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HANKEL OPERATORS AND THE DIXMIER TRACE

ON THE HARDY SPACE

Miroslav Englǐs, Genkai Zhang

Abstract. We give criteria for the membership of Hankel operators on the Hardy

space on the disc in the Dixmier class, and establish estimates for their Dixmier trace.

In contrast to the situation in the Bergman space setting, it turns out that there

exist Dixmier-class Hankel operators which are not measurable (i.e. their Dixmier

trace depends on the choice of the underlying Banach limit), as well as Dixmier-class

Hankel operators which do not belong to the (1,∞) Schatten-Lorentz ideal. A related

question concerning logarithmic interpolation of Besov spaces is also discussed.

1. Introduction

Let T be the unit circle in the complex plane C and H2 the standard Hardy
space of all functions in L2(T) ≡ L2 (with respect to the normalized arc-length
measure) whose negative Fourier coefficients vanish. For φ ∈ L∞(T), the Hankel
operator Hφ with symbol φ is the operator from H2 into its orthogonal complement
L2 ⊖H2 defined by

Hφu = (I − P )(φu), u ∈ H2,

where P : L2 → H2 is the orthogonal projection. Equivalently, Hφ is an operator
whose matrix with respect to the standard bases {eikθ}∞k=0 ofH

2 and {e−miθ}∞m=1 of
L2⊖H2 is constant on diagonals perpendicular to the main diagonal, the (k,m)-th

entry being equal to the Fourier coefficient φ̂(−k − m − 1). One can define Hφ

even for φ ∈ L2 as a densely defined operator, and one has Hφ = 0 if φ ∈ H2,
so that Hφ effectively depends only on (I − P )φ, and thus it is enough to study

Hφ only for φ = f with f ∈ H2. Nehari’s theorem then asserts that Hf is bounded

if and only if f ∈ P (L∞(T)) = BMOA(T); similarly, Hf is compact if and only

if f ∈ P (C(T)) = VMOA(T). The much finer question of the membership of Hf

in the Schatten classes Sp, 1 ≤ p < ∞, was solved by Peller, who showed [15]

that Hf ∈ Sp if and only if f belongs to the diagonal Besov space Bp = B
1/p
pp ;

this was later shown to prevail also for 0 < p < 1 (see e.g. [17] and the references
therein). Here Bp can be characterized as the space of (the nontangential boundary
values of) all holomorphic functions f on the unit disc D which satisfy

(1) ‖f‖(k),p :=
( ∫

D

|f (k)(z)|p(1− |z|2)kp−2 dz
)1/p

< ∞
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2 M. ENGLIŠ, G. ZHANG

for some (equivalently, any) nonnegative integer k > 1/p; here dz stands for the
Lebesgue area measure. Using real interpolation, it follows more generally that Hf

belongs to the Schatten-Lorentz ideal Sp,q, 0 < p < ∞, 0 < q ≤ ∞, consisting of
all operators T whose singular values sj(T ) satisfy

(2)

∞∑

j=0

(j + 1)q/p−1sj(T )
q < ∞, q < ∞,

sup
j
(j + 1)1/psj(T ) < ∞, q = ∞,

if and only if f belongs to the “Besov-Lorentz” space B
pq consisting of (the non-

tangential boundary values of) all holomorphic functions f on D satisfying

(3)

∫ ∞

0

((1− |z|2)f ′(z))∗(t) tq/p−1 dt < ∞, q < ∞,

sup
t>0

((1 − |z|2)f ′(z))∗(t) t1/p < ∞, q = ∞,

at least for 1 < p < ∞ (for 0 < p ≤ 1 one would again have to use higher derivatives
of f as in (1)); see e.g. [11]. Here φ∗ denotes the nonincreasing rearrangement of a
function φ on D with respect to the measure (1− |z|2)−2 dz. For p = q, the spaces
B

pp = Bp agree with the Besov spaces above. There is also an equivalent “dyadic”
description of the Besov and Besov-Lorentz spaces, which avoids the holomorphic
extension into D and which runs as follows: for n ≥ 1, introduce the trigonometric
polynomials Wn on T by

Wn(e
iθ) =

∞∑

k=0

anke
kiθ,

where ank = 0 for k /∈ (2n−1, 2n+1), ank = 1 for k = 2n, and ank depends linearly
on k on the intervals [2n−1, 2n] and [2n, 2n+1]. Setting further W0(e

iθ) = 1 + eiθ,
we thus have for any f =

∑∞
k=0 fke

kiθ on T

(4) f =

∞∑

n=0

f ∗Wn, where (f ∗Wn)(e
iθ) =

∑

k

ankfke
kiθ.

Then f ∈ Bs
pq, 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, if and only if1

(5) ‖f‖dyadic,spq :=
∥∥∥{2ns‖f ∗Wn‖Lp(T)}

∥∥∥
lq(N)

< ∞,

and for 1
s
= q = p this quantity is equivalent to (1). Similarly, f ∈ B

pq , 0 < p < ∞,
0 < q ≤ ∞, if and only if the function φf on T×N defined by

(6) φf (e
iθ, n) := (f ∗Wn)(e

iθ)

1More precisely Bs
pq is the subspace of (the boundary values of) holomorphic functions in the

full Besov space Bs
pq , i.e. of functions in Bs

pq(T) whose negative Fourier coefficients vanish; the full

Besov norm in Bs
pq being defined upon adding to (5) also the terms n ≤ 0 (and replacing the factor

2ns by 2|n|s), where W−n(eiθ) := Wn(e−iθ) and W0 must be changed to W0(eiθ) = e−iθ+1+eiθ.

It is more customary to denote Bs
pq by Bs

pq , and our Bs
pq by As

pq or (Bs
pq)+, cf. [10,17]; however,

since the “full” Besov spaces Bs
pq will not be needed anywhere in this paper, we take the liberty

to use the simpler notation Bs
pq just for the holomorphic Besov spaces. The same also applies to

the “Besov-Lorentz” spaces Bpq .
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belongs to the Lorentz space Lpq(T×N, dν) with respect to the measure dν given
by 2n dθ

2π
on T×{n}, n ∈ N; that is, if and only if the nonincreasing rearrangement

φ∗
f of φf with respect to dν satisfies

(7)

(∫ ∞

0

(t1/pφ∗
f (t))

q dt

t

)1/q

< ∞, q < ∞,

sup
t>0

t1/pφ∗
f (t) < ∞, q = ∞.

Furthermore, the quantities (7) and (3) are again equivalent. We refer to Peller
[17], [16] and Krepkogorskii [11], [10] for further details on all these matters.

