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A LOCAL PROOF OF THE BREUIL-MEZARD CONJECTURE IN
THE SCALAR SEMI-SIMPLIFICATION CASE

FABIAN SANDER

ABSTRACT. We give a new local proof of the Breuil-Mézard conjecture in the
case of a reducible representation of the absolute Galois group of Qp, p > 2,
that has scalar semi-simplification, via a formalism of Paskunas.

1. INTRODUCTION

Let p > 2 be a prime number, k be a finite field of characteristic p and L a finite
extension of Q, with ring of integers O and uniformizer @. Let p: Gg, — GL2(k)
be a continuous representation of the form

(1) o) = (X9 20) v < G,

so that the semi-simplification of p is isomorphic to x & x. Let RE denote the
associated universal framed deformation ring of p and let p™ be the universal framed
deformation. For any p € m—Spec(R'p:’[l /p]), the set of maximal ideals, the residue
field k(p) is a finite extension of Q,. We denote its ring of integers by O, and get an
associated representation ppD: Gq, — GL2(O,) that lifts p. Let 7: Iy, — GLa(L)
be a representation of the inertia group of Q, with an open kernel, ¢: Gg, — O* a
continuous character and let w = (a, b) be a pair of integers with b > a. We say that
ppD is of p-adic Hodge type (w, 7, ) if it is potentially semi-stable with Hodge-Tate

weights w, det p, = e, 1/1|1Qp = ¢*tldet 7 and WD(pE)|IQP =~ . where € is the

cyclotomic character and WD(pE) is the Weil-Deligne representation associated to
ppD by Fontaine [8].

By aresult of Henniart [11] there exists a unique smooth irreducible K := GL2(Z,)-
representation o(7) and a modification o () defined by Kisin [13] 1.1.4] such
that for any smooth absolutely irreducible GL2(Q))-representation = with asso-
ciated Weil-Deligne representation LL(w) via the classical local Langlands corre-
spondence, we have Homg (o(7), 7) # 0 (resp. Homg (0" (1), 7) # 0) if and only if
LL(TF)|IQP = 7 (resp. LL(TF)|IQP =~ 7 and the monodromy operator N on LL(7) is

trivial). We have o(7) 2 ¢°(7) only if 7 = x @ X, in which case o(7) = st ® y o det
and 0 (7) = x o det, where st is the Steinberg representation of GLa(F,), in-
flated to GL2(Z,), and x is considered as a character of Z via local class field
theory. By enlarging L if necessary, we can assume that o(7) (resp. (7)) is de-
fined over L. We define o(w,7) := o(7) ® Sym’ *"' L2 ® det® and let o(w,7)
be the semi-simplification of the reduction of a K-invariant O-lattice modulo w.
One can show that o(w,7) is independent of the choice of the lattice. For every
irreducible smooth finite-dimensional K-representation o over k we let m,(w, 1)
1
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denote the multiplicity with which o occurs in o(w,7). Analogously we define
o (w,7) := 0% (1) @ Sym”~*"! L2 @ det® and let m& (w,7) denote the multiplicity
with which o occurs in o (w, 7).

We prove the following theorem.

Theorem 1.1. Let p > 2 and let (w,7,v) be a Hodge type. There exists a
reduced O-torsion free quotient RE(W,T,w) (resp. RE’Cr(W,T, V) of RpD such
that for all p € m—Spec(RpD[l/p]), p is an element of m-Spec (RE(W,T,1/))[1/p])
(resp. m-Spec (RPD’CY(W,T, V)[1/p])) if and only if pE is potentially semi-stable
(resp. potentially crystalline) of p-adic Hodge type (w,T,v). If RE(W,T, ) (resp.
RE’Cr(W,T,w)) is non-zero, then it has Krull dimension 5.

Furthermore, there exists a four-dimensional cycle z(p) of RPD such that there
are equalities of four-dimensional cycles

(2) 2(R) (w,m,9)/(@)) = ma(w,7)2(p),

3) 2 (R (w,7,0) /(@) = m§ (w,7)z(p),
where X := Sym?~? k% @ y o det.

The equality of cycles also implies the analogous equality of Hilbert-Samuel
multiplicities. Hence the above theorem proves the Breuil-Mézard conjecture [2],
as stated in [13], in our case. This case has also been handled by Kisin in [I3] using
global methods, see also the errata in [I0]. However, our proof is purely local and
the results of this paper, together with works of Pagkiinas [I8], Yongquan Hu and
Fucheng Tan [12], the whole conjecture is now proved in the 2-dimensional case
only by local methods, when p > 5.
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2. FORMALISM

We quickly recall a formalism due to Paskuinas used by him to prove the Breuil-
Mézard conjecture for residual representations with scalar endomorphisms in [I8].
Let R be a complete local notherian commutative O-algebra with residue field k.
Let G be a p-adic analytic group, K be a compact open subgroup and P its pro-p
Sylow subgroup. Let N be a finitely generated R[K]-module, V be a continuous
finite dimensional L-representation of K, and © be an O-lattice in V which is
invariant under the action of K. Let

(4) M (®) := Homo (Homgjs (N, Homo (0, 0)), O).

