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ON THE VARIANCE OF SUMS OF ARITHMETIC FUNCTIONS OVER
PRIMES IN SHORT INTERVALS AND PAIR CORRELATION FOR
L-FUNCTIONS IN THE SELBERG CLASS

H. M. BUI, J. P. KEATING AND D. J. SMITH

ABSTRACT. We establish the equivalence of conjectures concerning the pair correlation of
zeros of L-functions in the Selberg class and the variances of sums of a related class of
arithmetic functions over primes in short intervals. This extends the results of Goldston
& Montgomery and Montgomery & Soundararajan for the Riemann zeta-function
to other L-functions in the Selberg class. Our approach is based on the statistics of the
zeros because the analogue of the Hardy-Littlewood conjecture for the auto-correlation of
the arithmetic functions we consider is not available in general. One of our main findings is
that the variances of sums of these arithmetic functions over primes in short intervals have
a different form when the degree of the associated L-functions is 2 or higher to that which
holds when the degree is 1 (e.g. the Riemann zeta-function). Specifically, when the degree
is 2 or higher there are two regimes in which the variances take qualitatively different forms,
whilst in the degree-1 case there is a single regime.

1. INTRODUCTION

Let A(n) denote the von Mangoldt function, defined by

A(n) logp if n = p¥ for some prime p and integer k > 1,
n)=

0 otherwise.

The prime number theorem implies that
U(z) =Y A(n) =+ o(x)
n<x

as © — 0o, and so determines the average of A(n) over long intervals. In many problems one
needs to understand sums over shorter intervals. This is more difficult, because the fluctuations
in their values can be large. To this end Goldston and Montgomery [7] initiated the study of
the variances

V(X,5) = /lx (¢(x +6z) — (x) — 5x>2d:n (1)

and
2

V(X,h) = /IX (V@ +h) = () - h) de. 2)
For example, they put forward the following conjecture [7]:
Conjecture 1.1 (Variance of primes in short intervals). For any fixed € > 0
V(X,h) ~hX (log X —logh)

uniformly for 1 < h < X176,
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This conjecture remains open, but its analogue in the function field setting has recently
been proved in the limit of large field size .

It is natural to try to compute the variances and using the Hardy-Littlewood Con-
jecture for the auto-correlation of A(n):

> Am)A(n + k) ~ &(k)X (3)

n<X

as X — oo, where G(k) is the singular series

21_.[p>2 ( o 1)2) [Ip>22 = é if k is even,
k
0 if k is odd.

Montgomery and Soundararajan established that , subject to an assumption concerning

S(k) =

the implicit error term, implies a more precise asymptotic for the variance f/(X, h) when
log X < h < X2

V(X,h) = hX (log X —logh — 79 — log 27) + O, <h15/16X(log X)L/ h2X1/2+5), (4)

where g is the Euler-Mascheroni constant.
An alternative approach to computing the variances and is based on the connection
with the Riemann zeta-function ((s) via

o) _ 3 Am)
This links statistical properties of A(n) to those of the zeros of the Riemann zeta-function.
Specifically, Goldston and Montgomery . proved that Conjecture is equivalent to the
following conJecture due to Montgomery . concerning the pair correlatlon of the non-

trivial zeros 2 + iy of the Riemann zeta-function (in writing the zeros in this form one is
assuming the Riemann Hypothesis):

Conjecture 1.2 (Pair Correlation Conjecture). Let

‘F(Xa T) = Z Xi(’y—’y')w(,y - 7/)7

0<yy'<T
where w(u) = ﬁ. Then for any fired A > 1 we have
TlogT
FX,T) ~ =22

27
uniformly for T < X < T4,

The equivalence between Conjecture [I.1 and Conjecture [I.2] has been investigated further
in |3 I, Eﬂ to include the lower order terms

We have two main goals in this paper. The first is to show how the more precise formula
follows from a more accurate expression for the pair correlation of the Riemann zeros proposed
by Bogomolny and Keating [2] (see also [1]):

Conjecture 1.3. For h a suitable even test function

+2<(§')'<1 in)+ (2’;) %A(in)((l ~in)C(1+in) ~ B ) dndt + O.(T7/2+%),

where
(L ) (1- 24 A)
A(r) :1;[ (1- 1)

p
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and )
logp
B(r) = ; <pl+_1> :
Here the integral is to be regarded as a principal value near n = 0.

This formula was originally obtained in from the Hardy-Littlewood Conjecture .
Importantly for us here, it was shown by Conrey and Snaith []EI] to follow from the ratios con-
jecture for the Riemann zeta-function , and in the above formulation we use their notation.
It follows from our general results, set out below, that may be obtained from an analysis
based on Conjecture [1.3

The second goal of this paper, and in fact our principal goal, is to extend the approach based
on formulae like that in Conjecture to a wider class of sums in which the von Mangoldt
function is multiplied by arithmetic functions associated with other L-functions in the Selberg
class . This essentially corresponds to studying the variances of these functions when
summed over prime arguments in short intervals.

Let S denote the Selberg class L-functions. For F' € S primitive,

Fe=3

nS

n=1

let mp > 0 be the order of the pole at s =1,

1;(3) =-y AZ(”) and  F(s)"l = “Z&") (Re(s) > 1).
n=1 n=1

The function F'(s) has an Euler product

o0 !
F(s)zHexp(lzjbl;(lf)> (5)

=1

and satisfies a functional equation
D(s) = ep®(1—s),
where
-
D(s) =Q° ( H I'(N\js+ Mj)) F(s),
j=1
with some @ > 0, A\; > 0, Re(ij) > 0 and |ep| = 1. Here ®(s) = (). We will also write the
functional equation in the form
F(s) = X(s)F(1 - s),

where ( )
e DN —8) + 715
X(s)=¢ Ql 2s J

(8)=er ]Hl T(Ajs + 1))

The two important invariants of F'(s) are the degree dr and the conductor qp,
T T
2
dr=2> % and  qp=(2m)"Q* AV
j=1 j=1
For F € §, it is expected that a generalised prime number theorem of the form

Yp(z) =Y Ap(n) = mpa + o(z)

n<x

holds. In analogy with and we shall consider

X 2
Vp(X,6) == /1 )¢F($ +0x) — Yp(x) — mpox| dx
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and

X 2
Vr(X, h) ¢:/1 ‘wF(x-i‘h) — Yp(x) — mph| dz.

