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Abstract. We build an augmentation of the Masur-Minsky marking complex by Groves-Manning combi-
natorial horoballs to obtain a graph we call the augmented marking complex, AMpSq. Adapting work of

Masur-Minsky, we show this augmented marking complex is quasiisometric to Teichmüller space with the

Teichmüller metric. A similar construction was independently discovered by Eskin-Masur-Rafi [EMR13].
We also completely integrate the Masur-Minsky hierarchy machinery to AMpSq to build flexible families

of uniform quasigeodesics in Teichmüller space. As an application, we give a new proof of Rafi’s distance

formula for T pSq with the Teichmüller metric. We have included an appendix in which we prove a number
of facts about hierarchies that we hope will be of independent interest.

1. Introduction

The study of various combinatorial complexes built from simple closed curves on surfaces has greatly
advanced the state of knowledge of the geometry of Teichmüller space, T pSq, the mapping class group,
MCGpSq, and hyperbolic 3-manifolds. In [Br03], Brock showed that T pSq with the Weil-Petersson metric is
quasiisometric to the graph of pants decompositions on S, PpSq, an insight which he used to prove that the
Weil-Petersson distance between two points in T pSq is coarsely the volume of the convex core of the quasi-
Fuchsian hyperbolic 3-manifold they simultaneously uniformize. Beginning with their proof of hyperbolicity
of the curve complex, CpSq, in [MM99], the hierarchy machinery Masur-Minsky developed in [MM00] was
essential in the proof of the Ending Lamination Theorem ([Min03], [BCM11]) for hyperbolic 3-manifolds.
Moreover, in [MM00], Masur-Minsky built the marking complex, MpSq, and prove it is quasiisometric to
MCGpSq in any word metric, an analogy essential to the proofs of the rank conjecture ([BM08]) and quasi-
isometric rigidity ([BKMM]) theorems for the mapping class group.

The main goal of this paper is to build a combinatorial complex, the augmented marking complex, which
is quasi-isometric to T pSq in the Teichmüller metric:

Theorem 1.0.1. The augmented marking complex, AMpSq, is MCGpSq-equivariantly quasiisometric to
T pSq in the Teichmüller metric.

A large part of this paper is spent adapting the Masur-Minsky hierarchy machinery for MpSq and PpSq to
AMpSq. We use these augmented hierarchies for AMpSq to build families of uniform quasigeodesics called
augmented hierarchy paths and derive a version of Rafi’s distance formula for the Teichmüller metric (The-
orem 2.6.1), thereby completing the unification of the coarse geometries of MCGpSq and T pSq in the Weil-
Petersson and Teichmüller metrics by a common framework developed in [MM99, MM00, Br03, Raf05, Raf07].
In a recent paper, Eskin-Masur-Rafi ([EMR13]) used AMpSq and augmented hierarchy paths, which they in-
dependently discovered, to prove the Brock-Farb Geometric Rank Conjecture for T pSq with the Teichmüller
metric (see [BF06]). Bowditch [Bow14], Behrstock-Hagen-Sisto [BHS14], and the author [Dur14] have also
used AMpSq to give different, independent proofs of the rank conjecture.

Our construction follows upon the work of Masur and Minsky on the curve and marking complexes
[MM99, MM00] and Rafi’s applications of their machinery to Teichmüller geometry [Raf05, Raf07], though
we emphasize that our work is independent of Rafi’s. We now briefly discuss the context of these results.

The Teichmüller space of a surface S, denoted T pSq, is the space of hyperbolic metrics on S up to isotopy.
The geometry of the thin part of T pSq, those metrics for which the hyperbolic lengths of some curves on the
surface are small, is fundamentally different from its complement, the thick part. One can see this in the
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pT pSq, dT q AMpSq

MCGpSq MpSq

pT pSq, dWP q PpSq

T elpSq CpSq

Theorem 1.0.1

Masur-Minsky [MM00]

Brock [Br03]

Masur-Minsky [MM99]

Figure 1. The above figure represents a flow of ideas: the vertical arrows indicate a reduc-
tion of complexity, while all horizontal arrows are MCGpSq-equivariant quasiisometries.

completion of T pSq in the Weil-Petersson metric, where curves are pinched to nodes and the geometry of
the boundary strata is that of a product of the Teichmüller spaces of the complements of the pinched curves.
While this stark phenomenon does not exactly hold in the Teichmüller metric, Minsky proved in [Min96]
that the Teichmüller metric on the thin part of T pSq is quasiisometric to the product of the Teichmüller
spaces of the complements of the short curves and a product of horodisks, one for each short curve (see
Theorem 2.5.1) with the sup metric; that is, the thin parts of T pSq coarsely have a product structure.

In [MM99], Masur and Minsky proved that Harvey’s complex of simple closed curves [Ha81] on S, denoted
by CpSq, is δ-hyperbolic and that the electrification of the thin parts of T pSq is quasi-isometric to CpSq and
thus hyperbolic. While this provides for a substantial amount of control over the large-scale geometry of
CpSq and the thick part of T pSq, CpSq is locally infinite, whereas T pSq is proper with the Teichmüller metric,
and thus hyperbolicity does little a priori to inform upon the local geometry of either. In [MM00], they intro-
duced the machinery of hierarchies of tight geodesics which record the combinatorial information sufficient
to gain a great deal of control over the local geometry of CpSq, proving it shares some properties with locally
finite complexes. These hierarchies also contain the information sufficient to build quasigeodesics in the
associated marking complex, MpSq, called hierarchy paths. They proved that the progress along a hierarchy
path coarsely occurs in subsurfaces to which the end markings have heavily overlapping projections. Using
the hierarchy machinery, they proved that MpSq is MCGpSq-equivariantly quasiisometric to MCGpSq with
any word metric and obtained a coarse distance formula for MCGpSq (Theorem 2.4.3 below).

The connection between the work of Masur-Minsky and the Teichmüller metric was largely developed by
Rafi; see [Raf14] for a summary of the current state of this project. A Teichmüller geodesic is a path through
a space of metrics on S and one may ask when a given curve α P CpSq is shorter than some fixed constant. In
[Raf05], Rafi proved that the hyperbolic length of a curve along a Teichmüller geodesic, G, is shorter than the
constant from Minsky’s Product Regions theorem (Theorem 2.5.1) at some point along G if the vertical and
horizontal foliations which determine G heavily overlap on a subsurface of which that curve is a boundary
component. In its sibling paper, [Raf07], Rafi took this condition on foliations and translated it into the
context of the curve complex. He proves G enters the thin part of T pSq of a subsurface Y Ă S if and only if
the curves which constitute BY are short along G, which happens if and only if Y is filled by subsurfaces to
whose curve complexes the vertical and horizontal foliations have sufficiently large projections. In addition,
he adapted the Masur-Minsky coarse distance formula for MCGpSq to obtain a coarse distance formula for
T pSq with the Teichmüller metric (Theorem 2.6.1 below).

The outline of the paper is as follows: In Section 2, we give the background necessary for the paper; in
Section 3, we show how to build AMpSq from MpSq; in Section 4, we define augmented hierarchies, and
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show how to translate most of [MM00] to our setting; in Section 5, we explain how to build augmented
hierarchy paths; in Section 6, we derive a distance formula for AMpSq and prove that augmented hierarchy
paths are uniform quasigeodesics; in Section 7, we prove that AMpSq and pT pSq, dT q are quasiisometric;
finally, in the Appendix, we prove structural results about hierarchies which may be of interest to the experts.

Acknowledgements The author would like to thank Daniel Groves for his great encouragement and
guidance. He would also like to thank to Jonah Gaster, Hao Liang, Howard Masur, Yair Minsky, and Kasra
Rafi for interesting conversations.

2. Preliminaries

For the remainder of the paper, let S be a connected, orientable surface of finite type with negative Euler
characteristic.

In this section, we recall from [MM00] the basic construction of the marking complex for a surface of
finite type, MpSq. We then briefly explain Rafi’s combinatorial model [Raf07] for Teichmüller space in the
Teichmüller metric, pT pSq, dT q. Finally, we introduce the notion of a combinatorial horoball from [GM08].

2.1. Notation. To simplify the exposition, we adopt some standard notation from coarse geometry. Given
a pair of constants, C1, C2 ě 0, and a pair of quantities, A and B, we write A —pC1,C2q B or simply A — B if

1

C1
¨A´ C2 ď B ď C1 ¨A` C2

In this paper, any such constants C1 and C2 involved in a coarse equality depend on the topology of S.

2.2. Curve complexes and subsurface projections. The complex of curves of S, denoted CpSq, is a sim-
plicial complex whose simplices consist of disjoint collections of isotopy classes of simple closed curves on S.
In the case where S is a once-punctured torus or four-holed sphere, minimal intersection replaces disjointness
as the adjacency relation. For Yα an annulus in S with core curve α, CpYαq “ Cpαq is the simplicial complex
with vertices consisting of paths between the two boundary components of the metric compactification, Yα,

of rYα, the cover of S corresponding to Yα, up to homotopy relative to fixing the endpoints on the boundary;
two paths are connected by an edge if they have disjoint interiors.

We will be considering only the 1-skeleton of CpSq with its path metric. Endowed with this metric, we
have a remarkable theorem of Masur and Minsky [MM99]:

Theorem 2.2.1. CpSq is infinite-diameter and Gromov hyperbolic.

The curve complex is locally infinite, but the links of vertices are often (products of) Gromov hyperbolic
graphs, which gives us a substantial amount of control over the global geometry of CpSq, via the hierarchy
machinery in [MM00].

Consider a curve α P CpSq. Then the link of α is CpSzαq, where CpSzαq is the join CpS1q ˚ CpS2q if α is
separating and Szα “ S1

š

S2. More generally, if Y Ă S is any proper subsurface, then CpY q lives in the
1-neighborhood of BY Ă CpSq.

