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HARDY-STEIN IDENTITIES AND SQUARE FUNCTIONS FOR SEMIGROUPS

RODRIGO BANUELOS, KRZYSZTOF BOGDAN, AND TOMASZ LUKS

ABSTRACT. We prove a Hardy-Stein type identity for the semigroupsyafmetric, pure-jump Lévy processes.
Combined with the Burkholder-Gundy inequalities, it githe LP two-way boundedness, fdr < p < oo,

of the corresponding Littlewood-Paley square function.e Blquare function yields a direct proof of tii&
boundedness of Fourier multipliers obtained by transfasfmeartingales of Lévy processes.

1. INTRODUCTION

Littlewood and Paley introduced the square functions terlwaric analysis ing1]. Many applications
and intrinsic beauty of the subject brought about enormitersiture, which would be impossible to review
here in a reasonably complete way. For results on clasgjoaks functions we refer the reader to Zygmund
[33] and Stein B(], [31]. In particular, B0] uses harmonic functions on the upper half-space and thtecel
Gaussian and Poisson semigroups to develop LittlewooelyRhkory for theL? spaces. InJ1] Stein
employs more general symmetric semigroups in a similar manke uses square functions defined in
terms of the generalized Poisson semigroup, that is thénatigemigroup subordinated in the sense of
Bochner by thel /2-stable subordinatoP’[/]. He also proposes square functions defined in terms of time
derivatives of the original semigroup. Similarly, Meye] employs the generalized Poisson semigroup,
and Varopoulos injZ] uses time derivatives of the original semigroup.

It may be helpful to note that Littlewood-Paley theory anda® functions (including the Lusin area
integral) are auxiliary for studying? and other function spaces, Fourier multipliers theoreragjad dif-
ferential equations and boundary behavior of functionds €xplains, in part, the large variety of square
functions used in literature toward different goals. At #ane time the multipliers and PDEs manage-
able by a square function depend on the semigroup employi¢sl definition, which motivates the study
of square functions specifically related to a given semigrode also note that square functions usually
combine thecarré du chamgorresponding to the semigrouf)y and integration against the semigroup or
its Poisson subordination.

It is well-known that the probabilistic counterpart of sgaidunctions is the quadratic variation of the
martingales. Similarly, the Littlewood-Paley inequa&gifor square functions may be considered analytic
analogues of the Burkholder-Davis-Gundy inequalitiesicvinelate thel.? integrability of the martingale
and its maximal function to th&? integrability of its quadratic variation. The probabiltstonnections to
Littlewood-Paley theory have been explored by countleisaas for many years. For a highly incomplete
list of results, we refer the reader to Steil], Meyer [23], [27], [24], Varopoulos BZ], Bafiuelos §],
Bafiuelos and Moore], Bennett P], Bouleau and Lambertori ], Karli [ 16], Kim and Kim [18], Krylov
[20], and the many references given in these papers.

In the analytic, as opposed to probabilistic, realm Eieboundedness of the classical Littlewood-Paley
square functions can be obtained from the Calderon-Zyghtheory of singular integrals, as done in Stein
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[30, pp. 82-84]. The singular integral approach can also be tmed wide range of Littlewood-Paley
square functions constructed from volume preservingiditatof approximations to the identity. For this
(well-known) approach, we refer the reader & [An alternative beautiful way to prove? boundedness
in the classical case fdr < p < 2 is via the so called Hardy-Stein identities. This approacbmployed
in Stein [30, pp. 86-88] and, outside of some standard maximal funcstimates that hold in very general
settings when the Hardy-Littlewood maximal function islesed by the semigroup maximal function, it is
based on the fact that the Laplacian satisfies a special ¢agleat in diffusion theory is often called the
chain rule. ThatisAu? = p(p — 1)uP~2|Vul? + puP~'Au for 1 < p < oo and suitable functions;
see BO, Lemma 1, p. 86]. Stein’s proof can be easily adapted to Magkosemigroups whose generators
satisfy the chain rule as discussed i}, [Formula (10). It is also explained ir?] that such chain rule
requires the process to have continuous trajectoriesything out the nonlocal operators.

The purpose of the present paper is to prove the two-falgounds for square functions of Markovian
semigroups generated by nonlocal operators. Indeed, waedsgfiintrinsic square functic@i(f) for such
semigroups and prove the upper and lower boundedndds ifthe square function thus characterizes the
LP spaces foll < p < oo. We like to note a certain asymmetry in the definitioréiff) and the fact that
the more natural and symmetric square functigf) fails to be bounded id? for 1 < p < 2.

Our technique is based on new Hardy-Stein identities foctmsidered semigroups (which replace the
chain rule forl < p < 2) and on Burkholder-Gundy inequalities for suitable mayéiles driven by the
stochastic processes corresponding to those semigrdwgse(are important f@ < p < oo). Once the
upper bound inequalities are obtained, the lower bounduakites may be proved by polarization and
duality. Our Hardy-Stein identities are inspired by thoseeg in [17] for harmonic and conditionally
harmonic functions of the Laplacian and the fractional bafn, but the present setting is distinctively
different.

