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Abstract. We establish the equivalence of conjectures concerning the pair correlation of
zeros of L-functions in the Selberg class and the variances of sums of a related class of
arithmetic functions over primes in short intervals. This extends the results of Goldston
& Montgomery [7] and Montgomery & Soundararajan [11] for the Riemann zeta-function
to other L-functions in the Selberg class. Our approach is based on the statistics of the
zeros because the analogue of the Hardy-Littlewood conjecture for the auto-correlation of
the arithmetic functions we consider is not available in general. One of our main findings is
that the variances of sums of these arithmetic functions over primes in short intervals have
a different form when the degree of the associated L-functions is 2 or higher to that which
holds when the degree is 1 (e.g. the Riemann zeta-function). Specifically, when the degree
is 2 or higher there are two regimes in which the variances take qualitatively different forms,
whilst in the degree-1 case there is a single regime.

1. Introduction

Let Λ(n) denote the von Mangoldt function, defined by

Λ(n) =

{
log p if n = pk for some prime p and integer k ≥ 1,

0 otherwise.

The prime number theorem implies that

ψ(x) :=
∑
n≤x

Λ(n) = x+ o(x)

as x→∞, and so determines the average of Λ(n) over long intervals. In many problems one
needs to understand sums over shorter intervals. This is more difficult, because the fluctuations
in their values can be large. To this end Goldston and Montgomery [7] initiated the study of
the variances

V (X, δ) :=

∫ X

1

(
ψ(x+ δx)− ψ(x)− δx

)2
dx (1)

and

Ṽ (X,h) :=

∫ X

1

(
ψ(x+ h)− ψ(x)− h

)2
dx. (2)

For example, they put forward the following conjecture [7]:

Conjecture 1.1 (Variance of primes in short intervals). For any fixed ε > 0

Ṽ (X,h) ∼ hX
(

logX − log h
)

uniformly for 1 ≤ h ≤ X1−ε.
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This conjecture remains open, but its analogue in the function field setting has recently
been proved in the limit of large field size [8].

It is natural to try to compute the variances (1) and (2) using the Hardy-Littlewood Con-
jecture for the auto-correlation of Λ(n):∑

n≤X
Λ(n)Λ(n+ k) ∼ S(k)X (3)

as X →∞, where S(k) is the singular series

S(k) =

2
∏
p>2

(
1− 1

(p−1)2

)∏
p>2
p|k

p−1
p−2 if k is even,

0 if k is odd.

Montgomery and Soundararajan [11] established that (3), subject to an assumption concerning

the implicit error term, implies a more precise asymptotic for the variance Ṽ (X,h) when

logX ≤ h ≤ X1/2:

Ṽ (X,h) = hX
(

logX − log h− γ0 − log 2π
)

+Oε

(
h15/16X(logX)17/16 + h2X1/2+ε

)
, (4)

where γ0 is the Euler-Mascheroni constant.
An alternative approach to computing the variances (1) and (2) is based on the connection

with the Riemann zeta-function ζ(s) via

ζ ′(s)

ζ(s)
= −

∞∑
n=1

Λ(n)

ns
.

This links statistical properties of Λ(n) to those of the zeros of the Riemann zeta-function.
Specifically, Goldston and Montgomery [7] proved that Conjecture 1.1 is equivalent to the
following conjecture, due to Montgomery [10], concerning the pair correlation of the non-
trivial zeros 1

2 + iγ of the Riemann zeta-function (in writing the zeros in this form one is
assuming the Riemann Hypothesis):

Conjecture 1.2 (Pair Correlation Conjecture). Let

F(X,T ) =
∑

0<γ,γ′≤T
Xi(γ−γ′)w(γ − γ′),

where w(u) = 4
4+u2

. Then for any fixed A ≥ 1 we have

F(X,T ) ∼ T log T

2π

uniformly for T ≤ X ≤ TA.

The equivalence between Conjecture 1.1 and Conjecture 1.2 has been investigated further
in [3, 9] to include the lower order terms.

We have two main goals in this paper. The first is to show how the more precise formula (4)
follows from a more accurate expression for the pair correlation of the Riemann zeros proposed
by Bogomolny and Keating [2] (see also [1]):

Conjecture 1.3. For h a suitable even test function∑
0<γ,γ′≤T

h(γ − γ′) =
h(0)

2π

∫ T

0
log

t

2π
dt+

1

(2π)2

∫ T

0

∫ T

−T
h(η)

[(
log

t

2π

)2

+2

((
ζ ′

ζ

)′
(1 + iη) +

(
t

2π

)−iη
A(iη)ζ(1− iη)ζ(1 + iη)−B(iη)

)]
dηdt+Oε(T

1/2+ε),

where

A(r) =
∏
p

(1− 1
p1+r )(1− 2

p + 1
p1+r )

(1− 1
p)2
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and

B(r) =
∑
p

(
log p

p1+r − 1

)2

.

Here the integral is to be regarded as a principal value near η = 0.

This formula was originally obtained in [2] from the Hardy-Littlewood Conjecture (3).
Importantly for us here, it was shown by Conrey and Snaith [6] to follow from the ratios con-
jecture for the Riemann zeta-function [5], and in the above formulation we use their notation.
It follows from our general results, set out below, that (4) may be obtained from an analysis
based on Conjecture 1.3.

The second goal of this paper, and in fact our principal goal, is to extend the approach based
on formulae like that in Conjecture 1.3 to a wider class of sums in which the von Mangoldt
function is multiplied by arithmetic functions associated with other L-functions in the Selberg
class [15]. This essentially corresponds to studying the variances of these functions when
summed over prime arguments in short intervals.

Let S denote the Selberg class L-functions. For F ∈ S primitive,

F (s) =
∞∑
n=1

aF (n)

ns
,

let mF ≥ 0 be the order of the pole at s = 1,

F ′

F
(s) = −

∞∑
n=1

ΛF (n)

ns
and F (s)−1 =

∞∑
n=1

µF (n)

ns
(Re(s) > 1).

The function F (s) has an Euler product

F (s) =
∏
p

exp

( ∞∑
l=1

bF (pl)

pls

)
(5)

and satisfies a functional equation

Φ(s) = εFΦ(1− s),
where

Φ(s) = Qs
( r∏
j=1

Γ(λjs+ µj)

)
F (s),

with some Q > 0, λj > 0, Re(µj) ≥ 0 and |εF | = 1. Here Φ(s) = Φ(s). We will also write the
functional equation in the form

F (s) = X(s)F (1− s),
where

X(s) = εFQ
1−2s

r∏
j=1

Γ
(
λj(1− s) + µj

)
Γ(λjs+ µj)

.

The two important invariants of F (s) are the degree dF and the conductor qF ,

dF = 2
r∑
j=1

λj and qF = (2π)dFQ2
r∏
j=1

λ
2λj
j .

For F ∈ S, it is expected that a generalised prime number theorem of the form

ψF (x) :=
∑
n≤x

ΛF (n) = mFx+ o(x)

holds. In analogy with (1) and (2) we shall consider

VF (X, δ) :=

∫ X

1

∣∣∣ψF (x+ δx)− ψF (x)−mF δx
∣∣∣2dx
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and

ṼF (X,h) :=

∫ X

1

∣∣∣ψF (x+ h)− ψF (x)−mFh
∣∣∣2dx.

So, for example, when F represents an L-function associated with an elliptic curve, VF (X, δ)

and ṼF (X,h) represent the variances of sums over short intervals involving the Fourier coeffi-
cients of the associated modular form evaluated at primes and prime powers; and in the case
of Ramanujan’s L-function, they represent the corresponding variances for sums involving the
Ramanujan τ -function.