So, for example, when F represents an L-function associated with an elliptic curve, Vp(X,§)
and VF(X , h) represent the variances of sums over short intervals involving the Fourier coeffi-
cients of the associated modular form evaluated at primes and prime powers; and in the case
of Ramanujan’s L-function, they represent the corresponding variances for sums involving the
Ramanujan 7-function.

It is important to note that for most F' € S one does not expect an analogue of the Hardy-
Littlewood Conjecture ; that is, for most F' € § it is expected that

> Ap(n)Ap(n+ h) = o(X).
n<X

This might lead one to anticipate that Vi#(X,d) and Vr(X, h) typically exhibit different as-
ymptotic behaviour than in the case when F' is the Riemann zeta-function, because plays
a central role in our understanding of the variances in that case. Somewhat surprisingly from
this perspective, our results suggest that Vg(X,d) and Vg (X, k) have the same general form
for all ' € §. The reason is that they all look essentially the same from the perspective of
the statistical distribution of their zeros. It would be interesting to understand this from the
Hardy-Littlewood point of view. Presumably it is related to a conspiracy amongst the terms
that are o(X ), unlike in the case of the Riemann zeta-function where they come from the main
term. Drawing attention to this is one of our principal motivations.

The pair correlation of zeros of F'(s) is defined in analogy with the expression in Conjecture
1.2 as

FrXT)= 3, XO0rTPulyp =),
—T<vp VR <T

where, assuming the Generalized Riemann Hypothesis (GRH), the non-trivial zeros of F(s)
are denoted % + 7yp. Murty and Perelli conjectured that

Tlog X
7r

Fr(X,T) ~

uniformly for T4 < X < T42 for any fixed 0 < A; < As < dp, and
dFT logT
T

Fr(X,T) ~

uniformly for T4 < X < T4 for any fixed dp < A1 < As < .

Our approach to studying the variances Vy (X, d) and f/F(X ,h) is based on the pair corre-
lation of zeros. Specifically, our main results are as stated below. We set out these results in
pairs, because, unlike the case of the Riemann zeta-function and other degree-1 L-functions,
when dp > 2 there are two cases to consider: either T'< X < T9% or T9 < X. In both of
these cases, our results then correspond to examining the implication of the pair correlation
of zeros for Vp(X,d) (Theorems labelled A), the implications in the reverse direction (B),
implications of Vi (X, ) for Vp(X,h) (C), and in the reverse direction (D).

Theorem A1l. Assume GRH. If dp < A1 < Ay < 00 and
T T
Fr(X,T) = = (dp log — + log qr — dF) +0(T°) (6)
T 2

uniformly for T < X < T4? for some ¢ > 0, then for any fived 1/Ay < By < By < 1/A;
we have

1 1
Vr(X,6) = §5X2<d}7‘10g5+10gqF+(1—"yO—log2ﬂ-)dF>+O(51+0/2X2)

+O. <51*5X2(6X1/A2)1/2> + 0. (51*5X2(5X1/A1 )72A1/(4A1+1)>
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uniformly for X 52 < 6§ « X~ B1,

Theorem A2. Assume GRH. If 1 < A1 < Ay < dp and
Tlog X
T

Fr(X,T) = +0(T'°)

uniformly for T4 < X < T4? for some ¢ > 0, then for any fived 1/Ay < By < By < 1/A;
we have

1
Ve(X,0) = 0X*(3log X —4log2) + O(5' /2 x?)
+0. (51—5X2(5X1/A2)1/2) 1 0. (51—5X2(5X1/A1)—2A1/(4A1+1))
uniformly for X~ B2 <« § <« X751,
Theorem B1l. Assume GRH. If 0 < By < By < 1/dp and
1
0

uniformly for X P2 < § < X 7B for some ¢ > 0, then for any fized 1/By < Ay < Ay < 1/By
we have

1
Vr(X,0) = 55}(2 (dF log = 4 log qr + (1 — v — log 27r)dp> +0(5'°X?) (7)

FrT) = %(dF log % +logar — i) + O (TH(F+0+)
+0, (T1+5(T/XBQ)2> 40, <T1+E(T/XBl)*1/4>
uniformly for T4 < X <« T42,
Theorem B2. Assume GRH. If 1/dp < By < Bs <1 and
Vr(X,90) = %5X2(310gX _ 410g2) i O(5l+cX2>

uniformly for X 52 < § < X781 for some ¢ > 0, then for any fived 1/By < A1 < Ay < 1/B;
we have

Fr(X,T) =

Tt X (rssone) 1 o, (s (17 0. (o< (175 )

uniformly for T4 < X <« T42,
Theorem C1. Assume GRH. If 0 < By < By < B3 < 1/dp and

Vr(X,0) = %5){2 (dF 1og§ +logqr + (1 — 9 — log 27r)dp> +0(5'°X?) (8)
uniformly for X 53 < 6 < X781 for some ¢ > 0, then we have

Ve(X.h) = hX(drlog s +logar — (7o -+ log2n)dy )
+0. (hX 1 (h) X)/3) + O, <hX1+a(hX—(l—Bl))l/S(lfBl)) 9)

uniformly for X1 7P <« h < X17B2,
Theorem C2. Assume GRH. If 1/dp < By < Bs < B3 <1 and

Vr(X,0) = ééXZ(SlogX — 4log2) + O(5'+°x?)
unéformly for X P<i<x™h for some ¢ > 0, then we have
Vr(X,h) = éhX<610gX — (3+810g2))
+0. (hX 1 (h/ X)*/3) +OE<hX1+s(hX—(l—Bl))1/3(1—Bl))

uniformly for X753 < h < X752,
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Theorem D1. Assume GRH. If 0 < By < By < B3 < 1/dp and

Vr(X,h) = hX (dF log% +log qr — (70 + log 27T)dp) +O0(hX'™)
uniformly for X783 < h < X781 for some ¢ > 0, then we have

