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REPRESENTATION SPACES FOR CENTRAL EXTENSIONS AND

ALMOST COMMUTING UNITARY MATRICES

ALEJANDRO ADEM AND MAN CHUEN CHENG

Abstract. Let Γ denote a central extension of the form 1 → Zr → Γ → Zn → 1. In this
paper we enumerate and describe the structure of the connected components of the spaces
of homomorphisms Hom(Γ, U(m)) and the associated moduli spaces Rep(Γ, U(m)), where
U(m) is the group of m×m unitary matrices.

1. Introduction

The space of ordered commuting n–tuples in a Lie group G can be analyzed using a variety
of methods from algebraic topology and representation theory (see [1]); in particular these
spaces can be identified with Hom(Zn, G) ⊂ Gn. In this paper our goal is to consider a
more complicated source group, namely the space of homomorphisms Hom(Γ, G) where Γ
is no longer abelian, but rather a central extension of the form 1 → Zr → Γ → Zn → 1.
A key ingredient we will use is the notion of spaces of almost commuting elements (see
[7] and [3]). We focus our attention on the unitary groups, for which we obtain complete
descriptions. These in turn are used to shed light on the structure of Hom(Γ, U(m)) and the
associated spaces of representations Rep(Γ, U(m)). An important motivation for this is the
fact that they arise as moduli spaces of isomorphism classes of flat connections on principal
U(m)–bundles over compact manifolds M which can be described as r–torus bundles over
the n–torus.

Our results are rather intricate, as they expose a very rich structure encoding the com-
ponents of these spaces of representations. For clarity of exposition we will focus here on
the case when r = 1; the more cumbersome general case is described in Section 6. Let
Bn(U(m)) denote the space of almost commuting n–tuples in U(m) i.e. the space of or-
dered n–tuples (A1, . . . , An) such that the pairwise commutators [Ai, Aj] are all central in
U(m). The characteristic polynomial defines a map χ : U(m) → C[z]; for a central extension
1 → Z → Γ → Zn → 1 we have a natural restriction Hom(Γ, U(m)) → U(m). These two
maps can be composed to yield a function Hom(Γ, U(m)) → C[z]. Given a polynomial p(z)
we denote its inverse image in U(m) by U(m)p(z) and its inverse image in Hom(Γ, U(m))
by Hom(Γ, U(m))p(z). The extension Γ is defined by a k–invariant ω ∈ H2(Zn,Z); for our
purposes we write it in the following form (see Proposition 4.1): there exists a basis e1, . . . , en
of Zn and an integer t ≤ n/2 such that ω = c1e

∗
1 ∧ e∗t+1 + · · ·+ cte

∗
t ∧ e∗2t where c1, . . . , ct are

positive integers such that ci divides ci+1 for i = 1, . . . , t − 1. We now define C[z]mΓ ⊂ C[z]
as the set of degree m complex polynomials p(z) such that (1) all roots of p(z) are roots of
unity; and (2) if a root λ of p(z) is a primitive k–th root of unity, then the multiplicity of λ
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in p(z) is divisible by µk =
∏t

i=1 k/(k, ci), where (k, ci) is the greatest common divisor of k
and ci. We now state our main theorems, which summarize the results in §3 and §4.
Theorem A. Let 1 → Z → Γ → Zn → 1 with non–trivial k–invariant ω. Then there is
a decomposition into connected components Hom(Γ, U(m)) =

∐

p(z)∈C[z]mΓ
Hom(Γ, U(m))p(z),

where the number of components is given by the coefficient of xm in the generating function
∏

k≥1
1

(1−xµk )Φ(k) , where Φ is Euler’s phi function.

For example, if Γ1 denotes the integral Heisenberg group, then Hom(Γ1, U(m)) has 1, 2, 4, 7, 13
components for m = 1, 2, 3, 4, 5 respectively (see Example 4.7). The number of components
can be explicitly determined for any m using Theorem A.

Next we describe the structure of the components. As explained in Section 4, there is
a map Bn(U(m)) → T (n,Q/Z) defined using commutators, where T (n,Q/Z) denotes the
set of all n × n skew–symmetric matrices with entries in Q/Z. These matrices can be
used to count the components of the space of n × n almost commuting matrices. Given
D ∈ T (n,Q/Z) we let Bn(U(M))D denote its inverse image under the map above. For
2t ≤ n and d1, d2, . . . , dt 6= 0 ∈ Q/Z, let Dn(d1, d2, . . . dt) = (dij) ∈ T (n,Q/Z) be the
skew-symmetric matrix with

dij =







dk if (i, j) = (k + t, k), 1 ≤ k ≤ t;

−dk if (i, j) = (k, k + t), 1 ≤ k ≤ t;

0 otherwise.

We show that Bn(U(m))D is non-empty if and only if m is divisible by σ(D) :=
∏

|dk|. If
m = lσ(D) for some positive integer l, then there is a map

φD :

[(
U(m)/Tl

)
× (Tn)l

/

(
∏t

i=1 Z/|dk|)l
]/

Σl
→ Bn(U(m))D

which is a rational homology equivalence for l ≥ 1 and is a homeomorphism for l = 1.
Moreover, φD induces a homeomorphism B̄n(U(m))D ∼= (Tn)l/Σl after passing to quotients
by the action of U(m).

Theorem B. Let p(z) =
∏s

j=1(z − λj)
mj , where λ1, . . . , λs ∈ C are distinct roots which

are primitive kj–th roots of unity. If Γ is a central extension of Zn by Z with k–invariant
ω = c1e

∗
1∧e∗t+1+ · · ·+ cte

∗
t ∧e∗2t where c1, . . . , ct are positive integers such that ci divides ci+1,

then for every non–empty component there is a U(m)–equivariant homeomorphism

Hom(Γ, U(m))p(z) ∼= U(m)×∏s
j=1 U(mj)

s∏

j=1

Bn(U(mj))Dn(−c1qj ,...,−ctqj)

where qj =
1

2π
√
−1

logλj. Moreover the orbit space under the action of U(m) is homeomorphic

to a product of symmetric products of tori
∏s

j=1(T
n)lj/Σlj where lj = mj/(

∏t
i=1 kj/(kj, ci))

for j = 1, . . . , s.

These results give complete descriptions of the moduli spaces Rep(Γ, U(m)), extending the
techniques and results in [2], [3]. This paper was motivated by the results obtained in
[10] for the case G = SU(2). As Γ is nilpotent, by [6] there are homotopy equivalences
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Hom(Γ, U(m)) ≃ Hom(Γ,GL(n,C)) and Rep(Γ, U(m)) ≃ Rep(Γ,GL(n,C)), and thus our
results also provide descriptions for these a priori more complicated spaces.

This paper is organized as follows: in §2 we provide preliminaries and background; in §3
we discuss the spaces of almost commuting elements in the unitary groups; in §4 and §5 we
analyze the spaces Hom(Γ, U(m)) where Γ is a central extension 1 → Zr → Γ → Zn → 1.

2. Preliminaries and background

Let X1, . . . , Xn ∈ U(m) be commuting unitary matrices. We say that λ = (λ1, . . . , λn) ∈
Tn := (S1)n is an n-tuple of eigenvalues of (X1, . . . , Xn) if there exists a non-zero vector v
such that Xiv = λiv for all 1 ≤ I ≤ n. Let Eλ =

⋂n
i=1Eλi

(Xi), where Eλi
(Xi) denotes the

eigenspace of Xi associated to the eigenvalue λi. It is well known that we can simultaneously
diagonalize all of the matrices Xi. Thus there is a direct sum decomposition

(1) Cm = Eλ1 ⊕ . . .⊕ Eλs

where λ1, . . . , λs ∈ Tn are the distinct n-tuples of eigenvalues of (X1, . . . , Xn). The decom-
position is unique up to the order of the eigenvalues.

The space of ordered commuting n-tuples of m×m unitary matrices can be identified with
Hom(Zn, U(m)). Let T = Tm be the maximal torus of diagonal matrices in U(m). Then
Z := Hom(Zn, U(m))T ∼= (Tn)m is the subspace of Hom(Zn, U(m)) consisting of ordered
n-tuples of diagonal unitary matrices. Let U(m) act on U(m) × Z by left multiplication on
the first factor and on Hom(Zn, U(m)) by conjugation. Consider the U(m)-equvariant map

(2) U(m)× Z → Hom(Zn, U(m))

given by the conjugation action (M, (Xi)) 7→ (MXiM
−1). Let N = NU(m)(T

m) be the
normalizer andW = N/Tm ∼= Σm be the Weyl group. The map (2) factors through U(m)×N

Z ∼= (U(m)/Tm)×Σm
(Tn)m and descends to

(3) φ : (U(m)/Tm)×Σm
(Tn)m → Hom(Zn, U(m)).

The map φ has a geometric interpretation. Note that U(m)/Tm is the space of ordered
m-tuples of pairwisely orthogonal complex lines (L1, . . . , Lm) in Cm. Hence, each ele-
ment of the domain of φ can be regarded as an unordered m-tuple [(L1, α

1), . . . , (Lm, α
m)]

with α1, . . . , αm ∈ Tn. The map φ sends such an element to the almost commuting tuple
(X1, X2, . . . , Xn) ∈ B(U(m))D such that each αj is an n-tuple of eigenvalues of the matrices
Xi and each complex line Lj lies in the common eigenspaces Eαj .