This is a finitely generated R-module [I8, Lemma 2.15]. Let d denote the Krull
dimension of M(©). Recall that Pontryagin duality A — AV induces an anti-
equivalence of categories between discrete O-modules and compact O-modules [15]
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(5.2.2)-(5.2.3)]. For any A in Mod%" (O), the category of smooth K-representations
on O-torsion modules, we define

(5) M(X) := Homggpy (N, Y)Y,

Then M () is also a finitely generated R-module [18, Cor. 2.5]. We define Mod;°(O)
to be the category of compact O[K]-modules with an action of O[G], such that
the restriction to O[K] of both actions coincide. Pontryagin duality induces an
anti-equivalence of categories between Modg' (O) and Modf,°(O). For any R[1/p]-
module m of finite length, we choose a finitely generated R-submodule m® with
m 2= m°® ®p L and define

(6) II(m) := Hom&™ (m° @g N, L).

By [18, Lemma 2.21], II(m) is an admissible unitary L-Banach space representation
of G.

Theorem 2.1 (Paskiinas,[18]). Let a be the R-annihilator of M (0). If the following
hold
(a) N is projective in Mod}:°(0),
(b) R/a is equidimensional and all the associated primes are minimal,
(c) there exists a dense subset ¥ of Supp M (0), contained in m-Spec R[1/p], such
that for all n € ¥ the following hold:
(1) ditny ey Home (V, TI((n))) = 1,
(i) dimy () Homg (V, II(Ry/n%)) < d
then R/a is reduced, of dimension d and we have an equality of (d— 1)-dimensional
cycles

zd-1(R/(w,a)) ngzd 1(M(0)),

where the sum is taken over the set of ZSO’/TLOTphZS’n’L classes of smooth irreducible k-
representations of K and my is the multiplicity with which o occurs as a subquotient

of ©/w.

We want to specify the following criterion in our situation, which allows us to
check the first two conditions of Theorem 211

Theorem 2.2 (Paskunas,[18]). Suppose that R is Cohen-Macaulay and N is flat
over R. If

(7) projdimepy k@rN + max{dimg M(c)} < dim R,

where the mazximum is taken over all the irreducible smooth k-representations of K,
then the following holds:
) (@) is an equality,
( ) N is projective in Mody°(O),
(ii) M(O) is a Cohen-Macaulay module,
(iil) R/ anng M(0©) is equidimensional, and all the associated prime ideals are min-
imal.

We start with the following setup. Let p: Gg, — GLa2(k) be a continuous rep-

x(g) #(9)

resentation of the form p(g) = < 0 x(9)

), as in (). After twisting we may
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assume that x is trivial so that for all g € G,

(®) p(9) = ((1) ¢(19)) :

Let 1: Q; — O be a continuous character with ¢ = 1 mod w. Let R be a
complete local noetherian O-algebra and let

(9) PR: G@p — GLQ(R)

be a continuous representation with determinant ye: Gg, — O such that pr = p
mod mp. Let RP>¥ denote the universal deformation ring that parametrizes 2-
dimensional pseudo-characters of Gg, lifting the trace of the trivial representation
and having determinant ve. Let T': Gg, — O be the associated universal pseudo-
character. Since tr pr is a pseudo-character lifting tr p, the universal property of
RP%¥ induces a morphism of O-algebras

(10) RP*Y 5 R.

Let from now on G := GL2(Q,), P the subgroup of upper triangular matrices
and K := GLy(Zp). Let I; be the subgroup of K which consists of the matrices
that are upper unipotent modulo p. In particular, I; is a maximal pro-p Sylow
subgroup of K. We let w be the mod p cyclotomic character, via local class field
theory considered as w: Q) — k*,z + x[z| mod p, and define

(11) 7= (Ind%1 ® w )em.

We let Modg”,(O) be the full subcategory of Modg;" (O) that consists of smooth G-
representations with central character ¢ and denote by Modlgﬁp (O) its full subcat-
egory of representations that are locally of finite length. We denote by Modgfzp(O)
resp. €(0) the full subcategories of Modg; °(0) that are anti-equivalent to Modg",,(O)

resp. Modlgﬁp (O) via Pontryagin duality. We see that 7 is an object of Modlgﬁp (0).

Let P be a projective envelope of 7V in ¢(0). We define E = Endq(o)(P).
Paskiinas has shown in [I7, Cor. 9.24] that the center of E is isomorphic to RP%Y

and
(12) E = (R*Y&00[Gg,])/J,

where J is the closure of the ideal generated by g*> — T'(g)g + te(g) for all g €
Gq, M7, Cor. 9.27]. The representation pr induces a morphism of (-algebras
O[Gq,] — M3(R). Together with the morphism (I0) we obtain a morphism of
RP$¥_algebras

(13) RP*Y®00[Gg,] — Ma2(R).

The Cayley-Hamilton theorem tells us that this morphism is trivial on J, so that
we get a morphism of RP%¥-algebras

(14) n: E — My(R).
We define
(15) M"(0) := Hom@fy; (R® R)& g, Po”)”.