In addition to the Hardy space H2, there are also (big) Hankel operators on
weighted Bergman spaces A2

α(D) on the disc, α > −1, consisting of all functions in
L2(D, α+1

π
(1−|z|2)α dz) ≡ L2

α that are holomorphic onD. Namely, for φ ∈ L∞(D),

the Hankel operator H
(α)
φ : A2

α → L2
α ⊖A2

α is defined as

H
(α)
φ u = (I − P (α))(φu), u ∈ A2

α(D),

where P (α) : L2
α → A2

α is the orthogonal projection. Again, H
(α)
φ makes sense

as a densely defined operator even for any φ ∈ L2
α, and one has H

(α)
φ = 0 for φ

holomorphic, so that H
(α)
φ in fact depends only on (I − P (α))φ; furthermore, for

φ = f with f holomorphic on D, it turns out again that H
(α)

f
∈ Sp if and only

if f ∈ Bp, 1 < p < ∞, while H
(α)

f
∈ Sp for some 0 < p ≤ 1 only if H

(α)

f
= 0;

see Arazy, Fisher and Peetre [1]. Using real interpolation, one can deduce from

this also that H
(α)

f
∈ Spq , 1 < p < ∞, 0 < q ≤ ∞, if and only if f ∈ B

pq (though

this seems not to be noted explicitly in the literature).
The Schatten-Lorentz ideals Spq satisfy Sp1,q1 ⊂ Sp2,q2 if p1 < p2 or if p1 = p2,

q1 < q2. A notable operator ideal lying between S1,∞ and all Sp,q, p > 1, is the
Dixmier ideal SDixm, consisting of all operators T whose singular values satisfy

(8) sup
n

∑n
j=0 sj(T )

log(n+ 2)
=: ‖T‖Dixm < ∞.

Equipped with the norm (8), SDixm becomes a Banach space, and the closure
SDixm
0 of the subspace of finite rank operators in SDixm consists of all T for which

limn→∞
1

logn

∑n
j=0 sj(T ) = 0. For a scaling-invariant Banach limit ω on N (see the

next section for the definitions), one further defines the Dixmier trace trω on SDixm

by setting

trω T := ω
(∑n

j=0 sj(T )

log(n+ 2)

)

for T positive, and extending to all T ∈ SDixm by linearity. The operator is
called measurable if trω T does not depend on the choice of the Banach limit ω.
In view of the results mentioned in the last paragraph, it is natural to ask for which

holomorphic f on D does H
(α)

f
belong to SDixm and what is its Dixmier trace.

It was shown by Rochberg and the first author [8] for α = 0, and by Tytgat [19]
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for general α, that H
(α)

f
∈ SDixm if and only if f ′ belongs to the Hardy 1-space H1,

and in that case the modulus |H(α)

f
| = (H

(α)

f
∗H

(α)

f
)1/2 is measurable and

(9) trω |H(α)

f
| =

√
α+ 1

∫ 2π

0

|f ′(eiθ)| dθ
2π

.

The methods of [8], however, break down for A2
α replaced by H2 (which in a well-

defined sense is the limit of A2
α as α ց −1).

The aim of the present paper is to characterize Hankel operators Hf , f ∈ H2,

on the Hardy space that belong to SDixm, and to give estimates for the Dixmier
trace of |Hf |.

Our main results are as follows. For f ∈ H2, we denote by f also the holomorphic
extension of f into D, i.e. f(z) =

∑∞
n=0 fnz

n if f(eiθ) =
∑∞

n=0 fne
niθ; further, let

F (t) :=
(
(1− |z|2)2f ′′(z)

)∗
(t), t > 0,

be the nonincreasing rearrangement of (1−|z|2)2f ′′(z) with respect to the measure
(1− |z|2)−2 dz on D, and similarly let

Φ(t) := (f ∗W· )
∗(t), t > 0,

be the nonincreasing rearrangement of the function φf from (6) with respect to the
measure dν on T×N.

Theorem 1. The following assertions are equivalent:

(i) lim suppց1(p− 1)
∫
D
|f ′′(z)|p(1− |z|2)2p−2 dz < ∞;

(ii) lim supt→+∞
1

log t

∫ t

0
F (t) dt < ∞;

(iii) lim suppց1(p− 1)
∫
T×N

|(f ∗Wn)(e
iθ)|p dν(θ, n) < ∞;

(iv) lim supt→+∞
1

log t

∫ t

0
Φ(t) dt < ∞;

(v) Hf ∈ SDixm.

Moreover, the quantities on the left-hand sides of (i)-(iv) are equivalent, and are

further equivalent to distSDixm(|Hf |,SDixm
0 ).

Note that the integral in (i) above is just ‖f‖p(2),p, which by general theory is

equal to ‖F‖pLp(0,∞); similarly, the integral in (iii) is just ‖f‖p
dyadic, 1

p
pp

= ‖Φ‖pLp(0,∞).

Theorem 2. Let ω be a dilation- and power-invariant Banach limit on R+, ω̃ =
ω ◦ exp the corresponding translation- and dilation-invariant Banach limit on R,

and trω the associated Dixmier trace on SDixm. Then the following quantities are

equivalent:

(i) ω̃- limr→+∞
1
r

∫
D
|f ′′(z)|1+ 1

r (1− |z|2) 2
r dz;

(ii) ω- limt→+∞
1

log t

∫ t

0
F (t) dt;

(iii) ω̃- limr→+∞
1
r

∫
T×N

|(f ∗Wn)(e
iθ)|1+ 1

r dν(θ, n);

(iv) ω- limt→+∞
1

log t

∫ t

0
Φ(t) dt;

(v) trω |Hf |.
Furthermore, the constants in the equivalences with can be chosen independent

of ω.
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Here and throughout the paper, two positive quantities X,Y are called equiv-
alent (denoted “X ≍ Y ”) if there exists 0 < c < 1, independent of the variables
in question, such that cX ≤ Y ≤ 1

cX; and we refer to Section 2 below for the
definitions and details concerning ω, ω̃ and trω.

The first part of the next theorem is immediate from Theorem 1, which also
implies equivalence of the corresponding quotient norms2 of f with the quotient
norm of Hf in SDixm/SDixm

0 ; for the equivalence of the norm ‖Hf‖Dixm itself, some

extra labour seems to be needed.3

Theorem 3. For f ∈ H2, the operator Hf belongs to SDixm if and only if

f ∈ B
Dixm : = {f ∈ H2 : sup

t>0

1

log(2 + t)

∫ t

0

F (t) dt ≡ ‖f‖(2),Dixm < ∞}

= {f ∈ H2 : sup
t>0

1

log(2 + t)

∫ t

0

Φ(t) dt ≡ ‖f‖dyadic,Dixm < ∞},

and ‖Hf‖Dixm + |f(0)| ≍ ‖f‖(2),Dixm + |f ′(0)| + |f(0)| ≍ ‖f‖dyadic,Dixm.

