A LOCAL PROOF OF THE BREUIL-MÉZARD CONJECTURE IN THE SCALAR SEMI-SIMPLIFICATION CASE

FABIAN SANDER

ABSTRACT. We give a new local proof of the Breuil-Mézard conjecture in the case of a reducible representation of the absolute Galois group of \mathbb{Q}_p , p > 2, that has scalar semi-simplification, via a formalism of Paškūnas.

1. Introduction

Let p > 2 be a prime number, k be a finite field of characteristic p and L a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O} and uniformizer ϖ . Let $\rho \colon G_{\mathbb{Q}_p} \to \mathrm{GL}_2(k)$ be a continuous representation of the form

(1)
$$\rho(g) = \begin{pmatrix} \chi(g) & \phi(g) \\ 0 & \chi(g) \end{pmatrix}, \forall g \in G_{\mathbb{Q}_p},$$

so that the semi-simplification of ρ is isomorphic to $\chi \oplus \chi$. Let R_{ρ}^{\square} denote the associated universal framed deformation ring of ρ and let ρ^{\square} be the universal framed deformation. For any $\mathfrak{p} \in \text{m-Spec}(R_{\rho}^{\square}[1/p])$, the set of maximal ideals, the residue field $\kappa(\mathfrak{p})$ is a finite extension of \mathbb{Q}_p . We denote its ring of integers by $\mathcal{O}_{\mathfrak{p}}$ and get an associated representation $\rho_{\mathfrak{p}}^{\square} \colon G_{\mathbb{Q}_p} \to \operatorname{GL}_2(\mathcal{O}_{\mathfrak{p}})$ that lifts ρ . Let $\tau \colon I_{\mathbb{Q}_p} \to \operatorname{GL}_2(L)$ be a representation of the inertia group of \mathbb{Q}_p with an open kernel, $\psi \colon G_{\mathbb{Q}_p} \to \mathcal{O}^{\times}$ a continuous character and let $\mathbf{w} = (a,b)$ be a pair of integers with b > a. We say that $\rho_{\mathfrak{p}}^{\square}$ is of p-adic Hodge type (\mathbf{w}, τ, ψ) if it is potentially semi-stable with Hodge-Tate weights \mathbf{w} , det $\rho_{\mathfrak{p}} \cong \psi \epsilon$, $\psi|_{I_{\mathbb{Q}_p}} = \epsilon^{a+b} \det \tau$ and $\operatorname{WD}(\rho_{\mathfrak{p}}^{\square})|_{I_{\mathbb{Q}_p}} \cong \tau$, where ϵ is the cyclotomic character and $\operatorname{WD}(\rho_{\mathfrak{p}}^{\square})$ is the Weil-Deligne representation associated to $\rho_{\mathfrak{p}}^{\square}$ by Fontaine [8].

By a result of Henniart [11] there exists a unique smooth irreducible $K := \operatorname{GL}_2(\mathbb{Z}_p)$ -representation $\sigma(\tau)$ and a modification $\sigma^{\operatorname{cr}}(\tau)$ defined by Kisin [13, 1.1.4] such that for any smooth absolutely irreducible $\operatorname{GL}_2(\mathbb{Q}_p)$ -representation π with associated Weil-Deligne representation $\operatorname{LL}(\pi)$ via the classical local Langlands correspondence, we have $\operatorname{Hom}_K(\sigma(\tau),\pi) \neq 0$ (resp. $\operatorname{Hom}_K(\sigma^{\operatorname{cr}}(\tau),\pi) \neq 0$) if and only if $\operatorname{LL}(\pi)|_{I_{\mathbb{Q}_p}} \cong \tau$ (resp. $\operatorname{LL}(\pi)|_{I_{\mathbb{Q}_p}} \cong \tau$ and the monodromy operator N on $\operatorname{LL}(\pi)$ is trivial). We have $\sigma(\tau) \not\cong \sigma^{\operatorname{cr}}(\tau)$ only if $\tau = \chi \oplus \chi$, in which case $\sigma(\tau) = \operatorname{\tilde{st}} \otimes \chi \circ \det$ and $\sigma^{\operatorname{cr}}(\tau) = \chi \circ \det$, where $\operatorname{\tilde{st}}$ is the Steinberg representation of $\operatorname{GL}_2(\mathbb{F}_p)$, inflated to $\operatorname{GL}_2(\mathbb{Z}_p)$, and χ is considered as a character of \mathbb{Z}_p^{\times} via local class field theory. By enlarging L if necessary, we can assume that $\sigma(\tau)$ (resp. $\sigma^{\operatorname{cr}}(\tau)$) is defined over L. We define $\sigma(\mathbf{w},\tau) := \sigma(\tau) \otimes \operatorname{Sym}^{b-a-1} L^2 \otimes \det^a$ and let $\overline{\sigma}(\mathbf{w},\tau)$ be the semi-simplification of the reduction of a K-invariant \mathcal{O} -lattice modulo ϖ . One can show that $\overline{\sigma}(\mathbf{w},\tau)$ is independent of the choice of the lattice. For every irreducible smooth finite-dimensional K-representation σ over k we let $m_{\sigma}(\mathbf{w},\tau)$

denote the multiplicity with which σ occurs in $\overline{\sigma(\mathbf{w},\tau)}$. Analogously we define $\sigma^{\mathrm{cr}}(\mathbf{w},\tau) := \sigma^{\mathrm{cr}}(\tau) \otimes \mathrm{Sym}^{b-a-1} L^2 \otimes \det^a$ and let $m_{\sigma}^{\mathrm{cr}}(\mathbf{w},\tau)$ denote the multiplicity with which σ occurs in $\overline{\sigma^{\mathrm{cr}}(\mathbf{w},\tau)}$.

We prove the following theorem.

Theorem 1.1. Let p > 2 and let (\mathbf{w}, τ, ψ) be a Hodge type. There exists a reduced \mathcal{O} -torsion free quotient $R_{\rho}^{\square}(\mathbf{w}, \tau, \psi)$ (resp. $R_{\rho}^{\square, \operatorname{cr}}(\mathbf{w}, \tau, \psi)$) of R_{ρ}^{\square} such that for all $\mathfrak{p} \in \operatorname{m-Spec}(R_{\rho}^{\square}[1/p])$, \mathfrak{p} is an element of $\operatorname{m-Spec}(R_{\rho}^{\square}(\mathbf{w}, \tau, \psi)[1/p])$ (resp. $\operatorname{m-Spec}(R_{\rho}^{\square, \operatorname{cr}}(\mathbf{w}, \tau, \psi)[1/p])$) if and only if $\rho_{\mathfrak{p}}^{\square}$ is potentially semi-stable (resp. potentially crystalline) of p-adic Hodge type (\mathbf{w}, τ, ψ) . If $R_{\rho}^{\square}(\mathbf{w}, \tau, \psi)$ (resp. $R_{\rho}^{\square, \operatorname{cr}}(\mathbf{w}, \tau, \psi)$) is non-zero, then it has Krull dimension 5.

Furthermore, there exists a four-dimensional cycle $z(\rho)$ of R_{ρ}^{\square} such that there are equalities of four-dimensional cycles

(2)
$$z_4(R_{\rho}^{\square}(\mathbf{w}, \tau, \psi)/(\varpi)) = m_{\lambda}(\mathbf{w}, \tau)z(\rho),$$

(3)
$$z_4(R_{\rho}^{\square, \operatorname{cr}}(\mathbf{w}, \tau, \psi)/(\varpi)) = m_{\lambda}^{\operatorname{cr}}(\mathbf{w}, \tau)z(\rho),$$

where $\lambda := \operatorname{Sym}^{p-2} k^2 \otimes \chi \circ \det$.

The equality of cycles also implies the analogous equality of Hilbert-Samuel multiplicities. Hence the above theorem proves the Breuil-Mézard conjecture [2], as stated in [13], in our case. This case has also been handled by Kisin in [13] using global methods, see also the errata in [10]. However, our proof is purely local and the results of this paper, together with works of Paškūnas [18], Yongquan Hu and Fucheng Tan [12], the whole conjecture is now proved in the 2-dimensional case only by local methods, when $p \geq 5$.

ACKNOWLEDGEMENT

This paper was written as a part of my PhD-project. I would like to thank my advisor Prof. Dr. Vytautas Paškūnas for numerous conversations, his patience and his great support. I would also like to thank Yongquan Hu for various helpful comments and suggestions.

2. Formalism

We quickly recall a formalism due to Paškūnas used by him to prove the Breuil-Mézard conjecture for residual representations with scalar endomorphisms in [18]. Let R be a complete local notherian commutative \mathcal{O} -algebra with residue field k. Let G be a p-adic analytic group, K be a compact open subgroup and P its pro-p Sylow subgroup. Let N be a finitely generated $R[\![K]\!]$ -module, V be a continuous finite dimensional L-representation of K, and Θ be an \mathcal{O} -lattice in V which is invariant under the action of K. Let

(4)
$$M(\Theta) := \operatorname{Hom}_{\mathcal{O}}(\operatorname{Hom}_{\mathcal{O} \mathbb{I} K \mathbb{I}}^{\operatorname{cont}}(N, \operatorname{Hom}_{\mathcal{O}}(\Theta, \mathcal{O})), \mathcal{O}).$$

This is a finitely generated R-module [18, Lemma 2.15]. Let d denote the Krull dimension of $M(\Theta)$. Recall that Pontryagin duality $\lambda \mapsto \lambda^{\vee}$ induces an anti-equivalence of categories between discrete \mathcal{O} -modules and compact \mathcal{O} -modules [15,

(5.2.2)-(5.2.3)]. For any λ in $\operatorname{Mod}_K^{\operatorname{sm}}(\mathcal{O})$, the category of smooth K-representations on \mathcal{O} -torsion modules, we define

(5)
$$M(\lambda) := \operatorname{Hom}_{\mathcal{O}\llbracket K \rrbracket}^{\operatorname{cont}}(N, \lambda^{\vee})^{\vee}.$$

Then $M(\lambda)$ is also a finitely generated R-module [18, Cor. 2.5]. We define $\operatorname{Mod}_G^{\operatorname{pro}}(\mathcal{O})$ to be the category of compact $\mathcal{O}[\![K]\!]$ -modules with an action of $\mathcal{O}[\![G]\!]$, such that the restriction to $\mathcal{O}[\![K]\!]$ of both actions coincide. Pontryagin duality induces an anti-equivalence of categories between $\operatorname{Mod}_G^{\operatorname{sm}}(\mathcal{O})$ and $\operatorname{Mod}_G^{\operatorname{pro}}(\mathcal{O})$. For any R[1/p]-module m of finite length, we choose a finitely generated R-submodule m^0 with $\operatorname{m} \cong \operatorname{m}^0 \otimes_{\mathcal{O}} L$ and define

(6)
$$\Pi(\mathbf{m}) := \operatorname{Hom}_{\mathcal{O}}^{\operatorname{cont}}(\mathbf{m}^0 \otimes_R N, L).$$

By [18, Lemma 2.21], $\Pi(m)$ is an admissible unitary L-Banach space representation of G.

