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5 HARDY-STEIN IDENTITIES AND SQUARE FUNCTIONS FOR SEMIGROUPS

RODRIGO BAÑUELOS, KRZYSZTOF BOGDAN, AND TOMASZ LUKS

ABSTRACT. We prove a Hardy-Stein type identity for the semigroups of symmetric, pure-jump Lévy processes.
Combined with the Burkholder-Gundy inequalities, it givestheLp two-way boundedness, for1 < p < ∞,
of the corresponding Littlewood-Paley square function. The square function yields a direct proof of theLp

boundedness of Fourier multipliers obtained by transformsof martingales of Lévy processes.

1. INTRODUCTION

Littlewood and Paley introduced the square functions to harmonic analysis in [21]. Many applications
and intrinsic beauty of the subject brought about enormous literature, which would be impossible to review
here in a reasonably complete way. For results on classical square functions we refer the reader to Zygmund
[33] and Stein [30], [31]. In particular, [30] uses harmonic functions on the upper half-space and the related
Gaussian and Poisson semigroups to develop Littlewood-Paley theory for theLp spaces. In [31] Stein
employs more general symmetric semigroups in a similar manner. He uses square functions defined in
terms of the generalized Poisson semigroup, that is the original semigroup subordinated in the sense of
Bochner by the1/2-stable subordinator [27]. He also proposes square functions defined in terms of time
derivatives of the original semigroup. Similarly, Meyer [23] employs the generalized Poisson semigroup,
and Varopoulos in [32] uses time derivatives of the original semigroup.

It may be helpful to note that Littlewood-Paley theory and square functions (including the Lusin area
integral) are auxiliary for studyingLp and other function spaces, Fourier multipliers theorems, partial dif-
ferential equations and boundary behavior of functions. This explains, in part, the large variety of square
functions used in literature toward different goals. At thesame time the multipliers and PDEs manage-
able by a square function depend on the semigroup employed inits definition, which motivates the study
of square functions specifically related to a given semigroup. We also note that square functions usually
combine thecarré du champcorresponding to the semigroup [23] and integration against the semigroup or
its Poisson subordination.

It is well-known that the probabilistic counterpart of square functions is the quadratic variation of the
martingales. Similarly, the Littlewood-Paley inequalities for square functions may be considered analytic
analogues of the Burkholder-Davis-Gundy inequalities, which relate theLp integrability of the martingale
and its maximal function to theLp integrability of its quadratic variation. The probabilistic connections to
Littlewood-Paley theory have been explored by countless authors for many years. For a highly incomplete
list of results, we refer the reader to Stein [31], Meyer [23], [22], [24], Varopoulos [32], Bañuelos [3],
Bañuelos and Moore [8], Bennett [9], Bouleau and Lamberton [14], Karli [ 16], Kim and Kim [18], Krylov
[20], and the many references given in these papers.

In the analytic, as opposed to probabilistic, realm theLp boundedness of the classical Littlewood-Paley
square functions can be obtained from the Calderón-Zygmund theory of singular integrals, as done in Stein
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[30, pp. 82-84]. The singular integral approach can also be usedfor a wide range of Littlewood-Paley
square functions constructed from volume preserving dilations of approximations to the identity. For this
(well-known) approach, we refer the reader to [8]. An alternative beautiful way to proveLp boundedness
in the classical case for1 < p < 2 is via the so called Hardy-Stein identities. This approach is employed
in Stein [30, pp. 86-88] and, outside of some standard maximal function estimates that hold in very general
settings when the Hardy-Littlewood maximal function is replaced by the semigroup maximal function, it is
based on the fact that the Laplacian satisfies a special case of what in diffusion theory is often called the
chain rule. That is,∆up = p(p− 1)up−2|∇u|2 + pup−1∆u for 1 < p < ∞ and suitable functionsu;
see [30, Lemma 1, p. 86]. Stein’s proof can be easily adapted to Markovian semigroups whose generators
satisfy the chain rule as discussed in [2], Formula (10). It is also explained in [2] that such chain rule
requires the process to have continuous trajectories, thusruling out the nonlocal operators.

The purpose of the present paper is to prove the two-wayLp bounds for square functions of Markovian
semigroups generated by nonlocal operators. Indeed, we define an intrinsic square functioñG(f) for such
semigroups and prove the upper and lower boundedness inLp. The square function thus characterizes the
Lp spaces for1 < p < ∞. We like to note a certain asymmetry in the definition ofG̃(f) and the fact that
the more natural and symmetric square functionG(f) fails to be bounded inLp for 1 < p < 2.

Our technique is based on new Hardy-Stein identities for theconsidered semigroups (which replace the
chain rule for1 < p ≤ 2) and on Burkholder-Gundy inequalities for suitable martingales driven by the
stochastic processes corresponding to those semigroups (these are important for2 ≤ p < ∞). Once the
upper bound inequalities are obtained, the lower bound inequalities may be proved by polarization and
duality. Our Hardy-Stein identities are inspired by those given in [12] for harmonic and conditionally
harmonic functions of the Laplacian and the fractional Laplacian, but the present setting is distinctively
different.

The paper may be considered as a streamlined approach from semigroups to Hardy-Stain identities to
square functions to multiplier theorems. To avoid certain technical problems our present results are re-
stricted to the (convolution) semigroups of symmetric, pure-jump Lévy processes satisfying the Hartman-
Wintner condition. The results should hold in much more general setting, but the scope of the extension is
unclear at this moment. As mentioned, we give applications to theLp-boundedness of Fourier multipliers.
Namely, we recover the results of [1], [5], [6], where Fourier multipliers were constructed by tampering
with jumps of Lévy processes with symmetric Lévy measure.Our present approach to Fourier multipliers
is simpler than in those papers because we do not use Burkholder’s inequalities for martingale transforms.
While the approach does not yield sharp constants inLp comparisons, it should be of interest in applications
to multipliers which do not necessarily arise from martingale transforms.

We note in passing that the approach to Fourier multiplers via square functions has been used in various
settings to prove bounds for operators that arise from martingale transforms, such as Riesz transforms and
other singular integrals. For some recent application of this idea, see [25, Lemma 1] and [17, proof of
Theorem 1.1], where different Littlewood-Paley square functions are employed to proveLp–boundedness
for operators arising from martingale transforms. We also note that the constants in ourLp estimates of the
square functions and Fourier multipliers depend only onp ∈ (1,∞) and in particular they do not depend on
the dimension ofRd. It is interesting to note that our applications, unlike those presented in Stein [30] for his
proof of the Hörmander multiplier theorem, do not depend onpointwise comparisons of Littlewood-Paley
square functions before and after applying the multiplier.Instead, it suffices to have an integral control of
the quantities involved, because we can use the isometry property of the square function onL2 and the usual
pairing to define and study the multiplier. In particular, inapplications we only use two square functions
G̃(f) andG(f), rather than a whole family of square functions.