The map φ is surjective since commuting unitary matrices can be simultaneously diagonal-
ized. It is not injective in general, but for (X1, . . . , Xn) ∈ Hom(Zn, U(m)) with eigenspace de-
composition (1) and dimEλj = mj , the preimage φ−1(X1, . . . , Xn) ∼=

∏s
j=1(U(mj)/T

mj )/Σmj

and is Q-acyclic [5]. The map φ is a special case of the action map

(4) G/T ×W XT → X

described in [5] and [4], where G is a connected compact Lie group with a maximal torus
T acting on a space X with maximal rank isotropy subgroups and W is the Weyl group
associated to T . As observed in [5], for any field F with characteristic relative prime to
|W |, the preimage of any point in X under the map (4) is F-acyclic. By the Vietoris-Begle
mapping theorem, it follows that H∗(X ;F) ∼= H∗(G/T ×W XT ;F) ∼= H∗(G/T ×XT ;F)W . In
particular, φ induces an isomorphism in rational cohomology. Passing to the U(m)-quotients,
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φ becomes a homeomorphism and hence Rep(Zn, U(m)) ∼= (Tn)m/Σm = SymmT
n. In the

following sections, we will generalize φ and the results above to almost commuting n–tuples
of unitary matrices.

3. The space of almost commuting unitary matrices

Let G be a Lie group and K be a closed subgroup contained in the center Z(G) of G.
The space of K-almost commuting n-tuples in G, denoted by Bn(G,K), was studied in
[3]. It consists of all ordered n-tuples (A1, A2, . . . , An) ∈ Gn such that the commutators
[Ai, Aj] ∈ K for all 1 ≤ i, j ≤ n.

An equivalent formulation for K-almost commuting n-tuples is in terms of group ho-
momorphisms. Let Fn be the free group on n generators a1, . . . , an. A homomorphism
f : (Fn, [Fn, Fn]) → (G,K) is a group homomorphism f : Fn → G whose image f([Fn, Fn])
of the commutator subgroup [Fn, Fn] ⊂ Fn is contained in K. It is clear that there is a
bijection f 7→ (f(a1), . . . , f(an)) between the sets of such homomorphisms and K-almost
commuting n-tuples. We sometimes write f ∈ Bn(G,K) to represent the corresponding
almost commuting n-tuple.

In this section, we will study almost commuting tuples of unitary matrices. For notational
simplicity, Bn(U(m), Z(U(m))) will be abbreviated as Bn(U(m)).

Lemma 3.1. Let A,B be m×m unitary matrices with [A,B] = γIm. Then γm = 1.

Proof. γm = det (γIm) = det [A,B] = det (ABA−1B−1) = 1. �

Suppose that f : Fn → U(m) is in Bn(U(m)). For any u, v ∈ Fn, [f(u), f(v)] = γIm
for some m-th root of unity γ by Lemma 3.1. The exponential function z 7→ e2π

√
−1z

establishes a group isomorphism between R/Z and S1 ⊂ C with inverse w 7→ 1
2π

√
−1

logw.

The multiplicative group of m-th roots of unity and all roots of unity corresponds to the
subgroup Z[ 1

m
]/Z ∼= Z/m and Q/Z of R/Z respectively under this isomorphism. Hence

there is a map Fn × Fn → Z/m ⊂ Q/Z defined by (u, v) 7→ 1
2π

√
−1

log γ. Since f([Fn, Fn]) ⊂
Z(U(m)), the map factors through the abelianization of Fn × Fn and thus gives rise to a
(Q/Z)-valued skew-symmetric bilinear form ωf : Zn × Zn → Q/Z.

For an abelian group A, let T (n,A) be the set of all n× n skew-symmetric matrices with
entries in A. Define a map

(5) ρ : Bn(U(m)) → T (n,Q/Z)

by ρ(f) = (dij), where [f(ai), f(aj)] = e2dijπ
√
−1Im. For D ∈ T (n,Q/Z), let Bn(U(m))D =

ρ−1(D). For f ∈ Bn(U(m))D, the ordered n-tuple (f(a1), . . . , f(an)) is said to be D-
commuting. Note that ρ(f) is the skew-symmetric matrix associated to the bilinear form
ωf . The Z-module structure on Q/Z induces a bi-module structure on T (n,Q/Z) over the
ring of n× n matrices with integral entries. The following proposition is about the effect of
change of basis of Zn on ρ.

Proposition 3.2. Suppose that D,D′ ∈ T (n,Q/Z) andD′ = ATDA for some A ∈ GL(n,Z).
Then there is an automorphism α : Fn → Fn such that f ∈ Bn(U(m))D if and only if
f ◦ α ∈ Bn(U(m))D′. Hence α induces a homeomorphism α∗ : Bn(U(m))D ∼= Bn(U(m))D′.
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Proof. Let Fn be the free product on generators a1, . . . , an. Since every A ∈ GL(n,Z) can be
written as a product of finitely many elementary matrices, it suffices to prove the proposition
when A is an elementary matrix. If A is the elementary matrix obtained from In by adding
k times the i-th column to the j-th one, then α can be taken as the automorphism with
α(aj) = aki aj and α(al) = al for l 6= j. For the cases where A is obtained from In by swapping
two columns or by multiplying a column by −1, α can also be chosen in the obvious way. �

For 0 ≤ t ≤ n/2 and d1, d2, . . . , dt 6= 0 ∈ Q/Z, let Dn(d1, d2, . . . dt) = (dij) ∈ T (n,Q/Z)
be the skew-symmetric matrix with

dij =







dk if (i, j) = (k + t, k), 1 ≤ k ≤ t;

−dk if (i, j) = (k, k + t), 1 ≤ k ≤ t;

0 otherwise.

Let D = (dij) ∈ T (n,Q/Z). By taking a common denominator, all the dij are contained
in the subgroup 〈[1

q
]〉 ∼= Z/q ⊂ Q/Z for some large enough integer q. By [9, Proposition

4.1], D is congruent to some matrix Dn(d1, . . . , dt) with the orders of di ∈ Z/q ⊂ Q/Z
satisfying |di+1| divides |di| for all 1 ≤ i ≤ t− 1. Hence, by Proposition 3.2, understanding
Bn(U(m))Dn(d1,...,dt) is fundamental to the study of Bn(U(m)).

For D = Dn(d1, . . . , dt), define

(6) σ(D) =
∏

|di|.

Theorem 3.3. Let 2t ≤ n, D = Dn(d1, . . . , dt) ∈ T (n,Q/Z) and γi = e2diπ
√
−1 for 1 ≤

i ≤ t. Then Bn(U(m))D is non-empty if and only if σ(D) divides m. In that case, suppose
l = m/σ(D) ∈ N and (A1, . . . An) ∈ Bn(U(m))D. Then there exist orthonormal vectors
v1, . . . , vl ∈ Cm and αi′j , βij ∈ S1 ⊂ C for 1 ≤ i ≤ t < i′ ≤ n and 1 ≤ j ≤ l such that

(1) {Ap1
1 Ap2

2 . . . Apt
t vj| 0 ≤ pi < |di| for 1 ≤ i ≤ t, 1 ≤ j ≤ l} is an orthonormal basis of

Cm;
(2) Ap1

1 Ap2
2 . . . Apt

t vj is an eigenvector of Ai with eigenvalue γ
pi−t

i−t αij for t + 1 ≤ i ≤ 2t
and an eigenvector of Ai with eigenvalue αij for 2t+ 1 ≤ i ≤ n;

(3) A
|di|
i vj = βijvj for 1 ≤ i ≤ t.

Remark 3.4. (1) The theorem reduces to the well-known result of commuting unitary
matrices when t = 0. In that case, σ(D) = 1 and l = m.

(2) The characteristic polynomial χi(z) of Ai can be expressed in terms of αij and βij as
follows.

χi(z) =







∏

j(z
|di| − βij)

m/(|di|l) if 1 ≤ i ≤ t;
∏

j(z
|di−t| − α

|di−t|
ij )m/(|di−t|l) if t+ 1 ≤ i ≤ 2t;

∏

j(z − αij)
m/l if 2t+ 1 ≤ i ≤ n.

Proof. First, suppose that Bn(U(m))D is non-empty and (A1, . . . An) ∈ Bn(U(m))D. Note
that At+1, . . . An are pairwisely commuting unitary matrices and thus can be simultaneous
diagonalized. In particular, there exist eigenvalues αi1 ∈ S1 of Ai, t + 1 ≤ i ≤ n, such that
the intersection W ⊂ Cm of the corresponding eigenspaces is non-zero. Suppose v ∈ W .
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Then for any t + 1 ≤ i ≤ 2r,

AiA
p1
1 Ap2

2 . . . Apt
t v = γ

pi−r

i−r Ap1
1 Ap2

2 . . . Apt
t Aiv = γ

pi−t

i−t A
p1
1 Ap2

2 . . . Apt
t αi1v

= γ
pi−t

i−t αi1A
p1
1 Ap2

2 . . . Apt
t v.

Similarly, for any 2t+ 1 ≤ i ≤ n,

AiA
p1
1 Ap2

2 . . . Apt
t v = Ap1

1 Ap2
2 . . . Apr

t Aiv = Ap1
1 Ap2

2 . . . Apr
t αi1v

= αi1A
p1
1 Ap2

2 . . . Apt
t v.