Theorem 2.1 (Paškūnas,[18]). Let \mathfrak{a} be the R-annihilator of $M(\Theta)$. If the following hold

- (a) N is projective in $\operatorname{Mod}_K^{\operatorname{pro}}(\mathcal{O})$,
- (b) R/\mathfrak{a} is equidimensional and all the associated primes are minimal,
- (c) there exists a dense subset Σ of Supp $M(\Theta)$, contained in m-Spec R[1/p], such that for all $\mathfrak{n} \in \Sigma$ the following hold:
 - (i) $\dim_{\kappa(\mathfrak{n})} \operatorname{Hom}_K(V, \Pi(\kappa(\mathfrak{n}))) = 1$,
 - (ii) $\dim_{\kappa(\mathfrak{n})} \operatorname{Hom}_K(V, \Pi(R_{\mathfrak{n}}/\mathfrak{n}^2)) \leq d$,

then R/\mathfrak{a} is reduced, of dimension d and we have an equality of (d-1)-dimensional cycles

$$z_{d-1}(R/(\varpi,\mathfrak{a})) = \sum_{\sigma} m_{\sigma} z_{d-1}(M(\sigma)),$$

where the sum is taken over the set of isomorphism classes of smooth irreducible k-representations of K and m_{σ} is the multiplicity with which σ occurs as a subquotient of Θ/ϖ .

We want to specify the following criterion in our situation, which allows us to check the first two conditions of Theorem 2.1.

Theorem 2.2 (Paškūnas,[18]). Suppose that R is Cohen-Macaulay and N is flat over R. If

(7)
$$\operatorname{projdim}_{\mathcal{O}\llbracket P \rrbracket} k \hat{\otimes}_R N + \max_{\mathbf{Z}} \{ \dim_R M(\sigma) \} \leq \dim R,$$

where the maximum is taken over all the irreducible smooth k-representations of K, then the following holds:

- (o) (7) is an equality,
- (i) N is projective in $Mod_K^{pro}(\mathcal{O})$,
- (ii) $M(\Theta)$ is a Cohen-Macaulay module,
- (iii) $R/\operatorname{ann}_R M(\Theta)$ is equidimensional, and all the associated prime ideals are minimal.

We start with the following setup. Let $\rho: G_{\mathbb{Q}_p} \to \mathrm{GL}_2(k)$ be a continuous representation of the form $\rho(g) = \begin{pmatrix} \chi(g) & \phi(g) \\ 0 & \chi(g) \end{pmatrix}$, as in (1). After twisting we may

assume that χ is trivial so that for all $g \in G_{\mathbb{Q}_p}$

(8)
$$\rho(g) = \begin{pmatrix} 1 & \phi(g) \\ 0 & 1 \end{pmatrix}.$$

Let $\psi \colon \mathbb{Q}_p^{\times} \to \mathcal{O}^{\times}$ be a continuous character with $\psi \epsilon \equiv \mathbb{1} \mod \varpi$. Let R be a complete local noetherian \mathcal{O} -algebra and let

(9)
$$\rho_R \colon G_{\mathbb{Q}_n} \to \mathrm{GL}_2(R)$$

be a continuous representation with determinant $\psi\epsilon\colon G_{\mathbb{Q}_p}\to\mathcal{O}^\times$ such that $\rho_R\equiv\rho$ mod \mathfrak{m}_R . Let $R^{\mathrm{ps},\psi}$ denote the universal deformation ring that parametrizes 2-dimensional pseudo-characters of $G_{\mathbb{Q}_p}$ lifting the trace of the trivial representation and having determinant $\psi\epsilon$. Let $T\colon G_{\mathbb{Q}_p}\to\mathcal{O}$ be the associated universal pseudo-character. Since $\mathrm{tr}\,\rho_R$ is a pseudo-character lifting $\mathrm{tr}\,\rho$, the universal property of $R^{\mathrm{ps},\psi}$ induces a morphism of \mathcal{O} -algebras

(10)
$$R^{\mathrm{ps},\psi} \to R.$$

Let from now on $G := \mathrm{GL}_2(\mathbb{Q}_p)$, P the subgroup of upper triangular matrices and $K := \mathrm{GL}_2(\mathbb{Z}_p)$. Let I_1 be the subgroup of K which consists of the matrices that are upper unipotent modulo p. In particular, I_1 is a maximal pro-p Sylow subgroup of K. We let ω be the mod p cyclotomic character, via local class field theory considered as $\omega \colon \mathbb{Q}_p^\times \to k^\times, x \mapsto x \, |x| \mod p$, and define

(11)
$$\pi := (\operatorname{Ind}_{P}^{G} \mathbb{1} \otimes \omega^{-1})_{\operatorname{sm}}.$$

We let $\operatorname{Mod}_{G,\psi}^{\operatorname{sm}}(\mathcal{O})$ be the full subcategory of $\operatorname{Mod}_{G}^{\operatorname{sm}}(\mathcal{O})$ that consists of smooth G-representations with central character ψ and denote by $\operatorname{Mod}_{G,\psi}^{\operatorname{lfin}}(\mathcal{O})$ its full subcategory of representations that are locally of finite length. We denote by $\operatorname{Mod}_{G,\psi}^{\operatorname{pro}}(\mathcal{O})$ resp. $\mathfrak{C}(\mathcal{O})$ the full subcategories of $\operatorname{Mod}_{G}^{\operatorname{pro}}(\mathcal{O})$ that are anti-equivalent to $\operatorname{Mod}_{G,\psi}^{\operatorname{lfin}}(\mathcal{O})$ resp. $\operatorname{Mod}_{G,\psi}^{\operatorname{lfin}}(\mathcal{O})$ via Pontryagin duality. We see that π is an object of $\operatorname{Mod}_{G,\psi}^{\operatorname{lfin}}(\mathcal{O})$. Let \tilde{P} be a projective envelope of π^{\vee} in $\mathfrak{C}(\mathcal{O})$. We define $\tilde{E} := \operatorname{End}_{\mathfrak{C}(\mathcal{O})}(\tilde{P})$. Paškūnas has shown in [17, Cor. 9.24] that the center of \tilde{E} is isomorphic to $R^{\operatorname{ps},\psi}$ and

(12)
$$\tilde{E} \cong (R^{\mathrm{ps},\psi} \hat{\otimes}_{\mathcal{O}} \mathcal{O} \llbracket G_{\mathbb{Q}_n} \rrbracket) / J,$$

where J is the closure of the ideal generated by $g^2 - T(g)g + \psi \epsilon(g)$ for all $g \in G_{\mathbb{Q}_p}$ [17, Cor. 9.27]. The representation ρ_R induces a morphism of \mathcal{O} -algebras $\mathcal{O}[\![G_{\mathbb{Q}_p}]\!] \to M_2(R)$. Together with the morphism (10) we obtain a morphism of $R^{\mathrm{ps},\psi}$ -algebras

(13)
$$R^{\mathrm{ps},\psi} \hat{\otimes}_{\mathcal{O}} \mathcal{O} \llbracket G_{\mathbb{Q}_n} \rrbracket \to M_2(R).$$

The Cayley-Hamilton theorem tells us that this morphism is trivial on J, so that we get a morphism of $R^{ps,\psi}$ -algebras

(14)
$$\eta \colon \tilde{E} \to M_2(R).$$

We define

(15)
$$M^{\square}(\sigma) := \operatorname{Hom}_{\mathcal{O}[\![K]\!]}^{\operatorname{cont}} \left((R \oplus R) \hat{\otimes}_{\tilde{E}, \eta} \tilde{P}, \sigma^{\vee} \right)^{\vee}.$$

Our goal is to prove the following theorem that enables us to check the condition of Paškūnas' theorem 2.2 for $N=(R\oplus R)\hat{\otimes}_{\tilde{E},\eta}\tilde{P}$ in the last section. We let projdim $_{\mathcal{O}[\![I_1]\!],\psi}$ denote the length of a minimal projective resolution in $\mathrm{Mod}_{I_1,\psi}^{\mathrm{pro}}(\mathcal{O})$.

Theorem 2.3. Let ρ and ρ_R be as before. We consider R as an $R^{ps,\psi}$ -module via (10). Assume that dim $R = \dim R^{ps,\psi} + \dim R/\mathfrak{m}_{R^{ps,\psi}}R$. Then

$$\operatorname{projdim}_{\mathcal{O}\llbracket I_1 \rrbracket, \psi} \left(k \hat{\otimes}_R ((R \oplus R) \hat{\otimes}_{\tilde{E}, \eta} \tilde{P}) \right) + \max_{\sigma} \{ \dim_R M^{\square}(\sigma) \} \leq \dim R.$$

In particular, the inequality holds if R is flat over $R^{ps,\psi}$.

We start with computing the first summand.

Lemma 2.4.

$$\operatorname{projdim}_{\mathcal{O}\llbracket I_1 \rrbracket, \psi} \left(k \hat{\otimes}_R ((R \oplus R) \hat{\otimes}_{\tilde{E}, \eta} \tilde{P}) \right) = 3.$$

Proof. We have

$$k \hat{\otimes}_R ((R \oplus R) \hat{\otimes}_{\tilde{E},\eta} \tilde{P}) \cong (k \oplus k) \hat{\otimes}_{\tilde{E}} \tilde{P}.$$

Because of $k \hat{\otimes}_{\tilde{E}} \tilde{P} \cong \pi^{\vee}$, see [17, Lemma 9.1], and since \tilde{P} is flat over the local ring \tilde{E} , $(k \oplus k) \hat{\otimes}_{\tilde{E}} \tilde{P}$ is an extension of π^{\vee} by itself. Thus

$$\operatorname{projdim}_{\mathcal{O}\llbracket I_1\rrbracket,\psi}\left(k\hat{\otimes}_R((R\oplus R)\hat{\otimes}_{\tilde{E},\eta}\tilde{P})\right)=\operatorname{projdim}_{\mathcal{O}\llbracket I_1\rrbracket,\psi}\pi^\vee.$$

The rest of the proof works analogous to the proof of [18, Prop. 6.21], the respective cohomology groups are calculated in [17, Cor. 10.4].