Our goal is to prove the following theorem that enables us to check the condition
of Pagktinas’ theorem for N = (R& R)®EmP in the last section. We let
projdimep, )., denote the length of a minimal projective resolution in Mody,(O).
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Theorem 2.3. Let p and pr be as before. We consider R as an RPSY-module via
{@0). Assume that dim R = dim RP>Y + dim R/mppsw R. Then

projdimeqr, .4 (k&r((R® R>®E,n‘f))) + méix{dimR M(0)} < dimR.
In particular, the inequality holds if R is flat over RPS¥.
We start with computing the first summand.

Lemma 2.4. }
projdimeyy,j.¢ (k&r((R® R)®E,77P)) =3.
Proof. We have . .
k&r((RO R)® , P) = (k@ k)@ 4P
Because of k®EP ~ 7V see [17, Lemma 9.1], and since P is flat over the local ring
E, (k® k)®zP is an extension of 7V by itself. Thus
projdimepyr,;.» (k®r((R® R)® 5, P)) = projdimepr,) 7.

The rest of the proof works analogous to the proof of [I8, Prop. 6.21], the respective
cohomology groups are calculated in [I7, Cor. 10.4]. O

Lemma 2.5. Let R, N, o be as before, m a compact R-module. Then
Hom@jey(m&rN, )" = m&p Homghey (N, o¥).
Proof. Since m is compact, we can write it as an inverse limit m = lim m; of finitely

generated R-modules. Also the completed tensor product is defined as an inverse
limit, so that we obtain

Hom%jf;(ﬂ (m®rN,0") = Hom%jf;(ﬂ (@(mi®RN), a”)
~ Hom (o, 1i_n>1(mi®RN)v).
The universal property of the inductive limit yields a morphism
lig Homg (o, (m;®grN)Y) — Homg (o, liﬂ(mi@)RN)v),

which is easily seen to be injective. For the surjectivity we have to show that every
K-morphism from o to hg(mz(ﬁé rN)Y factors through some finite level. But this
follows from the fact that o is a finitely generated K-representation. This implies

Homg (o, lig(mi@RN)V) = liquomK(a, (m;®rN)Y)
= lim Hom%jf;(ﬂ (m;@rN, o).
Since the statement holds for finitely generated m by [I8, Prop. 2.4], taking the
Pontryagin duals yields
Hom%jf;q] (m@rN, 0" )" = lim Hom%jf;q] (m;®prN, o)
o I'&nmié@)R Hom%jf;(ﬂ (N,a¥)Y

= m® g Homggy (N, 0V)".

For the rest of the section we set N = P so that M(o) = Hom‘é’ﬁ’;{ﬂ (P,o¥)V.

Lemma 2.6. Let o be a smooth irreducible K -representation over k. Then M (o) # 0
if and only if Homg (o, ) # 0. Moreover, dimppe,v M (o) < 1.
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Proof. By [17, Cor. 9.25], we know that E is a free RP*¥-module of rank 4. Hu-
Tan have shown in [I8, Prop. 2.9] that M (o) is a cyclic E-module, thus M (o) is a
finitely generated RP*¥-module. Furthermore, M (o) is a compact E-module, see
for example [0, §IV.4, Cor.1]. The same way as in Lemma [2ZF] one can show that

(16) Hom{pyy (k@ g P, oY) = k&M (o).

By [I7, Prop. 1.12], we have k®EI3 =~ 71V so that ([I6) implies

(17) k&M (o) = Hom%’ﬁ}t{ﬂ (¥, 0")" = Homg (o, 7).

Hence Nakayama lemma gives us that M (o) # 0 if and only if Homg (o, 7) # 0.
If this holds, it follows again from [18, Prop. 2.4] that, if we let J denote the
annihilator of M(o) as E-module, there is an isomorphism of rings E/J = k[S].

Again by [I7, Cor. 9.24], RP>¥ is isomorphic to the center of E. If we let JP®
denote the annihilator of M (o) as RP%¥-module, we get an inclusion

(18) RPSY ) JPs s E/J = E[S].

Hence it suffices to show that dim ges,» k[S] < 1, which is equivalent to the existence
of an element © € mpgps,» that does not lie in JP*. We assume that mgps,w C JPS.
Then we have a finite dimensional k-vector space M (o)/Mmpps,v M (o) = M (o), on
which E/J 2 k[S] acts faithfully, which is impossible. O

The proof of the theorem is now just a combination of the above Lemmas.

Proof of Theorem[Z:3. Let o be such that M5 (o) # 0. Then we see from Lemma
that

M"(0) = (R® R)é 5, M(0).
Since E is a finite RP>¥-module by [I7, Cor. 9.17], we have

dimp M™(0) = dimg(R & R)& 5, M(0)
S dlmR(R &) R) ®Rps,w M(U)

By [3, A.11] we know that for a morphism of local rings A — B and non-zero
finitely generated modules M, N over A resp. B, we have

(19) dimp M ® 4 N < dimy M + dimp N/m4N.

Since we already know from Lemma that dimpgps,w M (o) = 1, we obtain from

(@) that
dimp (R ® R) @ geew M(0)) < 1+ dim R/m gpe.s R.

This expression depends only on the structure of R as an RP*¥-module and the
assumption of the theorem implies

dimp (R® R) @pges.v M(0)) <14 dim R — dim RP*Y.