The paper may be considered as a streamlined approach froigreeps to Hardy-Stain identities to
square functions to multiplier theorems. To avoid certaichnhical problems our present results are re-
stricted to the (convolution) semigroups of symmetric,gajump Lévy processes satisfying the Hartman-
Wintner condition. The results should hold in much more gelsetting, but the scope of the extension is
unclear at this moment. As mentioned, we give applicatiortee .”-boundedness of Fourier multipliers.
Namely, we recover the results of] [5], [6], where Fourier multipliers were constructed by tampering
with jumps of Lévy processes with symmetric Lévy meas@ar present approach to Fourier multipliers
is simpler than in those papers because we do not use Buddtwidequalities for martingale transforms.
While the approach does not yield sharp constanig’inomparisons, it should be of interest in applications
to multipliers which do not necessarily arise from martilegeansforms.

We note in passing that the approach to Fourier multiplexsguare functions has been used in various
settings to prove bounds for operators that arise from nate transforms, such as Riesz transforms and
other singular integrals. For some recent application of idea, see4{5, Lemma 1] and [7, proof of
Theorem 1.1], where different Littlewood-Paley squarections are employed to prove’—boundedness
for operators arising from martingale transforms. We alst that the constants in ofif estimates of the
square functions and Fourier multipliers depend only @n(1, co) and in particular they do not depend on
the dimension oR. Itis interesting to note that our applications, unlikesb@resented in Steifi(] for his
proof of the Hormander multiplier theorem, do not depengboimtwise comparisons of Littlewood-Paley
square functions before and after applying the multipliestead, it suffices to have an integral control of
the quantities involved, because we can use the isometpepsoof the square function ai¥ and the usual
pairing to define and study the multiplier. In particularaipplications we only use two square functions
G‘(f) andG(f), rather than a whole family of square functions.

The structure of the paper is as follows. §& we introduce the considered semigroups and we recall
their basic properties. 183 we prove the Hardy-Stein identities. 44 we define the square functions and
give their upper and lower boundsir. In §5 we present applications to Fourier multipliers.
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2. PRELIMINARIES

We use “=" to emphasize definitions, e.gi, A b := min{a,b} anda V b := max{a,b}. For two
nonnegative functiong andg on the same domain we wrife= g if there is a positive number> 1 such
thatc=' g < f < cg (uniformly for all arguments involved). All the sets and tions considered in this
work are assumed real-valued and Borel measurable, utiéted ®therwise.

We consider the Euclidean spaRé with dimensiond > 1 and thed-dimensional Lebesgue measure
dz. The Euclidean scalar product and normRshare denoted by - y and|z|. For everyp € [1,00) we let
LP := LP(R%, dx) be the collection of all the (real-valued Borel-measurphlactionsf onR¢ with finite

norm y
P
1l = [ /. If(ar)lpd:z:] |

As usual,|| f||« denotes the essential supremunmifdf Forp = 2 we use the usual scalar productbfy
()= [ Falgla)de.
Rd

Let v be a measure oR? such that/({0}) = 0 and

(Lm) 0P < .
In short: v is a Levy measure. We assume thas symmetric: for all (Borel) set® C RY,
(S) v(B) = v(—B).

For later convenience we note that given of nonnegativigimolute integrability of functioh,

(2.1) //k(a:,y)u(dy)da:://k(:c, —y)u(dy)da:://k(:c—i—y, —y)v(dy)dx.

Here we used the symmetry of Fubini’s theorem and the translation invariance of thedsgfue measure.
In effect the variables inX 1) are changed according to, y, 2 + y) — (x 4+ y, —y, ). As a consequence,

[ [ torswemlba+ ) = K@ I+ ) = ho)vidy)de

1

2.2 = 5 [ [ k@) =k + )] o) — b + ()

wherek, h are arbitrary. We define

(2.3) P(€) = /]Rd (1 —cos(¢-x))v(dz), €eRY,

Clearly,»(—=¢) = (¢) for all £. Finally, we shall assume the following Hartman-Wintnendition onv:
¥(§)

HW =

(HW) \5\13100 log |¢]

Below we work precisely under these three assumptibkB)( (S) (HW), except in specialized examples.
We let

(2.4) pi(z) = (27T)_d/ eT e EOde >0, z e R

R4
Clearly,p:(—z) = p:(z) for all z andt, andp;(x) < p:(0) — 0 ast — oo. By the characterization of the
infinitely divisible distributions, i.e. the Lévy-Khinkéne formula,p; is a density function of a probability
measure ofR? (see [L1] for a direct construction),

/]Rd pe(x)de = 1.
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The Fourier transform g, is
(2.5) pe(€) ::/ ety (x)de = e WO £ eRY > 0.
Rd
By (2.4) and HW), p;(z) is smooth inx andt. By (2.5, p; form a convolution semigroup of functions:
Pt * Ps = Pt+s-
For notational convenience we let
pt(Iay):pt(y_I)a 'rvyeRda t>0.
From the above discussion we have the following symmetrp gty

(2.6) pe(@,y) = pely, ), zy €RY, >0,
the Chapman—Kolmogorov equations

(27) /dps('rvy)pt(yaz)dy = p5+t('rvz)7 T,z € Rdv Sat >0
R

and the Markovian property

(2.8) / pe(@,y)dy :/ pi(z,y)de = 1.