Lemma 2.5. Let R, N, σ be as before, m a compact R-module. Then

$$\operatorname{Hom}^{\operatorname{cont}}_{\mathcal{O}[\![K]\!]}(\operatorname{m} \hat{\otimes}_R N, \sigma^\vee)^\vee \cong \operatorname{m} \hat{\otimes}_R \operatorname{Hom}^{\operatorname{cont}}_{\mathcal{O}[\![K]\!]}(N, \sigma^\vee)^\vee.$$

Proof. Since m is compact, we can write it as an inverse limit $m = \varprojlim m_i$ of finitely generated R-modules. Also the completed tensor product is defined as an inverse limit, so that we obtain

$$\operatorname{Hom}_{\mathcal{O}\llbracket K\rrbracket}^{\operatorname{cont}}(\operatorname{m} \hat{\otimes}_R N, \sigma^{\vee}) \cong \operatorname{Hom}_{\mathcal{O}\llbracket K\rrbracket}^{\operatorname{cont}}(\varprojlim(\operatorname{m}_i \hat{\otimes}_R N), \sigma^{\vee})$$
$$\cong \operatorname{Hom}_K(\sigma, \varinjlim(\operatorname{m}_i \hat{\otimes}_R N)^{\vee}).$$

The universal property of the inductive limit yields a morphism

$$\varinjlim \operatorname{Hom}_K(\sigma, (\mathbf{m}_i \hat{\otimes}_R N)^{\vee}) \to \operatorname{Hom}_K(\sigma, \varinjlim (\mathbf{m}_i \hat{\otimes}_R N)^{\vee}),$$

which is easily seen to be injective. For the surjectivity we have to show that every K-morphism from σ to $\varinjlim (\mathbf{m}_i \hat{\otimes}_R N)^{\vee}$ factors through some finite level. But this follows from the fact that σ is a finitely generated K-representation. This implies

$$\operatorname{Hom}_{K}(\sigma, \varinjlim(\mathbf{m}_{i} \hat{\otimes}_{R} N)^{\vee}) \cong \varinjlim \operatorname{Hom}_{K}(\sigma, (\mathbf{m}_{i} \hat{\otimes}_{R} N)^{\vee})$$
$$\cong \varinjlim \operatorname{Hom}_{\mathcal{O}[K]}^{\operatorname{cont}}(\mathbf{m}_{i} \hat{\otimes}_{R} N, \sigma^{\vee}).$$

Since the statement holds for finitely generated m by [18, Prop. 2.4], taking the Pontryagin duals yields

$$\begin{split} \operatorname{Hom}^{\operatorname{cont}}_{\mathcal{O}\llbracket K\rrbracket}(\mathbf{m} \hat{\otimes}_R N, \sigma^\vee)^\vee &\cong \varprojlim \operatorname{Hom}^{\operatorname{cont}}_{\mathcal{O}\llbracket K\rrbracket}(\mathbf{m}_i \hat{\otimes}_R N, \sigma^\vee)^\vee \\ &\cong \varprojlim \mathbf{m}_i \hat{\otimes}_R \operatorname{Hom}^{\operatorname{cont}}_{\mathcal{O}\llbracket K\rrbracket}(N, \sigma^\vee)^\vee \\ &\cong \widehat{\mathbf{m}} \hat{\otimes}_R \operatorname{Hom}^{\operatorname{cont}}_{\mathcal{O}\llbracket K\rrbracket}(N, \sigma^\vee)^\vee. \end{split}$$

For the rest of the section we set $N = \tilde{P}$ so that $M(\sigma) = \operatorname{Hom}^{\operatorname{cont}}_{\mathcal{O}[\![K]\!]}(\tilde{P}, \sigma^{\vee})^{\vee}$.

Lemma 2.6. Let σ be a smooth irreducible K-representation over k. Then $M(\sigma) \neq 0$ if and only if $\operatorname{Hom}_K(\sigma, \pi) \neq 0$. Moreover, $\dim_{\mathbb{R}^{ps,\psi}} M(\sigma) \leq 1$.

Proof. By [17, Cor. 9.25], we know that \tilde{E} is a free $R^{\mathrm{ps},\psi}$ -module of rank 4. Hu-Tan have shown in [18, Prop. 2.9] that $M(\sigma)$ is a cyclic \tilde{E} -module, thus $M(\sigma)$ is a finitely generated $R^{\mathrm{ps},\psi}$ -module. Furthermore, $M(\sigma)$ is a compact \tilde{E} -module, see for example [9, §IV.4, Cor.1]. The same way as in Lemma 2.5 one can show that

(16)
$$\operatorname{Hom}_{\mathcal{O}\llbracket K\rrbracket}^{\operatorname{cont}}(k\hat{\otimes}_{\tilde{E}}\tilde{P},\sigma^{\vee})^{\vee} \cong k\hat{\otimes}_{\tilde{E}}M(\sigma).$$

By [17, Prop. 1.12], we have $k \hat{\otimes}_{\tilde{E}} \tilde{P} \cong \pi^{\vee}$ so that (16) implies

(17)
$$k \hat{\otimes}_{\tilde{E}} M(\sigma) \cong \operatorname{Hom}_{\mathcal{O}[K]}^{\operatorname{cont}}(\pi^{\vee}, \sigma^{\vee})^{\vee} \cong \operatorname{Hom}_{K}(\sigma, \pi).$$

Hence Nakayama lemma gives us that $M(\sigma) \neq 0$ if and only if $\operatorname{Hom}_K(\sigma, \pi) \neq 0$. If this holds, it follows again from [18, Prop. 2.4] that, if we let J denote the annihilator of $M(\sigma)$ as \tilde{E} -module, there is an isomorphism of rings $\tilde{E}/J \cong k[\![S]\!]$. Again by [17, Cor. 9.24], $R^{\operatorname{ps},\psi}$ is isomorphic to the center of \tilde{E} . If we let J^{ps} denote the annihilator of $M(\sigma)$ as $R^{\operatorname{ps},\psi}$ -module, we get an inclusion

(18)
$$R^{\mathrm{ps},\psi}/J^{\mathrm{ps}} \hookrightarrow \tilde{E}/J \cong k[S].$$

Hence it suffices to show that $\dim_{R^{\mathrm{ps},\psi}} k[\![S]\!] \leq 1$, which is equivalent to the existence of an element $x \in \mathfrak{m}_{R^{\mathrm{ps},\psi}}$ that does not lie in J^{ps} . We assume that $\mathfrak{m}_{R^{\mathrm{ps},\psi}} \subset J^{\mathrm{ps}}$. Then we have a finite dimensional k-vector space $M(\sigma)/\mathfrak{m}_{R^{\mathrm{ps},\psi}}M(\sigma) \cong M(\sigma)$, on which $\tilde{E}/J \cong k[\![S]\!]$ acts faithfully, which is impossible.

The proof of the theorem is now just a combination of the above Lemmas.

Proof of Theorem 2.3. Let σ be such that $M^{\square}(\sigma) \neq 0$. Then we see from Lemma 2.5 that

$$M^{\square}(\sigma) \cong (R \oplus R) \hat{\otimes}_{\tilde{E},\eta} M(\sigma).$$

Since \tilde{E} is a finite $R^{ps,\psi}$ -module by [17, Cor. 9.17], we have

$$\dim_R M^{\square}(\sigma) = \dim_R (R \oplus R) \hat{\otimes}_{\tilde{E},\eta} M(\sigma)$$

$$\leq \dim_R (R \oplus R) \otimes_{R^{\mathrm{ps},\psi}} M(\sigma).$$

By [3, A.11] we know that for a morphism of local rings $A \to B$ and non-zero finitely generated modules M, N over A resp. B, we have

(19)
$$\dim_B M \otimes_A N \leq \dim_A M + \dim_B N/\mathfrak{m}_A N.$$

Since we already know from Lemma 2.6 that $\dim_{R^{\mathrm{ps},\psi}} M(\sigma) = 1$, we obtain from (19) that

$$\dim_R ((R \oplus R) \otimes_{R^{\mathrm{ps},\psi}} M(\sigma)) \leq 1 + \dim R/\mathfrak{m}_{R^{\mathrm{ps},\psi}} R.$$

This expression depends only on the structure of R as an $R^{ps,\psi}$ -module and the assumption of the theorem implies

$$\dim_R ((R \oplus R) \otimes_{R^{ps,\psi}} M(\sigma)) \le 1 + \dim R - \dim R^{ps,\psi}.$$

From the explicit description of $R^{\mathrm{ps},\psi}$ in [17, Cor. 9.13] we know in particular that $R^{\mathrm{ps},\psi} \cong \mathcal{O}[\![t_1,t_2,t_3]\!]$ and thus $\dim R^{\mathrm{ps},\psi} = 4$. The statement is now an immediate consequence of Lemma 2.4.

3. Flatness

Let again $\rho \cong \begin{pmatrix} 1 & \phi \\ 0 & 1 \end{pmatrix}$. Our goal in this section is to show that the universal framed deformation of ρ with fixed determinant satisfies the conditions of Theorem 2.3. Let $G_{\mathbb{Q}_p}(p)$ be the maximal pro-p quotient of $G_{\mathbb{Q}_p}$. Since p>2, it is a free pro-p group on 2 generators γ, δ [15, Thm. 7.5.11]. Since the image of ρ is a pgroup, it factors through $G_{\mathbb{Q}_p}(p)$. We have shown in [19] that the universal framed deformation ring R_{ρ}^{\square} of ρ is isomorphic to $\mathcal{O}[\![x_{11},\hat{x}_{12},x_{21},t_{\gamma},y_{11},\hat{y}_{12},y_{21},t_{\delta}]\!]$ and the universal framed deformation is given by

(20)
$$\rho^{\square} \colon G_{\mathbb{Q}_p}(p) \to \mathrm{GL}_2(R_{\varrho}^{\square}),$$

(21)
$$\gamma \mapsto \begin{pmatrix} 1 + t_{\gamma} + x_{11} & x_{12} \\ x_{21} & 1 + t_{\gamma} - x_{11} \end{pmatrix},$$