From the explicit description of RP*Y in [I7, Cor. 9.13] we know in particular that
RPSY = Oty,t,t3] and thus dim RP>Y = 4. The statement is now an immediate
consequence of Lemma 2.4 O
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3. FLATNESS

¢
0 1
framed deformation of p with fixed determinant satisfies the conditions of Theorem
23 Let Gg,(p) be the maximal pro-p quotient of Gg,. Since p > 2, it is a free
pro-p group on 2 generators v,d [I5, Thm. 7.5.11]. Since the image of p is a p-
group, it factors through Gg,(p). We have shown in [19] that the universal framed
deformation ring RpD of p is isomorphic to Ofx11, Z12, 21, by, Y11, Y12, Y21, ts] and
the universal framed deformation is given by

Let again p = . Our goal in this section is to show that the universal

(20) p": Go, (p) = GLy(RD),
1+ty+ 11 T12

(21) v - ( o1 L+t __$11>
1+t5 +y11 Y12

22 o> )

(22) ( Y21 1+ts —yn

where 12 1= Z12 + [¢(7)], y12 := 12 + [¢(9)] and [¢(7)], [¢()] denote the Teich-
miiller lifts of ¢(v) and ¢(d) to O. Let ¢: Gg, — O be a continuous character

with ©e = 1 mod w. To find the quotient RE”’ of RE that parametrizes lifts of

p with determinant te, we have to impose the conditions det(p7 (7)) = ¥e(7) and

det(p7(8)) = e(d). Therefore, analogous to [19], we define the ideal
Ii=((1+t,)% — 2%, — 212m21 — ve(y), (1 +t5)2 — ¥y — y12yz1 — ve(d)) € RFY

and obtain
(23) RpD’w = Ofw11, 212, T21, t, Y11, Y12, Y21, s /1.

Let again RP>¥ denote the universal deformation ring that parametrizes 2-dimen-
sional pseudo-characters of Gg, with determinant te that lift the trace of the
trivial 2-dimensional representation. Pagktinas has shown in [I7, 9.12,9.13] that
RPS¥ is isomorphic to O[ty,ts,3] and the universal pseudo-character is uniquely
determined by

T: Go,(p) — O[t1,ta,t3]
v 2(1+ 1)
d—2(1+t9)
¥8 = 2(1 + t3)
§y — 2(1 + t3).
Since the trace T of pH is a pseudo-deformation of 2 - 1 to RE, we get an induced
morphism
(24) ¢: Olt1, ta, t3] RS

(25) t =TH(y) =t,
(26) ty =TH(0) = ts
(27) tz TP (48) = TE(0y) = (1 +t,)(1 + t5) + %z —1,

where z = x12Yy21 + 2211Y11 + T21Y12-

Proposition 3.1. The map @24) makes RE”/’ into a flat Oft1,t2, ts]-module.
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Proof. Let m denote the maximal ideal of O[t1, t2, t3]]. Since RPD”’ is a regular local
ring modulo a regular sequence, it is Cohen-Macaulay. Since O[t1, 2, t3] is regular,
the statement is equivalent to

dim O[t1, t2, t3] + dim RS /mR;»¥ = dim RS,
see for example [6, Thm. 18.16]. But since dim O[t1, t2, t3] = 4, dim RpD’w =7 by
23) and
ROV /mROY = ka1, 812, w21, 911, 12, y21]/ (@31 + T10%01, YTy + Y1291, 2)
by @4)-21), it just remains to prove that

dim k[x11, 212, To1, Y11, D12, Y211/ (#3, + 212201, Y51 + Y12y21,2) = 3.

We distinguish 3 cases: If z12 € (RE’w)X, we obtain

RY fmRIY = k11, d12, y11, G2l / () — v12275 (2211911 — y1227,1275),

so that {x11, %12, 012} is a system of parameters for RE*w/mRE“". Analogously, if
Y12 € (RE’”’)X, then {y11, §12, £12} is a system of parameters. So the only case left
is when x19, y12 ¢ (RE”/’)X. But it is easy to see that in this case {z12, y21, T21 — Y12}
is a system of parameters for RPD“Z’ /meD”Z’7 which finishes the proof. O

4. LOCALLY ALGEBRAIC VECTORS

In this section we want to adapt the strategy of [18 §4] to show that part
) of Paskiinas’ Theorem [2.1] holds in the following setting. Let from now on
= RE”/’ 7 = (Ind%1 ® w™')em, P a projective envelope of 7 in €(0). Let

)

R
N:=(R® R)®E,n]5’ where the E-module structure on R & R is induced by p&, as
in (I4).

In [I7, §5.6] Paskinas defines a covariant exact functor

¢]

—

(28) V:e0) - Modlggp (0),

which is a modification of Colmez’ Montreal functor, see [4]. It satisfies
(29) V((IndEx1 @ x2w™")Y) = x1,

so that in our case

(30) V(IndZ1@w ™)) =1.

For an admissible unitary L-Banach space representation Il of G with central char-
acter v and an open bounded G-invariant lattice © in II, we define

(31) 0¢ := Homp (0, 0),
which lies in €(O). We also define
(32) V(1) := V(e) o L,

which is independent of the choice of ©.