Rd Rd
In fact, p; is a transition probability density of a symmetric, pure uirévy process X;,t > 0} with
values inR¢ and the characteristic function given by

E [eiéXt} _ e*tdl(f), t>0.
The functiony is called thecharacteristicor Lévy-Khintchine exponenf X,. For an initial state: € R?,
a Borel setd ¢ R? and a functionf onR< we let
PI(Xt S A) = P(Xt +x € A), Ezf(Xt) = Ef(Xt + CC)

It is well-known that

Puf(@) = Bof (X0 = [ mla) flu)dy

defines a Feller semigroup @i (R?), the space of continuous functions BA vanishing at infinity. That
is, P,Co(R%) C Cy(R?) for all t > 0, and(FP;) is strongly continuous P; f — f|l«c — 0 ast — 0 for all
f € Co(R9). We letL be the corresponding infinitesimal generatof Bf):

Lf:= im 2 =1
N0 t
Here the limit is taken in the supremum norm. [¥t.) be the domain of.. ThenC?(R%) c D(L), where
of 0*f -
2R .— 2 (Rd dy . d <i,j<dy.
Co (RY) {f € C*(R) N Co(R) vy D0z, € Co(RY), 1<4,j<d

We similarly define the spacé® (R9), k = 1,2,3,.. ., and their intersectiot’s® (R¢). By [26, Theorem
31.5] and the symmetry of, the generatof. satisfies

(2.9) Lf(z) = lim (f(z+y) - f@)v(dy), [eCFRY), xR

N0 jy|>e
By Jensen'’s inequality and Fubini-Tonelli;) is also a semigroup of contractions @# for everyl <
p < oo, thatis,|| P, f|l, < || f|lp- Furthermore(F;) is strongly continuous of” for everyl < p < co. By
[19, Theorem 2.1] we havg,(z, ) € C5°(R?) N LY(R?) for all z € RY andt > 0. In fact it follows from
[19, the proof of Theorem 2.1] that for fixgd> 0 andz € R?, py(z) = ¢ * p(x), wherey is a function in
the Schwarz clasS(R?), andp is a probability measure. Hence fifc L?(R9) for somel < p < oo, then
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P f € LP(RY) N C5°(RY). Sincep(x,y) < p:(0), we have thaP, : L2(R?) — L*°(R%) is bounded for
all ¢ > 0. This property is called ultracontractivity. For more orsttopic, see Daviesl[].

Example 1. The above assumptions are satisfied for the semigroup of i@y processes and in par-
ticular for the semigroup of the isotropic symmetric stalbdsy processes, associated with the fractional
Laplacian. Indeed, as is well-known, the transition dgrnsfithese processes for< « < 2, can be written
as

@ @ o 1 —le=y® /2
(2.10) (@) =p” (@ —y) = /0 Gmge = eds,
/2

wheren, ' “(s) is the density for thex/2-stable subordinatofi[l]. From this it follows that for each > 0,
pfﬁ)(x) is a radially decreasing function of and

a a p1(0
A @) <7 0) = 20 < oo

In particular the corresponding semigroup is ultracortivaclts Lévy measure is
v(dy) = Ad—alyl ™" dy, yeRY,

where
(2.11) Ag—o =2°T((d+a)/2) 72 /|T(~a/2)|.

Our assumptions also hold for many other semigroups oltdigesubordination of the Brownian motion
[27] and for the more general unimodal Lévy processég provided they satisfy the so-called weak lower
scaling condition13]. O

We shall need the following fundamental inequality of S{eif] which holds for symmetric Markovian
semigroups.

Lemma2.l. For f € L?, 1 < p < oo, define the maximal functiofi* (x) = sup, | P, f(z)|. Then,
* p
(2.12) 17l = 2= £l

where the right hand side is jugff ||, if p = oco.

We note that Stein{9] gives an unspecified constant depending only éor this inequality. For our ap-
plications here this is sufficient, however it is well-knothiat the inequality actually holds with the explicit
constant given above. In fact, this is nothing more than tirestant in Doob’s inequality for martingales.
The latter is the tool used ir8], Chapter 4] for the proof of the inequality. For a shorteruangnt using
continuous time martingales and Doob’s inequality, werrdfe reader to Kim17, Proposition 2.3]. Kim’s
proof is the zero-potential case of the proof given in Shéyek 28] for Feynman—Kac semigroups. This
proof (the zero-potential case of Shigekawa) has been knowrperts for many years.