Vr(X,9) = %5X2 (dp log% +logqpr + (1 — 7 — log 27r)dF)
+O. (51—5X2—c/3) + 0. (51—aX2 (5XB3) 72/333)

uniformly for X 52 < 6§ « X~ B1,
Theorem D2. Assume GRH. If 1/dp < B1 < By < B3 <1 and

Vie(X, h) = éhX (610g X — (3+8log2)) + O(hX'™)
uniformly for X'~ < h < X'=B for some ¢ > 0, then we have
Vi(X,0) = %5}(2 (3log X — 4log2) + O (8 °X?>/3) + O, (61_5X2 (6xBs)~% 333)

uniformly for X B2 <« § <« X B,

Remark 1.1. The main motivation for proving these theorems comes from the fact, shown
in Sections |3| and 4} that the Selberg Orthogonality Conjecture and the ratios conjecture [5|
|§|] for F' € § imply that

I ToeX | O (To/4r+e) 4 O.(TV?*¢)  if a <dp,
Fp(T*,T) = % log qpT9F _ dpT + O.(TV/?te) if o >dp,

(2m) dp ™

for a smoothed form of the pair correlation Fp(X,T) defined by

Fr(X,T) = Z XiOF=Vp) o= (VF—VE)?
—T<ypYp<T

We expect that Fp(X,T) and Fp(X,T) satisfy the same estimates, at least up to some
power saving error term, and these are the forms that appear in the theorems quoted above.
Alternatively, if we were to replace Fp(X,T) by Fr(X,T) in the statements of the above
theorems, we would obtain correspondingly smoothed forms of the variances Vp(X,d) and
VF(X ,h) instead; that is, variances involving averages with weight-functions whose mass is
concentrated on (1, X )ﬂ We establish the form of the ratios conjecture we need in Section
and from this obtain the above formulae for Fx(X,T) in Section

Remark 1.2. We draw attention in particular to the fact that when dp = 1 our theorems
describe only one regime, but when dr > 2 a new regime (described, for example, by Theorem
A2) comes into play; the variances when dp > 2 are therefore qualitatively different to when
drp = 1. We illustrate this in the following two figures, which show data from numerical
computations. In both cases we plot % against log %, for a fixed value of X as h varies
and overlay the straight lines coming from the formulae for the variances described in the
above theorems. In the first case, shown in Figure 1, F' is the Riemann zeta-function (so Ap
is just the von Mangoldt function) and X = 15000000. This is, of course, an example with
dr =1 and so one sees a single regime that is well described by .

By way of contrast, we plot in Figure 2 data for two L-functions with dp = 2. In these
examples X = 1000000. The straight lines correspond to the formulae for the two regimes
described by Theorems C1 and C2.

LFor precise statements and proofs see .
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Ve (X, h)/hX
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FiGure 1. % plotted against log % when F'is the Riemann zeta-function

and X = 15000000. The line corresponds to .

Ve (X, h)/hX
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\\\\\\\\\\\\\\\\\\\\\\\\\\\\\|Xh
10 og(X /h)

FIGURE 2. w plotted against log % when F' is associated with the Ra-

manujan 7-function (e) and with an elliptic curve of conductor 37 (A). Here
X = 1000000. The lines correspond to the formulae for the two regimes de-
scribed by Theorems C1 and C2.
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Remark 1.3. Note that, unlike the case of the Riemann zeta-function considered in ﬂﬂ], the A
Theorems are not exactly the converse of the B Theorems, and the C Theorems are not exactly
the converse of the D Theorems. They are close to being the converse of each other, but with
the power saving errors we have here, the intervals of uniformity do not match precisely.

The proofs of the theorems within each pair are essentially identical, so we only give the
proofs of Theorems Al, B1 and C1. Likewise, the proofs of Theorems D1 and D2 are similar
to the proofs of C1 and C2, so we omit them too.

2. AUXILIARY LEMMAS
Lemma 2.1. Suppose f is a non-negative function with f(t) <¢ |t|°. If
/ ft)dt =T (logT + A) + O(T"°)

uniformly for k== < T < x=0+42) for some A€ R and 0 < ¢,c1,¢a < 1, then

00 : 2
I(x) ::/ <sm mc) f(u)du = E,{<10g% + B) + O(ﬁl—&-c) +0. (,11-&-01—5) +0. (/{HC?_‘E)

oo U 2

as k — 07, with B= A+ 2 — 9 — log 2.

Proof. As in the proof of Lemma 2 of Goldston and Montgomery |[7] . we write

o = (f,) (/. /) (L0

Il< )—‘y—[g( +Ig

say, where
Uy =xr 179 and Uy = (1),

Since f(t) <. [t|*, we have

Ui
L(k) < / K2 ulfdu <. mQUle <. gitae, (10)
-U
Similarly,
0
I3(k) <. / ut ey < Uy ' < gieE (11)
Uz

To treat I2(k) we let
r(t) = f(t)+ f(=t) — (logt+A + 1)
and

R(u):/our(t)dt:/ou (f(t)+ f(=1))dt — u(logu+ A).

Then R(u) < u!~¢ uniformly for U; < u < Us, and

b(x) — /U2 (SinHU)Q(f(u) 4 f—w)du

Uy U

U2 /gin ku\ 2 U2 /sin ku\ 2
= / ( ) (logu+A+1)du+/ ( > dR(u).
Uy u Uy u

Integrating by parts, the second integral is

K sin 2ku 2

u2

(sin Ku)
u3

Us
< K2R(Uy) + Uy 2R(Us) +/U \R(“)|<

)du < KgiTe

For the first integral, we extend the range of integration to [0,00). As in the treatment for
I(k) and I3(k), this introduces an error term of size <. k! T¢17¢ + g!1T2=¢ Hence

00 . 2
L(k) = / <smu/€u> (logu+ A+ 1)du+ O(k'1¢) + O, ("1 7%) + O (k' T27°).  (12)
0
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In view of f we are left to estimate the main term, which is

. 2
& 1
/{/ (smu> (10gu+log—+A—|—1>du
0 u K

s U 1
= 5(1 —'yo—logQ)li—FEH(log;—FA—Fl)
1
= Ef@(log——FA—F2—70—logQ),
2 K

and the lemma follows.