We remark that ‖·‖(2),Dixm and ‖·‖dyadic,Dixm are norms of f ′ and f , respectively,
in certain Lorentz (or Marcinkiewicz) spaces; see [2, p. 69].

Theorem 4. There exist f ∈ H2 and two dilation- and power-invariant Banach

limits ω1, ω2 on R+ such that trω1
|Hf | 6= trω2

|Hf |; thus |Hf | is not measurable.

In [8] it was also shown that in the setting of the weighted Bergman spaces
(at least for α = 0, but the proof likely carries over to all α > −1), Hf ∈ SDixm

already implies that Hf even belongs to the smaller ideal S1,∞ ⊂ SDixm of operators

T with singular values sj(T ) = O(1j ); that is, there are no Hankel operators H
(0)

f
,

f holomorphic, in SDixm \ S1,∞. For Hankel operators on H2, things are different.

Example 5. There exists f ∈ H2 for which Hf ∈ SDixm \ S1,∞ (in other words,

f ∈ B
Dixm \B1,∞).

The equivalence (i)⇔(v) in Theorem 1 is not new but goes back to Li and
Russo [12], and was subsequently put into a more general picture in the works of
Carey, Sukochev and coauthors [3], [4]. Combining the latter with Peller’s results
mentioned at the beginning and with standard facts from the theory of Besov
spaces yields the other parts of Theorem 1 and Theorem 2; if ω and ω̃ are replaced
by ordinary limits, the ideas behind Theorem 2 go back at least to Connes [6,
§ IV.2, Proposition 4]. The proof of Theorem 3 relies on a result on logarithmic
interpolation in the context of Besov spaces, which also provides an alternative
proof of the equivalences (v)⇔(i)⇔(iii) of Theorem 1 and is of independent interest.

2More specifically: the expressions in Theorem 1 of which limsup’s are taken are functions

belonging to L∞(1, 2) in parts (i) and (iii) (as functions of p), and to L∞(0,∞) in parts (ii)
and (iv) (as functions of t — and one has to replace log t by log(t+ 2)), respectively. Theorem 1

then says that the norm of those expressions in the qoutient space L∞/L∞
0

(where L∞
0

denotes the

subspace of functions essentially tending to zero as p → 1+ or t → +∞, respectively) is equivalent

to the norm of H
f
in SDixm/SDixm

0
.

3Adding ‖f‖BMO = ‖H
f
‖ to the quotient norms from the previous footnote produces already

norms equivalent to ‖H
f
‖Dixm
S + |f(0)|, by the Closed Graph Theorem; however, that they are

equivalent to the other two norms mentioned in the theorem below seems not so straightforward.
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The proofs of Theorem 1 and Theorem 2 are given in Section 3 and Section 4, re-
spectively, after reviewing the necessary prerequisites on Banach limits and Dixmier
traces in Section 2. Interpolation of Besov spaces and the proof of Theorem 3 are
the subject of Section 5. The proof of Theorem 4 is furnished in Section 6, and
some comments and concluding remarks, including Example 5, appear in the final
Section 7.

For f a conformal map of the disc onto a Jordan domain Ω ⊂ C, the Hankel
operator Hf is essentially the “quantum differential” dZ from § IV.3 in Connes [6],

where it is also shown that, up to a constant factor, the functional f 7→ trω(f |dZ|p),
p > 1, is just the integration against the p-dimensional Hausdorff measure Λp on ∂Ω.
Similarly, [8] (see also [19]) shows that in the weighted Bergman space setting,

1√
α+1

trω |H(α)

f
| equals the length of ∂Ω, i.e. Λ1(∂Ω). It would be interesting to

know if there is some kind of connection with Hausdorff measures also for trω |Hf |.

2. Banach limits and Dixmier traces

By a Banach limit on N, N = {0, 1, 2, . . . }, we will mean a positive (i.e. tak-
ing nonnegative values on sequences whose entries are all nonnegative) continuous
linear functional on the sequence space l∞ = l∞(N) which coincides with the ordi-
nary limit on convergent sequences. Similarly, by a Banach limit on R+ = (0,+∞),
we will mean a positive continuous linear functional on L∞(R+) which coincides
with ess-limt→+∞ whenever the latter exists. Such functionals (in both cases)
are easily constructed using the Hahn-Banach theorem. Furthermore, one can get
a Banach limit ω# on N from a Banach limit ω on R+ by setting

(10) ω#(f) := ω(f#),

where

(11) f#(x) = fn for x ∈ (n, n+ 1], n ∈ N, f ∈ l∞;

and, in fact, any Banach limit on N arises in this way (again by the Hahn-Banach
theorem).

The dilation operator Dn, n = 1, 2, 3, . . . , on l∞(N) is defined as

Dn(x1, x2, . . . ) = (x1, . . . , x1︸ ︷︷ ︸
n

, x2, . . . , x2︸ ︷︷ ︸
n

, . . . );

similarly, the dilation operator Da, a > 0, on L∞(R+) is defined as

Daf(x) := f(x/a).

A Banach limit ω on N is called Dn-invariant (or scaling-invariant if n = 2)
if ω ◦Dn = ω, and similarly ω on R+ is called Da-invariant if ω ◦Da = ω. Clearly,
if ω is Da-invariant on R+, a = n ∈ N, then the ω# given by (10) will be Dn-
invariant on N. Given an arbitrary Banach limit ω on R+, its composition ω ◦M
with the Hardy mean

(12) Mf(t) :=
1

log t

∫ t

1

f(x)
dx

x

will automatically be Da-invariant for any a > 0.
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A Banach limit ω on R+ is called Pα-invariant, for some α > 0, if ω ◦ Pα = ω,
where Pα is the “power dilation”

Pαf(x) := f(xα), x ∈ R+.

By a Banach limit on R we will mean, by definition, a functional on L∞(R) of
the form ω̃(f) = ω(f ◦ log), where ω is a Banach limit on R+. Thus ω̃ is positive,
continuous, and ω̃(f) = ess-limt→+∞ f(t) whenever the limit exists. Note the ω is
Pα-invariant if and only if ω̃ is Dα-invariant; and ω is Da-invariant if and only if
ω̃ ◦ T− log a = ω̃, where Tcf(x) := f(x + c) (i.e. ω̃ is invariant with respect to the
translation Tc by c = − log a).

The existence of (a lot of) Banach limits onR which are simultaneously dilation-,
translation- and power-invariant (i.e. ω̃ = ω̃ ◦ Tc = ω̃ ◦ Da = ω̃ ◦ Pα ∀a, α > 0
∀c ∈ R) is a consequence of the Markov-Kakutani theorem; see [3]. The following
proposition gives a simple recipe to produce translation- and dilation-invariant
Banach limits ω̃ on R (and, hence, dilation- and power-invariant Banach limits
ω(f) = ω̃(f ◦ exp) on R+).