It is important to note that for most F ∈ S one does not expect an analogue of the Hardy-
Littlewood Conjecture (3); that is, for most F ∈ S it is expected that∑

n≤X
ΛF (n)ΛF (n+ h) = o(X).

This might lead one to anticipate that VF (X, δ) and ṼF (X,h) typically exhibit different as-
ymptotic behaviour than in the case when F is the Riemann zeta-function, because (3) plays
a central role in our understanding of the variances in that case. Somewhat surprisingly from
this perspective, our results suggest that VF (X, δ) and ṼF (X,h) have the same general form
for all F ∈ S. The reason is that they all look essentially the same from the perspective of
the statistical distribution of their zeros. It would be interesting to understand this from the
Hardy-Littlewood point of view. Presumably it is related to a conspiracy amongst the terms
that are o(X), unlike in the case of the Riemann zeta-function where they come from the main
term. Drawing attention to this is one of our principal motivations.

The pair correlation of zeros of F (s) is defined in analogy with the expression in Conjecture
1.2 as

FF (X,T ) =
∑

−T≤γF ,γ′F≤T

Xi(γF−γ′F )w(γF − γ′F ),

where, assuming the Generalized Riemann Hypothesis (GRH), the non-trivial zeros of F (s)
are denoted 1

2 + iγF . Murty and Perelli [12] conjectured that

FF (X,T ) ∼ T logX

π

uniformly for TA1 ≤ X ≤ TA2 for any fixed 0 < A1 ≤ A2 ≤ dF , and

FF (X,T ) ∼ dFT log T

π

uniformly for TA1 ≤ X ≤ TA2 for any fixed dF ≤ A1 ≤ A2 <∞.
Our approach to studying the variances VF (X, δ) and ṼF (X,h) is based on the pair corre-

lation of zeros. Specifically, our main results are as stated below. We set out these results in
pairs, because, unlike the case of the Riemann zeta-function and other degree-1 L-functions,
when dF ≥ 2 there are two cases to consider: either T ≤ X ≤ T dF or T dF ≤ X. In both of
these cases, our results then correspond to examining the implication of the pair correlation
of zeros for VF (X, δ) (Theorems labelled A), the implications in the reverse direction (B),

implications of VF (X, δ) for ṼF (X,h) (C), and in the reverse direction (D).

Theorem A1. Assume GRH. If dF < A1 < A2 <∞ and

FF (X,T ) =
T

π

(
dF log

T

2π
+ log qF − dF

)
+O

(
T 1−c) (6)

uniformly for TA1 � X � TA2 for some c > 0, then for any fixed 1/A2 < B1 ≤ B2 < 1/A1

we have

VF (X, δ) =
1

2
δX2

(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O

(
δ1+c/2X2

)
+Oε

(
δ1−εX2(δX1/A2)1/2

)
+Oε

(
δ1−εX2(δX1/A1)−2A1/(4A1+1)

)
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uniformly for X−B2 � δ � X−B1.

Theorem A2. Assume GRH. If 1 < A1 < A2 < dF and

FF (X,T ) =
T logX

π
+O

(
T 1−c)

uniformly for TA1 � X � TA2 for some c > 0, then for any fixed 1/A2 < B1 ≤ B2 < 1/A1

we have

VF (X, δ) =
1

6
δX2

(
3 logX − 4 log 2

)
+O

(
δ1+c/2X2

)
+Oε

(
δ1−εX2(δX1/A2)1/2

)
+Oε

(
δ1−εX2(δX1/A1)−2A1/(4A1+1)

)
uniformly for X−B2 � δ � X−B1.

Theorem B1. Assume GRH. If 0 < B1 < B2 < 1/dF and

VF (X, δ) =
1

2
δX2

(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O

(
δ1+cX2

)
(7)

uniformly for X−B2 � δ � X−B1 for some c > 0, then for any fixed 1/B2 < A1 ≤ A2 < 1/B1

we have

FF (X,T ) =
T

π

(
dF log

T

2π
+ log qF − dF

)
+Oε

(
T 3/(3+c)+ε

)
+Oε

(
T 1+ε

(
T/XB2

)2)
+Oε

(
T 1+ε

(
T/XB1

)−1/4)
uniformly for TA1 � X � TA2.

Theorem B2. Assume GRH. If 1/dF < B1 < B2 < 1 and

VF (X, δ) =
1

6
δX2

(
3 logX − 4 log 2

)
+O

(
δ1+cX2

)
uniformly for X−B2 � δ � X−B1 for some c > 0, then for any fixed 1/B2 < A1 ≤ A2 < 1/B1

we have

FF (X,T ) =
T logX

π
+Oε

(
T 3/(3+c)+ε

)
+Oε

(
T 1+ε

(
T/XB2

)2)
+Oε

(
T 1+ε

(
T/XB1

)−1/4)
uniformly for TA1 � X � TA2.

Theorem C1. Assume GRH. If 0 < B1 < B2 ≤ B3 < 1/dF and

VF (X, δ) =
1

2
δX2

(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O

(
δ1+cX2

)
(8)

uniformly for X−B3 � δ � X−B1 for some c > 0, then we have

ṼF (X,h) = hX
(
dF log

X

h
+ log qF − (γ0 + log 2π)dF

)
+Oε

(
hX1+ε(h/X)c/3

)
+Oε

(
hX1+ε

(
hX−(1−B1)

)1/3(1−B1)
)

(9)

uniformly for X1−B3 � h� X1−B2.

Theorem C2. Assume GRH. If 1/dF < B1 < B2 ≤ B3 < 1 and

VF (X, δ) =
1

6
δX2

(
3 logX − 4 log 2

)
+O

(
δ1+cX2

)
uniformly for X−B3 � δ � X−B1 for some c > 0, then we have

ṼF (X,h) =
1

6
hX
(

6 logX −
(
3 + 8 log 2

))
+Oε

(
hX1+ε(h/X)c/3

)
+Oε

(
hX1+ε

(
hX−(1−B1)

)1/3(1−B1)
)

uniformly for X1−B3 � h� X1−B2.
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Theorem D1. Assume GRH. If 0 < B1 ≤ B2 < B3 < 1/dF and

ṼF (X,h) = hX
(
dF log

X

h
+ log qF − (γ0 + log 2π)dF

)
+O

(
hX1−c)

uniformly for X1−B3 � h� X1−B1 for some c > 0, then we have

VF (X, δ) =
1

2
δX2

(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+Oε

(
δ1−εX2−c/3)+Oε

(
δ1−εX2

(
δXB3

)−2/3B3
)

uniformly for X−B2 � δ � X−B1.

Theorem D2. Assume GRH. If 1/dF < B1 ≤ B2 < B3 < 1 and

ṼF (X,h) =
1

6
hX
(

6 logX −
(
3 + 8 log 2

))
+O

(
hX1−c)

uniformly for X1−B3 � h� X1−B1 for some c > 0, then we have

VF (X, δ) =
1

6
δX2

(
3 logX − 4 log 2

)
+Oε

(
δ1−εX2−c/3)+Oε

(
δ1−εX2

(
δXB3

)−2/3B3
)

uniformly for X−B2 � δ � X−B1.

Remark 1.1. The main motivation for proving these theorems comes from the fact, shown
in Sections 3 and 4, that the Selberg Orthogonality Conjecture and the ratios conjecture [5,
6] for F ∈ S imply that

F̃F (Tα, T ) =

{
T logX

π +Oε(T
α/dF+ε) +Oε(T

1/2+ε) if α < dF ,
T
π log qFT

dF

(2π)dF
− dFT

π +Oε(T
1/2+ε) if α > dF ,

for a smoothed form of the pair correlation F̃F (X,T ) defined by

F̃F (X,T ) =
∑

−T≤γF ,γ′F≤T

Xi(γF−γ′F )e−(γF−γ
′
F )2 .