It follows that A
|d1|
1 , A

|d2|
2 , . . . , A

|dt|
t restrict to unitary automorphisms on W . Since these A

|di|
i

commute and are unitary, there exists an unit vector v1 ∈ W which is a common eigenvector

for A
|d1|
1 , A

|d2|
2 , . . . , A

|dt|
t . Let A

|di|
i v1 = βi1v1. Then v1 satisfies the properties (2) and (3) in

the theorem. Let

V1 = span{Ap1
1 Ap2

2 . . . Apt
t v1| 0 ≤ pi < |di| for 1 ≤ i ≤ t}.

Any two vectors in {Ap1
1 Ap2

2 . . . Apt
t v1| 0 ≤ pi < |di| for 1 ≤ i ≤ t} are eigenvectors of different

eigenvalues of Ai for some t + 1 ≤ i ≤ n. Hence the spanning set is a basis of V1 and
dim(V1) =

∏ |di| = σ(D). Let V ⊥
1 be the orthogonal complement of V1 in Cm. Then

dim(V ⊥
1 ) = m − σ(D). For any 1 ≤ i ≤ n, since V1 is invariant under the unitary matrix

Ai, so is V ⊥
1 . By repeating the argument above to the restrictions of A1, . . . , An on V ⊥

1 ,
we conclude by induction that σ(D) divides m and there exist vectors v1, v2, . . . , vl with the
desired properties.

If m is divisible by σ(D), one can choose arbitrary complex numbers αij , βij ∈ S1 and
vectors Ap1

1 Ap2
2 . . . Apt

t vj for 0 ≤ pi < |di|, 1 ≤ j ≤ l, which form an orthonormal basis of
Cn. Any such choice uniquely determines an ordered n-tuple (A1, . . . , An) ∈ Bn(U(m))D
satisfying the properties stated in the theorem. This shows that Bn(U(m))D is non-empty
if m is divisible by σ(D). �

Let D = Dn(d1, . . . , dt) and m = lσ(D) for some positive integer l. By Proposition
3.3, Bn(U(m))D is non-empty. We will describe a subspace ZD ⊂ Bn(U(m))D which is
homeomorphic to a torus. In light of Theorem 3.3, it is more convenient for us to index the
rows and columns of a m×m matrix by the indexing set

(7) I = {(p1, p2, . . . , pt, j)| 0 ≤ pi < |di|, 1 ≤ j ≤ l}.
Definition 3.5. Let D = Dn(d1, . . . , dt) ∈ T (n,Q/Z) and γi = e2diπ

√
−1 for 1 ≤ i ≤ t.

Suppose that m = lσ(D) for some positive integer l. Index the rows and columns of m×m
matrices by the index set I in (7). Define ZD ⊂ Bn(U(m))D be the subset consisting of all
ordered n-tuples (A1, . . . , An) of the following forms, parametrized by αi′j , βij ∈ S1 ⊂ C for
1 ≤ i ≤ t < i′ ≤ n and 1 ≤ j ≤ l:

(1) For 1 ≤ i ≤ t,

(Ai)µν =







1 if µ = (p1, . . . , pi, . . . , pt, j),

ν = (p1, . . . , pi − 1, . . . , pt, j);

βij if µ = (p1, . . . , pi−1, 1, pi+1, . . . , pt, j),

ν = (p1, . . . , pi−1, |di| − 1, pi+1, . . . , pt, j);

0 otherwise.
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(2) For t+ 1 ≤ i ≤ 2t,

(Ai)µν =

{

γ
pi−t

i−t αij if µ = ν = (p1, . . . , pt, j);

0 otherwise.

(3) For 2t+ 1 ≤ i ≤ n,

(Ai)µν =

{

αij if µ = ν = (p1, . . . , . . . , pt, j);

0 otherwise.

Example 3.6. If m = 6, n = 5 and

D = D5(1/2, 1/3) =









0 0 −1/2 0 0
0 0 0 −1/3 0
1/2 0 0 0 0
0 1/3 0 0 0
0 0 0 0 0









,

then γ1 = −1, γ2 = e2π
√
−1/3, σ(D) = 6 and l = 1. The subspace ZD

∼= (S1)5 consists of
tuples (A1, . . . , A5) of the following forms

A1 =










β11

1
β11

1
β11

1










, A2 =










β21

β21

1
1
1
1










, A3 =










α31

−α31

α31

−α31

α31

−α31










,

A4 =










α41

α41

γ2α41

γ2α41

γ2
2α41

γ2
2α41










and A5 =










α51

α51

α51

α51

α51

α51










.

In general for any positive integer l and m = lσ(D), each matrix Ai in (A1, . . . An) ∈ ZD is
a block sum of l matrices of the form above.

By Theorem 3.3, any (A1, . . . , An) ∈ Bn(U(m))D is conjugate to an element in ZD. In
other words, the map

(8) U(m)× ZD → Bn(U(m))D

given by the conjugation action (M, (Ai)) 7→ (MAiM
−1) is surjective. The map is equivariant

with respect to the U(m)-action given by left multiplication on the factor U(m) of the domain
and conjugation action on the target. This map (8) is invariant under a few obvious actions
on the domain corresponding to different choices of the vectors vj in Theorem 3.3.

(a) For each 1 ≤ j ≤ l, an S1-action on the domain is given by

(M, (Ai)) 7→ (MI(j, θ), (I(j, θ)−1AiI(j, θ))) = (MI(j, θ), (Ai)),
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where θ ∈ S1 and I(j, θ) ∈ U(m) is the matrix

(9) I(j, θ)µν =







1 if µ = ν = (p1, . . . , pt, j
′), j′ 6= j

θ if µ = ν = (p1, . . . , pt, j)

0 otherwise,

obtained from them×m identity matrix by multiplying all the (p1, . . . , pt, j)-th columns,
0 ≤ pi < |di|, by θ ∈ S1. This action corresponds to replacing vj by θvj in Theorem 3.3.

(b) For each 1 ≤ k ≤ t, 1 ≤ j ≤ l, an action on the domain is given by

(M, (Ai)) 7→ (MAk(j), (Ak(j)
−1AiAk(j))),

where Ak(j) ∈ U(m) is defined by

Ak(j)µν =







1 if µ = (p1, . . . , pk, . . . , pt, j), ν = (p1, . . . , pk − 1, . . . , pt, j)

or µ = ν = (p1, . . . , pk, . . . , pt, j
′), j′ 6= j;

βkj if µ = (p1, . . . , pk−1, 1, pk+1, . . . , pt, j),

ν = (p1, . . . , pk−1, |dk| − 1, pk+1, . . . , pt, j);

0 otherwise.

This action corresponds to replacing vj by Akvj in Theorem 3.3. Note that Ak(j)
|dk| is

equal to I(j, βkj) in (9) above. Also, under the parametrization ZD
∼= (Tn)l, this action

multiplies αk+t,j by γk and keeps the other αi′j and βij fixed.
(c) A Σl-action on the domain is given by

(M, (Ai)) 7→ (MP−1
τ , (PτAiP

−1
τ )),

where τ ∈ Σl and Pτ is the matrix

Pτ =

{

1 if µ = (p1, . . . , pt, j), ν = (p1, . . . , pt, τ(j))

0 otherwise.

obtained by applying the permutation τ to the columns of the m ×m identity matrix.
This action corresponds to replacing vj by vτ(j) in Theorem 3.3.

Let H be the group consisting of self homeomorphisms of U(m) × ZD generated by the
three types of actions above. Then the action induced by {I(j, θ) : 1 ≤ j ≤ l, θ ∈ S1} in (a)
generates a normal subgroup of H isomorphic to Tl with quotient H/Tl the wreath product
ZD ≀ Σl

∼= (ZD)
l ⋊ Σl generated by the actions in (b) and (c). Here ZD is the abelian group

∏t
i=1 Z/|di|. Hence, the map (8) factors through

(U(m)× ZD)/H ∼=
(
U(m)/Tl

)
× (Tn)l

/

(ZD ≀ Σl)
∼=
[(

U(m)/Tl
)
× (Tn)l

/

(ZD)
l

]/

Σl.

Our next theorem states that the induced factor map

(10) φD :

[(
U(m)/Tl

)
× (Tn)l

/

(ZD)
l

]/

Σl
→ Bn(U(m))D

of (8) is a good approximation to Bn(U(m))D.
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Theorem 3.7. Let 2t ≤ n and D = Dn(d1, . . . , dt) ∈ T (n,Q/Z). Suppose that σ(D) =
∏

|di|
divides m and l = m/σ(D). Then the map φD in (10) is a rational homology equivalence
for any l ≥ 1 and a homeomorphism for l = 1. The space Bn(U(m))D is path-connected and
has rational cohomology

(11) H∗(Bn(U(m))D;Q) ∼= H∗((U(m)/Tl)× (Tn)l;Q)Σl.

Also, φD induces a homeomorphism B̄n(U(m))D := Bn(U(m))D/U(m) ∼= (Tn)l/Σl after
passing to the U(m)-quotients.

