensions of D to subfields of Ω in terms of the functor ∇. Let
b0 ∈ Ωn, b = (b0, . . . , bpme−1) ∈ Ωnpme

and we set

V = locusK(b0), W = locusK(b).

As in [13, Lemma 3.3], we can show the following.

Lemma 5.4. If b ∈ ∇V (Ω) and K(b0) = K(b), then there is an m-truncated
e-dimensional HS-derivation D′ on K(b) extending D such that D′

V (b0) = b.

Finally, we obtain the following lemma by using Lemmas 5.2, 5.3, 5.4 (as in [13]).

Lemma 5.5. The following are equivalent.

(1) There is a g-field extension (K,D) ⊆ (K(b),D′) such that D′
V (b0) = b.

(2) There is a g-field extension (K,D) ⊆ (L,D′) such that D′
V (b0) = b.

(3) cn(W ) ⊆ ∇(W ).

5.2. Geometric axioms. In this subsection, we give geometric axioms for the

theories g−DCF and F−DCF. In the case of F = Ĝe
a, we will recover (and actually

we will also correct, thanks to referee’s comment, by adding the assumption that K
is separably closed) the geometric axioms for SCHp,e from [13, Theorem 4.3]. First
we deal with the truncated case.

Geometric axioms for g−DCF

(1) The field K is separably closed.
(2) For each positive integer n, suppose that V ⊆ An and W ⊆ ∇(V ) are

absolutely irreducible K-varieties, and Z is a proper K-subvariety of W . If
W projects generically onto V , and cV (W ) ⊆ ∇(W ), then there is a ∈ V (K)
such that DV (a) ∈W (K) \ Z(K).

These axioms are first-order, since for a separably closed field K, any K-irreducible
variety is absolutely irreducible.

Theorem 5.6. The g-field (K,D) is an existentially closed g-field if and only if
(K,D) satisfies the geometric axioms above.

Proof. Assume that (K,D) is an existentially closed g-field. Then by Proposition
3.18, K is separably closed (since a separable algebraic field extension is étale).
Take any K-irreducible K-varieties V ⊆ An, W ⊆ ∇(V ) and Z ( W . If W projects
generically onto V then there is b0 ∈ Ωn and b = (b0, . . . , bpme−1) ∈ Ωnpme

such that
V = locusK(b0) and W = locusK(b). Since cV (W ) ⊆ ∇(W ), Lemma 5.5 implies
that there exists a g-field extension (K,D) ⊆ (K(b),D′) such that D′

V (b0) = b. We
have

D′
V (b0) = b ∈ W (K(b)) \ Z(K(b))

and b0 ∈ V (K(b)). Since (K,D) is existentially closed, there is b′0 ∈ V (K) such
that DV (b

′
0) ∈W (K) \ Z(K).

Assume now that (K,D) is a model of the “geometric axioms for g − DCF” and
let (K,D) ⊆ (L,D′) be an extension of g-fields. Take any quantifier-free for-
mula ϕ(x0, . . . , xpme−1) over K (in the language of fields), where each xi is an
n-tuple of variables for an arbitrary (but fixed) positive integer n. Suppose that
(L,D′) |= (∃x0)ϕ(D

′(x0)). Take b0 ∈ Ln such that (L,D′) |= ϕ(D′(b0)) and set

V = locusK(b0), b = D′
V (b0), W = locusK(b), Z0 = {d ∈W | ¬ϕ(d)}.
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Let Z denote the intersection of all K-subvarieties of W containing Z0. Clearly
b ∈ W (L) \ Z(L) and the second condition of Lemma 5.5 is satisfied, so cV (W ) ⊆
∇(W ). Hence all the assumptions of the “geometric axioms for g − DCF” hold.
Therefore there is b′0 ∈ V (K) such that D(b′0) ∈ W (K) \ Z(K) and (K,D) |=
(∃x0)ϕ(D(x0)). �

Remark 5.7. Note that the results of Section 4 are not used in the proof of
Theorem 5.6 which suggests a possibility of generalizations, e.g. to the context of
D-fields from [21].

We turn now to the case of F -derivations and assume that (K,D) is an F -field. By
Theorem 4.12, the geometric axioms for F −DCF are given as the union (over m)
of the geometric axioms for F [m]− DCF. We state these axioms explicitly below,
where ∇m denotes the functor ∇ with respect to D[m] (similarly for cm).

Geometric axioms for F −DCF

(1) The field K is separably closed.
(2) For any positive integers n,m, suppose that V ⊆ An and W ⊆ ∇m(V ) are

absolutely irreducible K-varieties, and Z is a proper K-subvariety of W .
If W projects generically onto V , and cm,V (W ) ⊆ ∇m(W ), then there is
a ∈ V (K) such that D[m]V (a) ∈W (K) \ Z(K).