We are often interested in understanding the combinatorial relationship between two curves or simplices
of CpSq from the perspective of CpY q for some subsurface Y Ă S. Let α Ă CpSq be any simplex and let
Y Ă S be any subsurface of S which is not a pair of pants. The subsurface projection of α to Y is the
canonical completion of the arcs in α X Y along the boundary of a regular neighborhood of α X Y and BY
to curves in Y . We denote this projection by πY pαq and remark that it is a simplex in CpY q. If Yγ is an
annulus with core γ and α intersects γ transversely, then πγpαq is the finite, diameter-1 set of lifts of α to
rYγ which connect the two boundary components of Y γ . See Section 2 of [MM00] for more details.

For any two simplices α, β Ă CpSq and subsurface Y Ă S, we use the shorthand dY pα, βq “ dY pπY pαq, πY pβqq.

3



(a) (b) (c)

Figure 2. (a) A marking µ P MpSq on a genus two surface, where the red curves are
basepµq and the blue curves are the transversal; (b) µ after a twist move around the left
base curve; (c) µ after a flip move at the left transverse pair.

Subsurface projections are essential objects in the Masur-Minsky hierarchy machinery. One of the main
outputs of that machinery is the distance formula for MpSq, Theorem 2.4.3 below.

2.3. Marking complexes. A marking, µ, on a surface S is a collection of transverse pairs, pα, tαq, where
the α form a simplex in CpS, called the base of µ, denoted basepµq, and each tα is a diameter-1 set of vertices
in the annular complex Cpαq (see Section 2.4 of [MM00] ), called the set of transversals. We say a marking
µ is complete if basepµq is a pants decomposition of S, and clean, if the only base curve each transversal tα
intersects is its paired base curve, α.

We remark that, in any complete clean marking, each transversal intersects either one or two other
transversals. Indeed, since the base curves form a pants decomposition, one can decompose S into a collec-
tion of pairs of pants where the base curves form the cuffs and the transverse curves are cut into essential arcs
in the pairs of pants. In each pair of pants, each transverse arc must intersect exactly one other transverse
arc. In the case that α is two cuffs in one pair of pants (that is, α and tα fill a one-holed torus), tα intersects
only one other transverse curve; otherwise, each transverse curve intersects two others.

The marking complex of S, denoted MpSq, is a graph whose vertices are complete clean markings and
two markings are connected by an edge if they can be related by one of two types of elementary moves,
called twists and flips, which we define now.

Given a marking µ and a pair pα, tαq in µ, a twist move around α involves replacing µ with Tαpµq, where
Tα is a Dehn twist or half-twist around α, depending on whether α Y tα fills a once-puncture torus or a
four-holed sphere, respectively. By construction, tα is the only curve in µ which intersects α, so this reduces
to pα, tαq ÞÑ pα, Tαptαqq.

Given a pair pα, tαq, a flip move performed at α involves a flip pα, tαq ÞÑ ptα, αq and some extra changes
to preserve cleanliness, which we now explain. As noted above, each transverse curve intersects (either one
or two) others, so now that a transverse curve has become a base curve, at least one other transverse pair
has been made unclean. In [Lemma 2.4, [MM00]], Masur and Minsky show that by choosing replacement
transversals to minimize distance in the annular curve complexes of their bases, one has a finite number
of possible new transversals which are all uniformly close to each other. The purpose of this cleaning is to
preserve the twisting data around α while allowing for future flip moves to occur without the resulting base
sets failing to be pants decompositions. See Figure 2.

In the rest of the paper, we assume that all markings are clean and complete.

Definition 2.3.1 (Subsurface projections for markings). We will be interested in subsurface projections for
markings. For any µ PMpSq and Y Ă S any subsurface which is not an annulus whose core is in basepµq,
we define the subsurface projection of µ to CpY q by πY pµq “ πY pbasepµqq. In the case that Y is an annulus
with core α P basepµq with transversal tα, then πY pµq “ tα.

We now define the projection of a marking on S to a marking on a subsurface:
4



Definition 2.3.2 (Projections of markings to markings on subsurfaces). Let µ P MpSq and Y Ă S be
any subsurface. We build πMpY qpµq inductively as follows. Choose a curve α1 P πY pµq, then build a pants
decomposition on Y by choosing αi P πY z

Ťi´1
j“1 αj

pµq. From this pants decomposition, build a marking on Y

by choosing transverse pairs pαi, παipµqq. We define πMpY qpµq ĂMpY q to be the collection of all markings
resulting from varying the choices of the αi.

Lemma 2.4 in [MM00] and Lemma 6.1 of [Beh06] show that the freedom in this process builds a bounded
diameter subset of MpY q. We remark however that if BY Ă basepµq, then πMpY qpµq is a unique point in
MpY q, since every curve in basepµq either projects to itself in CpY q or has an empty projection.

Remark 2.3.3. The process of constructing πMpY qpµq preserves any curve α P basepµq which happens to lie
in Y , for α P πY pµq and πY preserves disjointness. Otherwise, we could have chosen to build πMpY qpµq by
first preferentially choosing curves in basepµq which lie in Y .

2.4. Hierarchies, large links, and the Masur-Minsky distance formula. Since a substantial portion
of this paper is spent adapting the Masur-Minsky machinery to Teichmüller space, we now only briefly out-
line the features of the Masur-Minsky hierarchies. The main references for the hierarchy theory are [MM00]
and [Min03], and we will point the reader to the corresponding sections when possible; the initial exposition
begins in [MM00][Section 4]. See also the theses of Tao [Tao13] and Behrstock [Beh06] for nice introductions
to the theory. Our treatment begins in Section 4.

Given any two markings µ1, µ2 PMpSq, a hierarchy, H, between µ1 and µ2 is family of special geodesics
gY Ă CpY q with partial markings associated, denoted IpgY q and TpgY q. Each such geodesic is supported on
a distinct subsurface Y Ă S, such that the geodesics satisfy a number of subordinancy relations among the
gY determined by the associated partial markings; see Subsection 4.1 of [MM00]. Any such hierarchy H can
be used to build a uniform quasigeodesic between µ and η in MpSq, called a hierarchy path.

Given any pair of markings µ1, µ2 PMpSq, we say that a subsurface Y Ă S is a K-large link for µ1 and
µ2 if dY pµ1, µ2q ą K. [MM00][Lemma 6.12] tells us large links are the main building blocks of hierarchy
paths:

Lemma 2.4.1 (Lemma 6.12 in [MM00]). There exists a K ą 0 such that for any µ1, µ2 P MpSq and
subsurface Y Ă S such that dY pµ1, µ2q ą K, then Y supports a geodesic gY P H for any hierarchy H
between µ1 and µ2.

Remark 2.4.2 (Large link). The intuition behind the term large link is as follows: If Y Ă S is a large link
for µ1, µ2, we know from Lemma 2.4.1 that Y supports some geodesic gY P H; moreover, Y will necessarily
appear as the component of some Zzα where Z Ă S is a subsurface supporting a geodesic gZ P H and α P gZ .
While the length of gY in CpY q is dY pµ1, µ2q ą K, gY lives in the link of α P gZ as a path in CpZq, and
hence the link of α is large from the viewpoint of µ1 and µ2.

One of the main results of the hierarchy machinery is the inspirational Masur-Minsky distance formula
for MpSq, which says that the MpSq-distance between markings is coarsely the sum of their large links:

Theorem 2.4.3 (MpSq distance formula; Theorem 6.12 of [MM00]). For K ą 0 as in Lemma 2.4.1 and
any k ą K, there are E1, E2 ą 0, such that for any µ1, µ2 PMpSq

dMpSqpµ1, µ2q —pE1,E2q

ÿ

dY pµ1,µ2qąk

dY pµ1, µ2q

2.5. The thick part and Minsky’s product regions. One of the main corollaries to the hyperbolicity
of CpSq is [MM99][Theorem 1.2], which states that the electrification of pT pSq, dT q is quasiisometric to CpSq.
In contrast, Minsky showed in [Min96][Theorem 6.1] that the thin regions of pT pSq, dT q, where at least one
curve is short, are quasiisometric to a product space with its sup metric.

Let γ “ γ1, . . . , γn be a simplex in CpSq, and let ThinεpS, γq “ tσ P T pSq
ˇ

ˇlσpγiq ď εu, where lσpγiq is the
hyperbolic length of γi in σ, for each i. Let

(1) Tγ “ T pSzγq ˆ
ź

γiPγ

Hγi

5



be endowed with the sup metric, where Szγ a disjoint union of punctured surfaces and each Hγi is a horodisk,
that is, a copy of the upper half-plane model of H2 with imaginary part ě 1.

Theorem 2.5.1 (Product regions; Theorem 6.1 in [Min96]). The Fenchel-Nielsen coordinates on T pSq give
rise to a natural homeomorphism Π : T pSq Ñ Tγ , and for ε ą 0 sufficiently small, this homeomorphism
restricted to ThinεpS, γq distorts distances by a bounded additive amount.

In what follows, fix ε ą 0 to be sufficiently small so that 2.5.1 holds. When we say that a curve α is short
for some σ P T pSq, we mean that lσpαq ă ε.

Remark 2.5.2. Up to quasiisometry, we may take the sup or product metric on the product space in (1),
though Minsky’s version with the sup metric is finer and results in only an additive error.

2.6. Rafi’s combinatorial model. The main result of [Raf07] is an adaptation of the machinery in [MM00]
to the setting of pT pSq, dT q. In particular, Rafi obtains a distance estimate in Theorem 6.1 of [Raf07] ana-
logus to the Masur-Minsky formula (Theorem 2.4.3 above), restated below in Theorem 2.6.1.

Given σ P T pSq, a shortest marking µσ PMpSq for σ is a marking inductively built by choosing a shortest
curve in α1 P CpSq on σ with respect to extremal length, Extσ, then choosing a shortest curve α2 P CpSzα1q,
etc., until one has arrived at a shortest pants decomposition of S. One completes this to a shortest marking
by choosing shortest curves βi which intersect αi but not αj for j ‰ i. The result is a complete, clean
marking, of which there are finitely-many by [[MM00], Lemma 2.4]. We note that the collection of curves
which are shorter in σ than the constant ε in Minsky’s Theorem 2.5.1 form a simplex in CpSq by the Collar
Lemma. Thus in the case that σ P Thinγ for some simplex γ Ă CpSq, we necessarily have γ Ă basepµσq.