(21)
$$\gamma \mapsto \begin{pmatrix} 1 + t_{\gamma} + x_{11} & x_{12} \\ x_{21} & 1 + t_{\gamma} - x_{11} \end{pmatrix},$$
(22)
$$\delta \mapsto \begin{pmatrix} 1 + t_{\delta} + y_{11} & y_{12} \\ y_{21} & 1 + t_{\delta} - y_{11} \end{pmatrix},$$

where $x_{12} := \hat{x}_{12} + [\phi(\gamma)], \ y_{12} := \hat{y}_{12} + [\phi(\delta)] \ \text{and} \ [\phi(\gamma)], [\phi(\delta)] \ \text{denote the Teichmüller lifts of } \phi(\gamma) \ \text{and} \ \phi(\delta) \ \text{to} \ \mathcal{O}.$ Let $\psi \colon G_{\mathbb{Q}_p} \to \mathcal{O}^{\times}$ be a continuous character with $\psi \epsilon \equiv 1 \mod \varpi$. To find the quotient $R_{\rho}^{\square,\psi}$ of R_{ρ}^{\square} that parametrizes lifts of ρ with determinant $\psi \epsilon$, we have to impose the conditions $\det(\rho^{\square}(\gamma)) = \psi \epsilon(\gamma)$ and $\det(\rho^{\square}(\delta)) = \psi \epsilon(\delta)$. Therefore, analogous to [19], we define the ideal

$$I := ((1+t_{\gamma})^2 - x_{11}^2 - x_{12}x_{21} - \psi\epsilon(\gamma), (1+t_{\delta})^2 - y_{11}^2 - y_{12}y_{21} - \psi\epsilon(\delta)) \subset R_{\rho}^{\square,\psi}$$
 and obtain

(23)
$$R_{\rho}^{\square,\psi} := \mathcal{O}[\![x_{11}, \hat{x}_{12}, x_{21}, t_{\gamma}, y_{11}, \hat{y}_{12}, y_{21}, t_{\delta}]\!]/I.$$

Let again $R^{\mathrm{ps},\psi}$ denote the universal deformation ring that parametrizes 2-dimensional pseudo-characters of $G_{\mathbb{Q}_p}$ with determinant ψ_{ϵ} that lift the trace of the trivial 2-dimensional representation. Paškūnas has shown in [17, 9.12,9.13] that $R^{\mathrm{ps},\psi}$ is isomorphic to $\mathcal{O}[t_1,t_2,t_3]$ and the universal pseudo-character is uniquely determined by

$$T \colon G_{\mathbb{Q}_p}(p) \to \mathcal{O}[\![t_1, t_2, t_3]\!]$$

$$\gamma \mapsto 2(1 + t_1)$$

$$\delta \mapsto 2(1 + t_2)$$

$$\gamma \delta \mapsto 2(1 + t_3)$$

$$\delta \gamma \mapsto 2(1 + t_3).$$

Since the trace T^{\square} of ρ^{\square} is a pseudo-deformation of $2 \cdot \mathbb{1}$ to R_{ρ}^{\square} , we get an induced morphism

(24)
$$\phi \colon \mathcal{O}[t_1, t_2, t_3] \to R_{\rho}^{\square, \psi}$$

$$(25) t_1 \mapsto T^{\square}(\gamma) = t_{\gamma}$$

$$(26) t_2 \mapsto T^{\square}(\delta) = t_{\delta}$$

(27)
$$t_3 \mapsto T^{\square}(\gamma \delta) = T^{\square}(\delta \gamma) = (1 + t_{\gamma})(1 + t_{\delta}) + \frac{1}{2}z - 1,$$

where $z = x_{12}y_{21} + 2x_{11}y_{11} + x_{21}y_{12}$.

Proposition 3.1. The map (24) makes $R_{\rho}^{\square,\psi}$ into a flat $\mathcal{O}[t_1,t_2,t_3]$ -module.

Proof. Let \mathfrak{m} denote the maximal ideal of $\mathcal{O}[t_1, t_2, t_3]$. Since $R_{\rho}^{\square, \psi}$ is a regular local ring modulo a regular sequence, it is Cohen-Macaulay. Since $\mathcal{O}[t_1, t_2, t_3]$ is regular, the statement is equivalent to

$$\dim \mathcal{O}[\![t_1,t_2,t_3]\!] + \dim R_{\rho}^{\square,\psi}/\mathfrak{m} R_{\rho}^{\square,\psi} = \dim R_{\rho}^{\square,\psi},$$

see for example [6, Thm. 18.16]. But since dim $\mathcal{O}[t_1, t_2, t_3] = 4$, dim $R_o^{\square, \psi} = 7$ by (23) and

$$R_{\rho}^{\square,\psi}/\mathfrak{m}R_{\rho}^{\square,\psi}\cong k[\![x_{11},\hat{x}_{12},x_{21},y_{11},\hat{y}_{12},y_{21}]\!]/(x_{11}^2+x_{12}x_{21},y_{11}^2+y_{12}y_{21},z)$$

by (24)-(27), it just remains to prove that

$$\dim k[x_{11}, \hat{x}_{12}, x_{21}, y_{11}, \hat{y}_{12}, y_{21}]/(x_{11}^2 + x_{12}x_{21}, y_{11}^2 + y_{12}y_{21}, z) = 3.$$

We distinguish 3 cases: If $x_{12} \in (R_{\rho}^{\square,\psi})^{\times}$, we obtain

$$R_{\rho}^{\square,\psi}/\mathfrak{m}R_{\rho}^{\square,\psi}\cong k[\![x_{11},\hat{x}_{12},y_{11},\hat{y}_{12}]\!]/(y_{11}^2-y_{12}x_{12}^{-1}(2x_{11}y_{11}-y_{12}x_{11}^2x_{12}^{-1})),$$

so that $\{x_{11}, \hat{x}_{12}, \hat{y}_{12}\}$ is a system of parameters for $R_{\rho}^{\square, \psi}/\mathfrak{m} R_{\rho}^{\square, \psi}$. Analogously, if $y_{12} \in (R_{\rho}^{\square,\psi})^{\times}$, then $\{y_{11}, \hat{y}_{12}, \hat{x}_{12}\}$ is a system of parameters. So the only case left is when $x_{12}, y_{12} \notin (R_{\rho}^{\square, \psi})^{\times}$. But it is easy to see that in this case $\{x_{12}, y_{21}, x_{21} - y_{12}\}$ is a system of parameters for $R_{\rho}^{\square,\psi}/\mathfrak{m}R_{\rho}^{\square,\psi}$, which finishes the proof.

4. Locally algebraic vectors

In this section we want to adapt the strategy of [18, §4] to show that part c) of Paškūnas' Theorem 2.1 holds in the following setting. Let from now on $R:=R_{\rho}^{\square,\psi},\ \pi\cong (\operatorname{Ind}_{P}^{G}\mathbb{1}\otimes\omega^{-1})_{\operatorname{sm}},\ \tilde{P}\ \text{a projective envelope of}\ \pi^{\vee}\ \text{in}\ \mathfrak{C}(\mathcal{O}).$ Let $N:=(R\oplus R)\hat{\otimes}_{\tilde{E},\eta}\tilde{P},$ where the \tilde{E} -module structure on $R\oplus R$ is induced by $\rho^{\square},$ as

In [17, §5.6] Paškūnas defines a covariant exact functor

(28)
$$\check{\mathbf{V}} : \mathfrak{C}(\mathcal{O}) \to \mathrm{Mod}_{G_{\mathbb{Q}_p}}^{\mathrm{pro}}(\mathcal{O}),$$

which is a modification of Colmez' Montreal functor, see [4]. It satisfies

(29)
$$\check{\mathbf{V}}((\operatorname{Ind}_{P}^{G}\chi_{1} \otimes \chi_{2}\omega^{-1})^{\vee}) = \chi_{1},$$

so that in our case

(30)
$$\check{\mathbf{V}}((\operatorname{Ind}_{P}^{G}\mathbb{1}\otimes\omega^{-1})^{\vee})=\mathbb{1}.$$

For an admissible unitary L-Banach space representation Π of G with central character ψ and an open bounded G-invariant lattice Θ in Π , we define

(31)
$$\Theta^d := \operatorname{Hom}_{\mathcal{O}}(\Theta, \mathcal{O}),$$

which lies in $\mathfrak{C}(\mathcal{O})$. We also define

(32)
$$\check{\mathbf{V}}(\Pi) := \check{\mathbf{V}}(\Theta^d) \otimes_{\mathcal{O}} L,$$

which is independent of the choice of Θ .

Lemma 4.1. N satisfies the following three properties (see [18, $\S 4$]):

- (N0) $k \hat{\otimes}_R N$ is of finite length in $\mathfrak{C}(\mathcal{O})$ and is finitely generated over $\mathcal{O}[\![K]\!]$,
- $\begin{array}{ll} (\mathrm{N}1) \ \operatorname{Hom}_{\mathrm{SL}_2(\mathbb{Q}_p)}(1,N^\vee) = 0, \\ (\mathrm{N}2) \ \check{\mathbf{V}}(N) \cong \rho^\square \ as \ R[\![G_{\mathbb{Q}_p}]\!]\text{-modules}. \end{array}$

Proof. As we have already seen in the proof of Lemma 2.4, $k \hat{\otimes}_R N$ is an extension of π^{\vee} by itself. Since π is absolutely irreducible and admissible we get (N0). From [17, Lemma 5.53] we obtain that

(33)
$$\check{\mathbf{V}}(\rho^{\square} \hat{\otimes}_{\tilde{E},\eta} \tilde{P}) \cong \rho^{\square} \hat{\otimes}_{\tilde{E},\eta} \check{\mathbf{V}}(\tilde{P}),$$

and since $\check{\mathbf{V}}(\tilde{P})$ is a free \tilde{E} -module of rank 1 by [17, Cor. 5.55], also (N2) holds. For (N1) we notice that $\pi^{\mathrm{SL}_2(\mathbb{Q}_p)} = 0$. Since \tilde{P} is a projective envelope of π^{\vee} , \tilde{P}^{\vee} is an injective envelope of π . Since G acts on $(\tilde{P}^{\vee})^{\mathrm{SL}_2(\mathbb{Q}_p)}$ via the determinant, we must have $(\tilde{P}^{\vee})^{\mathrm{SL}_2(\mathbb{Q}_p)} = 0$.

Remark 4.2. Let m be a R[1/p]-module of finite length. Then Lemma 4.1 implies that

$$\check{\mathbf{V}}(\Pi(\mathbf{m})) \cong \mathbf{m} \otimes_R \check{\mathbf{V}}(N),$$

see [18, Rmk. 4.2, Lemma 4.3].

The following Proposition is analogous to [18, 4.14] and shows that condition (i) of part c) of Paškūnas' Theorem 2.1 is satisfied in our setting.