Lemma 2.2. Suppose f,g are non-negative functions with f(t) <. |t|°. If

I(k) = /OO (Sm ”“>2f(u)du - gm(log% + B) +O(k"g(T))

oo u

uniformly for T-0+e) < x < T=(=2) for some B € R and 0 < ¢,c1,¢o < 1, then

T
/ f(t)dt — T(logT + A) + Og((T3g(T))1/(3+C)+8) + Os (T1—2c1+5) + Oz—: (T1—02/4+s)
-T

as T — oo, with A= B — 2+ 7y + log 2.

Proof. Let
r(u) = f(u) + f(—u) — (logu+ B — 1+ vy + log 2),

R(r) = /0 h (Sinu”“>2r(u)du.

() : 2
R(k) = I(/@)—/O <s1nu/<;u> (logu+ B — 1+ + log2)du

and

Then we have

1
= I(k)— gfi(log " + B) < K1Teq(T)

uniformly for T7-(+e0) < < T-(1=¢2) " Also, since f(t) <. |t|5, we get
o
R(k) <. / min { k%, v }ul*du <. K'°
0

for all x > 0.

Let
sin 27x 4 sin 2w (1 + n)x

K =
n(@) 2 (1 — 4n?a?)
for n > 0. Then
1 if [t <1,
Kn(t) ={ cos? (%n_l)) if1<|t|<1+m,
0 if [t] > 14n.

(13)

(14)

The kernel K, is even and satisfies the following properties: Ky (), K;(z) — 0 as z — oo,

and (3]
K (x) < min {1,77%|z|7?}.

Integrating by parts twice, we have

This implies that

(15)
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Ty T 00
- W—QT2( / KJR+ / K)'R+ / K,’{R),
0 T T

where 77 = T7° and Ty = T°2. From and we have

T T
/ K;]/R <. / (LU/T)liEdJ? <. 7—(1+2c1)+e
0 0

and
o0

00
/ qule <<5/ n_sx_g(x/T)l_Ede‘ <. 7’_3T_(1+C2)+6~
Ts Ty

Furthermore, and lead to

T2 T2
/T KR < /T min {1, n 3z} (z/T)" " °g(T)dz < n~Grap=U+e (),
1 1

So
o 5 (T
/ T(t)Kn (T)dt <. T1-2c1+e + 77—3T1—02+5 + 77_(2+C)T1_Cg(T).
0

Hence
00 Lt 0o A ;
/_Oof(t)K,,(T)dt - /0 (logt+B—1+70+1og2)Kn(—)dt

+OE(T1—2C1+5) + 0. ( —3pl— cz—i—e +O( —(2+c)T1—cg(T))

T (14m)T
= / (10gt—|—B—1+70+10g2)dt+0</ logtdt>
0 T

+0. (T172cl+e) + O, (7]73T1702+€) + O(n7(2+c)Tlfcg(T))
= T(logT+ B -2+ +log2)+ O. (nTH‘E)
+0. (T172cl+s) + O, (n73T1702+5) + O(n7(2+c)Tlfcg(T))7

and we obtain the lemma. O

Lemma 2.3. Suppose f is a non-negative function. If
oo
/ F(T+y)e Wdy =1+ O(e*CY)
—00
forY <T <Y +log2 for some ¢ > 0, then
log 2 3
/ fY +y)e¥dy = 5 + O(efCY/Q).
0

Proof. This is a special case of Lemma 1 of ﬂgﬂ O
Lemma 2.4. Assume GRH. We have

/IX ‘¢F(az+5x) — r(z) —mFaxfda: < 6X2(10g %)2 (16)
for0<d <1, and
/1X‘wp(as+h) — pp(z) —mph‘de<<hX<log %)2 (17)

for0 < h < X.
Proof. The argument is identical to that of Saffari and Vaughan in [14]. O
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3. RATIOS CONJECTURE FOR L-FUNCTIONS IN THE SELBERG CLASS
We would like to study
T _
F F(1-
RF(OCHB/-Y?(S)_/ (S—’_a)*( S+l8)dt
7 F(s+7)F(1—-5s+9)
where s = 1/2 4 it, using the recipe in . The shifts are constrained as follows:

8)] < 7.

(log T)~' < Re(7),Re(6) < 2
Im(a), Im(B), Im(v), Im () <. T**.
We use the approximate functional equation for the L-functions in the numerator,

Pl =3 0 x93

n n

)

|Re ()

and the normal Dirichlet series expansion for those in the denominator,

F(s)—l _ ,LLF(TL)

nS

n

As we integrate term-by-term, only the pieces with the same number of X (s) as X(1 — s)
contribute to the main terms.
The terms from the first part of each approximate functional equation yield

(n)pr(h)oE ap(p™)ar(p™)ur (") iF(p)
QTth 1/2+an1/2+ﬁh1/2+’yk1/2+5 =2T H \ Zk p(/2+a)m+(1/24B)n+(1/2+7)h+(1/2+0)k )
m n p +m=k+n

We note that the functions ap(n), pr(n) are multiplicative because of the existence of the
Euler product , and

br(p) = ar(p) = —pr(p).
Hence the above expression is
(FRF)(1+a+B)(F®F)(1+y+0)
(FeF)(1+a+d)(FaF)(1+8+7)
where Ap(a, 8,7,0) is an arithmetical factor given by some Euler product that is absolutely

and uniformly convergent in some product of fixed half-planes containing the origin,

_ ap(p™)ar (p™)pr (") EE (")
Ar(,8,7,0) = H<h Zk P72+ @)t (1/2+B)nt (/247 (124 0)R (19)
p +m=k+n

> 9 1 1 1 1
exp Zl’bF(pl)‘ <l1a5 + A T (tetB) 5))'
(l:l p(++) p(+5+’¥) p(++5) p(JF’H”)

Here for any F,G € S, we define the tensor product F' ® G as in [13]

(F @ G)( Hexp(lemp)bG())

The contribution of the terms coming from the second part of each approximate functional
equation is similar to the first piece except that « is replaced by —f, and § is replaced by —a.
Also, because of the factor X (s), we have an extra factor of

X(s+a)X(1—s+p3)= (W>_(a+m<l +O(|t|:—2)>‘

Thus the recipe leads to the following ratios conjecture:

2TAF(Q7 57 7> 5)
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Conjecture 3.1. With «, 3,7 and 0 satisfying we have
(T (FOF)(1+a+B)(FeF)(1+v+9)
RF(a7577a6)_/_T <AF<0576 %5)(F®F)(1+a+5)(F®f)(1+B+fy)
(F®F)(1—a—ﬁ)(F®F)(1+’y+5)>dt
(FeF)(1-a+y)(FeF)(1-4+0)

dp\ —(a+p8)
+<qF((’;’7T)—Z§)) " AF(_B7 _047%5)

+OE(T1/2+€),
where Ap(a, 8,7,0) is defined as in (19).
We next investigate the analytic properties of (F® F)(s) at s = 1. We have

(FRFY B o (pt logp |br(p logp
Fer) " = Ep:; ; R

_ _Z lar(p )| (logp) +0(1), (20)

P P
provided that Re(s) > 1. Let

-y el

p<x
The Selberg Orthogonality Conjecture says that

S(x) =loglogz + O(1).
So for o9 > 0 and |0 — 0¢| < 0¢/2 (0 € C), partial summation gives

lap( loglog TS L, loglog = T loglogt
Z 1+U o rRe(o) + 0/1 to+1 dt =0 rRe(o) + 0(1) + 0/1 to+1 dt.

p<lz

Taking x — oo we obtain

§ > Jogl

Z |(1F1(f)| =0(1)+ 0—/ 0g ogtdt =0(1) — (0 + logo) = O(1) — logo.
prTe 1 to+1

p

Hence using Cauchy’s theorem we get

Z |ar(p)]*(log p) LJFO(D.

1+0’0 )

It follows from that (F ® F)(s) has a simple pole at s = 1.
Note that for a function f(u,v) analytic at (u,v) = (o, @), a simple calculation shows that

4 f@) _ J(a,0)
da (FOF)1-a+7)lea  Trer

where 7% is the residue of (FRF) at s = 1. It is also easy to verify that Ap(a, 3, a,8) = 1.
So taking the derivatives of the expressions in Conjecture with respect to «, 8 and setting
v =a, § = we have

Conjecture 3.2. With  and § satisfying we have

TFI F’ T (F®F)/ /
/_TF(s+a)F(1—s+B)dt /_T<<(Mm> (1+a+8)
1 rqp(|t] 4 2)%\ —(a+)
+ r2 ( F(27r)dF )

2

dadp Ar

Ap(=B,—a,a, B)(F @ F)(1 —a = B)(F @ F)(1 +a+ f)
F®F

+ a,f3,7,90)

> dt + O.(TY/?+9),
r=a,6=p
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where Ap(a, 8,7,0) is defined as in (19)).
4. PAIR CORRELATION OF ZEROS OF L-FUNCTIONS IN THE SELBERG CLASS

4.1. The pair correlation function. Let F' € S. We want to evaluate the sum
SF)= > hiyr )
—T<yp p<T

We follow the approach in HEI] and compute this using contour integrals. Let 1/2 < a < 1
and C be the positively oriented rectangle with vertices at 1 —a — i1, a — ¢TI, a + ¢TI and

1 —a+iT. Then
1 F' F
S(F)=——= —(u)=(w)h( —i(u — v))dudv.
(F) = e [, [ F 0 (= i = ) o
The horizontal contributions are small and can be ignored. We denote
S(F) =TI+ I+ 2I3+ O(T°),

where [1 has vertical parts a and a, I has vertical parts 1 —a and 1 — a, and I3 has vertical
parts a and 1 — a.

Using GRH and moving the contours to the right of 1 we have I} = O.(T?).

For I, we use the functional equation

el
=
ﬁj\\ =

(1-9). (21)

Here

Y(S) = —2logQ — ZA( (Ajs + py) + FF/()\j(l—s)—F,le))

et 20 1
= —log (2m)ir +0 H12)"

We apply to both F'/F(u) and F'/F(v). For the terms involving F /F(1—u) or F /F(1—
v), we move the corresponding contour to the right of 1, and as in the treatment for I, we
get O.(T%). For the term with X'/X (u) and X’/X (v), we move both contours to Re(u) =
Re(v) = % Again that introduces an error term of size O.(7¢). Hence

T T / ’
I, = 12/ / £(%—l—iu)%(%—Irz'v)h(u—v)dudv_i_os(Ta)
— p(lul+2)%  qp(|v] +2)%F ]
T (2n)? / / (2r)dr log (2r)r h(u — v)dudv + O (T7)
- QLS AT L 5
T (2n)2 / / ar log (2 h(u —v)dudv + O (T7),

as h is even. Changing the varlables t =vand n=u—v we get

9 2T T—n 2)dr 2)dr
/ h(ﬁ)/ log ar (|t +nl+2) log qar([t] +2)
(2m)% Jo -7 (2m)dx (2m)dx

I, = dtdn 4+ O (T7).
We can extend the inner integral to t = T introducing an error term of size < (log T')? f02T nh(n)dn <

ar(|t+n|+2)4r ap(|t+2)4r

(log T)3. The same argument shows that the term log & n)r (am)ir

can be replaced by log
with the same error term. So

L = 2)/ﬂmm/T@g”W”?®fﬁm+@@ﬂ

(2m)2 T (2m)d

— 27T // ( W)andﬂr@(w).
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We next consider

a+iT  pl—a+iT F/ F/
I3 = ~ oz /a /1 o F (v)h( —i(u — v))dudv.

Letting u — v = in we get

1 2T—i(1—2a) a+iT2 F/ F,
I3:_~/ h / —(v)—=(v + in)dvdn,
(2m)% J a1 —i(1-24) ) a—iTy F (W)t imdud

where

Ty =min{T, T +Re(n)} and Tp=min{T,T — Re(n)}.
We now use the functional equation for F'/F(v +in). The term with X'/ X (v + in) is
O(T*) by moving the v-contour to the right of 1. Thus,

/!