Theorem 2.6.1 (Rafi’s formula; Theorem 6.1 in [Raf07]). Let ε ą 0 be as in Theorem 2.5.1. There exists
k ą 0 such the following holds:

Let σ1, σ2 P T pSq, define Λ to be the set of curves short in both σ1 and σ2, and define Λi to be the set of
curves short in σ1 and not in Λ. Let µi be the shortest marking for σi. Then

(2) dT pσ1, σ2q —
ÿ

Y

rdY pµ1, µ2qsk `
ÿ

αRΛ

log rdαpµ1, µ2qsk `max
αPΛ

dHαpσ1, σ2q ` max
αPΛi
i“1,2

log
1

lσipαq

One of the main products of this paper, Theorem 7.4.7, is an independent, combinatorial proof of Rafi’s
distance formula.

2.7. Bers pants decompositions. Our augmented markings are markings with some length data. When
we associate a point in T pSq to an augmented marking, it will be important that the extremal lengths of
the curves we choose for the marking are uniformly bounded. We will not use the greedy algorithm used to
build the shortest markings for Rafi’s Theorem 2.6.1. Recall the following theorem of Bers:

Theorem 2.7.1 (Bers). There is a constant L ą 0 depending only on the topology of S, such that for any
point σ P T pSq, there is a pants decomposition Pσ with lσpαq ă L for each α P PX .

For any X P T pSq, any PX P PpSq as in Theorem 2.7.1 is called a Bers pants decomposition.

The following lemma is a consequence of the Collar Lemma:

Lemma 2.7.2. There exist constants ε0, L0 ą 0 depending only on S such that the following holds. Let
σ P T pSq and let Pσ be any Bers pants decomposition for σ. Then:

(1) For any α P CpSq, if lσpαq ă ε0, then α P Pσ.
(2) For any β P Pσ, Extσpβq ă L0.

Proof. For (1), we can choose ε0 small enough so that if γ intersects α where lσpαq ă ε0, then lσpγq ą L by
the Collar Lemma. For (2), the Collar Lemma states that there is a regular neighborhood of β on σ, with
diameter depending only on lσpβq, which is an embedded annulus. The reciprocal of this diameter is thus
both an upper bound for Extσpβq and bounded above because lσpβq is, completing the proof. �

For the rest of the paper, fix ε0 ą 0 sufficiently small satisfying both Lemma 2.7.2 and Theorem 2.5.1.
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2.8. Combinatorial horoballs. Combinatorial horoballs were introduced by Groves and Manning in [GM08]
in the context of relatively hyperbolic groups; see [CC92] for an earlier, similar construction. In particular,
suppose that G is a finitely-generated group and P “ tP1, . . . , Pnu is a finite collection of finitely-generated
subgroups of G. Among other equivalences, in [Theorem 3.25, [GM08]] they showed that the augmentation
of the Cayley graph of G by combinatorial horoballs along the subgroups in P is hyperbolic if and only if G
is relatively hyperbolic to P in the sense of Gromov.

While MCGpSq is not relatively hyperbolic to any family of subgroups (Theorem 8.1 in [BDM08]), the
process of adding efficient paths to the marking complex via combinatorial horoballs to build the augmented
marking complex is reminiscent of and indeed inspired by the relatively hyperbolic construction. We use
combinatorial horoballs to model the hyperbolic upper half-planes which appear in the product structure of
the thin parts discovered by Minsky [Min96] in Theorem 2.5.1. We fully explain the construction of AMpSq
in the next section.

Definition 2.8.1 (Combinatorial horoball). Let X be any simplicial complex. The combinatorial horoball
based on X, HpXq, is the 1-complex with vertices HpXqp0q “ Xp0q ˆ pt0u Y Nq and edges as follows:

‚ If x, y P Xp0q and n P t0u Y N such that 0 ă dXpx, yq ď en, then px, nq and py, nq are connected by
an edge in HpXq.

‚ If x P Xp0q and n P t0u Y N, then px, nq is connected to px, n` 1q by an edge.

The metric on HpXq is the path metric, where each edge is isometric to r0, 1s.

Remark 2.8.2. X sits inside of HpXq as the full subgraph containing the vertices Xp0q ˆ t0u.

As with horoballs in Hn, combinatorial horoballs are uniformly hyperbolic:

Theorem 2.8.3 (Theorem 3.8 in [GM08]). Let X be any simplicial complex. Then HpXq is δ-hyperbolic
where δ is independent of X.

Remark 2.8.4. The combinatorial horoballs we use are a simple case of the above, for X is the orbit of a
Dehn twist or half-twist and thus a copy of Z.

The following is a usual fact from Groff [Grf12][Lemma 6.2]:

Lemma 2.8.5. Let q : AÑ B be a pk, cq-quasiisometry of graphs. Then there exists a p1, Cq-quasiisometry
q̂ : HpAq Ñ HpBq, where C depends only on k and c.

We need the understand efficient paths in combinatorial horoballs. Fortunately, they have a nice descrip-
tion from Lemma 3.10 in [GM08]:

Lemma 2.8.6 (Lemma 3.10 in [GM08]). Let HpXq be a combinatorial horoball and x, y P HpXq distinct
vertices. Then there is a uniform quasigeodesic γpx, yq “ γpy, xq between x and y which consists of at most
two vertical segments and a single horizontal segment of length at most 3.

Moreover, any other geodesic between x and y is Hausdorff distance at most 4 from this quasigeodesic and
no geodesic can have a horizontal segment of length greater than 4.

Following [[GM08], Section 5.1], we define preferred paths for HpXq.

Suppose that x, y P X have dXpx, yq “ C. For any px, aq, py, bq P HpXq, consider the path between
these two points which consists of (at most) three segments: a vertical segment from px, aq to px, rlnCsq, a
horizontal segment of one edge from py, rlnCsq, and another vertical segment from py, rlnCsq to py, bq. In
the case that a or b ě lnC, then the respective vertical segment is not included and the horizontal segment
connects at either height a or b, depending on whether or not a ě b.

These paths are not geodesics (which are similar but will differ slightly in vertical height depending on
the divisibility of C), but they are uniform quasigeodesics which are a uniformly bounded distance from
geodesics, with the bound independent of X. This can be seen from the easily verified fact that no geodesic
can contain a horizontal segment of length greater than 5 (see Figure 3 in the proof of Lemma 3.11 in
[GM08]). Because they are easy to define, these are the preferred paths through horoballs we consider in
what follows. It is obvious from their definition that they are unique. See Figure 4.
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Figure 3. A busy p4 ˆ 8q-slice of the base of a combinatorial horoball over Z; every edge
has length 1. Notice that at height 2, each vertex is connected to half the others by edges,
while all vertices are connected by edges at height 3.

Figure 4. Two paths between a pair of points in a combinatorial horoball: The red path
is a preferred path, while the blue path is a geodesic.

3. Construction of AMpSq

The main idea of the construction of AMpSq is to model the product regions discovered by Minsky [Min96]
using MpSq as the thick part. We begin by showing a combinatorial horoball over an orbit of a Dehn twist
or half-twist in MpSq is quasiisometric to a horodisk. We then define AMpSq as a graph and make some
observations about its structure. We finish the section by defining the maps identifying AMpSq with T pSq
and prove some basic facts about the identification.

3.1. The horoballs Hα are quasiisometric to horodisks. Let Hpα,tαq be the combinatorial horoball over
the orbit of the action of xTαy on µ, where µ contains a transverse pair pα, tαq. A typical point in Hpα,tαq is

of the form pα, T kαptαq, nq, where T kαptαq records the horizontal position, n records the vertical position, and
α and tα identify the particular horoball. When the context is clear, we write pα, T kαptαq, nq “ pk, nq. We
also frequently suppress the transverse curve when referring to a horoball and simply write Hα when the
context is clear.

We begin this section with an elementary proof of the fact that horodisks are quasiisometric to combina-
torial horoballs over orbits of Dehn twists or half-twists. In order to do this, we use a set of criteria for a
map to be a quasiisometry from the lemma in Subsection 4.2 of [CC92]:

Lemma 3.1.1. Let X and Y be spaces with path metrics. In order for φ : X Ñ Y to be a quasiisometry, it
suffices that

(1) for some L ą 0, Y Ă NLpφpXqq;
(2) for some K ą 0 and for all x1, x2 P X, dY pφpx1q, φpx2qq ď K ¨ dXpx1, x2q; and
(3) for each M ą 0 there exists an N ą 0 such that if dXpx1, x2q ą N then dY pφpx1q, φpx2qq ąM .

Proposition 3.1.2 (Horoballs are quasiisometric to horodisks). Let µ P MpSq, pα, tαq a transverse pair
in µ, and Hα the combinatorial horoball over the orbit of the action of xTαy on µ. Then Hα with the path
metric is quasi-isometric to a horodisk with the Poincaré metric.

Proof of Proposition 3.1.2. Let ∆ be the standard horodisk with the Poincaré metric. Define a map φ :
Hα Ñ ∆ by φpα, T kαptαq, nq “ φpk, nq “ pk, enq. We verify that φ satisfies the conditions from Lemma 3.1.1.

To see that φpHαq is quasidense in ∆ and thus satisfies condition 1, observe that φpHαq is all the points
of the form pn, ekq, where n, k P Zě0. Since the ∆-distance between two horizontally adjacent vertices in
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φpHαq is uniformly bounded by the distance between two vertices at height 1, every point in ∆ is at most
distance 1 from a vertical geodesic line in φpHαq. Similarly, the distance between two vertically adjacent
vertices in φpHαq is bounded by e´1

e . Thus φpHαq is quasidense in ∆.

We now verify condition 2 on endpoints of edges of Hα. Vertical edges are geodesics in Hα and φ sends
them to vertical segments which are geodesics of the same length in ∆. Similarly, a horizontal edge in Hα,
connecting pk1, nq and pk2, nq where |k1 ´ k2| ă en, is a geodesic of length 1. A calculation verifies that the
d∆ ppk1, e

nq, pk2, e
nqq is bounded by 1?