The structure of the paper is as follows. In§2 we introduce the considered semigroups and we recall
their basic properties. In§3 we prove the Hardy-Stein identities. In§4 we define the square functions and
give their upper and lower bounds inLp. In §5 we present applications to Fourier multipliers.
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2. PRELIMINARIES

We use “:=” to emphasize definitions, e.g.,a ∧ b := min{a, b} anda ∨ b := max{a, b}. For two
nonnegative functionsf andg on the same domain we writef ≈ g if there is a positive numberc ≥ 1 such
thatc−1 g ≤ f ≤ c g (uniformly for all arguments involved). All the sets and functions considered in this
work are assumed real-valued and Borel measurable, unless stated otherwise.

We consider the Euclidean spaceRd with dimensiond ≥ 1 and thed-dimensional Lebesgue measure
dx. The Euclidean scalar product and norm onR

d are denoted byx · y and|x|. For everyp ∈ [1,∞) we let
Lp := Lp(Rd, dx) be the collection of all the (real-valued Borel-measurable) functionsf onRd with finite
norm

‖f‖p :=
[∫

Rd

|f(x)|pdx
]1/p

.

As usual,‖f‖∞ denotes the essential supremum of|f |. Forp = 2 we use the usual scalar product onL2,

〈f, g〉 :=
∫

Rd

f(x)g(x)dx.

Let ν be a measure onRd such thatν({0}) = 0 and

(LM)
∫

Rd

(1 ∧ |y|2)ν(dy) <∞.

In short:ν is a Lévy measure. We assume thatν is symmetric: for all (Borel) setsB ⊂ R
d,

(S) ν(B) = ν(−B).

For later convenience we note that given of nonnegativity orabsolute integrability of functionk,

(2.1)
∫ ∫

k(x, y)ν(dy)dx =

∫ ∫
k(x,−y)ν(dy)dx =

∫ ∫
k(x+ y,−y)ν(dy)dx.

Here we used the symmetry ofν, Fubini’s theorem and the translation invariance of the Lebesgue measure.
In effect the variables in (2.1) are changed according to(x, y, x+ y) 7→ (x+ y,−y, x). As a consequence,∫ ∫

1|k(x)|>|k(x+y)||k(x+ y)− k(x)| |h(x+ y)− h(x)|ν(dy)dx

=
1

2

∫ ∫
|k(x) − k(x+ y)| |h(x) − h(x+ y)|ν(dy)dx,(2.2)

wherek, h are arbitrary. We define

(2.3) ψ(ξ) =

∫

Rd

(1− cos(ξ · x)) ν(dx), ξ ∈ R
d,

Clearly,ψ(−ξ) = ψ(ξ) for all ξ. Finally, we shall assume the following Hartman-Wintner condition onν:

(HW) lim
|ξ|→∞

ψ(ξ)

log |ξ| = ∞.

Below we work precisely under these three assumptions (LM), (S) (HW), except in specialized examples.
We let

(2.4) pt(x) = (2π)−d
∫

Rd

e−iξ·xe−tψ(ξ)dξ, t > 0, x ∈ R
d.

Clearly,pt(−x) = pt(x) for all x andt, andpt(x) ≤ pt(0) → 0 ast → ∞. By the characterization of the
infinitely divisible distributions, i.e. the Lévy-Khintchine formula,pt is a density function of a probability
measure onRd (see [11] for a direct construction),∫

Rd

pt(x)dx = 1.
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The Fourier transform ofpt is

(2.5) p̂t(ξ) :=

∫

Rd

eiξ·xpt(x)dx = e−tψ(ξ), ξ ∈ R
d, t > 0.

By (2.4) and (HW), pt(x) is smooth inx andt. By (2.5), pt form a convolution semigroup of functions:

pt ∗ ps = pt+s.

For notational convenience we let

pt(x, y) = pt(y − x), x, y ∈ R
d, t > 0.

From the above discussion we have the following symmetry property

(2.6) pt(x, y) = pt(y, x) , x, y ∈ R
d, t > 0,

the Chapman–Kolmogorov equations

(2.7)
∫

Rd

ps(x, y)pt(y, z)dy = ps+t(x, z), x, z ∈ R
d, s, t > 0

and the Markovian property

(2.8)
∫

Rd

pt(x, y)dy =

∫

Rd

pt(x, y)dx = 1.

In fact, pt is a transition probability density of a symmetric, pure jump Lévy process{Xt, t ≥ 0} with
values inRd and the characteristic function given by

E
[
eiξ·Xt

]
= e−tψ(ξ), t ≥ 0.

The functionψ is called thecharacteristicor Lévy-Khintchine exponentof Xt. For an initial statex ∈ R
d,

a Borel setA ⊂ R
d and a functionf onRd we let

Px(Xt ∈ A) := P(Xt + x ∈ A), Exf(Xt) := Ef(Xt + x).

It is well-known that

Ptf(x) := Exf(Xt) =

∫

Rd

pt(x, y)f(y)dy

defines a Feller semigroup onC0(R
d), the space of continuous functions onRd vanishing at infinity. That

is,PtC0(R
d) ⊂ C0(R

d) for all t > 0, and(Pt) is strongly continuous:‖Ptf − f‖∞ → 0 ast → 0 for all
f ∈ C0(R

d). We letL be the corresponding infinitesimal generator of(Pt):

Lf := lim
tց0

Ptf − f

t
.

Here the limit is taken in the supremum norm. LetD(L) be the domain ofL. ThenC2
0 (R

d) ⊂ D(L), where

C2
0 (R

d) :=

{
f ∈ C2(Rd) ∩ C0(R

d) :
∂f

∂xi
,
∂2f

∂xi∂xj
∈ C0(R

d), 1 ≤ i, j ≤ d

}
.

We similarly define the spacesCk0 (R
d), k = 1, 2, 3, . . ., and their intersectionC∞

0 (Rd). By [26, Theorem
31.5] and the symmetry ofν, the generatorL satisfies

(2.9) Lf(x) = lim
εց0

∫

|y|>ε

(f(x+ y)− f(x)) ν(dy), f ∈ C2
0 (R

d), x ∈ R
d.