We get a result generalizing [13, Theorem 4.3].

Theorem 5.8. The F -field K is an existentially closed F -field if and only if K is
a model of the geometric axioms for g−DCF.

Remark 5.9. Unlike in the proof of Theorem 5.6, the results of Section 4 are used
for the proof of Theorem 5.8, since Theorem 4.12 is necessary for the geometric ax-
iomatization and the proof of Theorem 4.12 requires the algebraic axiomatizations
of g − DCF and F − DCF. However, one can also prove Theorem 4.12 (but for a
limited class of formal groups F only) in another fashion as it was done in [13] for

F = Ĝe
a. This approach will be discussed in Section 6.1.

6. Fields with operators and canonical G-tuples

As we have mentioned several times, F -iterative fields fit to the more general set-
up of iterative D-fields, see [21]. Model companions of the theories of iterative
D-fields are analyzed in [22], however only the case of characteristic 0 and only the
“trivial” iterativity maps (see [22, Section 6.1]) are considered there. One could
wonder whether our techniques may be generalized to include the case of iterative
D-fields of positive characteristic. It seems likely in the case where an iterative
system (D,∆) is the inverse limit of finite iterative systems (Dm,∆m)m resembling
the ones given by Hopf algebra comultiplications µm : Dm → Dm ◦ Dm (see Sec-
tion 5.1). More precisely, our techniques may apply to the iterative systems (D,∆)
where each morphism ∆pm : D2pm → Dpm ◦ Dpm factors through the projection
morphism D2pm → Dpm . It is easy to see that each direct system of finite group
schemes provides such an iterative system, and, for example, étale group schemes
(corresponding to actual groups) would correspond to systems governing actions of
groups on fields by field automorphisms.

A geometric axiomatization of the class of existentially closed (Dm,∆m)-fields
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should not be very difficult, see Remark 5.7. The crucial technical point allow-
ing a geometric axiomatization of the class of existentially closed (D,∆)-fields may
require an appropriate generalization of Theorem 4.12. The proof given in this
paper seems to be too specific for a possible generalization to this more general
context. However, one could have proceeded in Section 5 differently, more in the
fashion of [13] where Ziegler’s notion of a canonical p-basis is used (however we
would get then Theorem 5.8 only for a limited class of formal groups F ). We
sketch this approach below.

6.1. Canonical G-tuples. We generalize the notion of a canonical p-basis (see
[32]) from the case of the formalization of a vector group to the case of the formal-
ization of an arbitrary algebraic group.

Definition 6.1. Let D be a G[m]-derivation on K. A subset B ⊆ K is called a
canonical G-tuple, if |B| = e and there is a G[m]-embedding (k(G),D[m]G) → K

such that B is the image of the set of canonical parameters of G, where D[m]G is
the canonical G[m]-derivation from Example 3.27.

Remark 6.2. If L is strict and of imperfection degree e, then any canonical G-
tuple in L is a p-basis. For G = Ge

a, we recover the notion of a canonical p-basis
from [32].

We define below a general property of algebraic groups.

Definition 6.3. We say that canonical G-tuples exist if for any m and any sepa-
rably closed G[m]-field L, whenever [L : CL] = pe, there is a canonical G-tuple in
L.

Remark 6.4. (1) Definition 6.1 can be phrased in a (much) greater generality
using group scheme actions. Let G0 be a group subscheme of a group
scheme G. Assume that G0 acts (as a group scheme) on a scheme V . We
say that this action has a canonical G-basis, if there is an G0-invariant
morphism V → G such that the induced map

V → G×G/G0
V/G0

is an isomorphism.
(2) The existence of canonical Ge

a-tuples is shown in [32] and the existence of
canonical Gm-tuples is shown in [8]. Combining these results, one can show
the existence of canonical G-tuples for G of the form Ge

a ×Gf
m.

(3) We do not attack here the problem of the existence of canonical G-tuples
for a given algebraic group G. This will be done in [6] (as well as possible
applications to the notion of “G-thinness”).

(4) The existence of canonical G-tuples implies (strong) integrability of G-
derivations, as in (morally) [18] or as in [8] (see also [29])

The existence of canonical G-tuples gives rather directly (see [13, Thm. 2.3]) an-
other proof of Theorem 4.12 which is the only ingredient needed in Section 5 re-
quiring specific differential-algebraic arguments. The interpretation of the notion of
the existence of canonical G-tuples from Remark 6.4(1) looks promising for possible
generalizations beyond the context of HS-derivations.
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