2
, confirming condition 2.

Finally, we check condition 3. Suppose that we have x1 “ pk1, n1q, x2 “ pk2, n2q P Hα such that
d∆ ppk1, e

n1q, pk2, e
n2qq is bounded. We claim that implies |k1 ´ k2| and |n1 ´ n2| are bounded. From

this, it follows immediately that dHα
ppk1, n1q, pk2, n2qq is bounded, confirming condition 3 for the vertices.

Now we check condition 3 for points in the interior of the edges. Assume that at least one of |k1 ´

k2|, |n1 ´ n2| is large, for a contradiction. As noted above, φ sends vertical geodesics in Hα to vertical
geodesics in ∆ of the same length, so if k1 “ k2, then dHα

px1, x2q “ d∆pφpx1q, φpx2qq, so we may assume
k1 ‰ k2. Without loss of generality, assume that k1 ă k2 and n1 ď n2. Consider the ∆-geodesic trian-
gle 5 with vertices ā “ rpk1, e

n1q, pk1, e
n2qs, b̄ “ rpk1, e

n2q, pk2, e
n2qs, c̄ “ rpk1, e

n1q, pk2, e
n2qs; we note that

|c̄|∆ “ d∆pφpx1q, φpx2qq.

Since we are assuming that |c̄| is bounded, our assumption that one of |k1´k2| or |n1´n2| is large implies
that one of |ā| or |b̄| is large. It follows immediately the triangle inequality that both |ā| and |b̄| are large. By
δ-hyperbolicity of ∆, 5 is δ-thin. Note that angle in 5 at the vertex pk1, e

n2q where ā and b̄ meet is bigger
than π

2 . If we parametrize ā and b̄ moving away from pk1, e
n2q by fā : r0, |ā|s Ñ ∆ and fb̄ : r0, |b̄|s Ñ ∆,

then d∆pfāptq, fb̄ptqq ą δ for t ą δ. Thus δ-thinness of 5 implies that c̄ must be δ-close to ā and b̄ for almost
their entire lengths. Since they were long , it implies that c̄ must have been long, a contradiction. �

3.2. Building AMpSq from MpSq. We are now ready to define the augmented marking complex for a
surface, denoted AMpSq. AMpSq is a simplicial 1-complex with vertices and edges as follows.

A vertex rµ P AMp0q
pSq, called an augmented marking, is a complete clean marking, πMpSqprµq “ µ PMpSq

along with a collection of lengths for the curves in basepµq “ tα1, . . . , αnu:

rµ “ pµ,Dα1
prµq, . . . , Dαnprµqq

where the Dαipµq are nonnegative integers. The Dαiprµq are called the length data of rµ. When the context
is clear, we shorten this to Dα. We also write pα, tα, Dαq P rµ if α P baseprµq with transverse curve tα and
length Dα.

Remark 3.2.1 (Thick and thin). The integer Dαi coarsely stands in for how short αi is in a given augmented
marking, in terms of extremal (or hyperbolic) length, with Dαi positive implying αi is short; this analogy is
made explicit in the definition of the map G : AMpSq Ñ T pSq in Subsection 7.3 below. When Dαiprµq “ 0
for all αi P basepµq, we say that rµ is in the thick part of AMpSq. Similarly, if Dαiprµq ą 0, we say αi is
short in rµ and rµ is in the αi-thin part of AMpSq.

More generally, let ρ Ă CpSq be a simplex. We say that rµ P AMpSq is in the ρ-thin part of AMpSq if
Dαprµq ą 0 for each α P ρ. If, in addition, Dβprµq “ 0 for all β P CpSzρq, we say that rµ is thick relative to ρ.

There are three types of edges in AMp1q
pSq. The first type is the elementary flip move from MpSq.

The second type is a twist move, which comes from bundles of elementary twist moves from MpSq and
corresponds to a horizontal edge in a combinatorial horoball. The last type is a vertical move, which involves
adjusting the length data and corresponds to a vertical edge in a combinatorial horoball. We connect two

augmented markings rµ1, rµ2 P AMp0q
pSq by an edge in each of the following cases:

‚ Flip moves: If µ1, µ2 P MpSq differ by a flip move at a transverse pairing pα, tq ÞÑ pt, αq, and if
rµ1, rµ2 have the same base curves and length data, with Dαprµ1q “ Dαprµ2q “ 0.

‚ Twist moves: If α P basepµ1q “ basepµ2q, Dαprµ1q “ Dαprµ2q “ k ą 0, and rµ1 “ Tnα rµ2 with
0 ă n ă ek.
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‚ Vertical moves: If µ1 “ µ2 and if rµ1, rµ2 only differ in length data by 1 in one component, say
Dαprµ1q “ Dαprµ2q ` 1 and Dβprµ1q “ Dβprµ2q for all β P basepµ1qzα “ basepµ2qzα.

Remark 3.2.2 (No flipping a short curve). If rµ P AMpSq, Dαprµq ą 0 and pα, tq a transverse pair, then it is
not possible, by construction, to perform a flip move pα, tq ÞÑ pt, αq, for only base curves can be short. This
is precisely to guarantee that the Teichmüller distance between the image under the map G of two augmented
markings which differ by an elementary move is uniformly bounded; see Lemma 7.4.3 below.

Since MpSq is locally finite and each augmented marking has at most 2 vertical edges for each base curve,
we have the following immediately from the definition:

Lemma 3.2.3. AMpSq is locally finite, but not uniformly locally finite.

The metric on AMpSq is the path metric, where each edge is given length 1. We close this subsection
with a series of remarks.

Remark 3.2.4 (MpSq ãÑ AMpSq). For any subsurface Y Ă S, there is a natural inclusion of iY : MpY q ãÑ

AMpY q given by iY pµq “ pµ, 0, . . . , 0q and we call this embedded copy of MpSq the thick part of AMpY q
and points therein thick points. In particular, when Y “ S, we think of iSpMpSqq Ă AMpSq as the thick
part of AMpSq. As we will see in Subsection 7.3, iSpMpSqq can be identified with the thick part of T pSq,
justifying our terminology.

Remark 3.2.5 (Combinatorial horoballs in AMpSq). Let µ P MpSq and pα, tq a transverse pair in µ.
Consider the orbit, Xα ĂMpSq, of µ under xTαy ďMCGpSq, the subgroup generated by the Dehn twist or
half-twist about α. Consider the image of Xα in AMpSq, namely iSpXαq. Then iSpXαq lies at the base of
the combinatorial horoball Hα Ă AMpSq.

Remark 3.2.6 (Shadows). There is a natural map πMpSq : AMpSq ÑMpSq defined by πMpSqprµq “ µ for
any rµ P AMpSq, which we call the shadow map. Similarly, any path in AMpSq shadows a path in MpSq.

Remark 3.2.7 (Thin parts and product regions). Let ρ Ă CpSq be a simplex. If we ignore the technical
concerns about cleaning markings after flip moves, then the collection of ρ-thin points in AMpSq, which we
call the ρ-thin part of AMpSq, coarsely has the structure of the 1-skeleton of

ś

αPρHα ˆ AMpSzρq (See

Theorem 2.5.1 for comparison).

4. Augmented hierarchies

In this section, we develop the AMpSq-analogue of the Masur-Minsky hierarchy machinery. Informally,
an augmented hierarchy will be a hierarchy in which the geodesics in annular curve complexes have been
replaced by geodesics in combinatorial horoballs. Much of the work in [MM00] goes through to this setting
unchanged, as the role the annular geodesics plays in a standard hierarchy almost entirely hinges on the core
of the annuli in question.

4.1. Combinatorial horoballs over annular curve graphs. We must first replace annular curve graphs
with combinatorial horoballs over them. Recall from Subsection 2.8 that any graph admits a combinatorial
horoball, that combinatorial horoballs are uniformly hyperbolic (Theorem 2.8.3), and that the combinatorial
horoballs over quasiisometric graphs are quasiisometric (Lemma 2.8.5).

Following [MM00][Subsection 2.4], we observe that annular curve graphs Cpαq are quasiisometric to Z.
For any curve α P CpSq, choose an arc βα P Cpαq. For γ P Cpαq, let γ ¨ β denote the algebraic intersection
number of γ with β. The map φβα : Cpαq Ñ Z, given by φβαpγq “ γ ¨β is a p1, 2q-quasiisometry, independent
of the choice of β. The map φβα essentially records twisting around α relative to β.

Lemma 2.8.5 implies that HpCpαqq “ Hpαq is uniformly quasiisometric to HpZq for each α P CpSq.
Proposition 3.1.2 gives us:

Lemma 4.1.1. For any α P CpSq, Hpαq is uniformly quasiisometric to a horodisk in H2.

Vertices x P Hpαq are pairs, x “ ptα, Dαq, where tα P Cpαq and Dα P Zě0.

In what follows, we build augmented hierarchies by replacing geodesics in Cpαq with geodesics in Hpαq.
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4.2. Augmented hierarchies defined. In this subsection, we will define augmented hierarchies, following
the lead of [MM00][Sections 4 and 5].

Let Y Ă S be nonannular and g P CpY q be a geodesic v1, . . . , vn, where the vertices vi are possibly
simplices. For any i ě 1, note that vi X vi`2 ‰ H since g is a geodesic. Let F pvi Y vi`2q be the subsurface
of Y which they fill. We say g is tight if BF pvi Y vi`2q “ vi`1 for each i and g has associated initial and

terminal augmented markings, rIpgq and rTpgq respectively; tight geodesics exist by [MM00][Lemma 4.5]. If
Y is an annulus with core α, then we take CpY q “ Hpαq and we adopt the convention that any geodesic in
Hpαq is tight. From now on, we will assume that all such marked geodesics are tight.

Let Y Ă S be a nonannular subsurface and rµ P AMpSq be an augmented marking. The restriction of rµ
to Y , denoted rµ|Y , is the set of transverse triples pα, tα, Dαq in rµ whose base curve α meets Y essentially. If
Y Ă S is an annulus, then we set rµ|Y “ πHpαqprµq.