3. HARDY-STEIN IDENTITY
The following elementary results are given ir]. Let1 < p < oo. Fora, b € R we set
3.1) F(a,b) = bl — |a]” = palaP~*(b — a).
Here F(a,b) = |b|P if a = 0, andF'(a,b) = (p — 1)]al? if b = 0. For instance, ip = 2, thenF'(a,b) =
(b—a)?. Generally,F(a, b) is the second-order Taylor remaindeffob = — |z|?, therefore by convexity,
F(a,b) > 0. Furthermore, foll < p < oo ande € R we define
(3.2) F-(a,b) = (b® + e2)P/2 — (a® 4+ e2)P/? — pa(a® + ) P~2D/2(b — a).

SinceF. (a, b) is the second-order Taylor remaindefob = +— (22 4 £2)P/2, by convexity,F.(a,b) > 0.
Of courseF.(a,b) — Fy(a,b) = F(a,b) ase — 0.
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Lemma3.1([17]). For everyp > 1, we have constants< ¢, < C),, < oo such that
(3.3) cp(b—a)?(|b| V |a])P~? < F(a,b) < Cp(b— a)?(|b] V |a])P~2, a,b € R.
If p € (1,2), then
(3.4) 0 < F.(a,b) < Z%F(a,b), e,a,beR.
The main result of this section is the following Hardy-Stielantity.

Theorem 3.2. If 1 < p < coandf € LP(R?), then

(3.5) /Rd|f(a:)|pd:1:_/ooo /R /RdF(Ptf(:c),Ptf(:z:+y))y(dy)d:cdt.

Proof. We first prove the theorem assuming tifat L?(R%) N C2(R9). If 2 < p < oo, then we proceed
as follows. Leth < ¢ < T and
§(t) = [Pr—ef|P.

Thené(t) € C2(RY) < D(L) for everyt € [0,T] sinceP,f € C2(RY) for all t > 0. Furthermore, if
u € CZ(R%), then we have

S [ul? = pluf*2uu
2
62
&vj@:ci

[ulP = p(p — D)ulP~2uju; + plulPuuy;

hencelu|P € CZ(RY). Also, [0,T] > t — £(-)(z) is of classC! for everyx € R¢ as it can be seen from
the following direct differentiation wheré denotes the generator of the semigroup.

%g(t)(:v) =pPr_.f(x) |PT—tf(95)|p_2 iPT—tf(iU)

dt
(3.6) = —pPr_of(x) |Pr_f(z)|""> LPr_. f(2).
We have
T d
3.7) PrlfP@) = |Prf@p = [ 5 (o) i
T
(3.8) - / (P (1) () + PLLE() ()] dt
T
(3.9) - / P, [€/(t) + LE(t)] (x)dt.

The equality 8.8) requires some explanation. Followint], we have

Proné(t+h) <;f> —REOE) _ p L e)@)

(3.11) + P (f(t + h}z — &) é—l(t)> () + Pt+h§(t)($)h— Ptf(f)(ff)'

(3.10)

Recall thatt(t) € D(L). By (3.6), £'(t) € Co(R?) for everyt € [0, T]. Furthermore, sinc is strongly
continuous angh > 2, bothLPr_,f andPr_, f |PT,tf|1"’2 are continuous mappir{g, 7] to Co(R9). In
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view of (3.6), [0,T] > t — &'(t) € Cy(R?) is also continuous. Letting — 0 in (3.10, we get 8.8). We
then have

@12) [0+ L@ = [ {Prfat )l = |Prof@)P
—pPrf(@) [P f @) [Pr-if (@ +y) = Proof(2)] | v(dy)

= /Rd F(Pr_if(z), Pr—f(x +y))v(dy).

Integrating 8.7) with respect tar and using 2.8) we obtain

T
| @rae— [ pes@rae= [ [ ] @), P )it

But [, |Prf(x)|Pdz — 0 asT — oo because of dominated convergence theorem. Indee@, bg) @nd
|Prf(x)|P < f*(z)? for everyz € RY, and forg = p/(p — 1) by Holder inequality we have

(3.13) ‘/pT(w,y)f(y)dy‘ < I fllp (/Rd pT(w,y)qdy)l/q,

whereas|,, pr(x,y)?dy < sup, ,cga pr(z,y)4"" — 0asT — oco. Thus, B.5) follows.
Supposd < p < 2. For0 <t < T ande > 0 we define
&(t) = (Proif)? +e2)"* —er,

As in the case < p < oo, we conclude thag. () € CZ(R%) c D(L) for everyt € [0, T)]. Indeed, for any
u € CZ(RY) we have

6‘2 (u2 + 82)17/2 —p (u2 + 62)(17—2)/2 g
62

8$j 8171

(u? + 82)10/2 =plp—2) (u®+ 82)(10*4)/2 wPuju;

+p (u2 T E2)(1[)*2)/2 (

UjUsj + uuji) .
Furthermore|0, T > t — &.(-)(z) is also of clas€>! for everyz € R, and
d

dt

(»-2)/2 d

§(t)(x) = pPr—.f(x) [(PT—tf(x))Q + 52} EPT—tf(x)

= —pProof @) [(Pr—if(2))? +2) " LPr_ f(a).
Thereforet’ (t) € Co(RY) for everyt € [0,T], and[0,T] > t — £.(t) € Co(R?) is continuous. We have

2 2\p/2 2 2\P/2 _ Td

@) Pr((P+rR) @ = (Pri@P +e) = [ D (e
T T

(3.15) - / P ()() + PLLE(8) ()] dt = / Py EL(t) + Le(t)] (x)dt.