Proof. Since the map (8) is surjective by Theorem 3.3, so is φD. Let (A1, . . . , An) ∈
Bn(U(m))D. Since At+1, At+2, . . . , An are pairwisely commuting, they can be simultaneously
diagonalized. Let Λ be the set of all (n−t)-tuples λ = (λt+1, . . . , λn) ∈ Tn−t of eigenvalues of
(At+1, At+2, . . . , An) and Λ0 = {λ = (λt+1, . . . , λn) ∈ Λ| 0 ≤ 1

2π
√
−1

log λt+i <
1
|di| , ∀1 ≤ i ≤ t}.

Suppose λ1, . . . , λs are all the distinct elements in Λ0. Let lj = dimEλj . Then
∑s

j=1 lj = l.

One can show that the preimage φ−1
D (A1, . . . , An) ∼=

∏s
j=1U(lj)/(T

lj⋊Σlj ), which isQ-acyclic
in general and a single point if l = 1. Hence, φD is a rational homology equivalence for any
l ≥ 1 by the Vietoris-Begle mapping theorem and a homeomorphism for l = 1. In particular,
Bn(U(m))D is path-connected. Note that the self-homeomorphisms of (U(m)/Tl) × (Tn)l

given by the action of ZD in the domain of φD are homotopic to the identity map. Thus we
have the isomorphism (11). Also, each preimage of φD is U(m)-transitive and so φD becomes
a homeomorphism after passing to the U(m)-quotients. Hence,

B̄n(U(m))D ∼=
[

(Tn)l
/

(ZD)
l

]/

Σl
∼=
[
Tn/

ZD

]l
/

Σl

∼=
[

(S1)n
/

(
∏t

i=1 Z/|di|)
]l/

Σl

∼=
[(
∏t

i=1
S1
/

(Z/|di|)
)

× (S1)n−t
]l/

Σl

∼=
[
(
∏t

i=1 S
1)× (S1)n−t

]l
/

Σl
= (Tn)l/Σl.

�

By Theorem 3.3 and 3.7, we know that for D = Dn(d1, . . . , dt), the space Bn(U(m))D is
non-empty and path connected if σ(D) divides m and empty otherwise. We will extend the
definition of σ in such a way that the same statement holds for any D ∈ T (n,Q/Z). This
allows us to identify the path connected components of Bn(U(m)) and compute the number
of them.

Definition 3.8. For any n × n matrix A ∈ Mn×n(Q/Z), the row space R(A) of A is the
sub-module of (Q/Z)n generated by the rows of A over Z. Define

(12) σ(A) =
√

|R(A)|,
where |R(A)| is the cardinality of R(A).

Lemma 3.9. (a) For D = Dn(d1, . . . , dt) ∈ T (n,Q/Z),
√

|R(D)| =
∏

i |di|.
(b) If A,A′ ∈ Mn×n(Q/Z) with A′ = BAC for some B,C ∈ GL(n,Z), then σ(A) = σ(A′).



10 A. ADEM AND M.C. CHENG

(c) For D ∈ T (n,Q/Z), σ(D) is an integer. If σ(D) divides m, then D ∈ T (n,Z/m).

Proof. Part (a) is obvious. For part (b), since BA can be obtained from A by elementary
row operations, R(BA) = R(A). Also, note that the multiplication map v 7→ vC for any row
vectors v ∈ (Q/Z)n establishes an automorphism of (Q/Z)n. Hence, R(A′) = R(BAC) ∼=
R(BA) = R(A) as Z-modules. This proves part (b). For part (c), note that D ∈ T (n,Z/q)
for some positive integer q. By [9, Proposition 4.1], D is congruent to some matrix D′ =
Dn(d1, . . . , dt) ∈ T (n,Z/q). It follows from part (a) and (b) that σ(D) = σ(D′) =

∏

i |di| is
an integer. Finally, if D ∈ T (n,Q/Z) has an entry dij /∈ Z/m, then i-th and j-th rows of
D generate a Z-submodule of R(D) with cardinality a multiple of |dij|2. This implies |dij|
divides σ(D) and so σ(D) does not divide m. �

Corollary 3.10. For D ∈ T (n,Q/Z), the space Bn(U(m))D is non-empty and path con-
nected if σ(D) divides m, and is empty otherwise. Hence, Bn(U(m)) can be expressed as the
disjoint union Bn(U(m)) =

∐

D∈T (n,Z/m)
σ(D)|m

Bn((U(m))D of path connected components.

Proof. By [9, Proposition 4.1], D is congruent to some matrix D′ = Dn(d1, . . . , dt) ∈
T (n,Q/Z). Since Bn(U(m))D ∼= Bn(U(m))D′ by Proposition 3.2 and σ(D) = σ(D′) by
Lemma 3.9, the first statement of the corollary follows from the corresponding statement for
D′ in Theorem 3.3 and 3.7. Since the map ρ in (5) is continuous, Bn(U(m)) can be expressed
as the disjoint union of path connected components above. �

By Corollary 3.10, the number of path-connected components of Bn(U(m)) is equal to

(13) N(n,m) = |{D ∈ T (n,Z/m) : σ(D) divides m}|.

We will derive formulas for N(n,m). To do this, we need to introduce some notation. For
positive integers k, n ≥ 1, let J ′(n, k) be the set of all partitions of k with at most n/2 parts
and J(n, k) = ∪1≤k′≤kJ

′(n, k′). Every element in J(n, k) is a partition which can be written
uniquely in the form

a1 + . . .+ a1
︸ ︷︷ ︸

t1 a1′s

+ a2 + . . .+ a2
︸ ︷︷ ︸

t2 a2′s

+ . . .+ aj + . . .+ aj
︸ ︷︷ ︸

tj aj ′s

with a1 > a2 > . . . > aj > 0,
∑

tiai ≤ k and
∑

ti ≤ n/2. For instance, J(5, 4) consists of
the eight partitions 1, 2, 1 + 1, 3, 2 + 1, 4, 3 + 1 and 2 + 2.

For the rest of this section, we will denote the elements of Z/m by 0, 1, 2, . . . , m−1 rather
than [0], [ 1

m
], [ 2

m
], . . . , [m−1

m
]. Suppose that q = pk is a power of a prime p with k ≥ 1 and

α ∈ J(n, k) is the partition
∑j

i=1 tiai. Let bi = k − ai. Define Dα ∈ T (n,Z/q) to be the
matrix

Dα = Dn(p
b1 , . . . , pb1
︸ ︷︷ ︸

t1 pb1
′
s

, pb2, . . . , pb2
︸ ︷︷ ︸

t2 pb2
′
s

, . . . , pbj , . . . , pbj
︸ ︷︷ ︸

tj pbj
′
s

)

Note that σ(Dα) =
∏
(pai)ti = p

∑
tiai divides q.
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Proposition 3.11. Fix k, n ≥ 1. Let p be a prime, q = pk and α ∈ J(n, k). Then the
number of matrices in T (n,Z/q) congruent to Dα is given by

Np(α) =
p
∑j

i=1 tiai(si−1+si−1) ·
∏n

l=sj+1

(

1− 1
pl

)

∏j
i=1

∏ti
l=1

(

1− 1
p2l

)

where si = n − 2
∑i

l=1 tl. The number of matrices D ∈ T (n,Z/q) with σ(D) divides q is
equal to

(14) N(n, q) = 1 +
∑

α∈J(n,k)
Np(α).

Remark 3.12. The summand 1 in (14) accounts for the zero matrix 0 ∈ T (n,Z/q) in the
definition of N(n, q) in (13). This corresponds to the path connected component Bn(U(m))0
of Bn(U(m)) consisting of commuting matrices in Corollary 3.10.

Proof. Let G = GL(n,Z/q) and GDα
be the stabilizer of Dα. Then the number of matrices

in T (n,Z/q) congruent to Dα is equal to |G|/|GDα
|. Recall the well-known result that

(15) |G| = qn
2

n∏

l=1

(

1− 1
pl

)

.

To count |GDα
|, consider the skew-symmetric bilinear form ω : (Z/q)n × (Z/q)n → Z/q

associated to Dα = (dij). Let v1, . . . vn be the columns of a matrix A ∈ GL(n,Z/q). Then
ATDαA = Dα if and only if ω(vi, vj) = dij for all 1 ≤ i, j ≤ n. Hence, |GDα

| is equal to the
number of ordered bases v1, v2, . . . vn of (Z/q)n satisfying ω(vi, vj) = dij. We will count them
by picking the basis vectors in the order v1, vt+1, v2, vt+2, . . . , vt, v2t, v2t+1, v2t+2, . . . , vn. To

pick v1, there are
(

q2t1 − ( q
p
)2t1
)

qs1 = qn
(

1− 1
p2t1

)

choices. Without loss of generality, we

may assume v1 = e1. Then it is obvious that there are pb1qn−1 choices for vt+1. Again we may

assume vt+1 = et+1. Similar arguments show that there are (pb1)2
(

q2t1−2 − ( q
p
)2t1−2

)

qs1 =

(pb1)2qn−2
(

1− 1
p2t1−2

)

choices for v2, then (pb1)3qn−3 choices for vt+2 and so on. Hence, in

total there are

(pb1)1+2+...+(2t1−1)qn+(n−1)+...(n−2t1+1)

t1∏

l=1

(

1− 1
p2l

)

= (pb1)t1(2t1−1)qt1(s0+s1+1)

t1∏

l=1

(

1− 1
p2l

)

choices for the vectors v1, vt+1, . . . , vt1 , vt+t1 . Similarly, for the next 2t2 vectors vt1+1, vt+t1+1,