1 2T—i(1-2a) atily g1
I = 5 / h / —(v)=(1 —v—in)dvdn + OE T¢
; (2m)%i J_or_i(1-2q) () a—ity T ) F ( n)duds) (77)

1 2T —i(1—2a) Ts F
- (277)2/2T s )h(W/T (s 4 (a= )= (1=s+ (5 —a—in)didy + O-(T°),
—2T—i(1—2a -7

where s = 1/2 + it.
In view of Conjecture we have

|

1 2T—i(1—2a) T 12
b= | o) [ gty + O(T/7), (22
(2m) —2T—i(1—2a) -7
where
(FoF) ) 1 rqr(ft] +2)dF\ —in
g(n,t) = < 1+in) +
(n.1) = (FRF) ( ) r%@F( (2m)dr )
AF(—§+a—in,—a+%,a—%,%—a+in)
2
(F @ F)(1—in)(FeF)(1+1in)+ Ap(a, 8,7,9) -
dadﬁ Wza:a—%,éz,é’:%—a-i—in

A simple calculation shows that

AF(—%—l—a—in,—a—l—%,a—%,%—ajtin) = Ap(in),
where
_ ar(p™)ar (p")ur (0" iE (P*)
Ap(r) = 1;[ <h+ Z:H prmAn (L)
> 2 1 1
exp Ubp(p! 2< — — > , 23
<lZ; ‘ ( )‘ pl pl(l—r) pl(l-i-r) ( )
and
& Ar(B,.0) Br(in)
rF\&, 0,7, = —Dbpt7),
dOéd,B 7=a:a7%,5=ﬁ=%*(l+in
where
00 2
_ of ap(p™)ar (p") ur (P")ir (p*)mn Blor(ph)]
Brir) = Sloen?(- 3 a4 P ) e
So
(FeF)\ . . 1 rqp(ft] +2)%\-m
sty = ( (1 +in) + L
(F®F) TF®F< (2m)dr )

(F®F)(1—in)(F ® F)(1+in) — Bp(in).
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As before, we can extend the range of the inner integral in to [T, T] producing an error
term of size O.(T¢). Hence

2T—i(1— 2a)
=g [ [ et inat + 0.2+
) i(1— 2a)

Next we move the path of integration of the inner integral to the real axis from —27" to 2T
with a principal value as we pass though 0. Note that A% (0) = 0, so near n = 0 we have

i dr
g(n,t) = _E logcw +0(1).

[hus
h 1 t| 4+ 2)4

A J_p (27T)dF

after changing the variable n to —n. Summlng up we have

Conjecture 4.1. For h a suitable even test function we have

SV 1) N T () P B S il
Z h(7F ’YF) T oo /Tl g (27T)dF dt + (271')2 /T/QTh

—T<ypYp<T

Klog W)Q + 2((%)(1 i) + 7~21 - (qF(J;LTJ)Fdi)dF>—m

FQF

Ap(in)(F & F)(1 - in)(F © F)(1 + in) — BF@-n))] dndt + 0.(T"/2+),

where Ap(r) and Br(r) are defined as in and (24)).
4.2. The form factor. Throughout this section, we shall denote

dp dp
X =T ZzlogqF((’;Lr)—:i) and L =log ?Fj; i
We recall that
Fr(X,T) = Z XiOF=F) o= (vF—7F)?
—T<yp p<T
= Z cos ((yr — V) log X)e_(VF_%’)Z.
—T<ypyp<T

The function F, 7(X,T) is in a suitable form to apply Conjecture with
h(n) = cos(nlog X)e‘"Q,
and using that we shall write

Fr(X,T)= > hlyr—9p) = Ji + J2 4+ O(T"?*).
—T<ypYp<T

Since h is even, we have

2T .
/ n** 1 h(n)dn = 0,
2T

2T 0 2j 2T
/ Zkh Z log X)~ / nz(kﬂ)eandn

j=0 —2T

and

S ) (2k + 2j)! ” - o
- ; 2k+2j )k + ) (logX) +O((2T) exp(2(logX)T AT ))



16 H. M. BUI, J. P. KEATING AND D. J. SMITH

for any k € Z. In particular,

/2T " h(n)dn < (log X/2)2k exp (— (log X)2/4) + (27)%* L exp (2(log X)T — 4T2)
—2T

for any k > 0.
Moreover
T 2k—1
[t costathnidn =0,
—2T
and

2T 00 qVitsp2i 2j 2T o
/ 0k cos(nl)h(n)dn = Z (=)™ (log X) </ n2(k+’+3)e”2dn>
—2T

or 2 @)
1) (2k + 26 + 2j)! 9 93
= (% (log X)¥
Vﬁ2%2%””%2z< ICERES ML

o0 o + 7%

for any k € Z. In particular,

27
/_2T 17% cos(nl)h(n)dn < ((1ogX + E)/2)2k exp ( — (log X — €)2/4)

+(27)* exp (2(log X + £)T — 4T?)

for any k£ > 0, and hence

/ / * cos(nl)h(n)dndt

< To/drte L2k 4 (2T) 2 exp (2(log X + L£)T — 4T?) if a < dr,
T(log X)** exp ( — c(log X)?) + (2T)* exp (2(log X + £)T — 4T?) if o > dp
with some absolute constant ¢ > 0, for any k£ > 0.
Similarly,

2T
/ 7% sin(né)h(n)dn = 0,
—2T

/ / P L sin(nl) h(n)dndt

To/drte L2+l 4 (2T) 2+ exp (2(log X + £)T — 4T?) if @ < dp,
< T(log X )2+ B 2 2k+1 A2\ s
g X) exp (— c(log X)?) + (27) exp (2(log X + £)T — 4T?) if a > dp
with some absolute constant ¢ > 0, for any k£ > 0.
Expanding various terms in Conjecture [4.1] we have

(i) @i =5 +ow.