Let X,Y Ă S be subsurfaces with X nonannular. Let gX Ă CpXq be a geodesic. We say that Y is a
component domain of gX if Y is a component of Xzv for some v P gX . Suppose that Y is component domain
for the ith vertex of gX , namely vi P gX , Y Ă Xzvi. We note that this determines vi uniquely.

We define the initial augmented marking of Y relative to gX to be

rIpY, gXq “

#

vi´1 if vi is not the first vertex of gX
rIpgXq|Y , if vi is the first vertex of gX

Similalry, we define the terminal augmented marking of Y relative to gX to be

rTpY, gXq “

#

vi`1 if vi is not the last vertex
rTpgXq|Y , if vi is the last vertex

We say that a subsurface Y Ă S is directly backward subordinate to gX and write gX Ö Y if Y is a

component domain of gX and rIpY, gXq ‰ H. Similarly, Y Ă S is directly forward subordinate to gZ , written

Y Œ gZ , if Y is a component domain of gZ and rTpY, gZq ‰ H. For a tight geodesic gY Ă CpY q, we write

gX Ö gY if gX Ö Y and rIpgY q “ rIpY, gXq; similarly, we write gY Œ gZ if Y Œ gZ and rTpgY q “ rTpY, gZq.

We can now state the definition of an augmented hierarchy, which is essentially [MM00][Definition 4.4]:

Definition 4.2.1 (Augmented hierarchies). A hierarchy between two augmented markings rµ, rη PMpSq is a

collection of tight geodesics rH satisfying the following:

(H1) There is a distinguished main geodesic, g̃
ĂH
P rH with Dpg̃

ĂH
q “ S, such that rIpg̃

ĂH
q “ µ and rTpg̃

ĂH
q “

η.

(H2) Let g̃X , g̃Z P rH and Y Ă S such that g̃X Ö Y Œ g̃Z , then there is a unique g̃Y P rH with g̃X Ö g̃Y Œ
g̃Z .

(H3) For every g̃Y P rH with g̃Y ‰ g̃
ĂH

, there are g̃X , g̃Z P rH with g̃X Ö g̃Y Œ g̃Z .

4.3. Augmented hierarchies exist. The proof of the existence of augmented hierarchies hews closely to
original proof of the existence of hierarchies in [MM00][Theorem 4.6].

Theorem 4.3.1 (Augmented hierarchies exist). Given any pair of augmented markings rµ, rη P AMpSq, there

exists an augmented hierarchy rH with rIp rHq “ rµ and rTp rHq “ rη.

Proof. We say that a collection of tight geodesics rH is a partial augmented hierarchy if it satisfies conditions
(1) and (3) and uniqueness part of (2) from Definition 4.2.1, but not necessarily the existence part.

Choose vertices P P baseprµq and Q P baseprηq and let g̃
ĂH
P CpSq be any tight geodesic between them with

rIpg̃
ĂH
q “ rµ and rTpg̃

ĂH
q “ rη. Then rH0 “ tg̃

ĂH
u is a partial augmented hierarchy, and we will construct a finite
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sequence of partial augmented hierarchies rHn, which terminates in an augmented hierarchy.

We call a triple pY, b̃, f̃q with domain Y and b̃, f̃ P rHn an unutilized configuration if b̃ Ö Y Œ f̃ but Y

does not support a geodesic k̃ in rHn with b̃Ö k̃ Œ f̃ .

Let pYn, b̃n, f̃nq be any unutilized configuration in rHn. Let g̃Yn Ă CpYnq be any tight geodesic with
rIpg̃Ynq “

rIpYn, b̃nq and rTpg̃Ynq “
rTpYn, f̃nq. Then b̃n Ö g̃Yn Œ f̃n and we can take rHn`1 “ rH Y tg̃Ynu.

It is easy to see that the number of domains Y of each complexity ξpY q “ m for m ă ξpSq supporting

unutilized triples is nonincreasing as a function of n. Since each step rHn Ñ rHn`1 eliminates an unutilized

domain, the sequence rHn is finite and the terminal partial augmented hierarchy rH is an augmented hierarchy.
�

4.4. Hierarchies associated to an augmented hierarchy. In [MM00][Section 8], Masur-Minsky in-
troduce the notion of hierarchies without annuli, which consist of tight geodesics on nonannular domains
satisfying the usual subordinancy relations, where markings are replaced by pants decomposition. Hierar-
chies without annuli are useful for studying the geometry of the pants graph PpSq and, via work of Brock
[Br03], the Weil-Peterrson metric on T pSq. Every hierarchy determines a unique hierarchy without annuli
and, as noted in [MM00][Section 8], the hierarchy machinery translates seamlessly to the nonannular setting.
The key idea is that nearly every relevant piece of information encoded in a hierarchy is determined by its
nonannular geodesics, with the annular geodesics playing a peripheral role.

In this subsection, we explain how to associate a hierarchy to any augmented hierarchy. Unlike with
hierarchies without annuli, this process will not be unique. Nonetheless, it will provide us a framework upon
which to rebuild the work from [MM00][Sections 4 and 5] in our setting.

Let rH be an augmented hierarchy between rµ, rη P AMpSq. For each nonannular geodesic g̃Y P rH, relabel it

as gY and assign it new initial and terminal markings by IpgY q “ πMpY qp
rIpg̃Y qq and TpgY q “ πMpY qp

rTpg̃Y qq,

respectively. Let H0 be the collection of the nonannular gY P rH with these new initial and terminal markings;
these geodesics are tight in the original sense of [MM00][Definition 4.2]. The following lemma confirms that
H0 is a partial hierarchy:

Lemma 4.4.1. H0 is a partial hierarchy.

Proof. We must prove thatH0 satisfies properties (1), (3), and the uniqueness part of (2) of [MM00][Definition
4.4]. Property (1) is obvious from the definition.

To see (3), suppose that g1Y P H0. Then there is a gY P rH with DpgY q “ Dpg1Y q. Since rH is an

augmented hierarchy, there exist gX , gZ P rH with gX Ö gY Œ gZ . In particular, rIpgY q “ rIpY, gXq and
rTpgY q “ rTpY, gZq. By definition, Ipg1Y q “ πMpY qp

rIpg1Y qq “ πMpY qp
rIpY, gXqq “ IpY, gXq, which is nonempty

if and only if rIpY, gXq is. Thus g1X Ö g1Y and similarly g1Y Œ g1Z .

A similar argument shows that the uniqueness part of (2) holds.
�

The unutilized configurations in H0 are precisely the annular domains whose cores are curves appearing

along geodesics in H0, which coincide with those annular domains supporting geodesics in rH. For each unuti-

lized configuration pY, gX , gZq in H0, where Y is an annulus with core α, let g̃Y P rH be the geodesic in Hpαq,
with initial and terminal vertices g̃Y,int, g̃Y,ter P g̃Y . Choose a tight geodesic gY between πCpαqpg̃Y,intq and
πCpαqpg̃Y,terq, with IpgY q “ IpY, gXq and TpgY q “ TpY, gXq. It follows from the proof of [MM00][Theorem
4.6] that the result from adding these tight geodesics to H0 is a hierarchy, H. We call H a hierarchy associ-

ated to rH.
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The following proposition describes the relationship between an augmented hierarchy and any hierarchy
associated to it:

Proposition 4.4.2. Let rH be an augmented hierarchy between rµ, rη P AMpSq and let H be any hierarchy

associated to rH. Then the following hold:

(1) The map Φ : rH Ñ H given by Φpg̃Y q “ gY is a bijection

(2) For any g̃Y P rH, we have gY,int “ πCpY qpg̃Y,intq and gY,ter “ πCpY qpg̃Y,terq, where g̃Y,int, g̃Y,ter P g̃Y
are its initial and terminal vertices.

(3) For any g̃Y P rH, we have IpgY q “ πMpY qp
rIpg̃Y qq and TpgY q “ πMpY qp

rTpg̃Y qq.

(4) For any triple g̃X , g̃Y , g̃Z P rH, we have g̃X Ö g̃Y Œ g̃Z in rH if and only if gX Ö gY Œ gZ in H

Proof. (1) and (3) follow from the definition. To see (2), simply observe that g̃Y,int “ πCpY qpg̃Y,intq and
g̃Y,ter “ πCpY qpg̃Y,terq when Y is nonannular, and the relation holds by construction when Y is an annulus.

To see (4), observe that IpgY q “ IpY, gXq “ πMpY qp
rIpY, g̃Xqq “ πMpY qp

rIpg̃Y qq and TpgY q “ TpY, gZq “

πMpY qp
rTpY, g̃Zqq “ πMpY qp

rTpg̃Y qq. Since πMpY qp
rIpY, g̃Xqq ‰ H and πMpY qp

rTpY, g̃Zqq ‰ H if and only if
rIpY, g̃Xq ‰ H and rTpY, g̃Zq ‰ H, (4) follows. �

Note that the above correspondence of subordinancy is independent of how we complete H0 to a hierarchy
H. Indeed, all the relevant data is contained in H0.

4.5. Augmenting the hierarchical technicalities. In this subsection, we sketch the translation of [MM00][Section
4] to the augmented setting. As with hierarchies without annuli, most of the main constructions adapt with-
out alteration. As such, the content of this subsection is mostly a series of observations and applications of
Proposition 4.4.2.

We begin with an augmented version of [MM00](Theorem 4.7). Given a domain Y Ă S and an augmented

hierarchy rH, let
rΣ´pY q “ tg̃Z P rH|Y Ă Dpg̃Zq and rIpg̃Zq|Y ‰ Hu

and
rΣ`pY q “ tg̃X P rH|Y Ă Dpg̃Xq and rTpg̃Xq|Y ‰ Hu

These are the forward and backward sequences of Y , respectively. The following is the augmented analogue
of [MM00][Theorem 4.7]:

Theorem 4.5.1 (Structure of Sigma). Let rH be an augmented hierarchy and Y any subsurface.

(1) If rΣ´pY q is nonempty, then it has the form of a sequence: g̃
ĂH
“ g̃Xn Ö ¨ ¨ ¨ Ö g̃X0

.