By Jensen’s inequality and Fubini-Tonelli,(Pt) is also a semigroup of contractions onLp for every1 ≤
p <∞, that is,‖Ptf‖p ≤ ‖f‖p. Furthermore,(Pt) is strongly continuous onLp for every1 ≤ p <∞. By
[19, Theorem 2.1] we havept(x, ·) ∈ C∞

0 (Rd) ∩ L1(Rd) for all x ∈ R
d andt > 0. In fact it follows from

[19, the proof of Theorem 2.1] that for fixedt > 0 andx ∈ R
d, pt(x) = ϕ ∗ p̃(x), whereϕ is a function in

the Schwarz classS(Rd), andp̃ is a probability measure. Hence, iff ∈ Lp(Rd) for some1 ≤ p <∞, then
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Ptf ∈ Lp(Rd) ∩ C∞
0 (Rd). Sincept(x, y) ≤ pt(0), we have thatPt : L2(Rd) → L∞(Rd) is bounded for

all t > 0. This property is called ultracontractivity. For more on this topic, see Davies [15].

Example 1. The above assumptions are satisfied for the semigroup of manyLévy processes and in par-
ticular for the semigroup of the isotropic symmetric stableLévy processes, associated with the fractional
Laplacian. Indeed, as is well-known, the transition density of these processes for0 < α < 2, can be written
as

(2.10) p
(α)
t (x, y) = p

(α)
t (x− y) =

∫ ∞

0

1

(4πs)d/2
e

−|x−y|2

4s η
α/2
t (s) ds,

whereηα/2t (s) is the density for theα/2-stable subordinator [11]. From this it follows that for eacht > 0,
p
(α)
t (x) is a radially decreasing function ofx, and

p
(α)
t (x) ≤ p

(α)
t (0) =

p1(0)

tα/d
<∞.

In particular the corresponding semigroup is ultracontractive. Its Lévy measure is

ν(dy) = Ad,−α|y|−d−αdy, y ∈ R
d,

where

(2.11) Ad,−α = 2αΓ
(
(d+ α)/2

)
π−d/2/|Γ(−α/2)|.

Our assumptions also hold for many other semigroups obtained by subordination of the Brownian motion
[27] and for the more general unimodal Lévy processes [13], provided they satisfy the so-called weak lower
scaling condition [13]. �

We shall need the following fundamental inequality of Stein[29] which holds for symmetric Markovian
semigroups.

Lemma 2.1. For f ∈ Lp, 1 < p ≤ ∞, define the maximal functionf∗(x) = supt |Ptf(x)|. Then,

(2.12) ‖f∗‖p ≤
p

p− 1
‖f‖p,

where the right hand side is just‖f‖∞, if p = ∞.

We note that Stein [29] gives an unspecified constant depending only onp for this inequality. For our ap-
plications here this is sufficient, however it is well-knownthat the inequality actually holds with the explicit
constant given above. In fact, this is nothing more than the constant in Doob’s inequality for martingales.
The latter is the tool used in [31, Chapter 4] for the proof of the inequality. For a shorter argument using
continuous time martingales and Doob’s inequality, we refer the reader to Kim [17, Proposition 2.3]. Kim’s
proof is the zero-potential case of the proof given in Shigekawa [28] for Feynman–Kac semigroups. This
proof (the zero-potential case of Shigekawa) has been knownto experts for many years.

3. HARDY-STEIN IDENTITY

The following elementary results are given in [12]. Let 1 < p <∞. Fora, b ∈ R we set

(3.1) F (a, b) = |b|p − |a|p − pa|a|p−2(b− a) .

HereF (a, b) = |b|p if a = 0, andF (a, b) = (p − 1)|a|p if b = 0. For instance, ifp = 2, thenF (a, b) =
(b− a)2. Generally,F (a, b) is the second-order Taylor remainder ofR ∋ x 7→ |x|p, therefore by convexity,
F (a, b) ≥ 0. Furthermore, for1 < p <∞ andε ∈ R we define

(3.2) Fε(a, b) = (b2 + ε2)p/2 − (a2 + ε2)p/2 − pa(a2 + ε2)(p−2)/2(b − a) .

SinceFε(a, b) is the second-order Taylor remainder ofR ∋ x 7→ (x2 + ε2)p/2, by convexity,Fε(a, b) ≥ 0.
Of course,Fε(a, b) → F0(a, b) = F (a, b) asε→ 0.
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Lemma 3.1 ([12]). For everyp > 1, we have constants0 < cp ≤ Cp <∞ such that

(3.3) cp(b− a)2(|b| ∨ |a|)p−2 ≤ F (a, b) ≤ Cp(b − a)2(|b| ∨ |a|)p−2, a, b ∈ R.

If p ∈ (1, 2), then

(3.4) 0 ≤ Fε(a, b) ≤
1

p− 1
F (a, b) , ε, a, b ∈ R .

The main result of this section is the following Hardy-Steinidentity.

Theorem 3.2. If 1 < p <∞ andf ∈ Lp(Rd), then

(3.5)
∫

Rd

|f(x)|pdx =

∫ ∞

0

∫

Rd

∫

Rd

F (Ptf(x), Ptf(x+ y))ν(dy)dxdt.

Proof. We first prove the theorem assuming thatf ∈ Lp(Rd) ∩ C2
0 (R

d). If 2 ≤ p < ∞, then we proceed
as follows. Let0 ≤ t ≤ T and

ξ(t) = |PT−tf |p.
Thenξ(t) ∈ C2

0 (R
d) ⊂ D(L) for everyt ∈ [0, T ] sincePtf ∈ C2

0 (R
d) for all t ≥ 0. Furthermore, if

u ∈ C2
0 (R

d), then we have

∂

∂xi
|u|p = p|u|p−2uui ,

∂2

∂xj∂xi
|u|p = p(p− 1)|u|p−2ujui + p|u|p−2uuji ,

hence|u|p ∈ C2
0 (R

d). Also, [0, T ] ∋ t 7→ ξ(·)(x) is of classC1 for everyx ∈ R
d as it can be seen from

the following direct differentiation whereL denotes the generator of the semigroup.

d

dt
ξ(t)(x) = pPT−tf(x) |PT−tf(x)|p−2 d

dt
PT−tf(x)

= −pPT−tf(x) |PT−tf(x)|p−2
LPT−tf(x).(3.6)