We expect that FF (X,T ) and F̃F (X,T ) satisfy the same estimates, at least up to some
power saving error term, and these are the forms that appear in the theorems quoted above.
Alternatively, if we were to replace FF (X,T ) by F̃F (X,T ) in the statements of the above
theorems, we would obtain correspondingly smoothed forms of the variances VF (X, δ) and

ṼF (X,h) instead; that is, variances involving averages with weight-functions whose mass is
concentrated on (1, X)1. We establish the form of the ratios conjecture we need in Section 3

and from this obtain the above formulae for F̃F (X,T ) in Section 4.

Remark 1.2. We draw attention in particular to the fact that when dF = 1 our theorems
describe only one regime, but when dF ≥ 2 a new regime (described, for example, by Theorem
A2) comes into play; the variances when dF ≥ 2 are therefore qualitatively different to when
dF = 1. We illustrate this in the following two figures, which show data from numerical

computations. In both cases we plot ṼF (X,h)
hX against log X

h , for a fixed value of X as h varies
and overlay the straight lines coming from the formulae for the variances described in the
above theorems. In the first case, shown in Figure 1, F is the Riemann zeta-function (so ΛF
is just the von Mangoldt function) and X = 15000000. This is, of course, an example with
dF = 1 and so one sees a single regime that is well described by (4).

By way of contrast, we plot in Figure 2 data for two L-functions with dF = 2. In these
examples X = 1000000. The straight lines correspond to the formulae for the two regimes
described by Theorems C1 and C2.

1For precise statements and proofs see [16].
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Remark 1.3. Note that, unlike the case of the Riemann zeta-function considered in [7], the A
Theorems are not exactly the converse of the B Theorems, and the C Theorems are not exactly
the converse of the D Theorems. They are close to being the converse of each other, but with
the power saving errors we have here, the intervals of uniformity do not match precisely.

The proofs of the theorems within each pair are essentially identical, so we only give the
proofs of Theorems A1, B1 and C1. Likewise, the proofs of Theorems D1 and D2 are similar
to the proofs of C1 and C2, so we omit them too.

2. Auxiliary lemmas

Lemma 2.1. Suppose f is a non-negative function with f(t)�ε |t|ε. If∫ T

−T
f(t)dt = T

(
log T +A

)
+O

(
T 1−c)

uniformly for κ−(1−c1) ≤ T ≤ κ−(1+c2) for some A ∈ R and 0 < c, c1, c2 < 1, then

I(κ) :=

∫ ∞
−∞

(
sinκu

u

)2

f(u)du =
π

2
κ
(

log
1

κ
+B

)
+O

(
κ1+c

)
+Oε

(
κ1+c1−ε

)
+Oε

(
κ1+c2−ε

)
as κ→ 0+, with B = A+ 2− γ0 − log 2.

Proof. As in the proof of Lemma 2 of Goldston and Montgomery [7], we write

I(κ) =

(∫ U1

−U1

)
+

(∫ −U1

−U2

+

∫ U2

U1

)
+

(∫ −U2

−∞
+

∫ ∞
U2

)
= I1(κ) + I2(κ) + I3(κ),

say, where
U1 = κ−(1−c1) and U2 = κ−(1+c2).

Since f(t)�ε |t|ε, we have

I1(κ)�ε

∫ U1

−U1

κ2|u|εdu�ε κ
2U1+ε

1 �ε κ
1+c1−ε. (10)

Similarly,

I3(κ)�ε

∫ ∞
U2

u−2+εdu�ε U
−1+ε
2 �ε κ

1+c2−ε. (11)

To treat I2(κ) we let
r(t) = f(t) + f(−t)−

(
log t+A+ 1

)
and

R(u) =

∫ u

0
r(t)dt =

∫ u

0

(
f(t) + f(−t)

)
dt− u

(
log u+A

)
.

Then R(u)� u1−c uniformly for U1 ≤ u ≤ U2, and

I2(κ) =

∫ U2

U1

(
sinκu

u

)2(
f(u) + f(−u)

)
du

=

∫ U2

U1

(
sinκu

u

)2(
log u+A+ 1

)
du+

∫ U2

U1

(
sinκu

u

)2

dR(u).

Integrating by parts, the second integral is

� κ2R(U1) + U−22 R(U2) +

∫ U2

U1

∣∣R(u)
∣∣(∣∣∣∣κ sin 2κu

u2

∣∣∣∣+

∣∣∣∣(sinκu)2

u3

∣∣∣∣)du� κ1+c.

For the first integral, we extend the range of integration to [0,∞). As in the treatment for
I1(κ) and I3(κ), this introduces an error term of size �ε κ

1+c1−ε + κ1+c2−ε. Hence

I2(κ) =

∫ ∞
0

(
sinκu

u

)2(
log u+A+ 1

)
du+O

(
κ1+c

)
+Oε

(
κ1+c1−ε

)
+Oε

(
κ1+c2−ε

)
. (12)
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In view of (10)–(12) we are left to estimate the main term, which is

κ

∫ ∞
0

(
sinu

u

)2(
log u+ log

1

κ
+A+ 1

)
du

=
π

2

(
1− γ0 − log 2

)
κ+

π

2
κ
(

log
1

κ
+A+ 1

)
=
π

2
κ
(

log
1

κ
+A+ 2− γ0 − log 2

)
,

and the lemma follows. �

Lemma 2.2. Suppose f, g are non-negative functions with f(t)�ε |t|ε. If

I(κ) :=

∫ ∞
−∞

(
sinκu

u

)2

f(u)du =
π

2
κ
(

log
1

κ
+B

)
+O

(
κ1+cg(T )

)
uniformly for T−(1+c1) ≤ κ ≤ T−(1−c2) for some B ∈ R and 0 < c, c1, c2 < 1, then∫ T

−T
f(t)dt = T

(
log T +A

)
+Oε

((
T 3g(T )

)1/(3+c)+ε)
+Oε

(
T 1−2c1+ε)+Oε

(
T 1−c2/4+ε)

as T →∞, with A = B − 2 + γ0 + log 2.

Proof. Let
r(u) = f(u) + f(−u)−

(
log u+B − 1 + γ0 + log 2

)
,

and

R(κ) =

∫ ∞
0

(
sinκu

u

)2

r(u)du.

Then we have

R(κ) = I(κ)−
∫ ∞
0

(
sinκu

u

)2(
log u+B − 1 + γ0 + log 2

)
du

= I(κ)− π

2
κ
(

log
1

κ
+B

)
� κ1+cg(T ) (13)

uniformly for T−(1+c1) ≤ κ ≤ T−(1−c2). Also, since f(t)�ε |t|ε, we get

R(κ)�ε

∫ ∞
0

min
{
κ2, u−2

}
|u|εdu�ε κ

1−ε (14)

for all κ ≥ 0.
Let

Kη(x) =
sin 2πx+ sin 2π(1 + η)x

2πx(1− 4η2x2)
for η > 0. Then

K̂η(t) =


1 if |t| ≤ 1,

cos2
(
π(|t|−1)

2η

)
if 1 ≤ |t| ≤ 1 + η,

0 if |t| ≥ 1 + η.

The kernel Kη is even and satisfies the following properties: Kη(x), K ′η(x) → 0 as x → ∞,
and [3]

K ′′η (x)� min
{

1, η−3|x|−3
}
. (15)

Integrating by parts twice, we have

K̂η(t) =

∫ ∞
0

K ′′η (x)

(
sinπtx

πt

)2

dx.