Proposition 4.3. Let V be either $\sigma(\mathbf{w}, \tau)$ or $\sigma^{\mathrm{cr}}(\mathbf{w}, \tau)$, let $\mathfrak{p} \in \mathrm{m\text{-}Spec}(R[1/p])$ and $\kappa(\mathfrak{p}) := R[1/p]/\mathfrak{p}$. Then

$$\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_K(V, \Pi(\kappa(\mathfrak{p}))) \leq 1.$$

If $V = \sigma(\mathbf{w}, \tau)$, then $\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_K(V, \Pi(\kappa(\mathfrak{p}))) = 1$ if and only if $\rho_{\mathfrak{p}}^{\square}$ is potentially semi-stable of type (\mathbf{w}, τ, ψ) .

If $V = \sigma^{\operatorname{cr}}(\mathbf{w}, \tau)$, then $\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_K(V, \Pi(\kappa(\mathfrak{p}))) = 1$ if and only if $\rho_{\mathfrak{p}}^{\square}$ is potentially crystalline of type (\mathbf{w}, τ, ψ) .

Proof. Let $F/\kappa(\mathfrak{p})$ be a finite extension. We have

$$\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_{K}(V, \Pi(\kappa(\mathfrak{p}))) = \dim_{F} \operatorname{Hom}_{K}(V \otimes_{\kappa(\mathfrak{p})} F, \Pi(\kappa(\mathfrak{p})) \otimes_{\kappa(\mathfrak{p})} F),$$

see for example [17, Lemma 5.1]. Thus by replacing $\kappa(\mathfrak{p})$ by a finite extension, we can assume without loss of generality that $\rho_{\mathfrak{p}}^{\square}$ is either absolutely irreducible or

reducible. Since
$$\rho_{\mathfrak{p}}^{\square}$$
 is a lift of $\rho \cong \begin{pmatrix} \mathbb{1} & * \\ 0 & \mathbb{1} \end{pmatrix}$ and N satisfies (N0), (N1) and (N2)

by Lemma 4.1, the only case that is not handled in [18, 4.14] is when $\rho_{\mathfrak{p}}^{\square}$ is an extension

$$0 \longrightarrow \chi_1 \longrightarrow \rho_{\mathfrak{p}}^{\square} \longrightarrow \chi_2 \longrightarrow 0 ,$$

where χ_1, χ_2 are two characters that have the same Hodge-Tate weight. Such a representation is clearly never of any Hodge-type with distinct Hodge-Tate weights, so it is enough to show that $\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_K(V, \Pi(\kappa(\mathfrak{p})) = 0$. It follows, for example from [7, Prop. 3.4.2], that $\Pi(\kappa(\mathfrak{p}))$ is an extension of $\Pi_2 := (\operatorname{Ind}_P^G \chi_2 \otimes \chi_1 \epsilon^{-1})_{\operatorname{cont}}$ by $\Pi_1 := (\operatorname{Ind}_P^G \chi_1 \otimes \chi_2 \epsilon^{-1})_{\operatorname{cont}}$. If we denote the locally algebraic vectors of Π_i by $\Pi_i^{\operatorname{alg}}$, then [17, Prop. 12.5] tells us that $\Pi_1^{\operatorname{alg}} = \Pi_2^{\operatorname{alg}} = 0$. But this implies that also $\Pi(\kappa(\mathfrak{p}))^{\operatorname{alg}} = 0$, and since V is a locally algebraic representation, we have

$$\operatorname{Hom}_K(V, \Pi(\kappa(\mathfrak{p}))) \cong \operatorname{Hom}_K(V, \Pi(\kappa(\mathfrak{p}))^{\operatorname{alg}}) = 0.$$

To apply Paškūnas Theorem 2.1, we have to find a set of 'good' primes of R[1/p] that is dense in Supp $M(\Theta)$.

Definition 4.4. Let $\Sigma \subset \operatorname{Supp} M(\Theta) \cap \operatorname{m-Spec}(R[1/p])$ consist of all primes \mathfrak{p} such that either $\Pi(\kappa(\mathfrak{p}))$ is reducible but non-split or $\Pi(\kappa(\mathfrak{p}))$ is absolutely irreducible and $\Pi(\kappa(\mathfrak{p}))^{\text{alg}}$ is irreducible.

Proposition 4.5. Σ is dense in Supp $M(\Theta)$.

Proof. We already know that $M(\Theta)$ is Cohen-Macaulay by applying Theorem 2.3 to Paškūnas' Theorem 2.2. Since R is O-torsion free and R[1/p] is Jacobson, it is enough to show that the dimension of the complement of Σ in Supp $M(\Theta) \cap$ m-Spec(R[1/p]) is strictly smaller than the dimension of R[1/p], which is equal to 4.

Let first $\mathfrak{p} \in \text{m-Spec } R[1/p]$ be such that $\Pi(\kappa(\mathfrak{p}))$ is absolutely irreducible and $\Pi(\kappa(\mathfrak{p}))^{\text{alg}}$ is reducible. By a result of Colmez [4, Thm. VI.6.50] we know that in this case we have $\Pi(\kappa(\mathfrak{p}))^{\mathrm{alg}} \cong \pi \otimes W$, where W is an irreducible algebraic Grepresentation and $\pi \cong (\operatorname{Ind}_P^G \chi |.| \otimes \chi |.|^{-1})_{\operatorname{sm}}$ for some smooth character χ . In particular, if the Hodge-Tate weights are $\mathbf{w} = (a, b)$, we have $W \cong \operatorname{Sym}^{b-a-1} L^2 \otimes \det^a$. But since $\det \rho^{\square} = \psi \epsilon$, the product of the central characters of π and W must be ψ , so that we obtain $\chi^2 \epsilon^{a+\bar{b}} = \psi$, which can only be satisfied by a finite number of characters χ . By a result of Berger-Breuil [1, Cor. 5.3.2], the universal unitary completion of Π^{alg} is topologically irreducible in this case and therefore isomorphic to Π . Hence there are only finitely many absolutely irreducible Banach space representations $\Pi(\kappa(\mathfrak{p}))$ such that $\Pi(\kappa(\mathfrak{p}))^{\text{alg}}$ is reducible. Moreover, all of them give rise to a point $x_{\mathfrak{p}} \in \text{m-Spec } R^{\mathrm{ps},\psi}[1/p]$ by taking the trace of the associated $G_{\mathbb{Q}_p}$ -representation $\rho_{\mathfrak{p}}^{\square} = \check{\mathbf{V}}(\Pi(\kappa(\mathfrak{p})))$. We already know from Proposition 3.1 that R is flat over $R^{ps,\psi}$ and $\dim R/\mathfrak{m}_{R^{ps,\psi}}R=3$. Thus, above every prime $x_{\mathfrak{p}}$ there lies only an at most 3-dimensional family of primes $\mathfrak{p} \in \text{m-Spec } R[1/p]$ such that $\Pi(\kappa(\mathfrak{p}))$ is absolutely irreducible and $\Pi(\kappa(\mathfrak{p}))^{\text{alg}}$ is reducible.

Let now $\mathfrak{p} \in \text{Supp } M(\Theta)$ be such that, after extending scalars if necessary, $\rho_{\mathfrak{p}}^{\square}$ is split. Hence from Proposition 4.3 we know that $\rho_{\mathfrak{p}}^{\square}$ is potentially semistable of a Hodge type (\mathbf{w}, τ, ψ) determined by Θ , where $\mathbf{w} = (a, b), \tau = \chi_1 \oplus \chi_2$ and $\chi_i : I_{\mathbb{Q}_p} \to \mathrm{GL}_2(\overline{\mathbb{Q}}_p)$ have finite image. We claim that the closed subset of m-Spec $R_{\rho}^{\square}[1/p]$ consisting of points of the Hodge type above, is of dimension at most 3. As before, ρ^{\square} factors through the maximal pro-p quotient $G_{\mathbb{Q}_p}(p)$ of $G_{\mathbb{Q}_p}$, which is a free pro-p group of rank 2, generated by a 'cyclotomic' generator γ and an 'unramified' generator δ . From our assumptions we see that for every representation $\rho_{\mathfrak{p}}^{\sqcup}$ of the type above there are unramified characters μ_1, μ_2 such that up to conjugation

(34)
$$\rho_{\mathfrak{p}}^{\square} \sim \begin{pmatrix} \epsilon^b \chi_1 \mu_1 & 0 \\ 0 & \epsilon^a \chi_2 \mu_2 \end{pmatrix}.$$

As in (20), we have $R_{\rho}^{\square} \cong \mathcal{O}[\![x_{11}, \hat{x}_{12}, x_{21}, t_{\gamma}, y_{11}, \hat{y}_{12}, y_{21}, t_{\delta}]\!]$ with the universal framed deformation determined by

(35)
$$\rho^{\square}(\gamma) = \begin{pmatrix} 1 + t_{\gamma} + x_{11} & x_{12} \\ x_{21} & 1 + t_{\gamma} - x_{11} \end{pmatrix},$$

(35)
$$\rho^{\square}(\gamma) = \begin{pmatrix} 1 + t_{\gamma} + x_{11} & x_{12} \\ x_{21} & 1 + t_{\gamma} - x_{11} \end{pmatrix},$$
(36)
$$\rho^{\square}(\delta) = \begin{pmatrix} 1 + t_{\delta} + y_{11} & y_{12} \\ y_{21} & 1 + t_{\delta} - y_{11} \end{pmatrix}.$$

Since the trace is invariant under conjugation, we get the following identities from (34)-(36):

(37)
$$I_1: \epsilon^b \chi_1(\gamma) + \epsilon^a \chi_2(\gamma) = 2(1 + t_\gamma),$$

(38)
$$I_2: \mu_1(\delta) + \mu_2(\delta) = 2(1 + t_{\delta}).$$

We get

$$R_o^{\square}/(I_1,I_2) \cong \mathcal{O}[x_{11},\hat{x}_{12},x_{21},y_{11},\hat{y}_{12},y_{21}].$$

Moreover, using (37),(38), we get the following relations for the determinants:

(39)
$$I_3: x_{11}^2 + x_{12}x_{21} = \frac{1}{4} (\epsilon^a \chi_1(\gamma) - \epsilon^b \chi_2(\gamma))^2,$$

(40)
$$I_4: y_{11}^2 + y_{12}y_{21} = \frac{1}{4}(\mu_1(\delta) - \mu_2(\delta))^2.$$

Since we assume the representation $\rho_{\mathfrak{p}}^{\square}$ to be split, it is, in particular, abelian. This can be summed up in the following relations:

$$I_5: 0 = x_{12}y_{21} - x_{21}y_{12},$$

$$I_6: 0 = x_{12}y_{11} - x_{11}y_{12},$$

$$I_7: 0 = x_{21}y_{11} - x_{11}y_{21}.$$

We want to find a system of parameters \mathcal{S} for $R_{\rho}^{\square}/(I_1,\ldots,I_7)$ of length at most 4. If $x_{12} \in (R_{\rho}^{\square})^{\times}$, it is easy to check that $\mathcal{S} = \{\varpi, \hat{x}_{12}, \hat{y}_{12}, x_{11}\}$ is such a system. If $y_{12} \in (R_{\rho}^{\square})^{\times}$, we can take $\mathcal{S} = \{\varpi, \hat{x}_{12}, \hat{y}_{12}, y_{11}\}$. In the last case, when $x_{12}, y_{12} \in \mathfrak{m}_{R_{\rho}^{\square}}$, which means that $\hat{x}_{12} = x_{12}, \hat{y}_{12} = y_{12}$, we can take $\mathcal{S} = \{\varpi, x_{12}, y_{21}, x_{21} - y_{12}\}$. Thus dim $R_{\rho}^{\square}/(I_1,\ldots,I_7) \leq 4$ and since R is \mathcal{O} -torsion free, we obtain

(44)
$$\dim R_{\rho}^{\square}[1/p]/(I_1,\ldots,I_7) \le 3,$$

which proves the claim.