2

(FRF)(1 —in)(F®F)(1+in) = n;%F +0(1),

Ap(in) =14 O0(n?),
BF<Z7“) = O(l)

So

1 T 2T
Jo = 5 / / (£2 — o2 4272 cos(nl))h(n)dndt + E
-7 J—2T
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T o0 o0

22+2j ) o 9
_ "(log X )%/ E,
w\f/ Zzzmwa )(z+j—1)€ (log X)™dt +

=2 j=0

where
To/drte if o < dp,
T4 if @ > dp

for every A > 0. The double sum in the integral equals

T log X — ¢ log X + ¢
\Sf <} log X — z\Erf(|2|) + (log X + e)Erf<2>>

E <<£,A {

log X
+\{jr(logX)Erf< °8 ) + O<exp (- (log X — 6)2/4)) + O(L2 exp (— (10gX)2/4)>
A 2 2 2 2
= —T(max{logX,E} —10gX) +O<E exp (— (log X — 0)°/4) 4+ L7 exp (— (log X) /4))
Hence
1 /T
h=g | (max{logx,e} — 1ogX)dt+E.
On the other hand,
1 /T
J=— Ldt.
! 27 -T
Thus
B Tlog X a/dp+e 1/2+e ;
5= 4+ 0. (T )+ O (T ) if o <dp
X, T) = ™ ’
IF( ) ) { T7£ N % +O€(T1/2+€) if 0 > dF-
Conjecture 4.2. We have
ﬁF<X7T) _ Tl(;_gX + Og(Xl/dF+a) T OE(Tl/Q-‘rE)

uniformly for T4 < X < T2 for any fized 0 < A} < Ay < dp, and

~ T T

.FF(X, T) = ; <dF log % + log qr — ClF) + OE(T1/2+€)
uniformly for T < X < T2 for any fized dp < A1 < Ay < co.

5. PROOFS OF MAIN THEOREMS

5.1. Proof of Theorem We begin by considering

T 1 2
XivF
IxX,7) = / DIy e

(t ] dt
T yel<z F

g dt
. i(yF—F)
- Z Xt /T (T4 =yp)?) 1+ E—7p)?)’

—Z<Y P E<Z

with X, Z > T. Using the fact that Np(t + 1) — Np(t) < log(|t| + 2), we can restrict the
summation over the zeros to —T' < v, v} < T with an error term of size < (log T)2. Similarly,
the range of the integration can be extended to (—o0,00) introducing an error term of size
< (logT)3. So

e =y xoen [T T + O((os 7
coo (L4 (E=7r)?) (L + (t —vR)?)

—T<vp e <T

- ng(X, T) + O((log T)?),



18 H. M. BUL J. P. KEATING AND D. J. SMITH
and hence from @ we have
T T 1—c
I(X,T) = §<dplog% +logqr — dF> +0(T'°)
uniformly for X1/42 « T < X1/41,

Let
(1+6)°—1

S

N2 sin kit 2
|a(it)| :4< . >,

where k = M. So by Lemma ﬂ we deduce that

00 Xi'yp 2
/ |a(it) 2
> lvrl<Z

— | dt
1+(t— ’yF)2
1
=TK (dp log - +logqr + (1 — v — log 47T)dp> + O(/fHC) + O, (FJHC“‘E) + O: (RHCQ*E)

a(s) =
Then

T 1
= — 1 —_
2(5(dF 0g5

The values of T for which we have used Lemma lie in the range

5_(1_01) < T 5—(1+02)

+loggr + (1 — 0 — log 27r)dp) +0(8M°) + O (611 72) 4+ O, (81 Te27%).

for some 0 < ¢1,c9 < 1.
Let J be the above integral and K be the same integral with a(it) being replaced by
a(3 +ivr). We write J = [|A|* and K = [ |BJ%. Direct calculation shows that

a(s) < min{6,1/]s|} and d'(s) < min{6* 6/|s|}
for |o| < 1. Hence, since Np(t + 1) — Np(t) < log(|t| + 2),
A, B < min {4,1/[t|} log(|t| + 2)

and
a(it) — a(3 + iyp) < (14|t — vp|) min {52, 5/t}
Thus
A— B < min {6%,6/[t|} (log(Jt| +2))?,
and hence
|A]2 = |B]? < min {6%,6/|t]*} (log(|t] +2))°,
so that

1 3
J-K< 52<10g5) .
It follows that

b

+logqr + (1 — v — log 27T)dp) (25)
T ypl<z

T 1
dt = 55(@ log =

+O (51—0—0) + Os (514-01 —s) + OE (61+02—s) )
Let S(t) be the above sum over the zeros. Its Fourier transform is

:/ S(t)e(—tu)dt = Z a(pr) XV e(—ypu)e 2,

lvrI<Z
By Plancherel’s formula the integral in equals

727/00 Z a(pr)etr Y +v)

lvr|<Z

2
e 2l gy,
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after the change of variables Y = log X, y = —27u. Hence

/oo Z a(pF)ei'yF(Yer) }

1)
lvrlI<Z
Lemma leads to

2X
J,
+O(51+C/2X2) 1+ 0. (61+c1/2—sX2) + 0. (51+02/2_€X2),

after the change of variable = e¥ ™%, provided that

2
e~ 2Wlgy = 5(dF log = +logqr + (1 — v — log 27T)dF>

+O(51+c) 4 Oa (61+01*€) 4 Oa (51+0275)‘

2

3 1
de = SoX* (drtog 5 Tlogar + (1 -0 — log 2m)dr ) (26)

a(pr)x’t
[vrI<Z

X2 o g=(me) < g=(he)  x /AL (27)
Next we use the explicit formula for ¢ p(x) and get

Yrp(x+0x) —¢Yp(x) —mpér = — Z a(pr)z’t + O((logaz) min {1, Z‘TQUH}> (28)

lvr|<Z

x

olq {17} O(zZ  (log 22)?),
+ ((oga;)mm Zlle + 03] ) +O(zZ (logzZ)?)
where ||z|| = min,, |z —n| is the distance from z to the nearest integer. Choosing Z = X? and

using we have
2X 2 3 ) 1
/ ’¢F(I‘ +0x) — Yp(x) — mpéx‘ dx = §5X (dF log 5 +logqr + (1 — v — log 27T)dF)
X

+O(51+c/2X2) + 0. (51+c1/2—aX2) + 0. (51+02/2—5X2) )
Summing over the dyadic intervals [27%X,27**1X], 1 < k < K, with
o = sli+en)Ai x (29)
(so that still holds with X being replaced by 275 X) we obtain

* 2
/2KX (wp(x +61) — p(z) — mF&x’ g

= (1_24K)5X2 (dp log% +logqr + (1 — 70 — log 27r)dF)
—i—O(éHC/ZXZ) +0. (51+cl/275X2) +0. (51+02/275X2).
For the integration in the range [1,27 X] we use the first estimate of Lemma Hence
Vr(X,0) = %5}(2 (dF log% +logqp + (1 — v — log 27r)dp) +O(8'2X?)
+0. (51+01/2—6X2) + 0. (51+C2/2—5X2) + 0. (51—5X24—K)’
and then the theorem follows from and (29).