Consequently,
[€L() + L& (B (@) = / {(Prct@ 9 +2)" = (Prof @) + )"
~pProf(@) (Pr-of(@)? +22) " P [P f(@+ y) = Proof(2)] | v(dy)

. /R F(Proof (@), Prif (z + ) (dy)
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Integrating 8.14) with respect tar we obtain
/Rd {PT ((f2 +62)p/2) (z) — ((pr(x)y +€2)P/2} d
= [ (r ety - 5”) - [ (@ +e” -]

/ /R /R (Pf(x), Pif(z +y))v(dy)dadt.

Note that the expression above is finite and uniformly bodndih respect tdl” ande. Indeed, since
0 < p/2 < 1, the functionz — xP/2 is p/2-Holder continuous of), o), we have

(f(@)? + 2P = < e f ()P,
and
(Prf(@)? +e2)"? —e? < ¢, |Prf(a).
Lete — 0. In view of (3.4) and dominated convergence (see aish Remark 7]) we get

/ 1 ( lpd:c—/ Prf(a |de_/ /R /R (Puf (@), Pof (z + y))w(dy)dwdt.

Using the same argument as in the previous part Wqﬂg,QtPTf z)|Pde — 0 asT — oo. This together
with the previous case gives.f) forall 1 < p < oo andf € LP(RY) N CZ(RY).

We next relax the assumption thate LP(R9) N C2(R?). Forl < p < co and generaf € LP(R?) we
lets > 0. ThenP; f € LP(RY) N C5°(R?), and so by the preceding, discussion

(3.16) / P, f ()P de = / / / (Pof (2), Pof (x + ))v(dy)dedt.

R4 JR4
By the strong continuity of; in L?(R%), the left-hand side of3 16 tends to]| f[|» ass — 0. The right-
hand side also convergessas+ 0. The theorem follows. O

4. SQUARE FUNCTIONS
For f € LY(R?) U L>=(RY) we let

- ( / N [ (Bt - Ptf(w))2V(dy)dt) -

and
1/2
< (Pef(z+y)— Ptf(ff))zV(dy)dt> :
{Pef(@)|>|Pef (z+y)[}
Clearly,0 < G( (x) for everyz. By (3.5 and the symmetry,
(4.1) 115 = IG5 = 2G5

By polarization, forf, g € L?(R?) we have

@2 o= [ [ [ (e n - PPt + o) - Pato)] vd)duds

The main result of this section is the following theorem.
Theorem 4.1. Letl < p < co. There is a constan®’ depending only op such that
(4.3) CH Sl < IGUNp < Cllfllps— f € LPRY).
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The result is proved below after a sequence of partial resuit another direction, at the end of this
section we show in Exampl2 that GG is too large to give a characterization bf (R?) for 1 < p < 2.
Nevertheless|G(f)|l, < Cpllfllp, for2 < p < oo, as we now prove by using the Burkholder-Gundy
inequalities.

We start by introducing the Littlewood-Paley functiéh which is the conditional expectation of the
quadratic variation of a martingale. For classical harmduanctions in the upper half-space Bf, such
objects have appeared many times in the literature, seextomge [3], [9]. The construction for the
generalized Poisson semigroups is presenteddn Here we simply fixf € C°(R%), T > 0, and let

My = Pr_f(Xy) = Prf(z), 0<t<T.

When the proces; starts atz € R?, M, is a martingale starting @& Such space-timep@rabolic
martingales were first used for the Brownian motion in Badsieand Méndez-HernandeZ][to study
martingale transforms that lead to Fourier multiplierated] to the Beurling-Ahlfors operator. They were
then applied in§, 1] to more general Lévy processes. We recall the propertidg,dere to clarify the use
of the Burkholder-Gundy inequality and to elucidate theyms of our Littlewood-Paley square functions.
For full details, we refer the reader to]]

Applying the Itd formula (seel] p. 1118], where this is done for general Lévy processed)ave that

t
(4.4) M, = / / [Pr—sf(Xs— +y) — Pr—sf(Xs-)] N(ds,dy), 0<t<T.
0 JR4
Here :
N(t,A) = N(t, A) — tv(A),
andN is a Poisson random measurel®h x R? with intensity measurét x dv. In fact we take
N(t,A)=#{0<s<t,AX,€ A}, t>0, ACR?
whereAX; = X; — X,- denotes the jump of the process at time 0. The quadratic variation a¥/; is
t
My = [ [ VP (X ) = P (X vy ds.
0

For a slightly different representation of.{) without using the proces®/, and for references to Itd’s
formula for processes with jumps, seg p. 847].
We now define

0o 1/2
6. = ([~ [, [ 1P+ - PP asvtana)
and
T 1/2
G*,T<f><x>=</0 /. Rd|Ptf<z+y>—Ptf<z>|2pt<w,z)dzu(dy)dt> .