We have

PT |f |p(x)− |PT f(x)|p =
∫ T

0

d

dt
(Ptξ(t)(x)) dt(3.7)

=

∫ T

0

[Ptξ
′(t)(x) + PtLξ(t)(x)] dt(3.8)

=

∫ T

0

Pt [ξ
′(t) + Lξ(t)] (x)dt.(3.9)

The equality (3.8) requires some explanation. Following [10], we have

Pt+hξ(t+ h)(x) − Ptξ(t)(x)

h
= Pt+hξ

′(t)(x)(3.10)

+ Pt+h

(
ξ(t+ h)− ξ(t)

h
− ξ′(t)

)
(x) +

Pt+hξ(t)(x) − Ptξ(t)(x)

h
.(3.11)

Recall thatξ(t) ∈ D(L). By (3.6), ξ′(t) ∈ C0(R
d) for everyt ∈ [0, T ]. Furthermore, sincePt is strongly

continuous andp ≥ 2, bothLPT−tf andPT−tf |PT−tf |p−2 are continuous mapping[0, T ] toC0(R
d). In
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view of (3.6), [0, T ] ∋ t 7→ ξ′(t) ∈ C0(R
d) is also continuous. Lettingh → 0 in (3.10), we get (3.8). We

then have

[ξ′(t) + Lξ(t)](x) =

∫

Rd

{|PT−tf(x+ y)|p − |PT−tf(x)|p(3.12)

−pPT−tf(x) |PT−tf(x)|p−2
[PT−tf(x+ y)− PT−tf(x)]

}
ν(dy)

=

∫

Rd

F (PT−tf(x), PT−tf(x+ y))ν(dy).

Integrating (3.7) with respect tox and using (2.8) we obtain
∫

Rd

|f(x)|pdx −
∫

Rd

|PT f(x)|pdx =

∫ T

0

∫

Rd

∫

Rd

F (Ptf(x), Ptf(x+ y))ν(dy)dxdt.

But
∫
Rd |PT f(x)|pdx → 0 asT → ∞ because of dominated convergence theorem. Indeed, by (2.12) and

|PT f(x)|p ≤ f∗(x)p for everyx ∈ R
d, and forq = p/(p− 1) by Hölder inequality we have

(3.13)

∣∣∣∣
∫
pT (x, y)f(y)dy

∣∣∣∣ ≤ ‖f‖p
(∫

Rd

pT (x, y)
qdy

)1/q

,

whereas
∫
Rd pT (x, y)

qdy ≤ supx,y∈Rd pT (x, y)
q−1 → 0 asT → ∞. Thus, (3.5) follows.

Suppose1 < p < 2. For0 ≤ t ≤ T andε > 0 we define

ξε(t) =
(
(PT−tf)

2 + ε2
)p/2 − εp.

As in the case2 ≤ p <∞, we conclude thatξε(t) ∈ C2
0 (R

d) ⊂ D(L) for everyt ∈ [0, T ]. Indeed, for any
u ∈ C2

0 (R
d) we have

∂

∂xi

(
u2 + ε2

)p/2
= p

(
u2 + ε2

)(p−2)/2
uui ,

∂2

∂xj∂xi

(
u2 + ε2

)p/2
= p(p− 2)

(
u2 + ε2

)(p−4)/2
u2ujui

+ p
(
u2 + ε2

)(p−2)/2
(ujui + uuji) .

Furthermore,[0, T ] ∋ t 7→ ξε(·)(x) is also of classC1 for everyx ∈ R
d, and

d

dt
ξε(t)(x) = pPT−tf(x)

[
(PT−tf(x))

2 + ε2
](p−2)/2 d

dt
PT−tf(x)

= −pPT−tf(x)
[
(PT−tf(x))

2 + ε2
](p−2)/2

LPT−tf(x).

Thereforeξ′ε(t) ∈ C0(R
d) for everyt ∈ [0, T ], and[0, T ] ∋ t 7→ ξ′ε(t) ∈ C0(R

d) is continuous. We have

PT

(
(f2 + ε2)p/2

)
(x)−

(
(PT f(x))

2 + ε2
)p/2

=

∫ T

0

d

dt
(Ptξε(t)(x)) dt(3.14)

=

∫ T

0

[Ptξ
′
ε(t)(x) + PtLξε(t)(x)] dt =

∫ T

0

Pt [ξ
′
ε(t) + Lξε(t)] (x)dt.(3.15)

Consequently,

[ξ′ε(t) + Lξε(t)](x) =

∫

Rd

{(
(PT−tf(x+ y))2 + ε2

)p/2 −
(
(PT−tf(x))

2 + ε2
)p/2

−pPT−tf(x)
(
(PT−tf(x))

2 + ε2
)(p−2)/2

[PT−tf(x+ y)− PT−tf(x)]
}
ν(dy)

=

∫

Rd

Fε(PT−tf(x), PT−tf(x+ y))ν(dy).
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Integrating (3.14) with respect tox we obtain
∫

Rd

[
PT

(
(f2 + ε2)p/2

)
(x) −

(
(PT f(x))

2 + ε2
)p/2]

dx

=

∫

Rd

(
(f(x)2 + ε2)p/2 − εp

)
dx−

∫

Rd

[(
(PT f(x))

2 + ε2
)p/2 − εp

]
dx

=

∫ T

0

∫

Rd

∫

Rd

Fε(Ptf(x), Ptf(x+ y))ν(dy)dxdt.

Note that the expression above is finite and uniformly bounded with respect toT andε. Indeed, since
0 < p/2 < 1, the functionx 7→ xp/2 is p/2-Hölder continuous on[0,∞), we have

(f(x)2 + ε2)p/2 − εp ≤ cp|f(x)|p,
and (

(PT f(x))
2 + ε2

)p/2 − εp ≤ cp|PT f(x)|p.
Let ε→ 0. In view of (3.4) and dominated convergence (see also [12, Remark 7]) we get

∫

Rd

|f(x)|pdx −
∫

Rd

|PT f(x)|pdx =

∫ T

0

∫

Rd

∫

Rd

F (Ptf(x), Ptf(x+ y))ν(dy)dxdt.