5.2. Proof of Theorem Integrating by parts we have
1)

X1
A
+O(6"X72) + O (65X ?)
uniformly for 6~1/52 <« X, X; <« §~1/B1. Similarly, the bound leads to

/OO
X1

1

2 1
Yz +0x) — Yp(z) — mF&U’ z4dx = §5X*2 (dp log = +logqr + (1 — o — log 27T)dp)

2
V(x4 0x) — Yr(x) — mpdz| o e <. 6" X2
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Combining these estimates and , and letting X; = 6~ /B1 we get

/00 min{x2/X2,X2/a:2}‘¢F(a: +0x) — Yp(x) — mpéx‘Qa:_2dx
0

= 5(dp log % +logqr + (1 — 7o — log 27T)dF> +0(8"¢) + 0. (61 ¥/ Br=ex2).

We now use the explicit formula with Z = X2, Writing Y = log X and z = e¥ ¥ we
obtain

)
I
+O(51+c) YO, (51+2/B1—5X2)'
Retracing our steps as in the previous subsection leads to
o /g 2 vF 2
/oo <SH;M> 2 1+ ()t(— ]
lvrl<Z

= %(dF log% +logqr + (1 — v — log 47T)dF> +O(k7) + O (k1T Pr1e x2),

Lemma then implies that

[y
_ 2
Tl ye<z L+ (= r)

T
= E(dp logT + logqr — (1 + log 27T)dp> + O, <T3/(3+C)+s>

+O0. (T1—2c1+s) + 0. (Tl—c2/4+s) + 0. ((TB,XQ)B1/(331+2)+s>7

2

Z a(pF)ei'YF(Y+y)

lvr|<Z

1
e~2Wlgy = 5(dF log = +logqr + (1 =70 — log 2W)dF)

2
dt

provided that 7-(+e) « X—B2 « X~B1 « 7-(1=c2)  Moreover, we can restrict the summa-
tion over the zeros to —T < vp,vp < T and extend the range of the integration to (—oo, c0)
with an error term of size < (log T')?. Finally we choose ¢; and ¢y such that 7-(1+¢1) = x =52
and T~-(1~¢2) = X~B1 and hence obtain the theorem.

5.3. Proof of Theorem Consider the double integral

2X [ Hs )
/ / | f(z, k)| dhdz,
x JH

where f(z,y) = Yr(z +y) — Yp(x) — mpy and Hy < Hy < 2H;. Here H; < Hy < H and
X1=Bs « H < X'=B1, Replacing h by § = h/x and changing the order of integration, this is

equal to
Hy/2X  p2X ) Hi/X H/S )
/ ‘f(x, 533)‘ zdxdd + / / ‘f(x, 5x){ xdzdd
H

Hi/2X JH./s Hy/2X JH1 /s
Hy/X [H2/S )
+ / | f (@, 62)| zdxds.
Hi/x Jx

By integration by parts, implies that

. 1 1
/ | f (=, (5:1:)‘2xdx = gd(Xg’ - Xf’) <dF log 5 +logqr + (1 — v — log 27r)dp> + 0(51+CX3),
X1

provided that X; =< X9 =< X. Hence

2X i d X X
2 F 2 2
flz, h)|"dhde = —X <H log — — Hi log > 30
/X /H1 £z, ) 2 2%y, e (30)
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% (2 logqr + (1 — 279 — 2log 27 + 4log 2) dF>X(H22 — H}) +O(H*X(H/X)")

uniformly for
X1B « H < x17P (31)
We now consider X'=5 <« H < X'=B2, Summing over the dyadic intervals [27% X, 27k+1 X],
1<k <K, with
(1—-DBj)logX —logH
(1—-Bj)log2
(so that still holds with X being replaced by 275 X)) we obtain

X (1—2"8)dp X X
h)|"dhdx = ~—"—"""X( H3log — — H?log —
/2KX/ (= } 2 ( 2% H, ! OgH1>

1-27K
+(4)<210gCIF + (1 — 27 — 2log 27w +4log2>dF>X(H22 — H12)

) (2 — 2 K(K + 2))(log2)dFX(H22 B le) 4 O(HQX(H/X)C)-

K =

2
Adding up the integration on [1,27% X] using the second estimate of Lemma we get
Hz X d X X
/ / |f (2, h)|*dwdh = —FX <H2 log = — H{ log ) (32)
H; J1 Hy

1
+7 (2 logqr + (1 — 270 — 2log 27r>dF>X(H22 — H})
+O(H2X(H/X)C) + OE (H2+1/(1—B1)+5> )
We now deduce @D from . In view of we have
1+n 9 X
/ / ‘f(x,h)‘ dxdh = nHQX(dF logﬁ +logqr — (0 + log27r)dF>
H 1
X
+0 <n2H2X log H) +O(H*X(H/X)) + O- (H2+1/ (1*Bl>+€).
Let g(x,h) = f(z, H). Since

2
2= 1o = 2071 (11 = 1al) = (171 = lal)" < I711f = g + |£ = o,
by Cauchy-Schwartz’s inequality we get

18y < ([ [1) ([ fre-of) "+ [ 1o

As f(z,h) — g(z,h) = f(z + H,h — H), using Lemma [2.4] we derive that

//‘f o = /m7 / \f(z + H,h — H)|[*dzdh
= /HH/XH{ | £ (. )| ddh

X
n2H2X
H <1 )
< ®H

Hence

nH/IX ’wF(a: + H) —yp(r) — mFHrdx = /HHW)H /IX ‘g(m,h)}Qda:dh

X
=nH%*X <dF log T +logqr — (70 + log 27r)dp)
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+0 <n3/ *HX ( log ;)3/2> +O(H*X(H/X)") + O, (H2+1/ (1*31”5) :

and the theorem follows by choosing

1 = max {(H/X)26/3, (HX7(1731))2/3(1—31)}.
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