Notice thatG.. r(f)(x) ,* G.(f)(x) asT — oo. We claim that

45 G2 o(f)) = /

R

T
E? < |/ |PTsf(xs+y)—PTsf(xs)pV(dy)ds) po(e,2)dz,
d 0o JRe

where

T
E? ( / Pr_of(Xo+7) — PTsf<Xs>|2u<dy>ds>
0 R4

T
=K, (/0 /Rd |PT75f(XS + y) — PTfsf(XS)|2V(dy)d8 | Xr = x) s
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cf. below. Thus,

621w = |

E, ([M]T ’ Xr = a:) pr(z,x)dz = / (EZ[M]r) pr(z,x)dz.
Rd

Rd

The proof of ¢.5) is exactly the same as the proof for harmonic functions éuhper half-space d&¢
given in [3, p. 663]. (See{”] for the more general construction for Poisson semigruipsleed, by the
definition of the conditional distribution o', underP, given X1 = z, we have

T
/ EZ </ |Pr—s f(Xs +y) — PTsf(Xs)|2V(dy)dS> pr(z,z)dz

-1, (/ [Py [ et - me(w%(dwdwds) pre )iz

:/ / pr—s(w, :v)/ |Pr_of(w+y) — Pr_.f(w)|*v(dy)dwds
0o Jrd R

T
- / / IPuf (w0 + ) — Puf (w)|2pa (. w)dwn(dy)ds = G2 1(f) (x).
0 Rd JRA

With (4.5) established, we now apply the martingale inequalitiesrawve that||G..(f)|l, < C,l f|l, for
2 < p < o0, which also yields the same result 6% f).

Lemma4.2. Let2 < p < co. There is a constant’ depending only op such that|G(f)|, < C| f||, for
everyf € LP(R?).

Proof. Sincep > 2, by Jensen’s inequality we get

JRERGIEE

p/2
/ / E? (/ |PTsf<xs+y>—PTsf<xs>|2u<dy>ds> pr(z,2)dzdz
Rd JRd

p/2

T
:/ E. </ |Pr—sf(Xs+y) — PT_sf(XS)|2V(dy)ds> dz.
R 0o Jra

By the Burkholder-Gundy inequality the last term above $slthan
Cy [ Bo11(Xr) = Prf(IP dz <C, | BAFXn)P + PrlfP()ds
=C, [ PrifIra: = Gl 1,
By the monotone convergence,

GL(f)(@)de = lim [ GL p(f)(w)de < Cpl|F1[5-

R4 T—o0 Rd
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We claim thatG(f)(x) < v2G.(f)(x). Indeed, by the semigroup property and Jensen’s inequality
(@) = [ ] 1P - iRy
0 d
= / / |Pt/2Pt/2f(9C +y) — Pt/QPt/Qf(x)Py(dy)dt
0 R4
< [ [ PplPatta ) - Ppf@Podd:
0 R4
= [ [ [ Rt - Pad@F s ey
0 R4 JRd
= 2/ / |Pif(z +y) — Pof(2)*pe(x, 2)dzv(dy)dt.
0 R4 JR4

This completes the proof of the lemma fére C°(R<4). For arbitraryf € LP(R?), we choosef,, €
C>(R4) such thatf,, — f in L?. The inequality| G(f)|, < C| f||, follows from Fatou’s lemma. [

For every2 < p < oo andf € L?(R%) we have by 3.5), (3.3 and @.2),
191 = [ [ ] (P = P @RS o+ )] VPSPl
= 2 h Pf(x+y) — Pf(2)?|Pf ()P %v(dy)dtdx
/R d / /{ (B ) = RIS )

(4.6) < 2 / I (@)P2G(f) (x) 2 da.

Rd
Lemma4.3. Suppose < p < co. There is a constant’ depending only op such that
4.7) CH Sl <IGNIp < Cllfllpy | € LPRY).

Proof. SinceG(f)(x) < G(f)(z), the right-hand side of4(7) follows immediately from Lemma.2. By
Holder’s inequality,

P

2
P P

[ reranete s | [ artal T [ @il

a
=12 2IGAIE < CUFIE2IGA;-

By (4.6) and @.12 we get|| f||5 < C| f[|5~2(|G(f)|2, which yields the resul. O
Combining Lemmat.2and Lemmat.3we obtain the following.

Corollary 4.4. Suppose < p < oo. There is a constant’ depending only op such that

(4.8) CHIfl < NGy < Cllfllpy  f € LP(RY).
We now discuss the reginie< p < 2.

Lemma4.5. Supposé < p < 2. There is a constanf’ depending only op such that

(4.9) CUfly < IGWHp < Cll Sy f € LPRY).