Lemma 4.1. N satisfies the following three properties (see [18|, §4]):

(NO) k®gN is of finite length in €(O) and is finitely generated over O[K],
(Nl) HomSLg(Qp)(la Nv) = 0,

(N2) V(N) = pP as R[Gg,]-modules.
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Proof. As we have already seen in the proof of Lemma [Z4, k®rN is an extension
of Vv by itself. Since 7 is absolutely irreducible and admissible we get (N0). From
[I7, Lemma 5.53] we obtain that

(33) V(pR®s,P) = p s, V(P),
and since V(P) is a free E-module of rank 1 by [I7, Cor. 5.55], also (N2) holds.
For (N1) we notice that 75%2(@) = 0. Since P is a projective envelope of 7V, PV

is an injective envelope of 7. Since G acts on (PY)5"2(@) via the determinant, we
must have (PV)S2(@) = g, O

Remark 4.2. Let m be a R[1/p]-module of finite length. Then Lemma [{_1] implies
that

V(Il(m)) ¥ m @ V(N),
see [18, Rmk. 4.2, Lemma 4.3].

The following Proposition is analogous to [18] 4.14] and shows that condition (i)
of part c) of Pagkuinas’ Theorem 2] is satisfied in our setting.

Proposition 4.3. Let V be either o(w,T) or o (w,7), let p € m-Spec(R[1/p])
and k(p) := R[1/p]/p. Then

dim,;(py Homg (V, II(k(p))) < 1.
If V.= o(w,7), then dim, ) Homg (V,I(x(p))) = 1 if and only if ppD is potentially
semi-stable of type (w,T,1).
IfV = 0 (w,7), then dim,,,y Homg (V,II(k(p))) = 1 if and only ifppD is potentially
crystalline of type (w,T,1).

Proof. Let F/k(p) be a finite extension. We have
dim,(p) Homg (V, II(x(p))) = dimp Homg (V @,y F, IL(K(p)) @ (py F),

see for example [17, Lemma 5.1]. Thus by replacing x(p) by a finite extension, we
can assume without loss of generality that pE is either absolutely irreducible or

1 =
. . 0 - . ~
reducible. Since p, is a lift of p = < 0 1

by Lemma [T} the only case that is not handled in [I8 4.14] is when ppD is an
extension

> and N satisfies (NO), (N1) and (N2)

0 X1 Py X2 0,
where X1, x2 are two characters that have the same Hodge-Tate weight. Such a
representation is clearly never of any Hodge-type with distinct Hodge-Tate weights,
so it is enough to show that dim,,) Homg (V,II(x(p)) = 0. It follows, for example
from [7, Prop. 3.4.2], that II(k(p)) is an extension of Il := (Ind%x2 ® X161 cont
by II; := (Indg)a ® X2 Yeont. If we denote the locally algebraic vectors of II; by
1'% then [I7, Prop. 12.5] tells us that II3'® = I15'® = 0. But this implies that also
(x(p))*& = 0, and since V is a locally algebraic representation, we have
Homp (V. 11((p))) = Hom (V, TI((p))™*) = 0.
O

To apply Pagkiinas Theorem [2.1] we have to find a set of 'good’ primes of R[1/p]
that is dense in Supp M (O).
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Definition 4.4. Let ¥ C Supp M (©)Nm-Spec(R[1/p]) consist of all primes p such
that either TI(k(p)) is reducible but non-split or II(k(p)) is absolutely irreducible and
(k(p))™# is irreducible.

Proposition 4.5. ¥ is dense in Supp M (O).

Proof. We already know that M (©) is Cohen-Macaulay by applying Theorem 2.3]
to Pagktinas’ Theorem Since R is O-torsion free and R[1/p] is Jacobson, it
is enough to show that the dimension of the complement of ¥ in Supp M(©) N
m-Spec(R[1/p]) is strictly smaller than the dimension of R[1/p], which is equal to
4.

Let first p € m-Spec R[1/p] be such that II(k(p)) is absolutely irreducible and
(x(p))*# is reducible. By a result of Colmez [4, Thm. VI.6.50] we know that
in this case we have II(k(p))*® = 7 @ W, where W is an irreducible algebraic G-
representation and 7 2 (Ind%x |.|®@ x || ")sm for some smooth character x. In par-
ticular, if the Hodge-Tate weights are w = (a, b), we have W = Sym®~*~! L2®@det®.
But since det p2 = e, the product of the central characters of  and W must be
1, so that we obtain y2e®t® = 1), which can only be satisfied by a finite number
of characters x. By a result of Berger-Breuil [I, Cor. 5.3.2], the universal unitary
completion of II*8 is topologically irreducible in this case and therefore isomor-
phic to II. Hence there are only finitely many absolutely irreducible Banach space
representations I1(x(p)) such that TI(x(p))*'# is reducible. Moreover, all of them
give rise to a point z, € m-Spec RP¥[1/p] by taking the trace of the associated
G, -representation pE = V(TI(x(p))). We already know from Proposition B that
R is flat over RP*¥ and dim R/mppsw R = 3. Thus, above every prime 2y there
lies only an at most 3-dimensional family of primes p € m-Spec R[1/p] such that
I(x(p)) is absolutely irreducible and II(x(p))*# is reducible.