Using the same argument as in the previous part we get
∫
Rd |PT f(x)|pdx → 0 asT → ∞. This together

with the previous case gives (3.5) for all 1 < p <∞ andf ∈ Lp(Rd) ∩ C2
0 (R

d).
We next relax the assumption thatf ∈ Lp(Rd) ∩ C2

0 (R
d). For1 < p <∞ and generalf ∈ Lp(Rd) we

let s > 0. ThenPsf ∈ Lp(Rd) ∩ C∞
0 (Rd), and so by the preceding, discussion

(3.16)
∫

Rd

|Psf(x)|pdx =

∫ ∞

s

∫

Rd

∫

Rd

F (Ptf(x), Ptf(x+ y))ν(dy)dxdt.

By the strong continuity ofPt in Lp(Rd), the left-hand side of (3.16) tends to‖f‖pp ass → 0. The right-
hand side also converges ass→ 0. The theorem follows. �

4. SQUARE FUNCTIONS

Forf ∈ L1(Rd) ∪ L∞(Rd) we let

G(f)(x) :=

(∫ ∞

0

∫

Rd

(Ptf(x+ y)− Ptf(x))
2ν(dy)dt

)1/2

,

and

G̃(f)(x) :=

(∫ ∞

0

∫

{|Ptf(x)|>|Ptf(x+y)|}

(Ptf(x+ y)− Ptf(x))
2ν(dy)dt

)1/2

.

Clearly,0 ≤ G̃(f)(x) ≤ G(f)(x) for everyx. By (3.5) and the symmetry,

(4.1) ‖f‖22 = ‖G(f)‖22 = 2‖G̃(f)‖22.
By polarization, forf, g ∈ L2(Rd) we have

(4.2) 〈f, g〉 =
∫

Rd

∫ ∞

0

∫

Rd

[Ptf(x+ y)− Ptf(x)] [Ptg(x+ y)− Ptg(x)] ν(dy)dtdx.

The main result of this section is the following theorem.

Theorem 4.1. Let1 < p <∞. There is a constantC depending only onp such that

(4.3) C−1‖f‖p ≤ ‖G̃(f)‖p ≤ C‖f‖p, f ∈ Lp(Rd).
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The result is proved below after a sequence of partial results. In another direction, at the end of this
section we show in Example2 thatG is too large to give a characterization ofLp(Rd) for 1 < p < 2.
Nevertheless,‖G(f)‖p ≤ Cp‖f‖p, for 2 ≤ p < ∞, as we now prove by using the Burkholder-Gundy
inequalities.

We start by introducing the Littlewood-Paley functionG∗ which is the conditional expectation of the
quadratic variation of a martingale. For classical harmonic functions in the upper half-space ofR

d, such
objects have appeared many times in the literature, see for example [3], [9]. The construction for the
generalized Poisson semigroups is presented in [32]. Here we simply fixf ∈ C∞

c (Rd), T > 0, and let

Mt = PT−tf(Xt)− PT f(z), 0 < t < T.

When the processXt starts atz ∈ R
d, Mt is a martingale starting at0. Such space-time (parabolic)

martingales were first used for the Brownian motion in Bañuelos and Méndez-Hernández [7] to study
martingale transforms that lead to Fourier multipliers related to the Beurling-Ahlfors operator. They were
then applied in [6, 1] to more general Lévy processes. We recall the properties of Mt here to clarify the use
of the Burkholder-Gundy inequality and to elucidate the origins of our Littlewood-Paley square functions.
For full details, we refer the reader to [1].

Applying the Itô formula (see [1, p. 1118], where this is done for general Lévy processes) wehave that

Mt =

∫ t

0

∫

Rd

[PT−sf(Xs− + y)− PT−sf(Xs−)] Ñ(ds, dy), 0 < t < T.(4.4)

Here
Ñ(t, A) = N(t, A)− tν(A),

andN is a Poisson random measure onR
+ × R

d with intensity measuredt× dν. In fact we take

N(t, A) = #{0 ≤ s ≤ t,∆Xs ∈ A}, t ≥ 0, A ⊂ R
d,

where∆Xs = Xs −Xs− denotes the jump of the process at times > 0. The quadratic variation ofMt is

[M ]t =

∫ t

0

∫

Rd

|PT−sf(Xs− + y)− PT−sf(Xs−)|2dν(y) ds.

For a slightly different representation of (4.4) without using the processN , and for references to Itô’s
formula for processes with jumps, see [4, p. 847].

We now define

G∗(f)(x) =

(∫ ∞

0

∫

Rd

∫

Rd

|Ptf(z + y)− Ptf(z)|2pt(x, z)dzν(dy)dt
)1/2

,

and

G∗,T (f)(x) =

(∫ T

0

∫

Rd

∫

Rd

|Ptf(z + y)− Ptf(z)|2pt(x, z)dzν(dy)dt
)1/2

.

Notice thatG∗,T (f)(x) ր G∗(f)(x) asT → ∞. We claim that

(4.5) G2
∗,T (f)(x) =

∫

Rd

E
x
z

(∫ T

0

∫

Rd

|PT−sf(Xs + y)− PT−sf(Xs)|2ν(dy)ds
)
pT (z, x)dz,

where

E
x
z

(∫ T

0

∫

Rd

|PT−sf(Xs + y)− PT−sf(Xs)|2ν(dy)ds
)

:= Ez

(∫ T

0

∫

Rd

|PT−sf(Xs + y)− PT−sf(Xs)|2ν(dy)ds
∣∣XT = x

)
,
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cf. below. Thus,

G2
∗,T (f)(x) =

∫

Rd

Ez

(
[M ]T

∣∣XT = x
)
pT (z, x)dz =

∫

Rd

(Exz [M ]T ) pT (z, x)dz.

The proof of (4.5) is exactly the same as the proof for harmonic functions in the upper half-space ofRd

given in [3, p. 663]. (See [32] for the more general construction for Poisson semigroups.) Indeed, by the
definition of the conditional distribution ofXs underPz givenXT = x, we have

∫

Rd

E
x
z

(∫ T

0

∫

Rd

|PT−sf(Xs + y)− PT−sf(Xs)|2ν(dy)ds
)
pT (z, x)dz

=

∫

Rd

(∫ T

0

∫

Rd

ps(z, w)pT−s(w, x)

pT (z, x)

∫

Rd

|PT−sf(w + y)− PT−sf(w)|2ν(dy)dwds
)
pT (z, x)dz

=

∫ T

0

∫

Rd

pT−s(w, x)

∫

Rd

|PT−sf(w + y)− PT−sf(w)|2ν(dy)dwds

=

∫ T

0

∫

Rd

∫

Rd

|Psf(w + y)− Psf(w)|2ps(x,w)dwν(dy)ds = G2
∗,T (f)(x).