. . ., vt1+t2 , vt+t1+t2 , there are (pb1)4t1t2(pb2)t2(2t2−1)qt2(s1+s2+1)
∏t2

l=1

(

1− 1
p2l

)

choices. Pro-

ceeding in this way, after the vectors va, vt+a, 1 ≤ a ≤ t1 + t2 + . . . + ti−1 are chosen, there
are

(16) (pb1)4t1ti . . . (pbi−1)4ti−1ti(pbi)ti(2ti−1)qti(si−1+si+1)

ti∏

l=1

(

1− 1
p2l

)
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choices for the next 2ti vectors va, vt+a, where t1 + t2 + . . .+ ti−1 +1 ≤ a ≤ t1 + t2 + . . .+ ti.
Finally, after the first 2(t1 + . . .+ tj) vectors are chosen, in total there are

(17) (pb1)2t1sj . . . (pbj )2tjsjqsj
2

sj∏

l=1

(

1− 1
pl

)

choices for the remaining sj vectors vt1+...+tj+1, . . . , vn. Hence, taking the product of (16) for
i = 1, . . . , j and (17), we get

(18) |GDα
| = qe

(
j
∏

i=1

(pbi)fi

)(
j
∏

i=1

ti∏

l=1

(

1− 1
p2l

)
)(

sj∏

l=1

(

1− 1
pl

)
)

where e = s2j +
∑j

i=1 ti(si−1 + si + 1) and

fi = ti

(

2sj + 2ti − 1 + 4
∑j

l=i+1 tl

)

= ti

(

2n− 4
∑j

l=1 tl + 2ti − 1 + 4
∑j

l=i+1 tl

)

= ti

(

2n− 1− 2
∑i−1

l=1 tl − 2
∑i

l=1 tl

)

= ti(si−1 + si − 1).

Note that

e+
∑j

i=1 fi = s2j +
∑j

i=1 ti(si−1 + si + 1) +
∑j

i=1 ti(si−1 + si − 1)

= s2j +
∑j

i=1 2ti(si−1 + si)

= s2j +
∑j

i=1(si−1 − si)(si−1 + si)

= s2j +
∑j

i=1(si−1
2 − si

2)

= s20

= n2.

Hence, dividing (15) by (18), we get

Np(α) =
|G|

|GDα
| =

(
∏j

i=1 q
fi

)(
∏n

l=sj+1

(

1− 1
pl

))

(
∏j

i=1(p
bi)fi

)(
∏j

i=1

∏ti
l=1

(

1− 1
p2l

))

=

(
∏j

i=1(p
ai)fi

)(
∏n

l=sj+1

(

1− 1
pl

))

∏j
i=1

∏ti
l=1

(

1− 1
p2l

) .

The last statement of the proposition follows easily from the fact that any non-zero D ∈
T (n,Z/q) with σ(D) divides q is congruent to Dα for a unique α ∈ J(n, k). �

Example 3.13. Let α, β, γ be the partition 1, 2, 1 + 1 respectively. For the partitions α, β,
j = 1, t1 = 1, s0 = n and s1 = n− 2.

Np(α) =
p2n−3

(

1− 1
pn−1

)(

1− 1
pn

)

1− 1
p2

=
(pn−1 − 1)(pn − 1)

p2 − 1
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Np(β) =
p2(2n−3)

(

1− 1
pn−1

)(

1− 1
pn

)

1− 1
p2

=
p2n−3(pn−1 − 1)(pn − 1)

p2 − 1

For the partition γ, j = 1, t1 = 2, a1 = 1, s0 = n and s1 = n− 4.

Np(γ) =
p2(pn−3 − 1)(pn−2 − 1)(pn−1 − 1)(pn − 1)

(p2 − 1)(p4 − 1)

Hence, for a prime number p,

N(n, p) = 1 +Np(α) = 1 +
(pn−1 − 1)(pn − 1)

p2 − 1
.

This agrees with [2, Theorem 1]. For n ≥ 4,

N(n, p2) = 1 +Np(α) +Np(β) +Np(γ)

= 1 +
(pn−1 − 1)(pn − 1)(p2n+1 − pn − pn−1 + p4 + p2 − 1)

(p2 − 1)(p4 − 1)
.

We will now look at N(n,m) in the general case where m is not necessarily a prime power.
Let m1, m2 be relatively prime positive integers and m = m1m2. The inclusions Z/mi

∼=
Z[ 1

mi
]/Z ⊂ Z[ 1

m
]/Z ∼= Z/m establish direct sum decompositions Z/m1 ⊕ Z/m2

∼= Z/m and

(19) T (n,Z/m1)⊕ T (n,Z/m2)
∼=−→ T (n,Z/m).

Proposition 3.14. Let m = m1m2 with m1, m2 be relatively prime positive integers. Suppose
Di ∈ T (n,Z/mi) for i = 1, 2. Then D1+D2 ∈ T (n,Z/m) satisfies σ(D1+D2) = σ(D1)σ(D2).
Moreover, N(n,m) = N(n,m1)N(n,m2).

Proof. We will show that R(D1) ⊕ R(D2) ∼= R(D1 + D2) as Z-submodules of (Z/m1)
n ⊕

(Z/m2)
n ∼= (Z/m)n. For 1 ≤ j ≤ n, let uj ∈ (Z/m1)

n, vj ∈ (Z/m2)
n be the j-th row of

D1, D2 respectively. Then each row ui + vi of D1 + D2 is in R(D1) ⊕ R(D2) and hence
R(D1 +D2) ⊂ R(D1) ⊕ R(D2). For the other inclusion, pick integers a, b so that am1 ≡ 1

(mod m2) and bm2 ≡ 1 (mod m1). Then am1(ui + vi) = vi since m1ui = m2vi = ~0 ∈
(Z/m)n. Similarly bm2(ui + vi) = ui. It follows that R(D1)⊕ R(D2) ⊂ R(D1 +D2). Hence
R(D1) ⊕ R(D2) ∼= R(D1 + D2) and σ(D1 + D2) = σ(D1)σ(D2). To prove the last part of
the proposition, note that since R(Di) ⊂ (Z/mi)

n, any prime divisor of σ(Di) divides mi.
Therefore, σ(D1 +D2) = σ(D1)σ(D2) divides m = m1m2 if and only if σ(Di) divides mi for
each i = 1, 2. We conclude from (19) that N(n,m) = N(n,m1)N(n,m2). �

Corollary 3.15. Let p1, . . . , pr be r distinct prime numbers and m = pk11 pk22 . . . pkrr . Then
Bn(U(m)) has

N(n,m) =
r∏

i=1



1 +
∑

α∈J(n,ki)
Npi(α)





path-connected components.

We would like to close this section by giving the map φD in (10) a geometric interpretation
analogous to that of (3) and a generalization to any D ∈ T (n,Q/Z) such that Bn(U(m))D
is non-empty. Define BD = Bn(U(σ(D))) for any D ∈ T (n,Q/Z). Suppose that D =
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Dn(d1, . . . , dt). By Theorem 3.7, BD
∼= ((U(σ(D))/T1) × Tn)/ZD. The domain of φD can

thus be expressed in terms of BD as
[(

U(m)/Tl
)
× (Tn)l

/

(ZD)
l

]/

Σl

∼=
[

U(m)×U(σ(D))l (U(σ(D))/T1)l × (Tn)l
/

(ZD)
l

]/

Σl

∼=
[

U(m)×U(σ(D))l

(

(U(σ(D))/T1)× Tn
/

ZD

)l
]/

Σl

∼= U(m)×U(σ(D))l BD
l
/

Σl
.(20)

In this form, each point of the domain of φD is an unordered l-tuple of pairwisely orthogonal
σ(D)-dimensional complex subspaces of Cm with a D-commuting tuple of unitary automor-
phism defined on each of these subspaces. The map φD simply glues the automorphisms
using direct sum to produce a D-commuting tuple of unitary matrices. With this interpre-
tation one can readily generalize φD to any D ∈ T (n,Q/Z) with m = lσ(D) and obtain the
following corollary of Theorem 3.7.

Corollary 3.16. Suppose that D ∈ T (n,Q/Z) and m = lσ(D). The map

(21) φD : U(m)×U(σ(D))l BD
l
/

Σl
→ Bn(U(m))D.

induces an isomorphism in rational cohomology. Moreover, φD induces a homeomorphism
B̄n(U(m))D ∼= B̄n(σ(D))D

l/Σl after passing to quotients by the action of U(m).

Proof. Suppose D ∈ T (n,Q/Z). By Proposition 3.2 and [9, Proposition 4.1], we can pick
an automorphism of Fn which gives canonical homeomorphisms Bn(U(m)D ∼= Bn(U(m)D′

and BD
∼= BD′ for some D′ = Dn(d1, . . . , dt). These homeomorphisms induce the vertical

homeomorphisms in the commutative diagram

U(m)×U(σ(D))l BD
l
/

Σl

φD
//

∼=
��

Bn(U(m))D

∼=
��

U(m)×U(σ(D′))l BD′
l
/

Σl

φD′
// Bn(U(m))D′ .