Similarly, if rΣ`pY q is nonempty, then it has the form of a sequence: g̃Z0
Œ ¨ ¨ ¨ Œ g̃Zm “ g̃

ĂH
.

(2) If rΣ˘pY q are both nonempty, and ξpY q ‰ 3, then g̃X0
“ g̃Z0

, and Y intersects every vertex of g̃X0

nontrivially.

(3) If Y is a component domain of any geodesic g̃W P rH and ξpY q ‰ 3, then

g̃X P rΣ´pY q ô g̃X Ö ¨ ¨ ¨ Ö Y and g̃Z P rΣ`pY q ô Y Œ ¨ ¨ ¨ Œ g̃Z

If, furthermore, rΣ˘pY q are both nonempty, then X0 “ Y “ Z0.

(4) Geodesics in rH are determined by their support. That is, if g̃X , g̃Z P rH have X “ Z, then g̃X “ g̃Z .

Proof. LetH be a hierarchy associated to rH as constructed in Subsection 4.4. The proof is an easy application
of [MM00][Theorem 4.7] to H and Proposition 4.4.2. �

We say that an augmented hierarchy rH is complete if for every subsurface Y with ξpY q ‰ 3, if Y is a

component domain of some geodesic in rH, then Y is the support of some geodesic in rH. The following is an
immediate consequence of Theorem 4.5.1:

Lemma 4.5.2. Given any augmented hierarchy, if rIp rHq and rTp rHq are complete augmented markings, then
rH is complete.
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Proof. If ξpY q ‰ 3, then both rIp rHq|Y , rTp rHq|Y ‰ H. Thus g̃
ĂH
P rΣ`pY q, rΣ´pY q, and so Y supports a

geodesic in rH by Theorem 4.5.1(2). �

We now construct augmented versions of the tools that originally went into proving [MM00][Theorem

4.7], as we need them in the next section. For the rest of the subsection, fix a hierarchy H associated to rH.

Recall the definition of a footprint of a subsurface on a geodesic. For any subsurface Y Ă S and geodesic

g̃X P rH with X nonannular, let φg̃X pY q be the set of vertices of g̃X disjoint from Y ; if Y is an annulus with
core α, φg̃X pY q are simply those vertices of g̃X disjoint from α. If gX P H is the geodesic corresponding to
g̃X , then φg̃X pY q “ φgX pY q. We note that augmented versions of [MM00][Lemma 4.10 and Corollary 4.11]
follow immediately from this observation.

Masur-Minsky define two partial orders on geodesics in a hierarchy which we will recall and redefine for

augmented hierarchies. We will show that the correspondence between H and rH preserves these orders. The
first is time-order [MM00][Definition 4.16]:

Definition 4.5.3 (Time order). Given two geodesics g̃X , g̃Z P rH, we say g̃X is time-ordered before g̃Z and

write g̃X ăt g̃Z if there is a geodesic g̃Y P rH with X,Z Ă Y and maxφg̃Z pXq ă minφg̃Z pY q.

Observe that if g̃X ăt g̃Z and gX , gZ , gY P H are the corresponding geodesics, then maxφgZ pXq “
maxφg̃Z pXq ă minφg̃Z pY q “ minφgZ pY q, and so g̃X ăt g̃Z if and only if gX ăt gZ .

Given a geodesic g̃Y P rH, a position on g̃Y is either a vertex or one of rIpg̃Y q or rTpg̃Y q. We can extend

the natural linear order on the vertices g̃Y to a linear order on positions by taking rIpg̃Y q ă v ă rTpg̃Y q for
all v P g̃Y . A pointed geodesic is a pair pg̃Y , vq, where v is some position on g̃Y .

We can define a notion of footprint on pointed geodesics as follows: Given a pointed geodesic pg̃Y , vq and

a geodesic g̃X P rH, we set

φ̂g̃X pg̃Y , vq “

"

φg̃X pY q if Y Ă X
v if X=Y

If gX , gY P H are the geodesics corresponding to g̃X , g̃Y P rH, then it is clear that φ̂g̃X pg̃Y , vq “ φ̂gX pgY , vq
unless X “ Y is an annulus, in which case ăp restricts to the linear orders on positions of g̃X and gX .

We can now define a partial order on pointed geodesics:

Definition 4.5.4. Given two pointed geodesics pg̃X , vXq, pg̃Z , vZq, we write pg̃X , vXq ăp pg̃Z , vZq if and only

if there exists some geodesic g̃Y P rH with g̃X Œ
“

¨ ¨ ¨ Œ
“

g̃Y Ö
“

¨ ¨ ¨ Ö
“

g̃Z and

max φ̂g̃Y pg̃X , vXq ă min φ̂g̃Y pg̃Z , vZq

If gX , gY , gZ P H are the geodesics corresponding to g̃X , g̃Y , g̃Z P rH, then observe that gX Œ
“

¨ ¨ ¨ Œ
“

gY Ö
“

¨ ¨ ¨ Ö
“

gZ and max φ̂gY pgX , vXq “ max φ̂g̃Y pg̃X , vXq ă min φ̂g̃Y pg̃Z , vZq “ min φ̂gY pgZ , vZq, so that

pg̃X , vXq ăp pg̃Z , vZq if and only if pgX , vXq ăp pgZ , vZq, unless X “ Y “ Z is an annulus, in which case ăp

is again just the linear orders on positions of g̃X and gX .

We have shown:

Lemma 4.5.5. Let rH be an augmented hierarchy and H any associated hierarchy. Then:

(1) Both ăt and ăp are strict partial orders.

(2) For any g̃X , g̃Y P rH with corresponding geodesics gX , gY P H, then

g̃X ăt g̃Y ô gX ăt gY

(3) If in addition X and Y are nonannular, then

pg̃X , xq ăp pg̃Y , yq ô pgX , xq ăp pgY , yq
14



As with hierarchies, we have the following four mutually exclusive cases for pg̃X , xq ăp pg̃Y , yq:

‚ g̃X ăt g̃Y
‚ g̃X “ g̃Y and x ă y
‚ g̃X Œ ¨ ¨ ¨ Œ g̃Y and maxφg̃Y pXq ă y
‚ g̃X Ö ¨ ¨ ¨ Ö g̃Y and x ă minφg̃X pY q.

We think of a pointed geodesic as giving a position on a geodesic in rH, so that ăp gives a partial order
on positions on a geodesic. In the next section, we describe how to build coordinates, called slices, on an
augmented hierarchy, which are special arrangements of these positions. We will upgrade ăp to a partial
order on these coordinates, which we can then use to build paths in AMpSq which make definite progress
through the augmented hierarchy.

5. Augmented hierarchy paths

In this section, we explain how to build augmented hierarchy paths from augmented hierarchies. Similar
to hierarchy paths, this process involves resolving an augmented hierarchy into a sequence of slices, then
finding a sequence of associated augmented markings which we connect with boundedly-many elementary
moves in AMpSq.

5.1. Augmented slices. In this subsection, we develop the notion of a slice of an augmented hierarchy,
which is roughly a way of giving coordinates in the augmented hierarchy which respect the subordinancy
relations. The definition of a slice of a hierarchy [MM00][Section 5] is the same as that of an augmented
slice, except that one takes geodesics in combinatorial horoballs over annular curve graphs instead.

Definition 5.1.1 (Augmented slices). An augmented slice rτ of an augmented hierarchy rH is a collection

of pairs pg̃X , xq with x P g̃X P rH satisfying the following:

(S1) A geodesic g̃X appears at most once in rτ .
(S2) There is a distinguished pair pg̃

rτ , vrτ q P rτ called the bottom pair of rτ and g̃
rτ is the bottom geodesic.

(S3) For every pair pg̃Y , yq P rτ other than the bottom pair, there is a pair pg̃X , xq P rτ of which Y is a
component domain.

We say that rτ is complete if

(S4) Given a pair pg̃Y , yq P rτ , for every component domain X of pg̃Y , vq, there exists a pair pg̃X , xq P rτ .

An augmented slice rτ is called initial if for each pair pg̃Y , yq P rτ , y “ g̃Y,int. A complete initial slice is

uniquely determined by its bottom geodesic, and rH has a unique initial slice with bottom geodesic g̃
ĂH

. We
can define terminal augmented slices similarly.

To each augmented slice rτ , there is a unique way to associate an augmented marking rµ
rτ as follows: First,

observe by induction that the vertices α appearing in nonannular geodesics in rτ are disjoint and distinct,
so that they form a maximal simplex in CpSq, which we make baseprµ

rτ q. We can then associate transversal
and length coordinates to each base curve α P baseprµ

rτ q if rτ contains a pair pg̃X , xq with x “ ptα, Dαq, where
X is an annulus with core α, by choosing tα and Dα as the transversal and length coordinate for α in rµ

rτ .
Note that a complete slice determines a complete augmented marking. Typically, this underlying marking
is not clean, so one can clean the transversals to base curves by choosing new transversals that minimize
the distance in the corresponding annular curve graphs. We say that any such complete, clean augmented
marking is compatible with its associated slice. The number of such compatible augmented markings is
uniformly bounded, similar to [MM00][Lemma 2.4]:

Lemma 5.1.2. There exists C 1 ą 0 depending only on S such that for any augmented slice rτ of an augmented

hierarchy rH, the number of augmented markings compatible rτ is less than C, each of which differs by a
bounded number of twist moves.

Proof. Fix a clean augmented marking rµ compatible with rτ . Then baseprµq “ baseprµ
rτ q and Dαprµq “ Dαprµrτ q

for all α P CpSq by definition. Because Cpαq — Z, for each triple pα, tα, Dαq P rµ
rτ , there is a choice of clean

15



transversal β P Cpαq which minimizes dαptα, παpβq, where the minimum is uniformly bounded, completing
the proof. �

5.2. Partial order on slices. In [MM00][Section 5], Masur-Minsky define a partial order on the set of
complete slices of H. We now do this for augmented slices.