The next step is to prove that part c)ii) of Paškūnas' Theorem 2.1 is satisfied for all $\mathfrak{p} \in \Sigma$. The following definition is analogous to [18, 4.17].

Definition 4.6. Let $\operatorname{Ban}^{\operatorname{adm}}_{G,\psi}(L)$ be the category of admissible L-Banach space representations of G with central character ψ and let Π in $\operatorname{Ban}^{\operatorname{adm}}_{G,\psi}(L)$ be absolutely irreducible. Let $\mathcal E$ be the subspace of $\operatorname{Ext}^1_{G,\psi}(\Pi,\Pi)$ that is generated by extensions $0 \to \Pi \to E \to \Pi \to 0$ such that the resulting sequence of locally algebraic vectors $0 \to \Pi^{\operatorname{alg}} \to E^{\operatorname{alg}} \to \Pi^{\operatorname{alg}} \to 0$ is exact. We say that Π satisfies (RED), if $\Pi^{\operatorname{alg}} \neq 0$ and $\dim \mathcal E \leq 1$.

The following lemma is a generalization of [18, Lemma 4.18] which avoids the assumption $\dim_L \operatorname{Hom}_G(\Pi, E) = 1$.

Lemma 4.7. Let $\Pi \in \operatorname{Ban}^{\operatorname{adm}}_{G,\psi}(L)$ be absolutely irreducible. Let $n \geq 1$ and let

$$(45) 0 \to \Pi \to E \to \Pi^{\oplus n} \to 0$$

be an exact sequence in $\operatorname{Ban}_{G,\psi}^{\operatorname{adm}}(L)$. Let V be either $\sigma(\mathbf{w},\tau)$ or $\sigma^{\operatorname{cr}}(\mathbf{w},\tau)$. If Π^{alg} is irreducible and Π satisfies (RED), then

$$\dim_L \operatorname{Hom}_K(V, E) \leq \dim_L \operatorname{Hom}_G(\Pi, E) + 1.$$

Proof. Since Π^{alg} is irreducible, we obtain by [18, Lemma 4.10] and [11] that $\dim_L \text{Hom}_K(V, \Pi) = 1$. We apply the functors $\text{Hom}_G(\Pi, \underline{\ })$ and $\text{Hom}_K(V, \underline{\ })$ to the sequence (45) to obtain the following diagram with exact rows.

$$0 \longrightarrow \operatorname{Hom}_{G}(\Pi, \Pi) \longrightarrow \operatorname{Hom}_{G}(\Pi, E) \longrightarrow \operatorname{Hom}_{G}(\Pi, \Pi^{\oplus n}) \longrightarrow \operatorname{Ext}^{1}_{G, \psi}(\Pi, \Pi)$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\alpha} \qquad \downarrow^{\alpha}$$

$$0 \longrightarrow \operatorname{Hom}_{K}(V, \Pi) \longrightarrow \operatorname{Hom}_{K}(V, E) \longrightarrow \operatorname{Hom}_{K}(V, \Pi^{\oplus n}) \longrightarrow \operatorname{Ext}^{1}_{K, \psi}(V, \Pi),$$

where Ext^1 means the Yoneda extensions in $\operatorname{Ban}^{\operatorname{adm}}_{G,\psi}(L)$ resp. $\operatorname{Ban}^{\operatorname{adm}}_{K,\psi}(L)$. The diagram yields an exact sequence

$$0 \longrightarrow \operatorname{Hom}_G(\Pi, E) \longrightarrow \operatorname{Hom}_K(V, E) \longrightarrow \ker(\alpha),$$

and therefore

(46)
$$\dim_L \operatorname{Hom}_K(V,\Pi) \leq \dim_L \operatorname{Hom}_G(\Pi,E) + \dim_L \ker(\alpha).$$

The irreducibility of Π^{alg} implies that $\ker(\alpha)$ is equal to the space \mathcal{E} of Definition 4.6. Since we assume that Π satisfies (RED), we are done.

Lemma 4.8. Let $\mathfrak{p} \in \Sigma$. If $\operatorname{End}_{G_{\mathbb{Q}_p}}(\rho_{\mathfrak{p}}^{\square}) = \kappa(\mathfrak{p})$, then

$$\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_{G_{\mathbb{Q}_n}} \left(\rho^{\square, \psi}[1/p]/\mathfrak{p}^2, \rho_{\mathfrak{p}}^{\square} \right) = 4.$$

If $\rho_{\mathfrak{p}}^{\square}$ is reducible such that there is a non-split exact sequence

$$0 \longrightarrow \delta_2 \longrightarrow \rho_{\mathfrak{p}}^{\square} \longrightarrow \delta_1 \longrightarrow 0,$$

with $\delta_1 \delta_2^{-1} \neq 1, \epsilon^{\pm 1}$, then

$$\dim_{\kappa(\mathfrak{p})}\mathrm{Hom}_{G_{\mathbb{Q}_p}}\left(\rho^{\square,\psi}[1/p]/\mathfrak{p}^2,\delta_1\right)=4.$$

Proof. We start with the exact sequence

$$(47) 0 \longrightarrow \mathfrak{p}/\mathfrak{p}^2 \longrightarrow R[1/p]/\mathfrak{p}^2 \longrightarrow \kappa(\mathfrak{p}) \longrightarrow 0.$$

Tensoring (47) with $\rho^{\square,\psi}[1/p]$ over R[1/p] and applying the functor $\operatorname{Hom}_{G_{\mathbb{Q}_p}}(\underline{\ },\rho_{\mathfrak{p}}^{\square})$ yields the exact sequence

$$\operatorname{Hom}_{G_{\mathbb{Q}_p}}\left(\rho^{\square,\psi}[1/p]/\mathfrak{p}^2,\rho_{\mathfrak{p}}^{\square}\right) \longrightarrow \operatorname{Hom}_{G_{\mathbb{Q}_p}}\left(\mathfrak{p}/\mathfrak{p}^2 \otimes_{R[1/p]} \rho^{\square,\psi}[1/p],\rho_{\mathfrak{p}}^{\square}\right) \stackrel{\partial}{\longrightarrow} \operatorname{Ext}_{G_{\mathbb{Q}_p}}^1(\rho_{\mathfrak{p}}^{\square},\rho_{\mathfrak{p}}^{\square}).$$

Since we assume $\operatorname{End}_{G_{\mathbb{Q}_n}}(\rho_{\mathfrak{p}}^{\square}) = \kappa(\mathfrak{p})$, we have

$$\dim_{\kappa(\mathfrak{p})}\mathrm{Hom}_{G_{\mathbb{Q}_p}}\left(\rho^{\square,\psi}[1/p]/\mathfrak{p}^2,\rho_{\mathfrak{p}}^\square\right)=1+\dim_{\kappa(\mathfrak{p})}\ker(\partial).$$

We see that

$$\ker(\partial) = \{\phi \colon R \to \kappa(\mathfrak{p})[\epsilon] \mid \rho^{\square,\psi}[1/p] \otimes_{R[1/p],\phi} \kappa(\mathfrak{p})[\epsilon] \cong \rho_{\mathfrak{p}}^{\square} \oplus \rho_{\mathfrak{p}}^{\square} \text{ as } G_{\mathbb{Q}_p}\text{-reps.}\}.$$

Let $\phi \in \ker(\partial)$ and let \hat{R} be the \mathfrak{p} -adic completion of R[1/p]. Then we can identify \hat{R} with the universal framed deformation ring that parametrizes lifts of $\rho_{\mathfrak{p}}^{\square}$ with determinant $\psi \in [14, (2.3.5)]$ and ϕ induces a morphism $\hat{R} \to \kappa(\mathfrak{p})[\epsilon]$. If we denote the adjoint representation of $\rho_{\mathfrak{p}}^{\square}$ by ad $\rho_{\mathfrak{p}}^{\square}$, there is a natural isomorphism

(48)
$$\operatorname{Hom}_{\kappa(\mathfrak{p})-\operatorname{Alg}}(\hat{R},\kappa(\mathfrak{p})[\epsilon]) \cong Z^{1,\psi}(G_{\mathbb{Q}_p},\operatorname{ad}\rho_{\mathfrak{p}}^{\square}),$$

where $Z^{1,\psi}(G_{\mathbb{Q}_p}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square})$ denotes the space of cocyles that correspond to deformations with determinant $\psi\epsilon$. Here the morphism $\phi \in \operatorname{Hom}_{\kappa(\mathfrak{p})-\operatorname{Alg}}(\hat{R}, \kappa(\mathfrak{p})[\epsilon])$ that corresponds to a lift $\tilde{\rho}$ of $\rho_{\mathfrak{p}}^{\square}$ is mapped to the cocycle Φ that appears in the equality

$$\tilde{\rho}(g) = \rho_{\mathbf{n}}^{\square}(g)(1 + \Phi(g)\epsilon).$$

Since $\operatorname{Ext}^1_{G_{\mathbb{Q}_p}}(\rho_{\mathfrak{p}}^{\square}, \rho_{\mathfrak{p}}^{\square}) \cong H^1(G_{\mathbb{Q}_p}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square})$, we obtain that

$$\ker(\partial) = \{ \phi \in Z^{1,\psi}(G_{\mathbb{Q}_p}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square}) \mid \phi = 0 \text{ in } H^1(G_{\mathbb{Q}_p}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square}) \}.$$