Proposition 6. Let η be an arbitrary Banach limit on R+. Then ω̃ = η ◦M ◦ρ+,
where ρ+ : f 7→ f |R+

is the operator of restriction from R to R+, is a translation-

and dilation-invariant Banach limit on R.

Proof. We already know that η◦M ◦Da = η◦M for any a > 0; since ρ+ commutes
with Da, it follows immediately that

ω̃(Daf) = η(MDaρ+f) = η(Mρ+f) = ω̃(f).

For translation invariance, consider first Tc with c > 0. For t > 1,

Mρ+Tcf(t) =
1

log t

∫ t

1

f(x+ c)
dx

x

=
1

log t

∫ t+c

1+c

f(y)
dy

y − c
.

Since 1
y − 1

y−c is integrable over (1 + c,∞) and f is bounded, we see that the

difference of Mρ+Tcf(t) and

1

log t

∫ t+c

1+c

f(y)
dy

y

tends to zero as t → +∞. Similarly, replacing the limits in the last integral by
∫ t

1

produces an error of order O( 1
log t) → 0. Thus Mρ+Tcf −Mρ+f → 0 as t → +∞,

whence ω̃(Tcf) = ω̃(f), proving the Tc-invariance for c > 0. For c < 0 and assuming
t > 1 + c, the argument is completely analogous. �

For ease of notation, we will usually write ω- limn→∞ fn and ω- limt→+∞ f(t),
instead of ω(f), for a Banach limit ω on N or R+ (or R), respectively, to make it
clear which variable ω applies to.

Since the value of a Banach limit depends only on the behaviour of the sequence
or function at infinity, we will frequently also take the liberty of applying it to
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sequences or functions which are undefined or take infinite values for small values
of the argument (such as e.g. { 1

log n}n∈N).

For a positive operator T in SDixm and a Banach limit ω on N, one sets

(13) trω T = ω- lim
n→∞

∑n
j=0 sj(T )

log n
.

If ω is D2-invariant, one can show that trω(A+B) = trω(A)+ trω(B) for any A,B
positive. This makes it meaningful to extend trω by linearity to all of SDixm.

We refer to [6, § IV.2], [7], [3], [4] and in general to the monograph by Lord,
Sukochev and Zanin [13] for further details on the material in this section.

Throughout the rest of this paper, ω will be a Banach limit on R+ which is
D2- and Pα-invariant for all α > 1; ω̃(f) = ω(f ◦ log) will be the corresponding
Banach limit on R; ω#(f) = ω(f#) will be the Banach limit on N as in (10);
and (abusing the notation slightly) trω will be the Dixmier trace given by (13) with
ω# in the place of ω.

3. Proof of Theorem 1

The following proposition is proved in [4, Theorem 4.5] for the special case when
H is the spectral counting function of an operator; however, the proof works without
changes in general. We include the details here for the convenience of the reader.

Proposition 7. Let H be a nonnegative nonincreasing function on (0,+∞), which
belongs to Lp(0,+∞) for all 1 < p < 1 + δ with some δ > 0. Then the quantities

‖H‖lim sup := lim sup
pց1

(p− 1)

∫ ∞

0

H(t)p dt

and

‖H‖lim log := lim sup
t→+∞

1

log t

∫ t

0

H(t) dt

satisfy

‖H‖lim sup ≤ ‖H‖lim log ≤ e‖H‖lim sup.

In particular, ‖H‖lim sup is finite if and only if ‖H‖lim log is.

Proof. For any C > ‖H‖lim sup, let q0 > 0 be such that

(p− 1)

∫ ∞

0

H(t)p dt ≤ C for 1 < p < 1 + q0.

By Hölder’s inequality, for any 0 < q < q0,

∫ t

0

H(s) ds ≤
(∫ t

0

H(s)1+q ds
) 1

1+q
( ∫ t

0

ds
) q

1+q

≤
(C
q

) 1
1+q

t
q

1+q ≤ C
tq

q
.
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If t > e1/q0 , we can take q = 1
log t , so that tq/q = e log t; thus

1

log t

∫ t

0

H(s) ds ≤ Ce for t > e1/q0 ,

so ‖H‖lim log ≤ Ce. Hence ‖H‖lim log ≤ C‖H‖lim sup.
Conversely, assume that

1

log(t+ 1)

∫ t

0

H(s) ds ≤ C ∀t ≥ t0.

In other words, ∫ t

0

H(s) ds ≤
∫ t

0

C

1 + s
ds ∀t ≥ t0.

Set

G(t) :=

{
H(t), t ≥ t0,

min
(
H(t), C

1+t

)
, t < t0.

Then ∫ t

0

G(s) ds ≤
∫ t

0

C

1 + s
ds ∀t > 0,

that is, G(s) ≺ C
1+s in the sense of majorization of Hardy-Littlewood; it therefore

follows (see e.g. [2, p. 88]) that for any p > 1,

∫ ∞

0

G(s)p ds ≤
∫ ∞

0

( C

1 + s

)p

ds =
Cp

p− 1
,

so

(14) lim sup
pց1

(p − 1)

∫ ∞

0

G(s)p ds ≤ C.

Since

(p − 1)

∫ t0

0

G(s)p ds ≤ (p − 1)

∫ t0

0

( C

1 + s

)p

ds = Cp[1− (1 + t0)
1−p] → 0

and, by the Lebesgue Monotone Convergence Theorem,

∫ t0

0

H(s)p ds →
∫ t0

0

H(s) ds ≤ C log(t0 + 1) < ∞

as p ց 1, we get

lim
pց1

(p− 1)

∫ t0

0

H(s)p ds = 0, lim
pց1

(p− 1)

∫ t0

0

G(s)p ds = 0.

Since H(t) = G(t) for t ≥ t0, we thus obtain from (14)

lim sup
pց1

(p− 1)

∫ ∞

0

H(s)p ds ≤ C,

implying that ‖H‖lim sup ≤ ‖H‖lim log. �



10 M. ENGLIŠ, G. ZHANG

The proof below is likewise inspired by the proof of Theorem 4.5 in [4].