Let rV p rHq be the set of complete augmented slices on rH. Given rτ , rτ 1 P rV p rHq, we say rτ ăs rτ
1 if and only

if rτ ‰ rτ 1 and for any pg̃Y , yq P rτ , either pg̃Y , yq P rτ
1 or there is some pg̃X , xq P rτ

1 with pg̃Y , yq ăp pg̃X , xq.

Lemma 5.2.1. Let rH be an augmented hierarchy. Then ăs is a strict partial order on rV p rHq.

Proof. We proceed as in the proof [MM00][Lemma 5.1] by showing that ăs is transitive, since it is never

reflexive by definition. Suppose rτ1 ăs rτ2 ăs rτ3 for rτi P rV p rHq.

By definition of ăs, for i “ 1, 2, given any pair pi P rτi, there exists a pair pi`1 P rτi`1 such that either
pi ăp pi`1 or pi “ pi`1. Since ăp is a strict partial order (Lemma 4.5.5), either p1 ăp p3 or p1 “ p3,

implying either rτ1 ăs rτ3 or rτ1 “ rτ3. Since augmented slices in rV p rHq are complete, we must have some
p1 P rτ1 with p1 R rτ2. Thus p1 ăp p2 and thus p1 ăp p3, implying p3 R rτ1, since pairs in the same slice are
not ăp-comparable by [MM00][Lemmas 4.18(1) and Lemma 4.19], which hold for augmented hierarchies by
Lemma 4.5.5. �

5.3. Elementary moves of augmented slices. In this subsection, we describe, following [MM00][Section
5], how to resolve an augmented hierarchy into a sequence of complete augmented slices which are related
by certain elementary moves, which we define shortly. Informally, an elementary move of augmented slices is

one which make progress by one vertex along some geodesic in rH. First, we need to define transition slices,
which will record the reorganization that accompanies this progress.

Let g̃X P rH and suppose x P g̃X is not the last vertex of g̃X , with x1 its successor. We presently define
transition slices for x and x1, rσ and rσ1, which have the property that rµ

rσ “ rµ
rσ1 “ xY x1 when ξpXq ą 4.

Let rσ be the smallest slice with bottom pair pg̃X , xq such that, for any pg̃Z , zq P rτ and Y a component
domain of pZ, zq,

(E1): If x1|Y ‰ H and Y supports a geodesic g̃Y P rH, then pg̃Y , yq P rσ, where y is the terminal vertex of
g̃Y .

(E2): If x1|Y “ H, then no geodesic in Y is included in rσ.

One builds rσ inductively and confirms easily that it satisfies (S1)-(S3) of Definition 5.1.1. We call the
domains in (E2) unused domains for rσ. Similarly, we may define rσ1 as the smallest slice with bottom pair
pg̃X , x

1q, such that for any pg̃Z , zq P rτ
1 and Y a component domain of pZ, zq,

(E1’): If x|Y ‰ H and Y supports a geodesic g̃Y P rH, then pg̃Y , yq P rσ, where y is the initial vertex of g̃Y .
(E2’): If x|Y “ H, then no geodesic in Y is included in rσ.

We remark on transition slices for y, y1 P g̃Y P rH with ξpY q ď 4:

‚ If Y is an annulus, then rσ “ tpg̃Y , yqu and rσ1 “ tpg̃Y , y
1qu.

‚ If Y is a once-punctured torus, then y and y1 intersect in Y . Let X and X 1 be annuli with cores
y, y1, respectively. Then rσ “ tpg̃Y , yq, pg̃X , πHy py

1qqu and rσ1 “ tpg̃Y , y
1q, pg̃X1 , πHy1

pyqqu.

‚ If Y is a four-holed sphere, then y and y1 intersect twice, so πXpy
1q “ rTpg̃Xq has two components,

one of which is the last vertex of g̃X .

The following lemma characterizes transition slices for most geodesics and is a restatement and direct
consequence of [MM00][Lemma 5.2]:

Lemma 5.3.1. Let y, y1 be successive vertices along a geodesic g̃Y P rH with ξpY q ą 4, and let rσ, rσ1 be the
associated transition slices. Then no geodesics in rσ and rσ1 have annular domains, the associated augmented
markings rµ

rσ and rµ
rσ1 have no transversals and are both equal to yY y1, and the unused domains in rσ and rσ1

are exactly the component domains of pY, y Y y1q.
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Proof. Let H be any hierarchy associated to rH. Let g̃Y P rH with ξpY q ą 4 and let y P g̃Y be not
the terminal vertex of g̃Y with successor y1 P g̃Y . If rσ, rσ1 are the associated transition slices, set σ “
 `

gZ , πCpZqpzq
˘

|pg̃Z , zq P rσ
(

and σ1 “
 `

gZ , πCpZqpzq
˘

|pg̃Z , zq P rσ
1
(

. It follows easily from Proposition 4.4.2
that σ and σ1 are the transition slices for y, y1 along gY . Thus the lemma follows from [MM00][Lemma
5.2]. �

Definition 5.3.2 (Forward elementary move of augmented slices). Let y, y1 be successive vertices along

g̃Y P rH with transition slices rσ, rσ1. We say that two complete augmented slices rτ and rτ 1 are related by a
forward elementary move of augmented slices along g̃Y from y to y1 if rσ Ă rτ , rσ1 Ă rτ 1, and rτzrσ “ rτ 1zrσ1.

The next lemma confirms that a forward elementary move in rV p rHqmakes progress in ăs, as in [MM00][Lemma
5.3], whose proof is identical:

Lemma 5.3.3. Suppose rτ , rτ 1 P rV p rHq and are related by an elementary move rτ Ñ rτ 1 along g̃Y P rH. Then
rτ ăs rτ

1.

Proof. Since rσ ‰ rσ1, we have rτ ‰ rτ 1. Let pg̃X , Xq P rτ such that pg̃X , xq R rτ 1. Then pg̃X , xq P rσ and thus
X Ă Y and y1|X ‰ H, by definition of rσ. If g̃X “ g̃Y , then pg̃X , xq “ pg̃Y , yq ăp pg̃Y , y

1q, and we are done.
If not, then φg̃Y pXq contains y and not y1, so that maxφg̃Y pXq “ v ă v1, implying pg̃X , xq ăp pg̃Y , y

1q,
completing the proof. �

5.4. Resolutions of augmented slices. In this subsection, we prove that every complete augmented

hierarchy rH admits a sequence of elementary moves between its initial and terminal augmented slices, called

a resolution of rH. Importantly, the length of any such resolution is bounded by | rH| “
ř

g̃Y PĂH
|g̃Y |. The

proof is a straight-forward adaptation of [MM00][Proposition 5.4], so we leave some details to the reader.

Proposition 5.4.1 (Resolutions exist). Any complete augmented hierarchy admits a sequence of forward

elementary moves rτ0 Ñ ¨ ¨ ¨ Ñ rτN where rτ0 is the initial slice, rτN the terminal slice, and N ď | rH|.

Proof. First, suppose that rτ P rV p rHq is not the terminal slice of rH. Then there exists pg̃Y , yq P rτ such that
y is not the terminal vertex of g̃Y with successor y1. Choose g̃Y minimally so that if pg̃X , xq P rτ and X Ă Y ,
then x is the terminal vertex of g̃X . Because g̃Y is minimal and rτ is complete, the subset

rσ “
 

pg̃X , xq P rτ |X Ă Y, y1|X ‰ H
(

satisfies the two transition slice properties (E1) and (E2). Using (E1’) and (E2’), one can build the other
transition slice rσ1 for y and y1. Set rτ 1 “ rσ1 Y prτzrσq. One can confirm, as done in [MM00][Proposition 5.4],
that rτ 1 is a complete augmented slice, thus making rτ Ñ rτ 1 a forward elementary move.

This builds a sequence of slice rτ0 Ñ rτ1 Ñ ¨ ¨ ¨ , which terminates, say at rτN , because each move makes

progress with respect to ăs and rV p rHq is finite. It remains to prove that N ď | rH|.

To see this, suppose that pg̃Z , zq P rτn and pg̃Z , z
1q P rτm for n ă m. Then rτn ăs rτm and so z ď z1. If not,

then pg̃Z , z
1q ăp pg̃Z , zq implying by definition of ăs that there is some pg̃W , wq P rτm with pg̃Z , zq ăp pg̃W , wq,

which is a contradiction of the fact that pairs in the same slice are not ăp-comparable, as in Lemma 5.2.1.
This shows that vertices cannot reappear once traversed by the resolution process.

By definition, a forward elementary move advances exactly one step along a geodesic and replaces pairs
pg̃Y , g̃Y,terq with pairs pg̃X , g̃X,intq, leaving all other pairs fixed. It follows from the previous paragraph that

N ď
ř

g̃Y PĂH
“ | rH|, completing the proof.

�

5.5. Augmented hierarchy paths defined. Given any augmented hierarchy rH, Proposition 5.4.1 builds
a sequence rτ0 Ñ rτi Ñ ¨ ¨ ¨ rτN of forward elementary moves, where rτ0 and rτN are the initial and terminal aug-

mented slices of rH, respectively. For each i, let rµi be any augmented marking compatible with rτi, choosing
rµ0 “ rµ and rµN “ rη. This gives a sequence of augmented markings rµ “ rµ0 Ñ ¨ ¨ ¨ Ñ rµN “ rη, which we call
an augmented hierarchy path between rµ and rη.
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Eventually, we will prove that augmented hierarchy paths are uniform quasigeodesics in AMpSq. The
following lemma, similar to [MM00][Lemma 5.5], is the first step in this process. It proves that each step in
an augmented hierarchy path moves a uniformly bounded distance in AMpSq.

Lemma 5.5.1. There exists a B ą 0 depending only on S so that dAMpSqprµi, rµi`1q ă B, for each i “
0, . . . , N ´ 1.