Let now p € Supp M(©) be such that, after extending scalars if necessary,
ppD is split. Hence from Proposition B3] we know that pE is potentially semi-
stable of a Hodge type (w,7,1) determined by O, where w = (a,b), 7 = x1 ® X2
and x;: Iy, — GL2(Q,) have finite image. We claim that the closed subset of
m-Spec RE[I/p] consisting of points of the Hodge type above, is of dimension at
most 3. As before, p= factors through the maximal pro-p quotient Go,(p) of Gg,,
which is a free pro-p group of rank 2, generated by a ’cyclotomic’ generator -~y
and an ’'unramified’ generator §. From our assumptions we see that for every
representation ppD of the type above there are unramified characters i, g2 such
that up to conjugation

b 0
34 o (¢ xam '
(34) o~ ( AN

As in (20), we have RE = Oz, T12, 21, by, Y11, Y12, Y21, ts] with the universal
framed deformation determined by

O, _ (1+ty+z11 T12
(35) Poy= (T ).

1+ts +yu Y12
36 H(5) = .
(36) P ) ( Y21 L+t —yn
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Since the trace is invariant under conjugation, we get the following identities from

E2)- @)

(37) Li: e xa(7) + €*x2(7) = 2(1 + 1),
(38) Iy pa(6) + p2(0) = 2(1 + Ls).
We get

RE/(IhIQ) = Olx11, £12, T21, Y11, Y12, Y21]-
Moreover, using [B7),([38), we get the following relations for the determinants:

1

(39) Iyt af) + z1000) = Z(EGX1(7) —e"x2(7))?,
1

(40) Io: iy + yroyor = Z(Ml@) — p2(8))%.

Since we assume the representation pE to be split, it is, in particular, abelian. This
can be summed up in the following relations:

(41) I5 : 0 = z12y21 — 21912,
(42) Is : 0 = z12y11 — T11912,
(43) I7 : 0 = 221911 — T11Y21-

We want to find a system of parameters S for RE/(Il, ..., I7) of length at most 4. If
T19 € (RPD)X, it is easy to check that S = {w, #12, §12, 11} is such a system. If y12 €
(RE)X, we can take S = {w, £12, J12,¥11}. In the last case, when x12,y12 € mpo,
which means that #12 = x12,912 = y12, we can take S = {w, 12, Y21, 221 — Y12}-

Thus dim RE/(Il, ..., I7) <4 and since R is O-torsion free, we obtain
(44) dim RJ'[1/p)/(I1,...,I7) < 3,
which proves the claim. (|

The next step is to prove that part c)ii) of Pagkiinas’ Theorem 2] is satisfied
for all p € 3. The following definition is analogous to [I8], 4.17].

Definition 4.6. Let Banadm( ) be the category of admissible L-Banach space rep-
resentations of G with central character ¢ and let II in Bangd)izl(L) be absolutely

irreducible. Let € be the subspace of Extaw(H,H) that is generated by extensions
0—1II - E — II — 0 such that the resulting sequence of locally algebraic vectors
0 — II*8 — EFale — 1318 — 0 4s exact. We say that 11 satisfies (RED), if 118 £ 0
and dim € < 1.

The following lemma is a generalization of [I8] Lemma 4.18] which avoids the
assumption dimy, Homg(IL, E) = 1.

Lemma 4.7. Let II € Banadm( ) be absolutely irreducible. Let n > 1 and let
(45) 01— E—-1I%" -0

be an exact sequence in Bang‘%rqﬂ(L). Let V be either o(w,7) or o (w, 7). If II*8
is irreducible and 11 satisfies (RED), then

dimy, Homg (V) E) < dimy, Homg(IT, E) + 1
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Proof. Since IT1*#¢ is irreducible, we obtain by [I8, Lemma 4.10] and [II] that
dimy, Homg (V,II) = 1. We apply the functors Homg(I1, ) and Homg (V) to the
sequence ([4H) to obtain the following diagram with exact rows.

0 — Homg (11, IT) —— Homg (I, E) — Homg (IT, [1®") —— Extéﬂw(ﬂ, 1)

P | :

0 — Homg (V, 1) —— Homg (V, E) — Homg (V, 11®") —— Ext}ﬂw(v, 1),

IR

where Ext' means the Yoneda extensions in Banz‘{ﬁj(L) resp. Ban?gﬁj(L). The
diagram yields an exact sequence
0 —— Homg(II, E) —— Homg (V, E) —— ker(a),

and therefore

(46) dimy, Homg (V, 1) < dimy, Homg(11, E) + dimp, ker(a).
The irreducibility of IT2!¢ implies that ker(c) is equal to the space £ of Definition
Since we assume that IT satisfies (RED), we are done. O

Lemma 4.8. Letp € X. If Endg,, (pE) = k(p), then

dim,.(y) Homeg, (07 [1/p)/ p7) = 4.

If pE is reducible such that there is a non-split exact sequence

0 02 pE 01 0,
with 5152_1 £ 1, et then

dimy,(p) Homeyg, (pD’w[l/p]/pQ, 61) = 4.
Proof. We start with the exact sequence
(47) 0 p/p’ R[1/p]/p? K(p) 0.