Proof of Theorem 1. (i)⇔(v) As recalled in the Introduction, it is known from
Peller [15, Theorem 4.4] that for each p > 1/2, there exists cp ∈ (0, 1) such that

(15) cp‖Hf‖p ≤ |f ′(0)| + ‖f‖(2),p ≤ 1

cp
‖Hf‖p,

where ‖ ·‖p stands for the norm in Sp and ‖ ·‖(2),p for the Besov seminorm (1) with
k = 2. Now since both Sp and Bp, 0 < p < ∞, form an interpolation scale under
complex interpolation, it follows by interpolation that one can even get (15) with
cp = c independent of p for 1 ≤ p ≤ 2. (See [12, p. 24] for the details; cf. also [19].)
Consequently,

c lim sup
pց1

(p− 1)‖Hf‖pp ≤ lim sup
pց1

(p− 1)‖f‖p(2),p ≤ 1

c
lim sup

pց1
(p− 1)‖Hf‖pp

for some c ∈ (0, 1) independent of p.
On the other hand, it is well known that the limsup on the utmost left and

right is equivalent to ‖Hf‖SDixm . Indeed, first of all, if Hf /∈ Sp0 for some p0 > 1,

then, since Sp increase with p and SDixm ⊂
⋂

p>1 Sp, both ‖Hf‖SDixm and ‖Hf‖p
∀p ∈ (1, p0) are infinite; thus we may assume that Hf ∈ Sp ∀p > 1. By the
definition of the norm in Sp,

‖Hf‖pp =

∞∑

j=0

sj(Hf )
p =

∫ ∞

0

H(t)p dt

where

(16) H = {sj(Hf )}#

is obtained as in (11). Therefore by the last proposition,

lim sup
pց1

(p− 1)‖Hf‖pp ≤ lim sup
t→+∞

∫ t

0
H(s) ds

log t
≤ lim sup

pց1
e(p− 1)‖Hf‖pp.

Furthermore, for n− 1 < t ≤ n,

(17)

∑n−1
j=0 sj(Hf )

log n
≤

∫ t

0
H(s) ds

log t
≤

∑n
j=0 sj(Hf )

log(n− 1)
,

whence

lim sup
t→+∞

∫ t

0
H(s) ds

log t
= lim sup

n→∞

∑n
j=0 sj(Hf )

log n
.

Combining everything together, we thus see that the quantity in (i) in Theorem 1
is equivalent to the last limsup. However, the last limsup is finite if and only if (8)
holds, i.e. if and only if Hf ∈ SDixm; and it is also known that this limsup is equal

to distSDixm(Hf ,SDixm
0 ), see [4, p. 267]. Thus indeed (i)⇔(v) and the quantity in

(i) is equivalent to distSDixm(Hf ,SDixm
0 ).
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(i)⇔(ii) It is well known (see e.g. [2, Chapter 2, Proposition 1.8]) that for any
function g on a measure space (X,µ), the norm of g in Lp(X,µ) equals the norm
of its nonincreasing rearrangement g∗ (with respect to µ) in Lp(0,∞). For g(z) =
(1− |z|2)2f ′′(z) on (X,µ) = (D, (1 − |z|2)−2 dz), we thus get in particular

∫

D

|f ′′(z)|p(1− |z|2)2p−2 dz =

∫ ∞

0

F (t)p dt.

An application of Proposition 7 (with H = F ) thus shows that (i)⇔(ii) and the
corresponding quantities are equivalent.

(i)⇔(iii) Using one more time the equality of the Lp-norms of a function and of
its nonincreasing rearrangement, we see that

(∫ ∞

0

Φ(t)p dt
)1/p

= ‖f ∗W· ‖Lp(T×N,dν) = ‖f‖dyadic, 1
p
pp

(cf. (5)), which is known to be equivalent, for each p > 1/2, to the norm |f(0)| +
|f ′(0)| + ‖f‖(2),p in Bp ([17, Appendix 2, Section 6]). Appealing again to the
fact that Bp form an interpolation scale under complex interpolation, we can get
(as in the proof of (i)⇔(v) above) the equivalence constants uniform in any compact
subinterval of (12 ,∞), in particular, for 1 ≤ p ≤ 2. Multiplying by (p−1) and taking
lim suppց1, the equivalence of the quantities in (i) and (iii) follows.

(iii)⇔(iv) Immediate by applying Proposition 7 to H = Φ. �

4. Proof of Theorem 2

We again closely parallel the proofs of Proposition 4.3 and Theorem 4.11 in [4],
especially for parts (a) and (b) below.

Proposition 8. Let H be a nonvanishing nonincreasing function on (0,∞) which
belongs to Lp(0,∞) for all p ∈ (1, p0) with some p0 > 1. Let

µH(λ) := sup{t : H(t) > λ}

be the distribution function of H (see e.g. [2, §2.1]), and denote

cH := sup
t>2

1

log t

∫ t

0

H(s) ds.

(a) For any c > cH there exists tc ∈ (0,+∞) such that ∀t ≥ tc: µH(1/t) ≤
ct log t.

(b) For any c > cH ,

(18)

ω- lim
t→+∞

1

log t

∫ t

0

H(s) ds = ω- lim
t→+∞

1

log t

∫ ct log t

0

H(s) ds

= ω- lim
t→+∞

1

log t

∫ µH(1/t)

0

H(s) ds.

(c) ω̃- limr→+∞
∫∞
0

H(s)1+
1
r ds = ω- limt→+∞

1
log t

∫ t

0
H(s) ds.
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Proof. Observe first of all that by Hölder, for any p ∈ (1, p0) and t > 0,

∫ t

0

H(s) ds ≤
(∫ t

0

H(s)p ds
)1/p( ∫ t

0

ds
)1−1/p

≤ t1−1/p‖H‖p,

so that H ∈ L1(0, t) ∀t > 0. Likewise, as H is nonincreasing, it follows from
H ∈ Lp(0,∞) that limt→+∞ H(t) = 0; thus µH is finite on (0,∞).

(a) Assume to the contrary that there exist tn ր +∞, tn ≥ 2, such that
µH(1/tn) > ctn log tn. Then H(s) > 1/tn for 0 < s ≤ ctn log tn, and so

(19)

∫ ctn log tn

0

H(s) ds ≥ ctn log tn
tn

= c log tn.

On the other hand, choosing δ > 0 such that c− δ > cH , we have

(c− δ) log tn > cH log(ctn)

for all n sufficiently large, as well as

δ log tn > cH log(log tn)

for all n sufficiently large. Thus for n large enough,

c log tn > cH log(ctn log tn) ≥
∫ ctn log tn

0

H(s) ds

by the definition of cH . This contradicts (19).
(b) First of all, we have for all t > 0

(20)

∫ t

0

H(s) ds ≤
∫ µH(1/t)

0

H(s) ds+ 1.