Proof. We first consider the right-hand inequality. Our proof prexte exactly as the proof ir8(), pp.
87-88] for the boundedness of the Littlewood-Paley squanetiong in the rangel < p < 2. Here,
however, instead of using the Hardy-Littlewood maximaldiion and its boundedness @#(R?), we use
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the maximal function of the semigroup and Lemféa. Also, in place of the identity Lemma 2 o8(),
p.88], we use our Hardy-Stein identity. More preciselytisgt

= [ [ () - PI@PRS@P )
0 {1 P f(z)|>| Py f(z+y)|}

we have, by 8.5 of Theorem3.2and (3.3 of Lemmas3.1, that there exists a constafi} depending only
onp such that

p
(4.10) /Rd I(z)dzx < C, /Rd |f(x)|Pda.
Now observe that
éhar = [ (Pof(a+y) — Pf(2)v(dy)dt
0 {| Pt f(z)|>| Py f(z+y)|}

-/ (Puf(a+3) = P @PIPS @2 P (0 P(dy)i
0 JH{IPf@)>|Pf(z+y)[}

f* (@) P (),

IN

where we used the fact that< p < 2. Withr = 2/(2 — p) andr’ = 2/p so thatl < r,r’ < co and
1/r+1/r' = 1, we can integrate both sides of this inequality and applidelts inequality to obtain

r(2—p)

G(f)(wyde < @) I(@)P/? da

R4 R4

( ) f*(x)de) e (/Rd I(x)d:c) v
(%) o ([uera) " ([ wera)”

P /2 )P da
(&) o[ rere.

where in the last inequality we used Lemgha and the Hardy-Stein bound.(L0. This gives

IN

2

IN

p(2—p)

(2-p)

@11 Gl < (525) T i <<z

In order to prove the left-hand side af.), we fix nonzergf € LP(R?) and lets > 0. Definef, := P, f
andgs = |fs|®~Ysgn f,. By ultracontractivity,f, € L?>(R%) andg, € L>®(R%). Furthermore, for
q=p/(p— 1) we have|gsll, = || fs[l5~" and

£ = [ F@a @)



HARDY-STEIN IDENTITIES AND SQUARE FUNCTIONS FOR SEMIGROLS? 13
Let o, := 1p(0,n)9s- Sincey, is boundedy,, € L?(R?) foralln > 1. By (4.1) and @.2),
1 2 2 1 2 2
[ 1@pnle)dn = 3017+ eally = 1 = eall) = UG + )1 = 16U = 2l
=[] [ (Pse ) = P @) Pepue ) = Prgala)wldy)ate
0
=[] (Pufo(@+ ) — Pufo(2))(Pupa(w + y) — Pupn(w))v(dy)dtda
R4 JO {IP: fs(x)|>| Pt fs (x+y) |}

Sz/w G(f)(@)G(pn)(@)dz < 2| G(£:)I1G(@n)lo-

In the last line we used the Cauchy-Schwarz inequality aoldlét’s inequality. Finally, since > 2, by
Lemma4.2we have|G(pn)|lq < Cll¢nll; and so

(4.12) | 1@en(@)ds < CIGU hllenll
By the monotone convergendgs,. |l — |lgsllq @sn — oo, and the left-hand side oft(12) converges to
| £s][2. This gives
1£:1% < CIG(f)llplgslla = CUGEplF L
Dividing by || f.[|5~" we obtain| f,[|, < C||C~¥(fs)||p. We lets — 0in

- 1/2
é s) — Pt €T _Pt T 2Vd d .
7 </ ‘/{|Ptf(1)>Pnf(m+y)}( fle+y) = P f(z))v(dy) t)

The monotone convergence and strong continuiti,dh L?(R?) yield (4.9). O
Proof of Theoremd.1. The result combines Lemn#a3and Lemmat.5. O

Itis well-known that the classical Littlewood-Paley optera’.. constructed from harmonic functions is
not bounded orl.?, if 1 < p < 2. An explicit example for this failure is presented i].[ Inspired by P]
we show that the square operat@ralso fails to be bounded ob?, if 1 < p < 2. Thus,G andG differ
significantly.

Example 2. Ford > 2 andz € R? we leth(z) = |z|~(*D/2 and f(2) = h(z)1};<;. We have that
f € LP(RY) for1 < p < 2d/(d + 1). Let P; be the rotationally invariant Cauchy (Poisson) semigroup o
R?. That s, the semigroup of the-stable processes with= 1 with transition density

t
(2 + |z —y|?

pe(x,y) =Ca

yE

whereC; = T'((d + 1)/2)7~(¢+1/2_ Sinceh is locally integrable orR? and vanishes at infinity, the
function
h( zeR? t=0,

is well defined and continuous except(att) = (0,0). We see that is the classical harmonic extension
of h to the upper half-space R?*!. Forz € R? ands,t > 0 we let

o) = / P, ) () dy.
B(0,1/s)