Tensoring @7) with p~*¥[1/p] over R[1/p] and applying the functor Homgg, (-, pE)
yields the exact sequence

Homa,, (p™*[1/p]/p% ') — Homey, (p/5*@rp 0™ (/6] 05) = Bxtl, (05 p5).
Since we assume Endeg, (pE) = k(p), we have
dim,(,) Home, (p™¥[1/p]/p% py)) = 1 + dimy(y) ker(9).
We see that
ker(9) = {¢: R — r(p)[e] | 17V [1/p] @rp1/p1.0 5(P)]e] = py @ p as G, -veps.}.

Let ¢ € ker(8) and let R be the p-adic completion of R[1/p]. Then we can identify
R with the universal framed deformation ring that parametrizes lifts of ppD with

determinant e [14, (2.3.5)] and ¢ induces a morphism R — k(p)[e]. If we denote
the adjoint representation of pE by ad pE, there is a natural isomorphism

(48) Homn(p)—Alg(Rv’%(p)[e]) = Zl)w(GQpaad pE)a
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where Z Lw(G@p,ad pE) denotes the space of cocyles that correspond to deforma-
tions with determinant te. Here the morphism ¢ € Homﬁ(p),Alg(R, k(p)[e]) that
corresponds to a lift p of pE is mapped to the cocycle ® that appears in the equality

p(g) = Py (9)(1 + (g)e).
Since Exté@p (P, p5) = H'(Gg,,ad p), we obtain that
ker(9) = {¢ € Z"¥(Gq,,adpy)) | ¢ = 0 in H'(Gg,,ad p;)}.

Hence ker(9) = B'“%(Gg,,ad pE), the corresponding coboundaries. There is an
exact sequence
(49)

0 — (ad py')9% — ad pj —— Z'(Gq,,ad p5) — H'(Gg,,ad pj}) — 0,

where the middle map is given by = — (¢ — gx — z). Since by assumption
Endg,, (pE) = k(p), we see from (@) that

dim, ) B*¥(Gy,,ad p)) = 3.

Let now pE be reducible such that there is a non-split exact sequence

0 52 PE 61 0 ;

with &; # d2. Tensoring @) with p=¥[1/p] and applying the functor Homg,g, (-, 61)
gives us an exact sequence
(50)

Homg,, (P"11/p]/p%, 61) — Homg,, (p/0*®R(1 /07 [1/), 61) 2, EXQ;QP (pg,61)-
Since 01 # d2 we have dim,,(,) Hom(ppD7 01) = 1 and therefore

(51) dimy () Homg,, (P2 [1/p] /9%, 61) = 1 + dim,(y) ker(').

Moreover, we obtain isomorphisms

(52) Homgy, (p/p” ®rpyp P [1/p],61) = (p/p*)" = Homy(y)— ag(R™, 5(p)[€])
(53) ~ 7V%(Gg,,ad ppD).

From ([@9) we obtain again that the kernel of the natural surjection

(54) Z'(Gq,,ad py)) — H'(Gq,,ad p;) = Extg, (py,py)

is 3-dimensional. Hence (B0)), and (52))-(G4) give us an induced map
3 1, o O O
' EXth}p (pp » Pp ) - EXtéQP (pp 751)

with

(55) dimﬁ(p) keI‘(a/) =3+ dim,i(p) ker(a’).

Since Endg,, (ppD) = k(p), also the universal (non-framed) deformation ring R"™ of
ppD exists, that parametrizes deformations of pE with determinant ye. Therefore we
can use the same argument as in the proof of [I8, Lemma 4.20.], with ppD instead of
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pyp", to obtain that ker(0') = ExtéQ (01,02)/L, where L is the subspace correspond-
ing to pE. Since we assume 610, ' # 1, ¢t we have dimy(p) Exté% (61,02) = 1 and
obtain from (EIl) and (B3] that

dim,. ) Home, (p7%[1/pl/p% 61) = 4.

O

Corollary 4.9. Let V be either o(w,7) or o (w,7) and let © be a K-invariant
O-lattice in V. Then for allp € X,

dim, () Homg (V,II(R[1/p]/p*)) < 5.
Proof. Let p € . If TI(k(p)) is absolutely irreducible, then also II(x(p))2® is
irreducible. By the same argument as in [I8 Thm. 4.19] that uses a result of

Dospinescu [5, Thm. 1.4, Prop. 1.3], we obtain that II(x(p)) satisfies (RED). From
the exact sequence

(56) 0 p/p? R[1/p]/p? K(p) 0
we obtain an exact sequence of unitary Banach space representations
(57) 0 ——TI(k(p)) — II(R[1/p]/p?*) —=T(k(p))®" —0..

Thus we can apply Lemma .7 and obtain

dimy;(p) Home (V. I(R[1/p]/p?)) < dim, () Home (TI((p)), TL(R[1/p]/p%)) + 1.
The contravariant functor V induces an injection
(58)

Home (IL(~(p)), IL(R[L/p]/p?)) —— Homay, (V(IL(R[L/p)/#?)), V(IL(~(p))))-

Since the target is isomorphic to Homg, (pD [1/p]/p?, pE) by Remark[.2] the claim
follows from Lemma

Let now II(x(p)) be reducible. Then, as in the proof of Proposition 3] it comes
from an exact sequence

(59) 0 02 Py 1 0,
with 61651 #1,e*!. We obtain an associated exact sequence
(60) 0 ——1II; ——=TII(k(p)) ——= 1l ——0,

where V(II;) = 6;, (x(p))*& = 1€ and (@) splits if and only if (59) splits, see
[T, Prop. 3.4.2]. Furthermore, II; is irreducible and, again as in [I8, Thm. 4.19],
II; satisfies (RED). If we let E be the closure of the locally algebraic vectors in
I(R[1/p]/p?), we obtain an isomorphism

Hompg (V,TI(R[1/p]/p?)) = Homg (V, E).
Now (1) gives rise to another exact sequences of unitary Banach space represen-
tations

(61) 0 I, E g™ 0.