Indeed, this is obvious for t ≤ µH(1/t), while for s > µH(1/t) one has H(s) ≤ 1/t
so that ∫ t

µH (1/t)

H(s) ds ≤ t− µH(1/t)

t
≤ 1,

proving (20). By part (a), for any α > 1 we thus have for all t sufficiently large

∫ t

0

H(s) ds ≤
∫ µH(1/t)

0

H(s) ds+ 1 ≤
∫ ct log t

0

H(s) ds + 1 ≤
∫ tα

0

H(s) ds + 1,

since tα ≥ ct log t for t large enough. Dividing by log t and applying ω, we thus
obtain

ω- lim
t→+∞

1

log t

∫ t

0

H(s) ds ≤ ω- lim
t→+∞

1

log t

∫ µH (1/t)

0

H(s) ds

≤ ω- lim
t→+∞

1

log t

∫ ct log t

0

H(s) ds

≤ ω- lim
t→+∞

α
1

log t

∫ t

0

H(s) ds
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where in the last term we used the Pα-invariance of ω (and the equality log tα =
α log t). Since α > 1 was arbitrary, (b) follows.

(c) Set for brevity T := µH(1). Since
∫ T

0
H(s)p ds tends to the finite limit∫ T

0
H(s) ds as p ց 1 (cf. the beginning of this proof), we can actually replace the∫∞

0
and

∫ t

0
in (c) by

∫∞
T

and
∫ t

T
, respectively. Next, for any p > 0 we have

∫ ∞

T

H(s)p ds = −
∫

(0,1)

λp dµH(λ)

(this is easily checked for simple functions, and follows for general H by approxi-
mation). Making the change of variable λ = e−u transforms the Lebesgue-Stieltjes
integral on the right-hand side into

∫

(0,+∞)

e−u/(p−1) e−u dµH(e−u) ≡
∫

(0,+∞)

e−u/(p−1) dβ(u),

where

β(v) : =

∫

[0,v)

e−u dµH(e−u)

= −
∫

(e−v ,1]

y dµH(y)

=

∫ µH (e−v)

T

H(s) ds.

Now by the weak*-Karamata theorem [4, Proposition 4.10],

ω̃- lim
r→+∞

1

r

∫ ∞

0

e−u/r dβ(u) = ω̃- lim
v→+∞

β(v)

v
= ω- lim

t→+∞

β(log t)

log t
.

Consequently,

ω̃- lim
r→+∞

1

r

∫ ∞

0

H(s)1+1/r ds = ω- lim
t→+∞

1

log t

∫ µH (1/t)

0

H(s) ds.

In view of part (b), the desired conclusion (c) follows. �

Proof of Theorem 2. First of all, using again the equality of Lp-norms of a function
and of its nonincreasing rearrangement, part (c) of the last proposition says that
the limits in (i) and (ii) of Theorem 2 are not only equivalent, but actually equal.
Similarly, the limits in (iii) and (iv) are equal.

Next, in the proof of (i)⇔(v) and (i)⇔(iii) of Theorem 1, we have seen that
(thanks to complex interpolation) there exists c ∈ (0, 1) such that for all 1 ≤ p ≤ 2
and all holomorphic f ,

c‖Hf‖pp ≤ |f ′(0)|p + ‖f‖p(2),p ≤ 1

c
‖Hf‖pp,(21)

c‖Φ‖pp ≤ |f(0)|p + |f ′(0)|p + ‖f‖p(2),p ≤ 1

c
‖Φ‖pp.(22)
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Setting p = 1 + 1
r , dividing by r and applying ω̃, (22) gives the equivalence of the

quantities in (i) and (iii) (with the same constant c), while (21) shows that the
quantity in (i) is equivalent (still with the same constant c) to

(23) ω̃- lim
r→+∞

1

r
‖Hf‖

1+1/r
1+1/r .

However, applying part (c) of Proposition 8 to the function H in (16), and arguing
as in (17), shows that (23) equals

ω#- lim
n→∞

1

log n

n∑

j=0

sj(Hf ) = trω |Hf |,

proving the equivalence of (i) and (v), again still with the same constant c as
in (21) above. Since neither (21) nor (22) involve ω in any way, this constant is
thus independent of ω. �

5. Logarithmic interpolation of Besov spaces

It is possible to give an alternative proof of the part (iii)⇔(v) of Theorem 1, i.e.

Hf ∈ SDixm ⇐⇒ lim sup
t→+∞

1

log t

∫ t

0

Φ(s) ds < ∞,

by interpolating the isomorphisms

(Bp, ‖ · ‖dyadic, 1
p
pp)

∼= ({f ∈ H2 : Hf ∈ Sp}, |f(0)| + ‖Hf‖p), 1 ≤ p < ∞,

due to Peller [15]. This method does not give any information about Dixmier traces
(like Theorem 2), on the other hand, it provides also norm equivalence of ‖Hf‖Dixm

and the norm of f inB
Dixm, i.e. furnishes a proof of Theorem 3. Here are the details.

First of all, if F is any interpolation functor and 1 < p < ∞, then it is known
that

(24) f ∈ F(B1, Bp) ⇐⇒ Hf ∈ SF(l1,lp),

where for a symmetric sequence space E on N, SE denotes the space of operators T
whose singular value sequence {sj(T )}j∈N belongs to E (equipped with the norm
‖T‖SE

:= ‖{sj(T )}‖E). For the special case when F is the real interpolation
functor F(A0, A1) = (A0, A1)θ,q, this was proved already by Peller [16] (see also
[17], Chapter 6, §4); the general case is conveniently summarized for our purposes
in §2 of Krepkogorskii [10]. Likewise, one finds in §4 of [10] that, for the function
Φ = (f ∗W· )

∗ from Theorems 1 and 2,

(25) f ∈ F(B1, Bp) ⇐⇒ Φ ∈ F(L1(T×N, dν), Lp(T×N, dν))

(this is in fact stated there in (3) of §4 for the full Besov spaces B1/p
pp , but the result

for the holomorphic subspaces Bp follows by the standard theorem on interpolation
of subspaces — see the penultimate displayed formula on p. 24 in [10]).
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Next, if A0, A1 are any (quasi-)Banach spaces that are both continuously con-
tained in some topological vector space, recall that the K-functional of Peetre is
defined on the algebraic sum A0 +A1 by

K(t, f,A0, A1) = inf{‖f0‖A0
+t‖f1‖A1

: f0 ∈ A0, f1 ∈ A1, f0+f1 = f}, t > 0.

Define

(A0, A1)log :=
{
f ∈ A0 +A1 : sup

t>0

K(t, f,A0, A1)

log(2 + t)
< ∞

}
.