Hence $\ker(\partial) \cong B^{1,\psi}(G_{\mathbb{Q}_p}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square})$, the corresponding coboundaries. There is an exact sequence

$$0 \longrightarrow (\operatorname{ad} \rho_{\mathfrak{p}}^{\square})^{G_{\mathbb{Q}_p}} \longrightarrow \operatorname{ad} \rho_{\mathfrak{p}}^{\square} \longrightarrow Z^1(G_{\mathbb{Q}_p}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square}) \longrightarrow H^1(G_{\mathbb{Q}_p}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square}) \longrightarrow 0,$$

where the middle map is given by $x \mapsto (g \mapsto gx - x)$. Since by assumption $\operatorname{End}_{G_{\mathbb{Q}_n}}(\rho_{\mathfrak{p}}^{\square}) = \kappa(\mathfrak{p})$, we see from (49) that

$$\dim_{\kappa(\mathfrak{p})} B^{1,\psi}(G_{\mathbb{Q}_p}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square}) = 3.$$

Let now $\rho_{\mathfrak{p}}^{\square}$ be reducible such that there is a non-split exact sequence

$$0 \longrightarrow \delta_2 \longrightarrow \rho_{\mathfrak{p}}^{\square} \longrightarrow \delta_1 \longrightarrow 0 ,$$

with $\delta_1 \neq \delta_2$. Tensoring (47) with $\rho^{\square,\psi}[1/p]$ and applying the functor $\operatorname{Hom}_{G_{\mathbb{Q}_p}}(\square, \delta_1)$ gives us an exact sequence (50)

$$\operatorname{Hom}_{G_{\mathbb{Q}_p}}\left(\rho^{\square}[1/p]/\mathfrak{p}^2,\delta_1\right) \longrightarrow \operatorname{Hom}_{G_{\mathbb{Q}_p}}\left(\mathfrak{p}/\mathfrak{p}^2 \otimes_{R[1/p]} \rho^{\square,\psi}[1/p],\delta_1\right) \xrightarrow{\partial'} \operatorname{Ext}_{G_{\mathbb{Q}_p}}^1(\rho_{\mathfrak{p}}^{\square},\delta_1).$$

Since $\delta_1 \neq \delta_2$ we have $\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}(\rho_{\mathfrak{p}}^{\square}, \delta_1) = 1$ and therefore

(51)
$$\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_{G_{\Omega_n}}(\rho^{\square,\psi}[1/p]/\mathfrak{p}^2, \delta_1) = 1 + \dim_{\kappa(\mathfrak{p})} \ker(\partial').$$

Moreover, we obtain isomorphisms

$$(52) \quad \operatorname{Hom}_{G_{\mathbb{Q}_p}} \left(\mathfrak{p}/\mathfrak{p}^2 \otimes_{R[1/p]} \rho^{\square,\psi}[1/p], \delta_1 \right) \cong (\mathfrak{p}/\mathfrak{p}^2)^* \cong \operatorname{Hom}_{\kappa(\mathfrak{p}) - \operatorname{Alg}} (\hat{R}^\square, \kappa(\mathfrak{p})[\epsilon])$$

$$\cong Z^{1,\psi}(G_{\mathbb{Q}_p}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square}).$$

From (49) we obtain again that the kernel of the natural surjection

$$(54) Z^{1}(G_{\mathbb{Q}_{p}}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square}) \longrightarrow H^{1}(G_{\mathbb{Q}_{p}}, \operatorname{ad} \rho_{\mathfrak{p}}^{\square}) \cong \operatorname{Ext}_{G_{\mathbb{Q}_{p}}}^{1}(\rho_{\mathfrak{p}}^{\square}, \rho_{\mathfrak{p}}^{\square})$$

is 3-dimensional. Hence (50), and (52)-(54) give us an induced map

$$\bar{\partial}' \colon \operatorname{Ext}_{G_{\mathbb{Q}_p}}^{1,\psi}(\rho_{\mathfrak{p}}^{\square}, \rho_{\mathfrak{p}}^{\square}) \to \operatorname{Ext}_{G_{\mathbb{Q}_p}}^{1}(\rho_{\mathfrak{p}}^{\square}, \delta_1)$$

with

(55)
$$\dim_{\kappa(\mathfrak{p})} \ker(\partial') = 3 + \dim_{\kappa(\mathfrak{p})} \ker(\bar{\partial}').$$

Since $\operatorname{End}_{G_{\mathbb{Q}_p}}(\rho_{\mathfrak{p}}^{\square}) = \kappa(\mathfrak{p})$, also the universal (non-framed) deformation ring $\hat{R}^{\operatorname{un}}$ of $\rho_{\mathfrak{p}}^{\square}$ exists, that parametrizes deformations of $\rho_{\mathfrak{p}}^{\square}$ with determinant $\psi\epsilon$. Therefore we can use the same argument as in the proof of [18, Lemma 4.20.], with $\rho_{\mathfrak{p}}^{\square}$ instead of

 $\rho_{\mathfrak{p}}^{\mathrm{un}}$, to obtain that $\ker(\bar{\partial}') = \operatorname{Ext}_{G_{\mathbb{Q}_p}}^1(\delta_1, \delta_2)/\mathcal{L}$, where \mathcal{L} is the subspace corresponding to $\rho_{\mathfrak{p}}^{\square}$. Since we assume $\delta_1 \delta_2^{-1} \neq \mathbb{1}$, $\epsilon^{\pm 1}$, we have $\dim_{\kappa(\mathfrak{p})} \operatorname{Ext}_{G_{\mathbb{Q}_p}}^1(\delta_1, \delta_2) = 1$ and obtain from (51) and (55) that

$$\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_{G_{\mathbb{Q}_p}}(\rho^{\square,\psi}[1/p]/\mathfrak{p}^2, \delta_1) = 4.$$

Corollary 4.9. Let V be either $\sigma(\mathbf{w}, \tau)$ or $\sigma^{cr}(\mathbf{w}, \tau)$ and let Θ be a K-invariant \mathcal{O} -lattice in V. Then for all $\mathfrak{p} \in \Sigma$,

$$\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_K \left(V, \Pi(R[1/p]/\mathfrak{p}^2) \right) \le 5.$$

Proof. Let $\mathfrak{p} \in \Sigma$. If $\Pi(\kappa(\mathfrak{p}))$ is absolutely irreducible, then also $\Pi(\kappa(\mathfrak{p}))^{\mathrm{alg}}$ is irreducible. By the same argument as in [18, Thm. 4.19] that uses a result of Dospinescu [5, Thm. 1.4, Prop. 1.3], we obtain that $\Pi(\kappa(\mathfrak{p}))$ satisfies (RED). From the exact sequence

$$(56) 0 \longrightarrow \mathfrak{p}/\mathfrak{p}^2 \longrightarrow R[1/p]/\mathfrak{p}^2 \longrightarrow \kappa(\mathfrak{p}) \longrightarrow 0$$

we obtain an exact sequence of unitary Banach space representations

$$(57) 0 \longrightarrow \Pi(\kappa(\mathfrak{p})) \longrightarrow \Pi(R[1/p]/\mathfrak{p}^2) \longrightarrow \Pi(\kappa(\mathfrak{p}))^{\oplus n} \longrightarrow 0.$$

Thus we can apply Lemma 4.7 and obtain

$$\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_{K} \left(V, \Pi(R[1/p]/\mathfrak{p}^{2}) \right) \leq \dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_{G} \left(\Pi(\kappa(\mathfrak{p})), \Pi(R[1/p]/\mathfrak{p}^{2}) \right) + 1.$$

The contravariant functor $\check{\mathbf{V}}$ induces an injection (58)

$$\operatorname{Hom}_G\left(\Pi(\kappa(\mathfrak{p})), \Pi(R[1/p]/\mathfrak{p}^2)\right) \hookrightarrow \operatorname{Hom}_{G_{\mathbb{Q}_p}}\left(\check{\mathbf{V}}(\Pi(R[1/p]/\mathfrak{p}^2)), \check{\mathbf{V}}(\Pi(\kappa(\mathfrak{p})))\right).$$

Since the target is isomorphic to $\operatorname{Hom}_{G_{\mathbb{Q}_p}}\left(\rho^{\square}[1/p]/\mathfrak{p}^2,\rho_{\mathfrak{p}}^{\square}\right)$ by Remark 4.2, the claim follows from Lemma 4.8.

Let now $\Pi(\kappa(\mathfrak{p}))$ be reducible. Then, as in the proof of Proposition 4.3, it comes from an exact sequence

$$(59) 0 \longrightarrow \delta_2 \longrightarrow \rho_{\mathfrak{p}}^{\square} \longrightarrow \delta_1 \longrightarrow 0 ,$$

with $\delta_1 \delta_2^{-1} \neq 1$, $\epsilon^{\pm 1}$. We obtain an associated exact sequence

$$(60) 0 \longrightarrow \Pi_1 \longrightarrow \Pi(\kappa(\mathfrak{p})) \longrightarrow \Pi_2 \longrightarrow 0,$$

where $\check{\mathbf{V}}(\Pi_i) = \delta_i$, $\Pi(\kappa(\mathfrak{p}))^{\rm alg} = \Pi_1^{\rm alg}$ and (60) splits if and only if (59) splits, see [7, Prop. 3.4.2]. Furthermore, Π_1 is irreducible and, again as in [18, Thm. 4.19], Π_1 satisfies (RED). If we let E be the closure of the locally algebraic vectors in $\Pi(R[1/p]/\mathfrak{p}^2)$, we obtain an isomorphism

$$\operatorname{Hom}_K(V, \Pi(R[1/p]/\mathfrak{p}^2)) \cong \operatorname{Hom}_K(V, E).$$

Now (57) gives rise to another exact sequences of unitary Banach space representations

$$(61) 0 \longrightarrow \Pi_1 \longrightarrow E \longrightarrow \Pi_1^{\oplus m} \longrightarrow 0.$$

Since Π_1 satisfies (RED), we can apply Lemma 4.7 to obtain

$$\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_K(V, E) \leq \dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_G(\Pi_1, E) + 1.$$

Because of the inclusions

 $\operatorname{Hom}_G(\Pi_1, E) \hookrightarrow \operatorname{Hom}_G(\Pi_1, \Pi(R[1/p]/\mathfrak{p}^2)) \hookrightarrow \operatorname{Hom}_{G_{\mathbb{Q}_p}}(\rho^{\square, \psi}[1/p]/\mathfrak{p}^2, \delta_1)$ we obtain

$$\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_{K}(V, E) \leq \dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_{G_{\mathbb{Q}_{p}}}(\rho^{\square, \psi}[1/p], \delta_{1}) + 1.$$

But by Lemma 4.8
$$\dim_{\kappa(\mathfrak{p})} \operatorname{Hom}_{G_{\mathbb{Q}_n}}(\rho^{\square,\psi}[1/p], \delta_1) = 4$$
, and we are done.