With (4.5) established, we now apply the martingale inequalities to prove that‖G∗(f)‖p ≤ Cp‖f‖p for
2 ≤ p <∞, which also yields the same result forG(f).

Lemma 4.2. Let2 ≤ p <∞. There is a constantC depending only onp such that‖G(f)‖p ≤ C‖f‖p for
everyf ∈ Lp(Rd).

Proof. Sincep ≥ 2, by Jensen’s inequality we get

∫

Rd

Gp∗,T (f)(x)dx

≤
∫

Rd

∫

Rd

E
x
z

(∫ T

0

∫

Rd

|PT−sf(Xs + y)− PT−sf(Xs)|2ν(dy)ds
)p/2

pT (z, x)dzdx

=

∫

Rd

Ez

(∫ T

0

∫

Rd

|PT−sf(Xs + y)− PT−sf(Xs)|2ν(dy)ds
)p/2

dz.

By the Burkholder-Gundy inequality the last term above is less than

Cp

∫

Rd

Ez |f(XT )− PT f(z)|p dz ≤ Cp

∫

Rd

(Ez |f(XT )|p + PT |f |p(z))dz

=Cp

∫

Rd

PT |f(z)|pdz = Cp‖f‖pp.

By the monotone convergence,

∫

Rd

Gp∗(f)(x)dx = lim
T→∞

∫

Rd

Gp∗,T (f)(x)dx ≤ Cp‖f‖pp.
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We claim thatG(f)(x) ≤
√
2G∗(f)(x). Indeed, by the semigroup property and Jensen’s inequality,

G2(f)(x) =

∫ ∞

0

∫

Rd

|Ptf(x+ y)− Ptf(x)|2ν(dy)dt

=

∫ ∞

0

∫

Rd

|Pt/2Pt/2f(x+ y)− Pt/2Pt/2f(x)|2ν(dy)dt

≤
∫ ∞

0

∫

Rd

Pt/2|Pt/2f(x+ y)− Pt/2f(x)|2ν(dy)dt

=

∫ ∞

0

∫

Rd

∫

Rd

|Pt/2f(z + y)− Pt/2f(z)|2pt/2(x, z)dzν(dy)dt

= 2

∫ ∞

0

∫

Rd

∫

Rd

|Ptf(z + y)− Ptf(z)|2pt(x, z)dzν(dy)dt.

This completes the proof of the lemma forf ∈ C∞
c (Rd). For arbitraryf ∈ Lp(Rd), we choosefn ∈

C∞
c (Rd) such thatfn → f in Lp. The inequality‖G(f)‖p ≤ C‖f‖p follows from Fatou’s lemma. �

For every2 ≤ p <∞ andf ∈ Lp(Rd) we have by (3.5), (3.3) and (2.2),

‖f‖pp ≍
∫

Rd

∫ ∞

0

∫

Rd

(Ptf(x+ y)− Ptf(x))
2(|Ptf(x+ y)| ∨ |Ptf(x)|)p−2ν(dy)dtdx

= 2

∫

Rd

∫ ∞

0

∫

{|Ptf(x)|>|Ptf(x+y)|}

(Ptf(x+ y)− Ptf(x))
2|Ptf(x)|p−2ν(dy)dtdx

≤ 2

∫

Rd

f∗(x)p−2G̃(f)(x)2dx.(4.6)

Lemma 4.3. Suppose2 ≤ p <∞. There is a constantC depending only onp such that

(4.7) C−1‖f‖p ≤ ‖G̃(f)‖p ≤ C‖f‖p, f ∈ Lp(Rd).

Proof. SinceG̃(f)(x) ≤ G(f)(x), the right-hand side of (4.7) follows immediately from Lemma4.2. By
Hölder’s inequality,

∫

Rd

f∗(x)p−2G̃(f)(x)2dx ≤
[∫

Rd

(f∗(x)p−2)
p

p−2 dx

] p−2
p
[∫

Rd

(G̃(f)(x)2)
p

2 dx

] 2
p

= ‖f∗‖p−2
p ‖G̃(f)‖2p ≤ C‖f‖p−2

p ‖G̃(f)‖2p.
By (4.6) and (2.12) we get‖f‖pp ≤ C‖f‖p−2

p ‖G̃(f)‖2p, which yields the result. �

Combining Lemma4.2and Lemma4.3we obtain the following.

Corollary 4.4. Suppose2 ≤ p <∞. There is a constantC depending only onp such that

(4.8) C−1‖f‖p ≤ ‖G(f)‖p ≤ C‖f‖p, f ∈ Lp(Rd).

We now discuss the regime1 < p < 2.

Lemma 4.5. Suppose1 < p < 2. There is a constantC depending only onp such that

(4.9) C−1‖f‖p ≤ ‖G̃(f)‖p ≤ C‖f‖p, f ∈ Lp(Rd).

Proof. We first consider the right-hand inequality. Our proof proceeds exactly as the proof in [30, pp.
87-88] for the boundedness of the Littlewood-Paley square functiong in the range1 < p < 2. Here,
however, instead of using the Hardy-Littlewood maximal function and its boundedness onLp(Rd), we use
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the maximal function of the semigroup and Lemma2.1. Also, in place of the identity Lemma 2 of [30,
p.88], we use our Hardy-Stein identity. More precisely, setting

I(x) =

∫ ∞

0

∫

{|Ptf(x)|>|Ptf(x+y)|}

(Ptf(x+ y)− Ptf(x))
2|Ptf(x)|p−2ν(dy)dt

we have, by (3.5) of Theorem3.2and (3.3) of Lemma3.1, that there exists a constantCp depending only
onp such that

(4.10)
∫

Rd

I(x)dx ≤ Cp

∫

Rd

|f(x)|pdx.