Since II; satisfies (RED), we can apply Lemma 7] to obtain
dimﬁ(p) HOHlK(V7 E) < dimn(p) Homg(Hl, E) + 1.
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Because of the inclusions
Homeg(Ily, E) < Homg (I, IL(R[1/p] /p?)) — Homg,, (P2 [1/p] /9%, 61)
we obtain
dim,;(p) Hom e (V, E) < dimy(p) Homgg, (07%[1/p], 61) + 1.
But by Lemma .8 dim,,) Homg, (p7*[1/p],81) = 4, and we are done. O

Now we are finally able to prove the main theorem. We let again x: G, — k*
be a continuous character and let

p: Go, = GLa(k)

x(9)  o(9)
9 ( 0 x(g)>'

Theorem 4.10. Let p > 2 and let (w,7,v) be a Hodge type. There exists a
reduced O-torsion free quotient RE(W,T,w) (resp. RE’Cr(W,T, V) of RpD such
that for all p € m—Spec(RpD[l/p]), p is an element of m-Spec (RE(W,T,1/))[1/p])
(resp. m-Spec (RPD’CY(W,T, V)[1/p])) if and only if pE is potentially semi-stable
(resp. potentially crystalline) of p-adic Hodge type (w,T,v). If RE(W,T, ) (resp.
RE’”(W,T,w)) is non-zero, then it has Krull dimension 5.

Furthermore, there exists a four-dimensional cycle z(p) := z4(M(N)) ofRE, where
= Sym? 2 k2 ® y o det, such that there are equalities of four-dimensional cycles

(62) 24(RY(w,7,9) /(@) = ma(w, T)z(p),

(63) 24 (R, (w, ,9) [ (w)) = mS (w,)z(p).

Proof. We set N := (R ® R)®E,npv as in Theorem 231 Hence, if we let a be
the R-annihilator of M(©), we obtain from Proposition and [I8] Prop. 2.22],
analogous to [I8, Thm. 4.15], that for any K-invariant O-lattice © in o(w,7)
(resp. o%(w, 7)) R/v/a = RE(W,T, ) (resp. R/v/a = RE’”(W,T,U))). Since R
is Cohen-Macaulay, Proposition B.1] shows that we can apply Theorem 2.3] in our
situation. Let Z be the center of G and let Z; := Iy N Z. Since p > 2, there
exists a continuous character v/1): Z; — O* with \/—2 = 1. Twisting by /% o det
induces an equivalence of categorles between Mod7'*,(O) and Modpl’:(/)zl(O). In
this way we can use Theorem [2.3] to show the mequahty of Theorem for the
setup G = GL2(Qp)/Z1, K = GL2(Z,)/Z1 and P = I /Z;. Hence we obtain from
Paskunas’ Theorem that the conditions a) and b) of the criterion 2] for the
Breuil-Mézard conjecture are satisfied. We let X be as in Definition 4l Since we
know from Corollary that ¥ is dense in Supp M(0), condition (i) of part c)
follows from Proposition As already remarked in the proof of Proposition 5]
we have dim M (©) = 5. Thus condition (ii) of part c) is the statement of Corollary
Hence Theorem 2.1l says that there are equations of the form

(64) (RD(W T, )/ ng w,T)z4(M(0)),

(65) 24 (RS (w, 7, 0)/ Zm w,7)z4(M(0)).
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where the sum runs over all isomorphism classes of smooth irreducible K-represen-
tations over k. By Lemma we have that M (o) # 0 if and only if o lies in the
K-socle of m. We let K7 denote the kernel of the projection K — GLo(F,) and let
B denote the subgroup of upper triangular matrices of GLy(F,). Let now o be a
smooth irreducible K-representation in the K-socle of 7. Since K is a normal pro-p
subgroup of K, we must have 0% # 0 and thus o = 1. There are isomorphisms
of K-representations

(66) 7K 2 (IdB el ©@w Hn) ™ 2 d G 1 0w,

and it follows from [I6, Lemma 4.1.3] that the K-socle of 751 is isomorphic to

Sym?P 2 k2 ® y o det, in particular, it is irreducible. Therefore there is only a single
cycle z(p) = z4(M (SymP~? k2@ yodet)) on the right hand side of (64) and 63). O

Remark 4.11. If 1 =181 and w = (a,b) with b—a < p—1, then the right hand
side of ([63) is non-trivial if and only if b—a = p — 1, in which case the Hilbert-
Samuel multiplicity of z(p) is equal to the multiplicity of RE’”(W,]I ®1,9)/(w).
In [19], we computed that this multiplicity is 1 if p @ x 1 is ramified, 2 if p®@ x !
is unramified and indecomposable, and 4 if p® x ! is split.
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