Now we are finally able to prove the main theorem. We let again $\chi \colon G_{\mathbb{Q}_p} \to k^{\times}$ be a continuous character and let

$$\rho \colon G_{\mathbb{Q}_p} \to \mathrm{GL}_2(k)$$
$$g \mapsto \begin{pmatrix} \chi(g) & \phi(g) \\ 0 & \chi(g) \end{pmatrix}.$$

Theorem 4.10. Let p > 2 and let (\mathbf{w}, τ, ψ) be a Hodge type. There exists a reduced \mathcal{O} -torsion free quotient $R^{\square}_{\rho}(\mathbf{w}, \tau, \psi)$ (resp. $R^{\square, \operatorname{cr}}_{\rho}(\mathbf{w}, \tau, \psi)$) of R^{\square}_{ρ} such that for all $\mathfrak{p} \in \operatorname{m-Spec}(R^{\square}_{\rho}[1/p])$, \mathfrak{p} is an element of $\operatorname{m-Spec}(R^{\square}_{\rho}(\mathbf{w}, \tau, \psi)[1/p])$ (resp. $\operatorname{m-Spec}(R^{\square, \operatorname{cr}}_{\rho}(\mathbf{w}, \tau, \psi)[1/p])$) if and only if $\rho^{\square}_{\mathfrak{p}}$ is potentially semi-stable (resp. potentially crystalline) of p-adic Hodge type (\mathbf{w}, τ, ψ) . If $R^{\square}_{\rho}(\mathbf{w}, \tau, \psi)$ (resp. $R^{\square, \operatorname{cr}}_{\rho}(\mathbf{w}, \tau, \psi)$) is non-zero, then it has Krull dimension 5.

Furthermore, there exists a four-dimensional cycle $z(\rho) := z_4(M(\lambda))$ of R_{ρ}^{\square} , where $\lambda := \operatorname{Sym}^{p-2} k^2 \otimes \chi \circ \operatorname{det}$, such that there are equalities of four-dimensional cycles

(62)
$$z_4(R^{\square}_{\rho}(\mathbf{w},\tau,\psi)/(\varpi)) = m_{\lambda}(\mathbf{w},\tau)z(\rho),$$

(63)
$$z_4(R_{\rho}^{\square, \operatorname{cr}}(\mathbf{w}, \tau, \psi)/(\varpi)) = m_{\lambda}^{\operatorname{cr}}(\mathbf{w}, \tau)z(\rho).$$

Proof. We set $N:=(R\oplus R)\hat{\otimes}_{\tilde{E},\eta}\tilde{P}$, as in Theorem 2.3. Hence, if we let \mathfrak{a} be the R-annihilator of $M(\Theta)$, we obtain from Proposition 4.3 and [18, Prop. 2.22], analogous to [18, Thm. 4.15], that for any K-invariant \mathcal{O} -lattice Θ in $\sigma(\mathbf{w},\tau)$ (resp. $\sigma^{\mathrm{cr}}(\mathbf{w},\tau)$) $R/\sqrt{\mathfrak{a}}\cong R_{\rho}^{\square}(\mathbf{w},\tau,\psi)$ (resp. $R/\sqrt{\mathfrak{a}}\cong R_{\rho}^{\square,\mathrm{cr}}(\mathbf{w},\tau,\psi)$). Since R is Cohen-Macaulay, Proposition 3.1 shows that we can apply Theorem 2.3 in our situation. Let Z be the center of G and let $Z_1:=I_1\cap Z$. Since p>2, there exists a continuous character $\sqrt{\psi}\colon Z_1\to\mathcal{O}^{\times}$ with $\sqrt{\psi}^2=\psi$. Twisting by $\sqrt{\psi}\circ$ det induces an equivalence of categories between $\mathrm{Mod}_{I_1,\psi}^{\mathrm{pro}}(\mathcal{O})$ and $\mathrm{Mod}_{I_1/Z_1}^{\mathrm{pro}}(\mathcal{O})$. In this way we can use Theorem 2.3 to show the inequality of Theorem 2.2 for the setup $G=\mathrm{GL}_2(\mathbb{Q}_p)/Z_1$, $K=\mathrm{GL}_2(\mathbb{Z}_p)/Z_1$ and $P=I_1/Z_1$. Hence we obtain from Paškūnas' Theorem 2.2 that the conditions a) and b) of the criterion 2.1 for the Breuil-Mézard conjecture are satisfied. We let Σ be as in Definition 4.4. Since we know from Corollary 4.5 that Σ is dense in $\mathrm{Supp}\,M(\Theta)$, condition (i) of part c) follows from Proposition 4.3. As already remarked in the proof of Proposition 4.5, we have $\dim M(\Theta)=5$. Thus condition (ii) of part c) is the statement of Corollary 4.9. Hence Theorem 2.1 says that there are equations of the form

(64)
$$z_4(R_\rho^\square(\mathbf{w}, \tau, \psi)/(\varpi)) = \sum_\sigma m_\sigma(\mathbf{w}, \tau) z_4(M(\sigma)),$$

(65)
$$z_4(R_{\rho}^{\square, \operatorname{cr}}(\mathbf{w}, \tau, \psi)/(\varpi)) = \sum_{\sigma} m_{\sigma}^{\operatorname{cr}}(\mathbf{w}, \tau) z_4(M(\sigma)).$$

where the sum runs over all isomorphism classes of smooth irreducible K-representations over k. By Lemma 2.6 we have that $M(\sigma) \neq 0$ if and only if σ lies in the K-socle of π . We let K_1 denote the kernel of the projection $K \to \operatorname{GL}_2(\mathbb{F}_p)$ and let B denote the subgroup of upper triangular matrices of $\operatorname{GL}_2(\mathbb{F}_p)$. Let now σ be a smooth irreducible K-representation in the K-socle of π . Since K_1 is a normal pro-p subgroup of K, we must have $\sigma^{K_1} \neq 0$ and thus $\sigma = \sigma^{K_1}$. There are isomorphisms of K-representations

(66)
$$\pi^{K_1} \cong \left((\operatorname{Ind}_{P \cap K}^K \mathbb{1} \otimes \omega^{-1})_{\operatorname{sm}} \right)^{K_1} \cong \operatorname{Ind}_{R}^{\operatorname{GL}_2(\mathbb{F}_p)} \mathbb{1} \otimes \omega^{-1},$$

and it follows from [16, Lemma 4.1.3] that the K-socle of π^{K_1} is isomorphic to $\operatorname{Sym}^{p-2} k^2 \otimes \chi \circ \operatorname{det}$, in particular, it is irreducible. Therefore there is only a single cycle $z(\rho) = z_4(M(\operatorname{Sym}^{p-2} k^2 \otimes \chi \circ \operatorname{det}))$ on the right hand side of (64) and (65). \square

Remark 4.11. If $\tau = \mathbb{1} \oplus \mathbb{1}$ and $\mathbf{w} = (a, b)$ with $b - a \leq p - 1$, then the right hand side of (63) is non-trivial if and only if b - a = p - 1, in which case the Hilbert-Samuel multiplicity of $z(\rho)$ is equal to the multiplicity of $R_{\rho}^{\square, \text{cr}}(\mathbf{w}, \mathbb{1} \oplus \mathbb{1}, \psi)/(\varpi)$. In [19], we computed that this multiplicity is 1 if $\rho \otimes \chi^{-1}$ is ramified, 2 if $\rho \otimes \chi^{-1}$ is unramified and indecomposable, and 4 if $\rho \otimes \chi^{-1}$ is split.

References

- [1] Laurent Berger and Christophe Breuil, Sur quelques représentations potentiellement cristallines de $GL_2(\mathbf{Q}_p)$, Astérisque **330** (2010), 155–211. MR2642406 (2012i:11053)
- [2] Christophe Breuil and Ariane Mézard, Multiplicités modulaires et représentations de $\operatorname{GL}_2(\mathbf{Z}_p)$ et de $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ en l=p, Duke Math. J. **115** (2002), no. 2, 205–310. With an appendix by Guy Henniart. MR1944572 (2004i:11052)
- [3] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR1251956 (95h:13020)
- [4] Pierre Colmez, Représentations de $\mathrm{GL}_2(\mathbf{Q}_p)$ et (ϕ,Γ) -modules, Astérisque **330** (2010), 281–509. MR2642409 (2011j:11224)
- [5] Gabriel Dospinescu, Extensions de représentations de de Rham et vecteurs localement algébriques, arXiv:1302.4567 (2013).
- [6] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR1322960 (97a:13001)
- [7] Matthew Emerton, A local-global compatibility conjecture in the p-adic Langlands programme for GL_{2/Q}, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates. Part 2, 279–393. MR2251474 (2008d:11133)
- [8] Jean-Marc Fontaine, Représentations p-adiques semi-stables, Astérisque 223 (1994), 113–184. With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988). MR1293972 (95g:14024)
- [9] Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.
 MR0232821 (38 #1144)
- [10] Toby Gee and Mark Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math. Pi 2 (2014), e1, 56. MR3292675
- [11] Guy Henniart, Sur l'unicité des types pour GL₂, Appendix to [2].
- [12] Yongquan Hu and Fucheng Tan, The Breuil-Mézard conjecture for non-scalar split residual representations, arXiv:1309.1658 (2013).
- [13] Mark Kisin, The Fontaine-Mazur conjecture for GL₂, J. Amer. Math. Soc. 22 (2009), no. 3, 641–690. MR2505297 (2010j:11084)
- [14] _____, Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170 (2009), no. 3, 1085-1180. MR2600871 (2011g:11107)
- [15] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Second, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR2392026 (2008m:11223)

- [16] Vytautas Paskunas, Coefficient systems and supersingular representations of $\mathrm{GL}_2(F)$, Mém. Soc. Math. Fr. (N.S.) 99 (2004), vi+84. MR2128381 (2005m:22017)
- [17] Vytautas Paškūnas, *The image of Colmez's Montreal functor*, Publ. Math. Inst. Hautes Études Sci. **118** (2013), 1–191. MR3150248
- [18] _____, On the Breuil–Mézard conjecture, Duke Math. J. $\bf 164$ (2015), no. 2, 297–359. MR3306557
- [19] Fabian Sander, Hilbert-Samuel multiplicities of certain deformation rings, Math. Res. Lett. 21 (2014), no. 3, 605–615. MR3272032