Then by general theory, (A0, A1) 7→ (A0, A1)log is an interpolation functor, and on
any σ-finite measure space

(L1, L∞)log = LDixm :=
{
f : sup

t>0

1

log(2 + t)

∫ t

0

f∗(s) ds < ∞
}
,

(an example of the Lorentz-Zygmund spaces, more precisely, the Marcinkiewicz
(or Lorentz) space associated to the quasiconcave function t/log(2 + t), see [2],
p. 69; the supremum gives the norm in LDixm), while

(S1,L)log = SDixm,

where L stands for the space of all bounded linear operators; here the first equality
is immediate from the well-known formula

K(t, f, L1, L∞) =

∫ t

0

f∗(s) ds,

for the second see e.g. Cobos et al. [5]. Unfortunately, this is not directly applicable
in our case, as one cannot take p = ∞ in (24) and (25). This can be circumvented
by interpolating the pair (L1, L2) instead.

Proposition 9. (L1, L2)log = LDixm.

Proof. Denote temporarily, for brevity, (L1, L2)log =: Y. It is a result of Holmstedt
[9, Theorem 4.1] that the K-functional for the pair (L1, L2) satisfies

K(t, f, L1, L2) ≍
∫ t2

0

f∗(s) ds + t
(∫ ∞

t2
f∗(s)2 ds

)1/2

,

where as previously f∗ denotes the nonincreasing rearrangement of f .
If f ∈ Y, we thus have in particular

∫ t2

0

f∗(s) ds ≤ C log(2 + t) ∀t > 0,

or ∫ t

0

f∗(s) ds ≤ C log(2 +
√
t).

Since log(2 +
√
t) ≤ log(2 + max(1, t)) ≤ log 3

log 2 log(2 + t), we see that Y ⊂ LDixm

continuously.
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Conversely, let f ∈ LDixm, so

(26)

∫ t

0

f∗(s) ds ≤ C log(2 + t) ∀t > 0.

Then, first of all,

(27)

∫ t2

0

f∗(s) ds ≤ C log(2 + t2) ≤ 2C log(2 + t).

Secondly, since f∗ is nonincreasing, (26) implies that

f∗(t) ≤ C
log(2 + t)

t
.

Now
∫∞
x

( log(2+s)
s )2 ds = O( 1x ) as x ց 0, and so

(28) t

√∫ ∞

t2

( log(2 + s)

s

)2

ds = O(1) as t ց 0.

On the other hand, since

∫ ∞

x

log2 t

t2
dt =

log2 x+ 2 log x+ 2

x
,

we have

(29) t

√∫ ∞

t2

( log(2 + s)

s

)2

ds = O(log t) as t → +∞.

Thus from (28) and (29)

t

√∫ ∞

t2

( log(2 + s)

s

)2

ds ≤ C ′ log(2 + t) ∀t > 0

for some finite C ′. Consequently,

t

√∫ ∞

t2
f∗(s)2 ds ≤ C ′C log(2 + t) ∀t > 0.

Together with (27), this implies that f ∈ Y and LDixm ⊂ Y continuously. �

Proof of Theorem 3. Taking p = 2 in (24) and (25) yields

Hf ∈ SDixm = S(l1,l2)log ⇐⇒ f ∈ (B1, B2)log

⇐⇒ Φ ∈ (L1(T ×N, dν), L2(T×N, dν))log

⇐⇒ Φ ∈ LDixm(T×N, dν)

with equivalence of norms, proving the claim. �
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6. Proof of Theorem 4

Consider the case of a lacunary series

f(eiθ) =

∞∑

m=0

cme2
miθ,

where cm is a nonincreasing sequence of positive numbers. Then f ∗Wn(z) = cnz
2n

and the nonincreasing rearrangement is given by

Φ(t) = cj for 2j − 1 ≤ t < 2j+1 − 1.

By Theorem 1, Hf ∈ SDixm if and only if
∫ t

0
Φ(s) ds = O(log t) as t → +∞, and by

Theorem 2, for any dilation- and power-invariant Banach limit ω on R+,

(30) c trω |Hf | ≤ ω- lim
t→+∞

1

log t

∫ t

0

Φ(s) ds ≤ 1

c
trω |Hf |,

for some c ∈ (0, 1) independent of ω and f . Clearly,

∫ 2k−1

0

Φ(s) ds =

k−1∑

j=0

2jcj ≡ σk−1,

while for 2k − 1 < t < 2k+1 − 1,

1

log t

∫ t

0

Φ(s) ds ≤ σk

log(2k − 1)
∼ σk

k log 2

and
1

log t

∫ t

0

Φ(s) ds ≥ σk−1

log(2k+1 − 1)
∼ σk−1

k log 2
.

We prove Theorem 4 by constructing a nonincreasing sequence ck and two dilation-
and power-invariant Banach limits ω1, ω2 on R+ such that, firstly,

(31) σk = O(k), σk − σk−1 = O(1) as k → ∞,

implying that Hf ∈ SDixm and ω1- lim
1

log t

∫ t

0
Φ = 1

log 2
ω1- lim

σk

k
and similarly

for ω2; and secondly,

(32) ω1- lim
σk

k
> c2 ω2- lim

σk

k
.

Then by (30) trω1
|Hf | > trω2

|Hf |, establishing the nonmeasurability of |Hf |.
Let us now give the details of the construction.

Proof of Theorem 4. Let A > B > 0, C > 0, a > 1 be constants to be specified
later, and set

(33) σ(x) := (A+B cos loga log x)x+ C, x > 1.
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Define cj by

(34) cj :=
σ(j)− σ(j − 1)

2j
, j ≥ 3.

By the mean value theorem, 2jcj = σ′(j + θj) for some θj ∈ [0, 1], and

|2j+1cj+1 − 2jcj | ≤ 2 sup
[j−1,j+1]

|σ′′|.

Since by a short computation σ′′(x) = O(1/(x log x)), while

σ′(x) = A+B
(
cos loga log x− sin loga log x

log a log x

)
≥ A−B −O

( 1

log x

)
,

we see that 2j+1cj+1 − 2jcj = o(1) = o(2jcj) as j → ∞, or

cj+1

cj
→ 1

2
.

Thus for all j large enough — say, j ≥ j0 ≥ 3 — we will have cj+1 ≤ cj . Redefining
cj to be equal to cj0 for 0 ≤ j < j0 and choosing

C := j0cj0 − (A+B cos loga log(j0 − 1))(j0 − 1),

we thus obtain a positive nonincreasing sequence cj , still given by (34) for j ≥ j0,
and satisfying

σk ≡
k∑

j=0

2jcj = σ(k) ∀k ≥ j0.

It is clear from (33) that σ(x) = O(x), and from the above formula for σ′(x)
that σ′(x) = O(1); thus (31) holds.

Let us compute the Hardy mean (12) of ξ(x) := σ(x)
x . For any t > 1, one has

1

log t

∫ t

e

ξ(x)
dx

x
= A

log t− 1

log t
+

B

log t

∫ log t

1

cos loga y dy +
C

log t

(1
e
− 1

t

)

= A+
B

log t

[ x log a

1 + log2 a
(log a cos loga x+ sin loga x)

]x=log t

x=1
+ o(1).