This implies that∫ ∞
0

r(t)K̂η

( t
T

)
dt = π−2T 2

∫ ∞
0

K ′′η (x)R
(πx
T

)
dx
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= π−2T 2

(∫ T1

0
K ′′ηR+

∫ T2

T1

K ′′ηR+

∫ ∞
T2

K ′′ηR

)
,

where T1 = T−c1 and T2 = T c2 . From (14) and (15) we have∫ T1

0
K ′′ηR�ε

∫ T1

0
(x/T )1−εdx�ε T

−(1+2c1)+ε

and ∫ ∞
T2

K ′′ηR�ε

∫ ∞
T2

η−3x−3(x/T )1−εdx�ε η
−3T−(1+c2)+ε.

Furthermore, (13) and (15) lead to∫ T2

T1

K ′′ηR�
∫ T2

T1

min
{

1, η−3x−3
}

(x/T )1+cg(T )dx� η−(2+c)T−(1+c)g(T ).

So ∫ ∞
0

r(t)K̂η

( t
T

)
dt�ε T

1−2c1+ε + η−3T 1−c2+ε + η−(2+c)T 1−cg(T ).

Hence∫ ∞
−∞

f(t)K̂η

( t
T

)
dt =

∫ ∞
0

(
log t+B − 1 + γ0 + log 2

)
K̂η

( t
T

)
dt

+Oε
(
T 1−2c1+ε)+Oε

(
η−3T 1−c2+ε) +O

(
η−(2+c)T 1−cg(T )

)
=

∫ T

0

(
log t+B − 1 + γ0 + log 2

)
dt+O

(∫ (1+η)T

T
log tdt

)
+Oε

(
T 1−2c1+ε)+Oε

(
η−3T 1−c2+ε) +O

(
η−(2+c)T 1−cg(T )

)
= T (log T +B − 2 + γ0 + log 2) +Oε

(
ηT 1+ε

)
+Oε

(
T 1−2c1+ε)+Oε

(
η−3T 1−c2+ε) +O

(
η−(2+c)T 1−cg(T )

)
,

and we obtain the lemma. �

Lemma 2.3. Suppose f is a non-negative function. If∫ ∞
−∞

f(T + y)e−2|y|dy = 1 +O
(
e−cY

)
for Y ≤ T ≤ Y + log 2 for some c > 0, then∫ log 2

0
f(Y + y)e2ydy =

3

2
+O

(
e−cY/2

)
.

Proof. This is a special case of Lemma 1 of [9]. �

Lemma 2.4. Assume GRH. We have∫ X

1

∣∣∣ψF (x+ δx)− ψF (x)−mF δx
∣∣∣2dx� δX2

(
log

2

δ

)2
(16)

for 0 < δ ≤ 1, and ∫ X

1

∣∣∣ψF (x+ h)− ψF (x)−mFh
∣∣∣2dx� hX

(
log

2X

h

)2
(17)

for 0 < h ≤ X.

Proof. The argument is identical to that of Saffari and Vaughan in [14]. �
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3. Ratios conjecture for L-functions in the Selberg class

We would like to study

RF (α, β, γ, δ) =

∫ T

−T

F (s+ α)F (1− s+ β)

F (s+ γ)F (1− s+ δ)
dt,

where s = 1/2 + it, using the recipe in [4, 5]. The shifts are constrained as follows:∣∣Re(α)
∣∣, ∣∣Re(β)

∣∣ < 1

4
,

(log T )−1 � Re(γ),Re(δ) <
1

4
(18)

Im(α), Im(β), Im(γ), Im(δ)�ε T
1−ε.

We use the approximate functional equation for the L-functions in the numerator,

F (s) =
∑
n

aF (n)

ns
+X(s)

∑
n

aF (n)

n1−s
,

and the normal Dirichlet series expansion for those in the denominator,

F (s)−1 =
∑
n

µF (n)

ns
.

As we integrate term-by-term, only the pieces with the same number of X(s) as X(1 − s)
contribute to the main terms.

The terms from the first part of each approximate functional equation yield

2T
∑

hm=kn

aF (m)aF (n)µF (h)µF (k)

m1/2+αn1/2+βh1/2+γk1/2+δ
= 2T

∏
p

( ∑
h+m=k+n

aF (pm)aF (pn)µF (ph)µF (pk)

p(1/2+α)m+(1/2+β)n+(1/2+γ)h+(1/2+δ)k

)
.

We note that the functions aF (n), µF (n) are multiplicative because of the existence of the
Euler product (5), and

bF (p) = aF (p) = −µF (p).

Hence the above expression is

2TAF (α, β, γ, δ)
(F ⊗ F )(1 + α+ β)(F ⊗ F )(1 + γ + δ)

(F ⊗ F )(1 + α+ δ)(F ⊗ F )(1 + β + γ)
,

where AF (α, β, γ, δ) is an arithmetical factor given by some Euler product that is absolutely
and uniformly convergent in some product of fixed half-planes containing the origin,

AF (α, β, γ, δ) =
∏
p

( ∑
h+m=k+n

aF (pm)aF (pn)µF (ph)µF (pk)

p(1/2+α)m+(1/2+β)n+(1/2+γ)h+(1/2+δ)k

)
(19)

exp

( ∞∑
l=1

l
∣∣bF (pl)

∣∣2( 1

pl(1+α+δ)
+

1

pl(1+β+γ)
− 1

pl(1+α+β)
− 1

pl(1+γ+δ)

))
.

Here for any F,G ∈ S, we define the tensor product F ⊗G as in [13]

(F ⊗G)(s) =
∏
p

exp

( ∞∑
l=1

lbF (pl)bG(pl)

pls

)
.

The contribution of the terms coming from the second part of each approximate functional
equation is similar to the first piece except that α is replaced by −β, and β is replaced by −α.
Also, because of the factor X(s), we have an extra factor of

X(s+ α)X(1− s+ β) =
(qF (|t|+ 2)dF

(2π)dF

)−(α+β)(
1 +O

( 1

|t|+ 2

))
.

Thus the recipe leads to the following ratios conjecture:
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Conjecture 3.1. With α, β, γ and δ satisfying (18) we have

RF (α, β, γ, δ) =

∫ T

−T

(
AF (α, β, γ, δ)

(F ⊗ F )(1 + α+ β)(F ⊗ F )(1 + γ + δ)

(F ⊗ F )(1 + α+ δ)(F ⊗ F )(1 + β + γ)

+
(qF (|t|+ 2)dF

(2π)dF

)−(α+β)
AF (−β,−α, γ, δ)(F ⊗ F )(1− α− β)(F ⊗ F )(1 + γ + δ)

(F ⊗ F )(1− α+ γ)(F ⊗ F )(1− β + δ)

)
dt

+Oε(T
1/2+ε),

where AF (α, β, γ, δ) is defined as in (19).

We next investigate the analytic properties of (F ⊗ F )(s) at s = 1. We have

(F ⊗ F )′

(F ⊗ F )
(s) = −

∑
p

∞∑
l=1

l2|bF (pl)|2(log p)

pls
= −

∑
p

|bF (p)|2(log p)

ps
+O(1)

= −
∑
p

|aF (p)|2(log p)

ps
+O(1), (20)

provided that Re(s) > 1
2 . Let

S(x) =
∑
p≤x

|aF (p)|2

p
.

The Selberg Orthogonality Conjecture says that

S(x) = log log x+O(1).

So for σ0 > 0 and |σ − σ0| ≤ σ0/2 (σ ∈ C), partial summation gives∑
p≤x

|aF (p)|2

p1+σ
= O

(
log log x

xRe(σ)

)
+ σ

∫ x

1

S(t)

tσ+1
dt = O

(
log log x

xRe(σ)

)
+O(1) + σ

∫ x

1

log log t

tσ+1
dt.