Hence, φD satisfies the properties stated in the corollary because φD′ does by (20) and
Theorem 3.7. This proves the corollary. �

4. The rank one case

Let Γ be the central extension

(22) 1 → Zr → Γ → Zn → 1.

with k-invariant ω = (ω1, . . . , ωr) ∈ H2(Zn;Zr) ∼= (H2(Zn;Z))
r
, where

(23) ωl =
∑

1≤i<j≤n

ωl
i,je

∗
i ∧ e∗j ∈ H2(Zn;Z).
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In this description, {ei}ni=1 are the standard generators of Zn, {e∗i }ni=1 are the dual generators
of the cohomology ring H∗(Zn;Z) and ωl

i,j ∈ Z. The group Γ corresponding to this k-
invariant ω is given in terms of generators and relations by

Γ = 〈a1, . . . , an, x1, . . . , xr : [ai, aj] =

r∏

l=1

x
ωl
i,j

l , xi is central〉.

A group homomorphism from Γ to U(m) is determined by the images of the generators of
Γ. By abuse of notation, we sometimes write (X1, . . . , Xr, A1, . . . , An) ∈ Hom(Γ, U(m))
to represent the homomorphism f : Γ → U(m) with f(ai) = Ai and f(xj) = Xj for
1 ≤ i ≤ n, 1 ≤ j ≤ r.

For the rest of the paper, we will study the space Hom(Γ, U(m)). In this section, our
focus will be on the special case of rank r = 1. The first step to analyze this space is
to simplify the expression of the k-invariant ω ∈ H2(Zn;Z) of the central extension. The
following proposition allows us to work with central extensions with a particularly simple
form of k-invariants. The proof is exactly analogous to that of [9, Proposition 4.1] for the
case of (Z/m)-valued skew-symmetric forms on Zn and we will leave it to the readers.

Proposition 4.1. Let ω : Zn × Zn → Z be a skew-symmetric bilinear form on Zn. Then
there exist t ≤ n/2 and a Z-module basis e1, e2, . . . , en of Zn such that

ω = c1e
∗
1 ∧ e∗t+1 + . . .+ cte

∗
t ∧ e∗2t,

where c1, . . . , ct are positive integers with ci|ci+1 for i = 1, . . . , t− 1.

Thanks to Proposition 4.1, we can assume throughout this section that Γ is the central
extension

(24) 1 → Z → Γ → Zn → 1

with k-invariant ω =
∑t

i=1 cie
∗
i ∧ e∗t+i, where 0 ≤ 2t ≤ n and ci > 0 for 1 ≤ i ≤ t. In this

case, an (n + 1)–tuple of m × m unitary matrices (X,A1, . . . , An) ∈ Hom(Γ, U(m)) if and
only if for 1 ≤ i ≤ i′ ≤ n,

[X,Ai] = Im;(25)

[Ai, Ai′] =

{

Xci if i′ = i+ t, 1 ≤ i ≤ t;

Im otherwise.
(26)

Lemma 4.2. Let 1 → Z → Γ → Zn → 1 be a central extension with non-zero k-invariant ω.
Then there exists a positive integer L such that for any (X,A1, . . . , An) ∈ Hom(Γ, U(m)),
each eigenvalue of X is a L-th root of unity.

Proof. Since ω 6= 0, [Ai, Aj] = Xωij with ωij > 0 for some 1 ≤ i, j ≤ n. Suppose that λ is an
eigenvalue of X and the associated eigenspace Eλ is k dimensional. Since Ai, Aj commutes
with X , they restrict to unitary automorphisms on Eλ. [Ai|Eλ

, Aj|Eλ
] = Xωij |Eλ

= λωijIdEλ
.

By taking determinant, we have λkωij = 1. Therefore, we can take L = m!ωij. �

Consider the map χ : U(m) → C[z] which sends a unitary matrix to its characteristic
polynomial and the restriction map res : Hom(Γ, U(m)) → Hom(Z, U(m)) ∼= U(m) which
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sends (X,A1, . . . , An) to X . For a complex polynomial p(z), define U(m)p(z) = χ−1(p(z)),
and Hom(Γ, U(m))p(z) = (χ ◦ res)−1(p(z)). The map res restricts to a map

resp(z) : Hom(Γ, U(m))p(z) → U(m)p(z).

Note that if Γ is non-abelian, the range of the map χ ◦ res is a discrete set by Lemma
4.2. Hence, by continuity, each Hom(Γ, U(m))p(z) is both an open and closed subset of
Hom(Γ, U(m)).

Let p(z) =
∏s

j=1(z − λj)
mj ∈ C[z] with distinct roots λ1, . . . , λs ∈ S1. Let X ∈ U(m)p(z)

and (X,A1, . . . , An) ∈ (resp(z))
−1(X). There is an orthogonal decomposition

Cm = Eλ1 ⊕Eλ2 ⊕ . . .⊕ Eλs

of Cm into eigenspaces of X . X restricts to complex multiplication by λj on Eλj
and X|Eλj

has characteristic polynomial (z − λj)
mj . Since Ai commutes with X , Ai also preserves

each of these eigenspaces Eλj
. All these n + 1 matrices X,A1, . . . , An restrict to unitary

automorphisms on the eigenspace Eλj
and their restrictions on Eλj

satisfy commutation
relations similar to those in (25) and (26). Hence, for 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ s,

X|Eλj
= λjIdEλj

is central;(27)

[Ai|Eλj
, Ai′ |Eλj

] =

{

λci
j IdEλj

if i′ = i+ t, 1 ≤ i ≤ t;

IdEλj
otherwise.

(28)

Under an unitary isomorphism Eλj
∼= Cmj , these relations between the restrictions of

X,A1, . . . An on Eλj
are the same as those among an (n+1)-tuple in Hom(Γ, U(mj))(z−λj)

mj .
Since A1, . . . , An are uniquely determined by their restrictions on the eigenspaces Eλj

, this
implies

(29) (resp(z))
−1(X) ∼=

s∏

j=1

Hom(Γ, U(mj))(z−λj)
mj .

For instance, if we take X to be the matrix

(30) X0 =







λ1Im1 0 . . . 0
0 λ2Im2 . . . 0
...

...
. . .

...
0 0 . . . λjImj






∈ U(m)p(z),

then (resp(z))
−1(X0) consists of all (n+ 1)-tuples (X0, A1, . . . , An) such that each Ai has the

form

Ai =







Ai1 0 . . . 0
0 Ai2 . . . 0
...

...
. . .

...
0 0 . . . Ais






∈ U(m)

where (λjImj
, A1j, A2j , . . . , Anj) ∈ Hom(Γ, U(mj))(z−λj)

mj for each j.
Our next theorem says that resp(z) : Hom(Γ, U(m))p(z) → U(m)p(z) is a fiber bundle with

fiber res−1(X0) homeomorphic to product of spaces of almost commuting tuples of unitary
matrices.
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Theorem 4.3. Let Γ be a central extension as in (24) and p(z) =
∏s

j=1(z − λj)
mj , where

λ1, . . . , λs ∈ S1 are its distinct roots. Then there are U(m)-equivariant homeomorphisms

Hom(Γ, U(m))p(z) ∼= U(m)×∏s
j=1 U(mj)

(
s∏

j=1

Hom(Γ, U(mj))(z−λj)
mj

)

∼= U(m)×∏s
j=1 U(mj)

(
s∏

j=1

Bn(U(mj))Dn(−c1qj ,...,−ctqj)

)

where qj = 1
2π

√
−1

log λj. Also, U(m)p(z) ∼= U(m)/(
∏s

j=1 U(mj)) is a flag manifold and

resp(z) : Hom(Γ, U(m))p(z) → U(m)p(z) is a fiber bundle induced by the collapse map of
∏s

j=1Hom(Γ, U(mj))(z−λj)
mj .

The proof of Theorem 4.3 makes use of the following lemma in [8, Proposition 2.3.2].

Lemma 4.4. Let G be a compact Lie group and f : Y → Z be a G-map between compact
G-spaces. Suppose that the G-action on Z is transitive with stabilizer subgroup H ⊂ G at a
point z0 ∈ Z. Then Y0 = f−1(z0) is an H-space, Y ∼= G×H Y0 as G-spaces and f is the fiber
bundle G×H Y0 → G/H ∼= Z induced by the collapse map of Y0.

of Theorem 4.3. It is clear that resp(z) : Hom(Γ, U(m))p(z) → U(m)p(z) is equivariant with
respect to the conjugation action of U(m). Also, note that this conjugation action on
U(m)p(z) is transitive with the stabilizer subgroup of X0 in (30) equal to

∏s
j=1U(mj). By

Lemma 4.4 and (29), we obtain the first homeomorphism and prove that resp(z) is induced
by the collapse map of

∏s
j=1Hom(Γ, U(mj))(z−λj)

mj . The second homeomorphism follows

immediately from (27), (28) and the definition of Bn(U(mj))Dn(−c1qj ,...,−ctqj). �

Finally, using results from the last section, we can write down the image of the map res and
the connected components of Hom(Γ, U(m)). To do so, we need to introduce the following
definition.

Definition 4.5. Let Γ be a central extension as in (24) with non-zero k-invariant. Let
C[z]mΓ ⊂ C[z] be the set of all monic complex polynomials p(z) of degree m such that

(1) all the roots of p(z) are roots of unity;
(2) If a root λ of p(z) is a primitive k-th root of unity, then the multiplicity of λ in p(z)

is divisible by µk :=
∏t

i=1 k/(k, ci), where (k, ci) denotes the greatest common divisor
of k and ci.