Pih R% t>0
ofo.) ;:{ e
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From scaling it follows that

t
Pf(x) = Cq / —h(y)dy
BOD (£ + |z — y[?) 3

1 1
ai1 dy

BO 14 (1 + o/t — y/t2) = ly/t]
= ¢—(d+1)/ ve(x/t, 1),

_ t—(d+1)/26

and that
v(z, t) =t~ @D 202 /t.1), 2z eRY t>0.
We have
(Pif(y) — P f(x))?
G(f)(x Ad—l/ y |I_ Tyt
ve(y/t, 1) — v (x/t, 1))2
= Ad 1 / /Rd td+1|$ —yldt dydt
ve(2,1) — vy (x/t,1))2
4.13 = _ dzdt
(4.13) =Aa 1/ /Rd t|x—tz|d+1 zat,

whereA,, 1 is the constant inA.11). Observe that;(z,1) ~ v(z,1) > 0, for all z € R?, ast N\, 0.
Furthermore,

vi(z/t,1) <v(z/t,1) =t = v(z,t) >0 fort\,0, z # 0.

Applying Fubini’s theorem in4.13 we see that?(f) = co. On the other hand(f) € L” for every
1< p<2d/(d+1),as follows from Theorem.1 O

5. APPLICATION TOLEVY MULTIPLIERS

Among the many applications of classical square functioasteose to Fourier multipliers. Accordingly,
in this section we prové? boundedness for a class of Fourier multipliers that arissimection to Lévy
processes. The multipliers were first studieddjgnd subsequently irb] and [1] where explicitL.? bounds
were proved by using Burkholder’s sharp inequalities fortingale transforms. These multipliers include
the differences of second order Riesz transforRfs;- R3, for which the bounds given irb] and [1] were
already known to be best possible. Below we defivéboundedness of the operators in a different way by
using our square function inequalities and the representaf Fourier multipliers fromIJ.

As previously, we consider a symmetric pure-jump Lévy pssq X;,¢ > 0} onR? with the semi-
group(P;) and (symmetric) Lévy measuresatisfying HW). Recall from @.3) that the Lévy-Khintchine
exponentis

P(€) = /]Rd (1 —cos(é-z))v(de), €&eRY

Let ¢(t,y) be a bounded function of0,c0) x R%. Letl < p,q < oo and]lg + % = 1. Forf €
LP(RY) N L2(RY) andh € LI(RY) N L?(R?), we consider

6. At = [ [ ] P - RA@IRRG ) - P gvidydod

Although not needed for our argument here, it should be pdinut that this quantity arises i [from the
Itd isometry after taking inner products of the martingadasform off by the functionp and the martingale
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corresponding ta (see [., Theorem 3.4] for more details on this pairing). Here we plsterve that the
integral is absolutely convergent, b4.{) and Cauchy-Schwarz inequality. BY.9) and Cauchy-Schwarz,

AERL < ol [ [ [ 1RG0 = P PG )~ P () dode

IN

2]l oc / / / Pof (x4 y) — Pof (2)|Pehla + y) — Poh(a)|v(dy)dida
R4 JO {IPt f(x)|>|Pef(x+y)|}

IN

2oll [ | GG @) do.
Assumingl < p < 2, we have2 < ¢ < oo, and by Holder inequality and Theorefil we get

AL < 208l lGNIPIGMR g < Colldlloolf I1nl1Allg-
If 2 < p < o, thenl < ¢ < 2, and we similarly have

AL < 208l IGNIPIGMIG < Colldlloolf I1nl1Allg-
By the Riesz representation theorem, there is a uniquerlmgeratorS, on LP(R9) such thatA(f, g) =

(So.f9), and]| Sy < Cpl|@||oc-
The computation of the symbol of the multiplier is now exa@s in [, p.1134] where it is done for
arbitrary Lévy measures. In our case, Plancherel’s ideyiglds

62 M0 = ot [ {7 e s apa patan | s
= e [ {2 [T 0 - ot otepamtan | F©de
S N GG GES

where

69 m(©) =2 [ (= costeen) ([ e o) wiay).

Thus, S, is anLP—Fourier multiplier Withs/’;f(g) =m(&)f(€), f e LN LP, and||m|| s < ||§]lco- If ¢S
independent of, then we further get
() = Jre (=08 (€ 9)) 6Qy)v(dy)
Jra (L= cos(&-y))v(dy)
the symbols of §]. Typical examples obtained in this way are the Marcinkeamultipliers [] given by

B (91
&) = e e

where0 < a < 2andj =1,...,d.
Taking¢ = 1, the above calculations give

Corollary 5.1. If f € LP(R?) N L*(R?),1 < p < 2,h € LI(R?) N L*(R?), ¢ = 25, then
(5. [ f@h@ysl <2 [ GG < AGN1IGH,
Similarly, if f € LP(R?) N L*(R?), 2 < p < oo, h € LY(R?) N L*(R?) andgq = S5, then

(55) [ f@h@yisl <2 [ GG < AGNIIGD,
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