Taking x→∞ we obtain∑
p

|aF (p)|2

p1+σ
= O(1) + σ

∫ ∞
1

log log t

tσ+1
dt = O(1)− (γ0 + log σ) = O(1)− log σ.

Hence using Cauchy’s theorem we get∑
p

|aF (p)|2(log p)

p1+σ0
=

1

σ0
+O(1).

It follows from (20) that (F ⊗ F )(s) has a simple pole at s = 1.
Note that for a function f(u, v) analytic at (u, v) = (α, α), a simple calculation shows that

d

dα

f(α, γ)

(F ⊗ F )(1− α+ γ)

∣∣∣∣
γ=α

=
f(α, α)

rF⊗F
,

where rF⊗F is the residue of (F ⊗F ) at s = 1. It is also easy to verify that AF (α, β, α, β) = 1.
So taking the derivatives of the expressions in Conjecture 3.1 with respect to α, β and setting
γ = α, δ = β we have

Conjecture 3.2. With α and β satisfying (18) we have∫ T

−T

F ′

F
(s+ α)

F
′

F
(1− s+ β)dt =

∫ T

−T

((
(F ⊗ F )′

(F ⊗ F )

)′
(1 + α+ β)

+
1

r2
F⊗F

(qF (|t|+ 2)dF

(2π)dF

)−(α+β)
AF (−β,−α, α, β)(F ⊗ F )(1− α− β)(F ⊗ F )(1 + α+ β)

+
∂2

dαdβ
AF (α, β, γ, δ)

∣∣∣∣
γ=α,δ=β

)
dt+Oε(T

1/2+ε),
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where AF (α, β, γ, δ) is defined as in (19).

4. Pair correlation of zeros of L-functions in the Selberg class

4.1. The pair correlation function. Let F ∈ S. We want to evaluate the sum

S(F ) =
∑

−T≤γF ,γ′F≤T

h(γF − γ′F ).

We follow the approach in [6] and compute this using contour integrals. Let 1/2 < a < 1
and C be the positively oriented rectangle with vertices at 1 − a − iT , a − iT , a + iT and
1− a+ iT . Then

S(F ) =
1

(2πi)2

∫
C

∫
C

F ′

F
(u)

F ′

F
(v)h

(
− i(u− v)

)
dudv.

The horizontal contributions are small and can be ignored. We denote

S(F ) = I1 + I2 + 2I3 +Oε(T
ε),

where I1 has vertical parts a and a, I2 has vertical parts 1− a and 1− a, and I3 has vertical
parts a and 1− a.

Using GRH and moving the contours to the right of 1 we have I1 = Oε(T
ε).

For I2 we use the functional equation

F ′

F
(s) =

X ′

X
(s)− F

′

F
(1− s). (21)

Here

X ′

X
(s) = −2 logQ−

r∑
j=1

λj

(
Γ′

Γ

(
λjs+ µj

)
+

Γ′

Γ

(
λj(1− s) + µj

))

= − log
qF (|t|+ 2)dF

(2π)dF
+O

(
1

|t|+ 2

)
.

We apply (21) to both F ′/F (u) and F ′/F (v). For the terms involving F
′
/F (1−u) or F

′
/F (1−

v), we move the corresponding contour to the right of 1, and as in the treatment for I1, we
get Oε(T

ε). For the term with X ′/X(u) and X ′/X(v), we move both contours to Re(u) =
Re(v) = 1

2 . Again that introduces an error term of size Oε(T
ε). Hence

I2 =
1

(2π)2

∫ T

−T

∫ T

−T

X ′

X
(12 + iu)

X ′

X
(12 + iv)h(u− v)dudv +Oε(T

ε)

=
1

(2π)2

∫ T

−T

∫ T

−T
log

qF (|u|+ 2)dF

(2π)dF
log

qF (|v|+ 2)dF

(2π)dF
h(u− v)dudv +Oε(T

ε)

=
2

(2π)2

∫ T

−T

∫ T

v
log

qF (|u|+ 2)dF

(2π)dF
log

qF (|v|+ 2)dF

(2π)dF
h(u− v)dudv +Oε(T

ε),

as h is even. Changing the variables t = v and η = u− v we get

I2 =
2

(2π)2

∫ 2T

0
h(η)

∫ T−η

−T
log

qF (|t+ η|+ 2)dF

(2π)dF
log

qF (|t|+ 2)dF

(2π)dF
dtdη +Oε(T

ε).

We can extend the inner integral to t = T introducing an error term of size� (log T )2
∫ 2T
0 ηh(η)dη �

(log T )3. The same argument shows that the term log qF (|t+η|+2)dF

(2π)dF
can be replaced by log qF (|t|+2)dF

(2π)dF

with the same error term. So

I2 =
2

(2π)2

∫ 2T

0
h(η)

∫ T

−T

(
log

qF (|t|+ 2)dF

(2π)dF

)2

dtdη +Oε(T
ε)

=
1

(2π)2

∫ T

−T

∫ 2T

−2T
h(η)

(
log

qF (|t|+ 2)dF

(2π)dF

)2

dηdt+Oε(T
ε).
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We next consider

I3 = − 1

(2πi)2

∫ a+iT

a−iT

∫ 1−a+iT

1−a−iT

F ′

F
(u)

F ′

F
(v)h

(
− i(u− v)

)
dudv.

Letting u− v = iη we get

I3 = − 1

(2π)2i

∫ 2T−i(1−2a)

−2T−i(1−2a)
h(η)

∫ a+iT2

a−iT1

F ′

F
(v)

F ′

F
(v + iη)dvdη,

where

T1 = min
{
T, T + Re(η)

}
and T2 = min

{
T, T − Re(η)

}
.

We now use the functional equation (21) for F ′/F (v + iη). The term with X ′/X(v + iη) is
Oε(T

ε) by moving the v-contour to the right of 1. Thus,

I3 =
1

(2π)2i

∫ 2T−i(1−2a)

−2T−i(1−2a)
h(η)

∫ a+iT2

a−iT1

F ′

F
(v)

F
′

F
(1− v − iη)dvdη +Oε(T

ε)

=
1

(2π)2

∫ 2T−i(1−2a)

−2T−i(1−2a)
h(η)

∫ T2

−T1

F ′

F

(
s+ (a− 1

2)
)F ′
F

(
1− s+ (12 − a− iη)

)
dtdη +Oε(T

ε),

where s = 1/2 + it.
In view of Conjecture 3.2, we have

I3 =
1

(2π)2

∫ 2T−i(1−2a)

−2T−i(1−2a)
h(η)

∫ T2

−T1
g(−η, t)dtdη +Oε(T

1/2+ε), (22)

where

g(η, t) =

(
(F ⊗ F )′

(F ⊗ F )

)′
(1 + iη) +

1

r2
F⊗F

(qF (|t|+ 2)dF

(2π)dF

)−iη
AF
(
− 1

2 + a− iη,−a+ 1
2 , a−

1
2 ,

1
2 − a+ iη

)
(F ⊗ F )(1− iη)(F ⊗ F )(1 + iη) +

∂2

dαdβ
AF (α, β, γ, δ)

∣∣∣∣
γ=α=a−1

2 ,δ=β=
1
2−a+iη

.