Now observe that

G̃(f)(x)2 =

∫ ∞

0

∫

{|Ptf(x)|>|Ptf(x+y)|}

(Ptf(x+ y)− Ptf(x))
2ν(dy)dt

=

∫ ∞

0

∫

{|Ptf(x)|>|Ptf(x+y)|}

(Ptf(x+ y)− Ptf(x))
2|Ptf(x)|p−2|Ptf(x)|2−pν(dy)dt

≤ f∗(x)2−pI(x),

where we used the fact that1 < p < 2. With r = 2/(2 − p) andr′ = 2/p so that1 < r, r′ < ∞ and
1/r + 1/r′ = 1, we can integrate both sides of this inequality and apply Hölder’s inequality to obtain

∫

Rd

G̃(f)(x)pdx ≤
∫

Rd

f∗(x)
p(2−p)

2 I(x)p/2 dx

≤
(∫

Rd

f∗(x)
p
dx

)(2−p)/2(∫

Rd

I(x)dx

)p/2

≤
(

p

p− 1

) p(2−p)
2

Cp/2p

(∫

Rd

|f(x)|p dx
)(2−p)/2 (∫

Rd

|f(x)|p dx
)p/2

=

(
p

p− 1

) p(2−p)
2

Cp/2p

∫

Rd

|f(x)|p dx,

where in the last inequality we used Lemma2.1and the Hardy-Stein bound (4.10). This gives

(4.11) ‖G̃(f)‖p ≤
(

p

p− 1

) (2−p)
2

C1/2
p ‖f‖p, 1 < p < 2.

In order to prove the left-hand side of (4.9), we fix nonzerof ∈ Lp(Rd) and lets > 0. Definefs := Psf
andgs := |fs|(p−1) sgn fs. By ultracontractivity,fs ∈ L2(Rd) andgs ∈ L∞(Rd). Furthermore, for
q = p/(p− 1) we have‖gs‖q = ‖fs‖p−1

p and

‖fs‖pp =
∫

Rd

fs(x)gs(x)dx.
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Letϕn := 1B(0,n)gs. Sincegs is bounded,ϕn ∈ L2(Rd) for all n ≥ 1. By (4.1) and (2.2),
∫

Rd

fs(x)ϕn(x)dx =
1

4
(‖fs + ϕn‖22 − ‖fs − ϕn‖22) =

1

4
(‖G(fs + ϕn)‖22 − ‖G(fs − ϕn)‖22)

=

∫

Rd

∫ ∞

0

∫

Rd

(Ptfs(x+ y)− Ptfs(x))(Ptϕn(x+ y)− Ptϕn(x))ν(dy)dtdx

=2

∫

Rd

∫ ∞

0

∫

{|Ptfs(x)|>|Ptfs(x+y)|}

(Ptfs(x+ y)− Ptfs(x))(Ptϕn(x + y)− Ptϕn(x))ν(dy)dtdx

≤2

∫

Rd

G̃(fs)(x)G(ϕn)(x)dx ≤ 2‖G̃(fs)‖p‖G(ϕn)‖q.

In the last line we used the Cauchy-Schwarz inequality and H¨older’s inequality. Finally, sinceq > 2, by
Lemma4.2we have‖G(ϕn)‖q ≤ C‖ϕn‖q and so

(4.12)
∫

Rd

fs(x)ϕn(x)dx ≤ C‖G̃(fs)‖p‖ϕn‖q.

By the monotone convergence,‖ϕn‖q → ‖gs‖q asn → ∞, and the left-hand side of (4.12) converges to
‖fs‖pp. This gives

‖fs‖pp ≤ C‖G̃(fs)‖p‖gs‖q = C‖G̃(fs)‖p‖fs‖p−1
p .

Dividing by ‖fs‖p−1
p we obtain‖fs‖p ≤ C‖G̃(fs)‖p. We lets→ 0 in

G̃(fs) =

(∫ ∞

s

∫

{|Ptf(x)|>|Ptf(x+y)|}

(Ptf(x+ y)− Ptf(x))
2ν(dy)dt

)1/2

.

The monotone convergence and strong continuity ofPt in Lp(Rd) yield (4.9). �

Proof of Theorem4.1. The result combines Lemma4.3and Lemma4.5. �

It is well-known that the classical Littlewood-Paley operatorG∗ constructed from harmonic functions is
not bounded onLp, if 1 < p < 2. An explicit example for this failure is presented in [9]. Inspired by [9]
we show that the square operatorG also fails to be bounded onLp, if 1 < p < 2. Thus,G̃ andG differ
significantly.

Example 2. For d ≥ 2 andx ∈ R
d we leth(x) = |x|−(d+1)/2 andf(x) = h(x)1|x|≤1. We have that

f ∈ Lp(Rd) for 1 < p < 2d/(d + 1). LetPt be the rotationally invariant Cauchy (Poisson) semigroup on
R
d. That is, the semigroup of theα-stable processes withα = 1 with transition density

pt(x, y) = Cd
t

(t2 + |x− y|2)
d+1
2

,

whereCd = Γ((d + 1)/2)π−(d+1)/2. Sinceh is locally integrable onRd and vanishes at infinity, the
function

v(x, t) :=

{
Pth(x), x ∈ R

d, t > 0,

h(x), x ∈ R
d, t = 0,

is well defined and continuous except at(x, t) = (0, 0). We see thatv is the classical harmonic extension
of h to the upper half-space inRd+1. Forx ∈ R

d ands, t > 0 we let

vs(x, t) =

∫

B(0,1/s)

pt(x, y)h(y)dy.
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From scaling it follows that

Ptf(x) = Cd
∫

B(0,1)

t

(t2 + |x− y|2)
d+1
2

h(y)dy

= t−(d+1)/2Cd
∫

B(0,1)

1

td (1 + |x/t− y/t|2)
d+1
2

1

|y/t| d+1
2

dy

= t−(d+1)/2vt(x/t, 1),

and that

v(x, t) = t−(d+1)/2v(x/t, 1), x ∈ R
d, t > 0.

We have

G(f)(x)2 = Ad,−1

∫ ∞

0

∫

Rd

(Ptf(y)− Ptf(x))
2

|x− y|d+1
dydt

= Ad,−1

∫ ∞

0

∫

Rd

(vt(y/t, 1)− vt(x/t, 1))
2

td+1|x− y|d+1
dydt

= Ad,−1

∫ ∞

0

∫

Rd

(vt(z, 1)− vt(x/t, 1))
2

t|x− tz|d+1
dzdt,(4.13)

whereAd,−1 is the constant in (2.11). Observe thatvt(z, 1) ր v(z, 1) > 0, for all z ∈ R
d, ast ց 0.

Furthermore,

vt(x/t, 1) ≤ v(x/t, 1) = t
d+1
2 v(x, t) → 0 for tց 0, x 6= 0.