Corollary 4.6. Suppose that Γ is a central extension as in (24) and res : Hom(Γ, U(m)) →
Hom(Z, U(m)) ∼= U(m) is the restriction map. If Γ is abelian, then res is surjective. If
Γ is non-abelian, then the image of res is

∐

p(z)∈C[z]mΓ
U(m)p(z) and Hom(Γ, U(m)) can be

expressed as the union of its path-connected components as

(31) Hom(Γ, U(m)) =
∐

p(z)∈C[z]mΓ

Hom(Γ, U(m))p(z).

The number of path-connected components of Hom(Γ, U(m)) is given by the coefficient of xm

in the generating function
∏

k≥1
1

(1−xµk )Φ(k) , where µk is defined as in Definition 4.5 and Φ(k)

is Euler’s phi function.
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Proof. If Γ is abelian, then for any X ∈ U(m), (X, Im, Im, . . . , Im) ∈ Hom(Γ, U(m)) and
so res is surjective. If Γ is non-abelian, then for a degree m complex polynomial p(z),
Hom(Γ, U(m))p(z) is non-empty only if all the roots of p(z) are roots of unity by Lemma
4.2. Suppose that p(z) =

∏s
j=1(z − λj)

mj with distinct roots λj ’s and each λj is a primitive

kj-th root of unity. Let qj =
1

2π
√
−1

log λj and Dj = Dn(−c1qj , . . . ,−ctqj). Then by Theorem

4.3 and 3.3, Hom(Γ, U(m))p(z) is non-empty if and only if each Bn(U(mj))Dj
is non-empty,

which is true if and only if each σ(Dj) =
∏t

i=1 |ciqj | =
∏t

i=1 kj/(kj, ci) divides mj , or
equivalently, p(z) ∈ C[z]mΓ . Theorem 4.3 and Corollary 3.10 also imply that for p(z) ∈ C[z]mΓ ,
Hom(Γ, U(m))p(z) is path-connnected and resp(z) is surjective. Since C[z]

m
Γ is a finite discrete

set in C[z] and res, χ : U(m) → C[z] are continuous, we conclude that Hom(Γ, U(m)) can be
written as the disjoint union of path-connected components as in (31). Hence, the number
of path-connected components of Hom(Γ, U(m)) is equal to |C[z]mΓ |, which is obviously the
coefficient of xm in

∏

k≥1
1

(1−xµk )Φ(k) from Definition 4.5. �

Example 4.7. Let Γ1 be the integral Heisenberg group, which can be described as the central
extension 1 → Z → Γ1 → Z2 → 1 with k-invariant ω = e∗1 ∧ e∗2. Thus t = 1, c1 = 1 and
µk = k. The generating function in Corollary 4.6 is given by

∏

k≥1

1

(1− xµk)Φ(k)
=

1

1− x
· 1

1− x2
· 1

(1− x3)2
· 1

(1− x4)2
· 1

(1− x5)4
· · ·

= 1 + x+ 2x2 + 4x3 + 7x4 + 13x5 + higher terms

Hence the number of components of Hom(Γ1, U(m)) is 1, 2, 4, 7, 13 for m = 1, . . . , 5 respec-
tively. We can also consider the generalized version of Γ1 given by the central extension
1 → Z → Γt → Z2t → 1 with k-invariant ω =

∑t
i=1 e

∗
i ∧ e∗t+i where t ≥ 2. In this case,

µk = kt and the generating function

∏

k≥1

1

(1− xµk)Φ(k)
= (1 + x+ x2 + . . .)(1 + x2t + x2t+1

+ . . .)(1 + x3t + (x3t)2 + . . .)2 · · ·

From the coefficients it follows that Hom(Γt, U(m)) is connected for 1 ≤ m ≤ 2t−1, has two
components for 2t ≤ m ≤ 2t+1 − 1 and at least three components for m ≥ 2t+1.

5. Rank r > 1 case

In this section we will study the space Hom(Γ, U(m)) for a central extension Γ of the
form (22) with rank r > 1. We will decompose the restriction map Hom(Γ, U(m)) →
Hom(Zr, U(m)) into maps of fiber bundles over flag manifolds and relate the spaces to almost
commuting tuples of unitary matrices. Results about the components, rational homology
type and the associated representation space of Hom(Γ, U(m)) can then be obtained. We
first determine the image of the restriction map Hom(Γ, U(m)) → Hom(Zr, U(m)).

Definition 5.1. Given a central extension Γ of the form (22) with ωl
ij as in (23), define

ω : Tr → T (n,R/Z) by

(32) ω(λ)ij =
1

2π
√
−1

log
(

λ
ω1
ij

1 λ
ω2
ij

2 . . . λ
ωr
ij

r

)
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for 1 ≤ i < j ≤ n. Let HomΓ(Z
r, U(m)) ⊂ Hom(Zr, U(m)) be the subset consisting of

those commuting tuples (X1, X2, . . . , Xr) which have all their r-tuples of eigenvalues λ ∈ Tr

satisfying ω(λ) ∈ T (n,Q/Z) and σ(ω(λ)) divides dimEλ.

Proposition 5.2. The image of the restriction map res : Hom(Γ, U(m)) → Hom(Zr, U(m))
is HomΓ(Z

r, U(m)).

Proof. Suppose (X1, . . . , Xr, A1, . . . , An) ∈ Hom(Γ, U(m)). Let λ = (λ1, . . . , λr) ∈ Tr be a r-
tuple of eigenvalues of (X1, . . . , Xr). Since each pair of Ai and Xj commutes, Eλ is invariant
under each Ai. The restrictions of Ai, Aj on Eλ satisfy the relation

(33) [Ai|Eλ
, Aj|Eλ

] = (X
ω1
ij

1 X
ω2
ij

2 . . .X
ωr
ij

r )|Eλ
= λ

ω1
ij

1 λ
ω2
ij

2 . . . λ
ωr
ij

r IdEλ
= e2ω(λ)ijπ

√
−1IdEλ

.

By Lemma 3.1 and Corollary 3.10, ω(λ) ∈ T (n,Q/Z) and σ(ω(λ)) divides dimEλ. Hence
(X1, . . . , Xr) ∈ HomΓ(Z

r, U(m)).
On the other hand, suppose (X1, . . . , Xr) ∈ HomΓ(Z

r, U(m)) is given. Using Corol-

lary 3.10, one can find matrices A1, . . . , An ∈ U(m) such that [Ai, Aj] = X
ω1
ij

1 X
ω2
ij

2 . . .X
ωr
ij

r

by constructing A1|Eλ
, . . . , An|Eλ

satisfying (33) for each r-tuple of eigenvalues λ ∈ Tr of
(X1, . . . , Xr) and taking direct sum. It shows that (X1, . . . , Xr) lies in the image of res. �

Let Fn be the free commutative monoid on T (n,Q/Z). We can extend σ : T (n,Q/Z) → Z

as defined in (12) to a function on Fn by linearity. Therefore for D =
∑s

j=1 ljDj , lj > 0,

σ(D) =
∑s

j=1 ljσ(Dj). Let Fn,m be the preimage σ−1(m) of m under σ : Fn → Z. Define

f : HomΓ(Z
r, U(m)) → Fn,m by

f(X1, . . . , Xr) =
s∑

j=1

dimEλj

σ(ω(λj))
ω(λj),

where λ1, . . . , λs are all the distinct r-tuples of eigenvalues of (X1, . . . , Xr). For D ∈ Fn,m,
let Hom(Zr, U(m))D = f−1(D), Hom(Γ, U(m))D = res−1(Hom(Zr, U(m))D) and resD =
res |Hom(Γ,U(m))D , where res : Hom(Γ, U(m)) → HomΓ(Z

r, U(m)) is the restriction map. Since
f is continuous if Fn,m is given the discrete topology, we obtain the following theorem.

Theorem 5.3. For a central extension Γ of the form (22), HomΓ(Z
r, U(m)), Hom(Γ, U(m))

and res can be expressed as disjoint unions indexed by F and there is a commutative diagram

Hom(Γ, U(m))

res

��

∐

D∈Fn,m
Hom(Γ, U(m))D

∐
D∈Fn,m

resD

��

HomΓ(Z
r, U(m))

∐

D∈Fn,m
Hom(Zr, U(m))D.

Because of Theorem 5.3, we can focus on Hom(Γ, U(m))D for each D ∈ Fn,m. The next
two theorems break down these spaces and relate them to Bn(U(m)).

Theorem 5.4. Suppose that D =
∑s

j=1 ljDj ∈ Fn,m with lj > 0 and Di 6= Dj for i 6= j. Let

mj = ljσ(Dj). Then there are U(m)-equivariant homeomorphisms

Hom(Γ, U(m))D ∼= U(m)×∏s
j=1 U(mj)

(
s∏

j=1

Hom(Γ, U(mj))ljDj

)

,
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and

Hom(Zr, U(m))D ∼= U(m)×∏s
j=1 U(mj)

(
s∏

j=1

Hom(Zr, U(mj))ljDj

)

.

Hence, both Hom(Γ, U(m))D and Hom(Zr, U(m))D are fiber bundles over U(m)/(
∏s

j=1U(mj)).
The map resD is a map of fiber bundles which fits into the following commutative diagram.