A simple calculation shows that

AF
(
− 1

2 + a− iη,−a+ 1
2 , a−

1
2 ,

1
2 − a+ iη

)
= AF (iη),

where

AF (r) =
∏
p

( ∑
h+m=k+n

aF (pm)aF (pn)µF (ph)µF (pk)

p−rm+n+(1+r)k

)

exp

( ∞∑
l=1

l
∣∣bF (pl)

∣∣2( 2

pl
− 1

pl(1−r)
− 1

pl(1+r)

))
, (23)

and
∂2

dαdβ
AF (α, β, γ, δ)

∣∣∣∣
γ=α=a−1

2 ,δ=β=
1
2−a+iη

= −BF (iη),

where

BF (r) =
∑
p

(log p)2
(
−

∑
h+m=k+n

aF (pm)aF (pn)µF (ph)µF (pk)mn

p(n+k)(1+r)
+
∞∑
l=1

l3
∣∣bF (pl)

∣∣2
pl(1+r)

)
.(24)

So

g(η, t) =

(
(F ⊗ F )′

(F ⊗ F )

)′
(1 + iη) +

1

r2
F⊗F

(qF (|t|+ 2)dF

(2π)dF

)−iη
AF (iη)

(F ⊗ F )(1− iη)(F ⊗ F )(1 + iη)−BF (iη).
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As before, we can extend the range of the inner integral in (22) to [−T, T ] producing an error
term of size Oε(T

ε). Hence

I3 =
1

(2π)2

∫ T

−T

∫ 2T−i(1−2a)

−2T−i(1−2a)
h(η)g(−η, t)dηdt+Oε(T

1/2+ε).

Next we move the path of integration of the inner integral to the real axis from −2T to 2T
with a principal value as we pass though 0. Note that A′F (0) = 0, so near η = 0 we have

g(η, t) = − i
η

log
qF (|t|+ 2)dF

(2π)dF
+O(1).

Thus

I3 =
h(0)

4π

∫ T

−T
log

qF (|t|+ 2)dF

(2π)dF
dt+

1

(2π)2

∫ T

−T

∫ 2T

−2T
h(η)g(η, t)dηdt+Oε(T

1/2+ε),

after changing the variable η to −η. Summing up we have

Conjecture 4.1. For h a suitable even test function we have∑
−T≤γF ,γ′F≤T

h(γF − γ′F ) =
h(0)

2π

∫ T

−T
log

qF (|t|+ 2)dF

(2π)dF
dt+

1

(2π)2

∫ T

−T

∫ 2T

−2T
h(η)

[(
log

qF (|t|+ 2)dF

(2π)dF

)2

+ 2

((
(F ⊗ F )′

(F ⊗ F )

)′
(1 + iη) +

1

r2
F⊗F

(qF (|t|+ 2)dF

(2π)dF

)−iη
AF (iη)(F ⊗ F )(1− iη)(F ⊗ F )(1 + iη)−BF (iη)

)]
dηdt+Oε(T

1/2+ε),

where AF (r) and BF (r) are defined as in (23) and (24).

4.2. The form factor. Throughout this section, we shall denote

X = Tα, ` = log
qF (|t|+ 2)dF

(2π)dF
and L = log

qFT
dF

(2π)dF
.

We recall that

F̃F (X,T ) =
∑

−T≤γF ,γ′F≤T

Xi(γF−γ′F )e−(γF−γ
′
F )2

=
∑

−T≤γF ,γ′F≤T

cos
(
(γF − γ′F ) logX

)
e−(γF−γ

′
F )2 .

The function F̃F (X,T ) is in a suitable form to apply Conjecture 4.1 with

h(η) = cos(η logX)e−η
2
,

and using that we shall write

F̃F (X,T ) =
∑

−T≤γF ,γ′F≤T

h(γF − γ′F ) = J1 + J2 +Oε(T
1/2+ε).

Since h is even, we have ∫ 2T

−2T
η2k−1h(η)dη = 0,

and ∫ 2T

−2T
η2kh(η)dη =

∞∑
j=0

(−1)j(logX)2j

(2j)!

∫ 2T

−2T
η2(k+j)e−η

2
dη

=
√
π
∞∑
j=0

(−1)j(2k + 2j)!

22k+2j(2j)!(k + j)!
(logX)2j +O

(
(2T )2k−1 exp

(
2(logX)T − 4T 2

))
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for any k ∈ Z. In particular,∫ 2T

−2T
η2kh(η)dη �

(
logX/2

)2k
exp

(
− (logX)2/4

)
+ (2T )2k−1 exp

(
2(logX)T − 4T 2

)
for any k ≥ 0.

Moreover ∫ 2T

−2T
η2k−1 cos(η`)h(η)dη = 0,

and ∫ 2T

−2T
η2k cos(η`)h(η)dη =

∞∑
i,j=0

(−1)i+j`2i(logX)2j

(2i)!(2j)!

(∫ 2T

−2T
η2(k+i+j)e−η

2
dη

)

=
√
π
∞∑

i,j=0

(−1)i+j(2k + 2i+ 2j)!

22k+2i+2j(2i)!(2j)!(k + i+ j)!
`2i(logX)2j

+O
(

(2T )2k−1 exp
(
2(logX + L)T − 4T 2

))
for any k ∈ Z. In particular,∫ 2T

−2T
η2k cos(η`)h(η)dη �

(
(logX + `)/2

)2k
exp

(
− (logX − `)2/4

)
+(2T )2k−1 exp

(
2(logX + L)T − 4T 2

)
for any k ≥ 0, and hence∫ T

−T

∫ 2T

−2T
η2k cos(η`)h(η)dηdt

�ε

{
Tα/dF+εL2k + (2T )2k exp

(
2(logX + L)T − 4T 2

)
if α < dF ,

T (logX)2k exp
(
− c(logX)2

)
+ (2T )2k exp

(
2(logX + L)T − 4T 2

)
if α > dF

with some absolute constant c > 0, for any k ≥ 0.
Similarly, ∫ 2T

−2T
η2k sin(η`)h(η)dη = 0,

and∫ T

−T

∫ 2T

−2T
η2k+1 sin(η`)h(η)dηdt

�ε

{
Tα/dF+εL2k+1 + (2T )2k+1 exp

(
2(logX + L)T − 4T 2

)
if α < dF ,

T (logX)2k+1 exp
(
− c(logX)2

)
+ (2T )2k+1 exp

(
2(logX + L)T − 4T 2

)
if α > dF

with some absolute constant c > 0, for any k ≥ 0.
Expanding various terms in Conjecture 4.1 we have(

(F ⊗ F )′

(F ⊗ F )

)′
(1 + iη) = − 1

η2
+O(1),

(F ⊗ F )(1− iη)(F ⊗ F )(1 + iη) =
r2
F⊗F
η2

+O(1),

AF (iη) = 1 +O(η2),

BF (ir) = O(1).

So

J2 =
1

(2π)2

∫ T

−T

∫ 2T

−2T

(
`2 − 2η−2 + 2η−2 cos(η`)

)
h(η)dηdt+ E
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=
2

π
√
π

∫ T

−T

∞∑
i=2

∞∑
j=0

(−1)i+j(2i+ 2j − 2)!

22i+2j(2i)!(2j)!(i+ j − 1)!
`2i(logX)2jdt+ E,

where

E �ε,A

{
Tα/dF+ε if α < dF ,
T−A if α > dF

for every A > 0. The double sum in the integral equals

−
√
π

8

(∣∣ logX − `
∣∣Erf

( | logX − `|
2

)
+
(

logX + `
)
Erf
( logX + `

2

))
+

√
π

4
(logX)Erf

( logX

2

)
+O

(
exp

(
− (logX − `)2/4

))
+O

(
L2 exp

(
− (logX)2/4

))
= −
√
π

4

(
max

{
logX, `

}
− logX

)
+O

(
L2 exp

(
− (logX − `)2/4

)
+ L2 exp

(
− (logX)2/4

))
.