Consequently,

(35) Mξ(t) = A+
B log a

1 + log2 a
(log a cos loga log t+ sin loga log t) + o(1).

Pick now an arbitrary Banach limit η on N, and set

ωj(f) := η((Mρ+(f ◦ exp)) ◦ bj), j = 1, 2,

where b1, b2 : N → R+ are given by

b1(k) := a2kπ, b2(k) := a(2k+1)π.
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Clearly f 7→ η(f ◦ bj) is a Banach limit on R+, thus by Proposition 6 ω1 and ω2

are dilation- and power-invariant Banach limits on R+. Since η reduces to the
ordinary limit on a convergent sequence, we get from (35)

ω1- lim
σ(x)

x
= A+Bq, ω2- lim

σ(x)

x
= A−Bq,

where we have denoted for brevity q := log2 a
1+log2 a

. Take now B = (1−δ)A, a = e1/
√
δ;

then Bq = 1−δ
1+δA and

A+Bq

A−Bq
=

1

δ
.

Choosing δ > 0 so small that 1
δ > c2, we thus get (32), completing the proof. �

7. Concluding remarks

7.1 Other Besov norms. It should be noted that the uniform equivalence for
1 ≤ p ≤ 2 of the Bp-norm of f and Schatten p-norm of Hf no longer holds — and

one gets no analogue of parts (i) in Theorems 1 and 2 — if the seminorms ‖f‖(2),p
are replaced by ‖f‖(1),p. In fact, taking f(z) = zk+1/(k + 1), k ∈ N, so that

f ′(z) = zk, gives after a small computation

‖f‖p(1),p =

∫

D

|zk|p(1− |z|2)p−2 dz =
πΓ(kp2 + 1)Γ(p − 1)

Γ(kp2 + p)
∼ π

p− 1

as p ց 1, whereas

‖f‖p(2),p =

∫

D

|kzk−1|p(1− |z|2)2p−2 dz =
πkpΓ(k−1

2 p+ 1)Γ(2p − 1)

Γ(k−1
2 p+ 2p)

→ 2kπ

k + 1

as p ց 1. Thus (p−1)‖f‖p(1),p tends to a finite nonzero limit, while (p−1)‖f‖p(2),p →
0, in full agreement with the fact that f ∈ B1, so Hf ∈ S1 and trω |Hf | = 0.

The limit as p ց 1 of (p−1)‖f‖p(1),p was studied by Tytgat [19], who showed that

it equals the norm of f ′ in L1(T), i.e. the Sobolev W 1,1 norm; see also Triebel [18]
and references therein for related results.

For the Besov seminorms ‖f‖(k),p with k ≥ 3, on the other hand, Theorems 1
and 2 remain in force (with the same proof). The right analogue for k = 1 of the
expresssions in Theorems 1(i), 2(i) might be (p − 1)2‖f‖p(1),p.

7.2 An example. Here is the promised Example 5 from the Introduction. Con-
sider again the case of lacunary series as in Section 6, i.e. f(eiθ) =

∑∞
m=0 cme2

miθ,
with cm a nonincreasing sequence of positive numbers, and with the nonincreasing
rearrangement Φ of f ∗W· on T×N given by

Φ(t) = cj for 2j − 1 ≤ t < 2j+1 − 1.

For the “Besov-Lorentz” spaces Bpq from the Introduction, we thus get

Hf ∈ Spq ⇐⇒ f ∈ B
pq ⇐⇒ {ck2k/p}k∈N ∈ lq ,
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and, by Theorem 1(iii), as already noted in the preceding section,

Hf ∈ SDixm ⇐⇒ f ∈ B
Dixm ⇐⇒

n∑

j=0

2jcj = O(n).

Taking in particular cj = ak for Nk < j ≤ Nk+1, where N0 := 1, a0 := 1, and
Nk = k2 and ak = k/2Nk+1 for k ≥ 1, one checks without difficulty that 2jcj = k
for j = Nk+1 (so that {2jcj} /∈ l∞), cj is nonincreasing, while

∑

Nk<j≤Nk+1

2jcj = 2(2Nk+1 − 2Nk)ak ≤ 2k,

so for Nk < n ≤ Nk+1,

n∑

j=2

2jcj ≤
k∑

l=1

2l = k(k + 1) = O(log n).

Thus the corresponding Hankel operator Hf belongs to SDixm \ S1,∞. As already
remarked in the Introduction, this is in contrast with the situation for Bergman
spaces, where [8, Theorem 7], in conjunction with Lemma 3 (p. 1327) in Nowak [14],

imply that one has (at least for α = 0) H
(α)

f
∈ SDixm ⇐⇒ H

(α)

f
∈ S1,∞.

7.3 Hausdorff measures. The Hankel operator Hφ is closely linked with the
commutator [P,Mφ] of the Szegö projector P with the operatorMφ of multiplication
by φ on L2(T): namely, under the orthogonal decomposition L2 = H2 ⊕ (L2 ⊖
H2), the commutator is given by the block matrix

[
0 H∗

φ

Hφ 0

]
. In particular

for φ = f , the Schatten class properties of [P,Mf ] are thus identical to those
of Hf . As already remarked in the Introuction, for f a conformal map of the

disc onto a Jordan domain Ω ⊂ C, the commutator [P,Mf ] is called (for good

reasons) the “quantum differential” (denoted dZ) in § IV.3 in Connes [6], where
it is also shown that, up to a constant factor, the functional f 7→ trω(f |dZ|p),
p > 1, is just the integration against the p-dimensional Hausdorff measure Λp

on ∂Ω. Similarly, in [8] (see also [19]) it is shown that in the weighted Bergman

space setting, 1√
α+1

trω |H(α)

f
| equals the length of ∂Ω, i.e. Λ1(∂Ω).

In view of our nonmeasurability result (Theorem 4), it is unlikely that there ex-
ists a similar direct interpretation in terms of Hausdorff measures also for trω |Hf |
on the Hardy space, since the definition of Hausdorff measures does not involve
any dependence on Banach limits. Examples with lacunary series considered above
suggest that possibly trω |Hf | might be given by (or at least equivalent to) quan-

tities like ω- limrց1(1 − r) log 1
1−rM1(f

′′, r) or even ω- limrց1
1

log log 1
1−r

M1(f
′, r),

or of similar nature; here Mp(g, r) stands for the integral mean of |g(z)|p over the
circle |z| = r (so, in particular, M1(f

′, r) = Λ1(f(rT)) is the length of the image of
that circle under f).
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