∏s
j=1Hom(Γ, U(mj))ljDj

��

∏s
j=1 resljDj

//
∏s

j=1Hom(Zr, U(mj))ljDj

��

Hom(Γ, U(m))D

��

resD
// Hom(Zr, U(m))D

��

U(m)
/
(
∏s

j=1 U(mj)
)

U(m)
/
(
∏s

j=1U(mj)
)

.

Proof. The space U(m)/(
∏s

j=1 U(mj)) can be considered as a flag manifold with points

represented by ordered tuples (V1, . . . , Vs), where each Vj ⊂ Cm is a mj-dimensional complex
subspace and Cm = ⊕s

j=1Vj is an orthogonal decomposition of Cm. Let

g : Hom(Zr, U(m))D → U(m)/(
∏s

j=1 U(mj))

be defined by g(X1, . . . , Xr) = (V1, . . . , Vs) with Vj = ⊕λ∈ω−1(Dj)Eλ. Then g, g ◦ resD are
continuous and U(m)-equivariant. Since the U(m)-action on U(m)/(

∏s
j=1 U(mj)) is transi-

tive, we obtain the U(m)-homeomorphisms in the theorem by Lemma 4.4. It is obvious that
resD can be realized as a map of fiber bundles induced by

∏s
j=1 resljDj

and hence the given
diagram commutes. �

Recall that we defined BD = Bn(U(σ(D))) for D ∈ T (n,Q/Z). In Corollary 3.16 we
showed that it can be used as the building blocks for approximating B(U(m))D rationally.
We can do it for Hom(Γ, U(m))lD too.

Theorem 5.5. For D = lD and m = σ(D) = lσ(D), there is a commutative diagram

U(m)×U(σ(D))l (BD × ω−1(D))l
/

Σl

φD
//

��

Hom(Γ, U(m))D

resD

��

U(m)×U(σ(D))l ω
−1(D)l

/

Σl

ηD
// Hom(Zr, U(m))D.

where the horizontal maps are rational homology equivalences for any l ≥ 1 and homeomor-
phisms for l = 1. Here ω : Tr → T (n,R/Z) is the function as defined in (32).

Remark 5.6. The horizontal maps are defined in the same way as φD in (21). The do-
main of ηD can be considered as the space of unordered l-tuples of pairwisely orthogonal
σ(D)-dimensional complex subspaces of Cm with a label λ ∈ ω−1(D) attached to each of
the subspaces. A commuting tuple (X1, . . . , Xr) ∈ Hom(Zr, U(m))D can be uniquely de-
termined by specifying these λ as the r-tuples of eigenvalues of the subspaces they label.
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This defines ηD. The map φD is defined similarly: Each point of its domain carries the
additional data of a D-commuting tuple of unitary automorphisms of each of those com-
plex subspaces. The additional data is used for constructing the matrices Ai in its image
(X1, . . . , Xr, A1, . . . , An) ∈ Hom(Γ, U(m))D under φD.

Proof. It is clear that the diagram commutes. Suppose (X1, . . . , Xr) ∈ Hom(Zr, U(m))D.
Let λ1, . . . , λs ∈ Tr be all its distinct r-tuples of eigenvalues. Note that each λj ∈ ω−1(D)
and dimEλj = mj = ljσ(D) for some lj ∈ Z. It is easy to see that

η−1
D (X1, . . . , Xr) ∼=

s∏

j=1

U(mj)/U(σ(D))lj
/

Σlj
,

which is Q-acyclic in general and is a point if l = 1. Thus ηD satisfies the properties stated
in the theorem. For φD, it is clear that there exist homeomorphisms

res−1
D (X1, . . . , Xr) ∼=

s∏

j=1

Bn(U(mj))D

(resD ◦φD)
−1(X1, . . . , Xr) ∼=

s∏

j=1

U(mj)×U(σ(D))lj BD
lj
/

Σlj

such that the restriction of φD on (resD ◦φD)
−1(X1, . . . , Xr) can be regarded as the product

of

φD : U(mj)×U(σ(D))lj BD
lj
/

Σlj
→ Bn(U(mj))D

under these homeomorphisms. It follows from Theorem 3.7 that φD is a rational homology
equivalence for any l ≥ 1 and a homeomorphism for l = 1. �

The space ω−1(D) can be studied using linear systems over R/Z.

Definition 5.7. Suppose that Γ is a central extension of the form (22) and ωl
ij are the

coefficients of its k-invariant as in (23).

(1) Let Ω be the Cn
2 ×r matrix with rows indexed by (i, j), 1 ≤ i < j ≤ n, columns indexed

by 1 ≤ l ≤ r and the l-th entry on the (i, j)-th row equals to ωl
ij.

(2) Let Q be a row echelon form of Ω over Z. Define B to be the absolute value of the
product of the pivot entries of Q. The number B is independent of the choice of Q.

(3) Let R be the reduced row echelon form of Ω over Q. The columns of R can be regarded
as vectors in QCn

2 . Let C(R) be the Z-submodule of (Q/Z)C
n
2 generated by the images

of the columns of R under the quotient map QCn
2 → (Q/Z)C

n
2 . Define C to be the

number of elements in C(R).
(4) Define P (Ω) = B/C.

Example 5.8. Let r = 4, n = 3,

Q =





4 −1 1 −6
0 3 1 2
0 0 0 0



 and so R =





1 0 1/3 −4/3
0 1 1/3 2/3
0 0 0 0



 .
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Then B = (4)(3) = 12 and C(R) is the Z-submodule of (Q/Z)4 generated by




1
0
0



 ≡





0
1
0



 ≡





0
0
0



 ,





1/3
1/3
0



 and





−4/3
2/3
0



 ≡ 2





1/3
1/3
0



 .

Hence C = 3 and P (Ω) = 12/3 = 4.

Lemma 5.9. Let ω : Tr → T (n,R/Z) be the map (32) and Ω, P (Ω) be as in Definition 5.7.
Then for any D ∈ T (n,Q/Z), ω−1(D) is either empty or homeomorphic to a disjoint union
of P (Ω) copies of Tnul(Ω), where nul(Ω) is the nullity of Ω.

Proof. Suppose ω−1(D) is non-empty. A r-tuple λ = (λ1, . . . , λr) ∈ ω−1(D) if and only if
r∑

k=1

ωk
ij

log λk

2π
√
−1

= dij

for all 1 ≤ i < j ≤ n. Let D′ ∈ (Q/Z)C
n
2 , with entries indexed by (i, j), 1 ≤ i < j ≤ n,

be obtained from D by rewriting the entries in a column vector. Suppose Q,R,B, C are as
in Definition 5.7 and xk = log λk

2π
√
−1

. Then ω−1(D) is homeomorphic to the solution space S

of the equivalent linear systems Ω~x = D′ ⇐⇒ Q~x = D′′ over Q/Z. Here D′′ is obtained
from D′ by performing the same elementary operations used to obtain Q from Ω. Without
loss of generality, assume x1, . . . , xp are the basic variables and xp+1, . . . , xr are the free
variables in the system Q~x = D′′. For 1 ≤ s ≤ p, let bs be the pivot entry in the s-th
column of Q. Then for points in S, b1x1, . . . , bpxp ∈ R/Z are uniquely determined by any
(xp+1, . . . xr) ∈ T := (R/Z)r−p ∼= Tr−p. Hence, S is a B-sheeted covering space over T . Note
that all entries below the p-th row of R are zero. Let ~vs ∈ Rp be the first p entries of the
s-th column of R and ~ws be its image under the quotient map Rp → (R/Z)p. Then a loop
in T parametrized by xs ∈ S1 with other coordinates fixed lifts to a path connecting ~x and

~x+

[
~ws

~0

]

in S. From this it can be deduced that S, and hence ω−1(D), is homeomorphic to

a disjoint union of B/C = P (Ω) copies of Tr−p, where r − p = nul(Ω) is the nullity of Ω.
This proves the lemma. �

Combining Theorems 3.7, 5.5 and Lemma 5.9, we obtain the following result about the
number of components, rational cohomology and the associated representation space for
Hom(Γ, U(m))D.

Theorem 5.10. Suppose that D =
∑s

j=1 ljDj ∈ Fn,m with lj > 0 and Di 6= Dj for i 6= j. Let

l =
∑s

j=1 lj and mj = ljσ(Dj). Then Hom(Γ, U(m))D is non-empty if and only if ω−1(Dj)

is non-empty for all j = 1, . . . , s. In that case, Hom(Γ, U(m))D has
s∏

j=1

(
P (Ω) + lj − 1

lj

)

components and there is a rational homology equivalence

[(
U(m)/Tl

)
× (
∐

P (Ω) T
n+nul(Ω))l

/

ZD

]/

∏s
j=1Σlj

→ Hom(Γ, U(m))D,
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where the action of the finite abelian group ZD :=
∏s

j=1(ZDj
)lj on the space

(
U(m)/Tl

)
×

(
∐

P (Ω) T
n+nul(Ω))l is trivial on rational cohomology. Moreover the map induces a homeomor-

phism

Hom(Γ, U(m))D
/

U(m) ∼=
s∏

j=1

[(
∐

P (Ω) T
n+nul(Ω)

)lj
/

Σlj

]

after passing to quotients by the action of U(m).

Finally we note that the rational cohomology of the spaces Bn(U(m)) and Hom(Γ, U(m))
can be computed using standard spectral sequence arguments and invariant theory. Details
are left to the interested (and highly motivated) reader.
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