Hence

J2 = − 1

2π

∫ T

−T

(
max

{
logX, `

}
− logX

)
dt+ E.

On the other hand,

J1 =
1

2π

∫ T

−T
`dt.

Thus

F̃F (X,T ) =

{ T logX
π +Oε(T

α/dF+ε) +Oε(T
1/2+ε) if α < dF ,

TL
π −

dFT
π +Oε(T

1/2+ε) if α > dF .

Conjecture 4.2. We have

F̃F (X,T ) =
T logX

π
+Oε(X

1/dF+ε) +Oε(T
1/2+ε)

uniformly for TA1 ≤ X ≤ TA2 for any fixed 0 < A1 ≤ A2 < dF , and

F̃F (X,T ) =
T

π

(
dF log

T

2π
+ log qF − dF

)
+Oε(T

1/2+ε)

uniformly for TA1 ≤ X ≤ TA2 for any fixed dF < A1 ≤ A2 <∞.

5. Proofs of main theorems

5.1. Proof of Theorem A1. We begin by considering

I(X,T ) =

∫ T

−T

∣∣∣∣ ∑
|γF |≤Z

XiγF

1 + (t− γF )2

∣∣∣∣2dt
=

∑
−Z≤γF ,γ′F≤Z

Xi(γF−γ′F )

∫ T

−T

dt(
1 + (t− γF )2

)(
1 + (t− γ′F )2

) ,
with X,Z ≥ T . Using the fact that NF (t + 1) − NF (t) � log(|t| + 2), we can restrict the
summation over the zeros to −T ≤ γF , γ′F ≤ T with an error term of size� (log T )2. Similarly,
the range of the integration can be extended to (−∞,∞) introducing an error term of size
� (log T )3. So

I(X,T ) =
∑

−T≤γF ,γ′F≤T

Xi(γF−γ′F )

∫ ∞
−∞

dt(
1 + (t− γF )2

)(
1 + (t− γ′F )2

) +O
(
(log T )3

)
=

π

2
FF (X,T ) +O

(
(log T )3

)
,
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and hence from (6) we have

I(X,T ) =
T

2

(
dF log

T

2π
+ log qF − dF

)
+O

(
T 1−c)

uniformly for X1/A2 � T � X1/A1 .
Let

a(s) =
(1 + δ)s − 1

s
.

Then ∣∣a(it)
∣∣2 = 4

(
sinκt

t

)2

,

where κ = log(1+δ)
2 . So by Lemma 2.1 we deduce that∫ ∞

−∞

∣∣a(it)
∣∣2∣∣∣∣ ∑
|γF |≤Z

XiγF

1 + (t− γF )2

∣∣∣∣2dt
= πκ

(
dF log

1

κ
+ log qF + (1− γ0 − log 4π)dF

)
+O

(
κ1+c

)
+Oε

(
κ1+c1−ε

)
+Oε

(
κ1+c2−ε

)
=
π

2
δ
(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O

(
δ1+c

)
+Oε

(
δ1+c1−ε

)
+Oε

(
δ1+c2−ε

)
.

The values of T for which we have used Lemma 2.1 lie in the range

δ−(1−c1) � T � δ−(1+c2)

for some 0 < c1, c2 < 1.
Let J be the above integral and K be the same integral with a(it) being replaced by

a(12 + iγF ). We write J =
∫
|A|2 and K =

∫
|B|2. Direct calculation shows that

a(s)� min
{
δ, 1/|s|

}
and a′(s)� min

{
δ2, δ/|s|

}
for |σ| ≤ 1. Hence, since NF (t+ 1)−NF (t)� log(|t|+ 2),

A,B � min
{
δ, 1/|t|

}
log(|t|+ 2)

and
a(it)− a

(
1
2 + iγF

)
�
(
1 + |t− γF |

)
min

{
δ2, δ/|t|

}
.

Thus
A−B � min

{
δ2, δ/|t|

}(
log(|t|+ 2)

)2
,

and hence
|A|2 − |B|2 � min

{
δ3, δ/|t|2

}(
log(|t|+ 2)

)3
,

so that

J −K � δ2
(

log
1

δ

)3

.

It follows that∫ ∞
−∞

∣∣∣∣ ∑
|γF |≤Z

a(ρF )XiγF

1 + (t− γF )2

∣∣∣∣2dt =
π

2
δ
(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
(25)

+O
(
δ1+c

)
+Oε

(
δ1+c1−ε

)
+Oε

(
δ1+c2−ε

)
.

Let S(t) be the above sum over the zeros. Its Fourier transform is

Ŝ(u) =

∫ ∞
−∞

S(t)e(−tu)dt = π
∑
|γF |≤Z

a(ρF )XiγF e(−γFu)e−2π|u|.

By Plancherel’s formula the integral in (25) equals

π

2

∫ ∞
−∞

∣∣∣∣ ∑
|γF |≤Z

a(ρF )eiγF (Y+y)

∣∣∣∣2e−2|y|dy,
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after the change of variables Y = logX, y = −2πu. Hence∫ ∞
−∞

∣∣∣∣ ∑
|γF |≤Z

a(ρF )eiγF (Y+y)

∣∣∣∣2e−2|y|dy = δ
(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O
(
δ1+c

)
+Oε

(
δ1+c1−ε

)
+Oε

(
δ1+c2−ε

)
.

Lemma 2.3 leads to∫ 2X

X

∣∣∣∣ ∑
|γF |≤Z

a(ρF )xρF
∣∣∣∣2dx =

3

2
δX2

(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
(26)

+O
(
δ1+c/2X2

)
+Oε

(
δ1+c1/2−εX2

)
+Oε

(
δ1+c2/2−εX2

)
,

after the change of variable x = eY+y, provided that

X1/A2 � δ−(1−c1) < δ−(1+c2) � X1/A1 . (27)

Next we use the explicit formula for ψF (x) and get

ψF (x+ δx)− ψF (x)−mF δx = −
∑
|γF |≤Z

a(ρF )xρF +O

(
(log x) min

{
1,

x

Z||x||

})
(28)

+O

(
(log x) min

{
1,

x

Z||x+ δx||

})
+O

(
xZ−1(log xZ)2

)
,

where ||x|| = minn |x−n| is the distance from x to the nearest integer. Choosing Z = X2 and
using (26) we have∫ 2X

X

∣∣∣ψF (x+ δx)− ψF (x)−mF δx
∣∣∣2dx =

3

2
δX2

(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O
(
δ1+c/2X2

)
+Oε

(
δ1+c1/2−εX2

)
+Oε

(
δ1+c2/2−εX2

)
.

Summing over the dyadic intervals [2−kX, 2−k+1X], 1 ≤ k ≤ K, with

2K = δ(1+c2)A1X (29)

(so that (27) still holds with X being replaced by 2−KX) we obtain∫ X

2−KX

∣∣∣ψF (x+ δx)− ψF (x)−mF δx
∣∣∣2dx

=
(1− 4−K)

2
δX2

(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O
(
δ1+c/2X2

)
+Oε

(
δ1+c1/2−εX2

)
+Oε

(
δ1+c2/2−εX2

)
.

For the integration in the range [1, 2−KX] we use the first estimate of Lemma 2.4. Hence

VF (X, δ) =
1

2
δX2

(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O

(
δ1+c/2X2

)
+Oε

(
δ1+c1/2−εX2

)
+Oε

(
δ1+c2/2−εX2

)
+Oε

(
δ1−εX24−K

)
,

and then the theorem follows from (27) and (29).