Applying Fubini’s theorem in (4.13) we see thatG(f) ≡ ∞. On the other hand,̃G(f) ∈ Lp for every
1 < p < 2d/(d+ 1), as follows from Theorem4.1. �

5. APPLICATION TO L ÉVY MULTIPLIERS

Among the many applications of classical square functions are those to Fourier multipliers. Accordingly,
in this section we proveLp boundedness for a class of Fourier multipliers that arise inconnection to Lévy
processes. The multipliers were first studied in [6] and subsequently in [5] and [1] where explicitLp bounds
were proved by using Burkholder’s sharp inequalities for martingale transforms. These multipliers include
the differences of second order Riesz transforms,R2

1 −R2
2, for which the bounds given in [5] and [1] were

already known to be best possible. Below we deriveLp boundedness of the operators in a different way by
using our square function inequalities and the representation of Fourier multipliers from [1].

As previously, we consider a symmetric pure-jump Lévy process{Xt, t ≥ 0} on R
d with the semi-

group(Pt) and (symmetric) Lévy measureν satisfying (HW). Recall from (2.3) that the Lévy-Khintchine
exponent is

ψ(ξ) =

∫

Rd

(1− cos(ξ · x)) ν(dx), ξ ∈ R
d.

Let φ(t, y) be a bounded function on(0,∞) × R
d. Let 1 < p, q < ∞ and 1

p + 1
q = 1. For f ∈

Lp(Rd) ∩ L2(Rd) andh ∈ Lq(Rd) ∩ L2(Rd), we consider

Λ(f, h) =

∫ ∞

0

∫

Rd

∫

Rd

[Ptf(x+ y)− Ptf(x)][Pth(x+ y)− Pth(x)]φ(t, y)ν(dy)dxdt.(5.1)

Although not needed for our argument here, it should be pointed out that this quantity arises in [1] from the
Itô isometry after taking inner products of the martingaletransform off by the functionφ and the martingale
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corresponding toh (see [1, Theorem 3.4] for more details on this pairing). Here we justobserve that the
integral is absolutely convergent, by (4.1) and Cauchy-Schwarz inequality. By (2.2) and Cauchy-Schwarz,

|Λ(f, h)| ≤ ‖φ‖∞
∫ ∞

0

∫

Rd

∫

Rd

|Ptf(x+ y)− Ptf(x)| |Pth(x+ y)− Pth(x)|ν(dy) dxdt

= 2‖φ‖∞
∫

Rd

∫ ∞

0

∫

{|Ptf(x)|>|Ptf(x+y)|}

|Ptf(x+ y)− Ptf(x)||Pth(x+ y)− Pth(x)|ν(dy)dtdx

≤ 2‖φ‖∞
∫

Rd

G̃(f)(x)G(h)(x) dx.

Assuming1 < p ≤ 2, we have2 ≤ q <∞, and by Hölder inequality and Theorem4.1we get

|Λ(f, h)| ≤ 2‖φ‖∞‖G̃(f)‖p‖G(h)‖q ≤ Cp‖φ‖∞‖f‖p‖h‖q.
If 2 < p <∞, then1 < q < 2, and we similarly have

|Λ(f, h)| ≤ 2‖φ‖∞‖G(f)‖p‖G̃(h)‖q ≤ Cp‖φ‖∞‖f‖p‖h‖q.
By the Riesz representation theorem, there is a unique linear operatorSφ onLp(Rd) such thatΛ(f, g) =
(Sφf, g), and‖Sφ‖ ≤ Cp‖φ‖∞.

The computation of the symbol of the multiplier is now exactly as in [1, p.1134] where it is done for
arbitrary Lévy measures. In our case, Plancherel’s identity yields

Λ(f, h) = (2π)−d
∫

Rd

{∫

Rd

∫ ∞

0

e−2tψ(ξ)|e−iξ·y − 1|2φ(t, y)dtν(dy)
}
f̂(ξ)ĥ(ξ)dξ(5.2)

= (2π)−d
∫

Rd

{
2

∫

Rd

∫ ∞

0

e−2tψ(ξ) (1− cos(ξ · y))φ(t, y)dtν(dy)
}
f̂(ξ)ĥ(ξ)dξ

= (2π)−d
∫

Rd

m(ξ)f̂(ξ)ĥ(ξ)dξ,

where

(5.3) m(ξ) = 2

∫

Rd

(1− cos(ξ · y))
(∫ ∞

0

e−2tψ(ξ)φ(t, y)dt

)
ν(dy).

Thus,Sφ is anLp–Fourier multiplier withŜφf(ξ) = m(ξ)f̂(ξ), f ∈ L2 ∩Lp, and‖m‖∞ ≤ ‖φ‖∞. If φ is
independent oft, then we further get

m(ξ) =

∫
Rd (1− cos (ξ · y))φ(y)ν(dy)∫

Rd (1− cos (ξ · y)) ν(dy) ,

the symbols of [5]. Typical examples obtained in this way are the Marcinkiewicz multipliers [6] given by

m(ξ1, . . . , ξd) =
|ξj |α

|ξ1|α + . . .+ |ξd|α
,

where0 < α < 2 andj = 1, . . . , d.
Takingφ ≡ 1, the above calculations give

Corollary 5.1. If f ∈ Lp(Rd) ∩ L2(Rd), 1 < p ≤ 2, h ∈ Lq(Rd) ∩ L2(Rd), q = p
p−1 , then

(5.4) |
∫

Rd

f(x)h(x)dx| ≤ 2

∫

Rd

G̃(f)G(h)dx ≤ 2‖G̃(f)‖p‖G(h)‖q.

Similarly, if f ∈ Lp(Rd) ∩ L2(Rd), 2 < p ≤ ∞, h ∈ Lq(Rd) ∩ L2(Rd) andq = p
p−1 , then

(5.5) |
∫

Rd

f(x)h(x)dx| ≤ 2

∫

Rd

G̃(f)G(h)dx ≤ 2‖G(f)‖p‖G̃(h)‖q,
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[8] Rodrigo Bañuelos and Charles N. Moore.Probabilistic behavior of harmonic functions, volume 175 ofProgress in Mathematics.

Birkhäuser Verlag, Basel, 1999.
[9] Andrew G. Bennett. Probabilistic square functions and apriori estimates.Trans. Amer. Math. Soc., 291(1):159–166, 1985.

[10] Krzysztof Bogdan, Yana Butko, and Karol Szczypkowski.Majorization, 4G Theorem and Schrödinger perturbations.ArXiv
e-prints, November 2014.

[11] Krzysztof Bogdan, Tomasz Byczkowski, Tadeusz Kulczycki, Michal Ryznar, Renming Song, and Zoran Vondraček.Potential
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