5.2. Proof of Theorem B1. Integrating (7) by parts we have∫ X1

X

∣∣∣ψF (x+ δx)− ψF (x)−mF δx
∣∣∣2x−4dx =

1

2
δX−2

(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O
(
δ1+cX−2

)
+Oε

(
δ1−εX−21

)
uniformly for δ−1/B2 � X,X1 � δ−1/B1 . Similarly, the bound (16) leads to∫ ∞

X1

∣∣∣ψF (x+ δx)− ψF (x)−mF δx
∣∣∣2x−4dx�ε δ

1−εX−21 .
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Combining these estimates and (7), and letting X1 = δ−1/B1 we get∫ ∞
0

min
{
x2/X2, X2/x2

}∣∣∣ψF (x+ δx)− ψF (x)−mF δx
∣∣∣2x−2dx

= δ
(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O

(
δ1+c

)
+Oε

(
δ1+2/B1−εX2

)
.

We now use the explicit formula (28) with Z = X2. Writing Y = logX and x = eY+y we
obtain∫ ∞

−∞

∣∣∣∣ ∑
|γF |≤Z

a(ρF )eiγF (Y+y)

∣∣∣∣2e−2|y|dy = δ
(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O
(
δ1+c

)
+Oε

(
δ1+2/B1−εX2

)
.

Retracing our steps as in the previous subsection leads to∫ ∞
−∞

(
sinκt

t

)2∣∣∣∣ ∑
|γF |≤Z

XiγF

1 + (t− γF )2

∣∣∣∣2dt
=
π

4
κ
(
dF log

1

κ
+ log qF + (1− γ0 − log 4π)dF

)
+O

(
κ1+c

)
+Oε

(
κ1+2/B1−εX2

)
.

Lemma 2.2 then implies that∫ T

−T

∣∣∣∣ ∑
|γF |≤Z

XiγF

1 + (t− γF )2

∣∣∣∣2dt
=
T

2

(
dF log T + log qF − (1 + log 2π)dF

)
+Oε

(
T 3/(3+c)+ε

)
+Oε

(
T 1−2c1+ε)+Oε

(
T 1−c2/4+ε)+Oε

((
T 3X2

)B1/(3B1+2)+ε
)
,

provided that T−(1+c1) � X−B2 < X−B1 � T−(1−c2). Moreover, we can restrict the summa-
tion over the zeros to −T ≤ γF , γ

′
F ≤ T and extend the range of the integration to (−∞,∞)

with an error term of size� (log T )3. Finally we choose c1 and c2 such that T−(1+c1) = X−B2

and T−(1−c2) = X−B1 , and hence obtain the theorem.

5.3. Proof of Theorem C1. Consider the double integral∫ 2X

X

∫ H2

H1

∣∣f(x, h)
∣∣2dhdx,

where f(x, y) = ψF (x + y) − ψF (x) −mF y and H1 < H2 < 2H1. Here H1 � H2 � H and
X1−B3 � H � X1−B1 . Replacing h by δ = h/x and changing the order of integration, this is
equal to ∫ H2/2X

H1/2X

∫ 2X

H1/δ

∣∣f(x, δx)
∣∣2xdxdδ +

∫ H1/X

H2/2X

∫ H2/δ

H1/δ

∣∣f(x, δx)
∣∣2xdxdδ

+

∫ H2/X

H1/X

∫ H2/δ

X

∣∣f(x, δx)
∣∣2xdxdδ.

By integration by parts, (8) implies that∫ X2

X1

∣∣f(x, δx)
∣∣2xdx =

1

3
δ
(
X3

2 −X3
1

)(
dF log

1

δ
+ log qF + (1− γ0 − log 2π)dF

)
+O

(
δ1+cX3

)
,

provided that X1 � X2 � X. Hence∫ 2X

X

∫ H2

H1

∣∣f(x, h)
∣∣2dhdx =

dF
2
X

(
H2

2 log
X

H2
−H2

1 log
X

H1

)
(30)
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+
1

4

(
2 log qF +

(
1− 2γ0 − 2 log 2π + 4 log 2

)
dF

)
X
(
H2

2 −H2
1

)
+O

(
H2X(H/X)c

)
uniformly for

X1−B3 � H � X1−B1 . (31)

We now considerX1−B3 � H � X1−B2 . Summing (30) over the dyadic intervals [2−kX, 2−k+1X],
1 ≤ k ≤ K, with

K � (1−B1) logX − logH

(1−B1) log 2

(so that (31) still holds with X being replaced by 2−KX) we obtain∫ X

2−KX

∫ H2

H1

∣∣f(x, h)
∣∣2dhdx =

(1− 2−K)dF
2

X

(
H2

2 log
X

H2
−H2

1 log
X

H1

)
+

(1− 2−K)

4

(
2 log qF +

(
1− 2γ0 − 2 log 2π + 4 log 2

)
dF

)
X
(
H2

2 −H2
1

)
−
(
2− 2−K(K + 2)

)
(log 2)dF

2
X
(
H2

2 −H2
1

)
+O

(
H2X(H/X)c

)
.

Adding up the integration on [1, 2−KX] using the second estimate of Lemma 2.4 we get∫ H2

H1

∫ X

1

∣∣f(x, h)
∣∣2dxdh =

dF
2
X

(
H2

2 log
X

H2
−H2

1 log
X

H1

)
(32)

+
1

4

(
2 log qF +

(
1− 2γ0 − 2 log 2π

)
dF

)
X
(
H2

2 −H2
1

)
+O
(
H2X(H/X)c

)
+Oε

(
H2+1/(1−B1)+ε

)
.

We now deduce (9) from (32). In view of (32) we have∫ (1+η)H

H

∫ X

1

∣∣f(x, h)
∣∣2dxdh = ηH2X

(
dF log

X

H
+ log qF − (γ0 + log 2π)dF

)
+O

(
η2H2X log

X

H

)
+O

(
H2X(H/X)c

)
+Oε

(
H2+1/(1−B1)+ε

)
.

Let g(x, h) = f(x,H). Since∣∣f ∣∣2 − ∣∣g∣∣2 = 2
∣∣f ∣∣(∣∣f ∣∣− ∣∣g∣∣)− (∣∣f ∣∣− ∣∣g∣∣)2 � ∣∣f ∣∣∣∣f − g∣∣+

∣∣f − g∣∣2,
by Cauchy-Schwartz’s inequality we get∫ ∫ (∣∣f ∣∣2 − ∣∣g∣∣2)� (∫ ∫ ∣∣f ∣∣2)1/2(∫ ∫ ∣∣f − g∣∣2)1/2

+

∫ ∫ ∣∣f − g∣∣2.
As f(x, h)− g(x, h) = f(x+H,h−H), using Lemma 2.4 we derive that∫ ∫ ∣∣f − g∣∣2 =

∫ (1+η)H

H

∫ X

1

∣∣f(x+H,h−H)
∣∣2dxdh

=

∫ ηH

0

∫ X+H

1+H

∣∣f(x, h)
∣∣2dxdh

� η2H2X
(

log
X

H

)2
.

Hence

ηH

∫ X

1

∣∣∣ψF (x+H)− ψF (x)−mFH
∣∣∣2dx =

∫ (1+η)H

H

∫ X

1

∣∣g(x, h)
∣∣2dxdh

= ηH2X

(
dF log

X

H
+ log qF − (γ0 + log 2π)dF

)
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+O

(
η3/2H2X

(
log

X

H

)3/2)
+O

(
H2X(H/X)c

)
+Oε

(
H2+1/(1−B1)+ε

)
,

and the theorem follows by choosing

η = max
{

(H/X)2c/3,
(
HX−(1−B1)

)2/3(1−B1)
}
.
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