Proof. Suppose that rτi Ñ rτi`1 comes from a transition y Ñ y1 along g̃Y P rH. If Y is an annulus, let
y “ ptα, Dαprµiqq P Hpαq and y1 “ pt1α, Dαprµi`1qq P Hpαq. If Dαprµq “ Dαprµi`1q, then dαptα, t

1
αq ď 2Dαprµiq,

so a bounded number of twist moves in AMpSq yields an augmented marking rµ1i`1 compatible with rτi`1.
If Dαprµiq ‰ Dαprµi`1q, then rτi Ñ rτi`1 encodes a vertical move and πMpSqprµiq “ πMpSqprµi`1q, implying
dAMpSqprµi, rµi`1q “ 1.

Now suppose that ξpY q “ 4. Then recall from before that the transition slices are rσi “ tpg̃Y , yq, pg̃X , xqu
and rσi`1 “ tpg̃Y , y

1q, pg̃X1 , x
1qu, where X and X 1 are annuli with cores y and y1, respectively, and x and x1

are vertices of πXpy
1q and πX1pyq, respectively. Construct a clean augmented marking rµ1i compatible with

rτi which contains the triple py, πXpy
1q, DXprµ

1
iqq, where DXprµ

1
iq “ 0 necessarily. A flip move on rµ1i along y

results in an augmented marking rµ1i`1 with the triple py1, πX1pyq, DX1prµ
1
i`1qq, with all other base curves of

rµ1i`1 being the same as those of rµ1i, Dαprµ
1
iq “ Dαprµ

1
i`1q for all α P CpSq, and the transversals at uniformly

bounded distance by Lemma 5.1.2. Thus rµ1i`1 is a uniformly bounded number of twist moves along the
base curves from an augmented marking rµ2i`1 compatible with rτi`1. Since the distance between augmented
markings compatible with the same augmented slice is uniformly bounded by Lemma 5.1.2, this implies
dAMpSqprµi, rµi`1q is uniformly bounded.

Finally, if ξpY q ą 4, then rτi and rτi`1 have the same base curves and positions on their horoball geodesics.
Thus rµi and rµi`1 are both compatible with rτi and rτi`1, implying that dAMpSqprµi, rµi`1q is uniformly bounded
in this case again by Lemma 5.1.2, completing the proof.

�

6. Length and efficiency of augmented hierarchy paths

In this section, we convert the structural results in the previous section to prove that augmented hierarchy
paths are uniform quasigeodesics in AMpSq, from which we give a combinatorial proof of Rafi’s distance
formula for T pSq, Theorem 2.6.1.

6.1. Projecting augmented markings to subsurfaces. In this subsection, we define subsurface projec-
tions for augmented markings, the AMpSq-analogue of those for markings, as in Definition 2.3.1.

Let Y Ă S be any subsurface and rµ P AMpSq any augmented marking. If Y is an annulus with core α,
then set πY prµq “ πHpαqprµq “ pπαprµq, Dαprµqq P Hpαq. If Y is nonannular, set πY prµq “ πY pπMpSqprµqq.

The following lemma proves that subsurface projections are 4-lipschitz:

Lemma 6.1.1 (Lemma 2.3 in [MM00]). For any rµ P AMpSq and subsurface Y Ă S, diamY pπY prµqq ă 4.

Proof. The only case left to consider is when Y is an annulus with core α. Then

diamHpαq
`

πHpαqprµq
˘

ď diamα

`

παpπMpSqprµqq
˘

ď 4

completing the proof. �

Given two subsurfaces X,Y Ă S, we write X&Y if X X Y ‰ H and neither is contained in the other.
The following lemma is due to Behrstock [Beh06], but the effective bound is due to Leininger [Man10]. It
holds for augmented markings by definition of the subsurface projection:

Lemma 6.1.2 (Behrstock’s inequality). If X&Y with ξpXq, ξpY q ě 4, then for any rµ P AMpSq, we have

mintdY prµ, BXq, dXprµ, BY qu ă 10
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One of the key tools of [MM00] is the following theorem:

Theorem 6.1.3 (Bounded geodesic image theorem; Theorem 3.1 in[MM00]). There is a constant M0 ą 0
such that the following holds. Let γ Ă CpSq be any geodesic and Y Ă S any subsurface. If dCpSqpγ, BY q ą 1,
then diamCpY qpγq ăM0.

Proof. We need only prove it when Y “ Hα for some α P CpSq. Since dCpSqpγ, αq ą 1, Dαpγiq “ 0 for each
γi P γ and so diamHα

pγq — log diamCpαqpγq ă diamCpαqpγq — 1, completing the proof. �

6.2. The forward and backward paths of a subsurface. Let Y Ă S be any subsurface. In this

subsection, we will show how to convert rΣ`pY q and rΣ´pY q into sets of pointed geodesics which package all

the relevant combinatorial information in rH about Y . In the next subsection, we will use these packages to
prove a version of the Large Links Lemma 2.4.1 for AMpSq and augmented hierarchies.

We proceed as in [MM00][Subsection 6.1]. First, recall that Theorem 4.5.1 implies that rΣ`pY q has the

form g̃Z0
Œ ¨ ¨ ¨ g̃Zn “ g̃

ĂH
, and rΣ´pY q has the form g̃

ĂH
“ g̃Xm Ö ¨ ¨ ¨ Ö g̃X0

. Let

σ “
!

pg̃Z , zq|z P g̃Z P rΣ˘pY q and z|Y ‰ H
)

Lemma 6.2.1. The partial order ăp restricts to a linear order on σ.

Proof. For each g̃Zi P
rΣ`pY q, let zi P g̃Zi be the position immediately following maxφg̃Zi pY q (or zi “ rTpg̃Ziq

if maxφg̃Zi pY q is the last vertex). Then g̃Zi contributes a segment σ`i “
!

pg̃Zi , ziq ăp ¨ ¨ ¨ ăp pg̃Zi ,
rTpg̃Ziqq

)

.

By the augmented version of [MM00][Corollary 4.11] (see Subsection 4.5), maxφg̃Zi pY q “ maxφg̃Zi pXi´1q,

so pg̃Zi´1
, rTpg̃Zi´1

qq ăp pg̃Zi , ziq. It follows that the union of the σ`i are linearly ordered. Similarly, each σ´i

has the form
!

pg̃Xi ,
rIpg̃Xiqq ăp ¨ ¨ ¨ ăp pg̃Xi , xiq

)

, where xi is the last position before minφg̃Xi pY q.

�

Let σ` be the concatenation σ`1 Y ¨ ¨ ¨ Y σ
`
n with the same linear order, and σ´ “ σ´m Y ¨ ¨ ¨ Y σ

´
1 . If both

rΣ˘pY q are nonempty, then the g̃X0
“ g̃Z0

and φg̃X0
pY q “ H by Theorem 4.5.1(2), so all its positions are in

σ, and they follow and precede all pairs of σ´i and σ`i , respectively, for all i ą 0. Denote the position on the
top geodesic by σ0.

The following lemma is the augmented analogue of [MM00][Lemma 6.1]:

Lemma 6.2.2 (Sigma projection). There are constants M1,M2 depending only on S such that if rH is any
hierarchy and Y Ă S is any subsurface, then

diamY

´

πY pσ
`pY, rHqq

¯

ďM1 and diamY

´

πY pσ
´pY, rHqq

¯

ďM1

Moreover, if Y is properly contained in the top domain of rΣpY q, then

diamY

´

πY pσpY, rHqq
¯

ďM2

Proof. The Bounded Geodesic Image Theorem 6.1.3 bounds diamY pπY pσ
˘
i pY qqq and diamY pπY pσ

0qq when
Y is properly contained in the top domain. The transition from the last position of σ`i to the first position
of σ`i`1 involves adding disjoint curves, so it projects to a bounded step in CpY q by Lemma 6.1.1; the same

holds for other transitions in σ. Finally, the number of number of segments rΣ˘pY q contributes is bounded
by ξpSq ´ ξpY q. This completes the proof. �

6.3. Large links. In this subsection, we prove an augmented version of the Large Links Lemma 2.4.1. As
with [MM00][Lemma 6.2], it follows almost immediately from Lemma 6.2.2:

Lemma 6.3.1 (Large links for AMpSq). If Y Ă S is any subsurface and dY prIp rHq, rTp rHqq ą M2, then Y

supports a geodesic g̃Y P rH. Conversely, if g̃Y P rH, then
ˇ

ˇ

ˇ
|g̃Y | ´ dY

´

rIp rHq, rTp rHq
¯
ˇ

ˇ

ˇ
ď 2M1.
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Proof. Let g̃X0 “ g̃Z0 be the top geodesic of rΣpY q. We have that either X0 “ Y or Y Ĺ X0. If the latter,

then Y does not support a geodesic and Lemma 6.2.2 implies dY

´

rIp rHq, rTp rHq
¯

ď diamY pπY pσqq ď M2,

proving the first statement.

For the second statement, if Y “ X0, then g̃Y “ g̃X0 by Theorem 4.5.1. Since σ` and σ´ contain both
rTpg̃Y q, rTp rHq and rIpg̃Y q,rIp rHq, respectively, Lemma 6.2.2 implies that

dY

´

rIpg̃Y q,rIp rHq
¯

, dY

´

rTpg̃Y q, rTp rHq
¯

ďM1

completing the proof. �

Let M5 “ 2M1 ` 5 and M6 “ 4pM1 `M5 ` 4q, where M1,M2 are the constants from Lemma 6.2.2 and

6.3.1, respectively. For any rµ, rη P AMpSq and augmented hierarchy rH between them, set GM6prµ, rηq “ tg̃Y P
rH|dY prµ, rηq ąM6u. Note that |GM6prµ, rηq| “

ř

g̃Y PGM6
prµ,rηq |g̃Y | is independent of the choice of rH up to coarse

equality by Lemma 6.3.1.

Lemma 6.3.2. There are constants d0, d1 ą 0 dependent only on S such that |GM6
prµ, rηq| ą d0 ¨ | rH| ´ d1.

Proof. As noted in the proof of [MM00][Theorem 6.10], the proof is an easy counting argument using the

key fact that the number of component domains of any geodesic in rH is a constant multiple of its length,
where the constant only depends on S. �

6.4. A distance formula for AMpSq. In this subsection, we derive a version of the Masur-Minsky distance
formula for AMpSq, which is related to Rafi’s Theorem 2.6.1.

In [MM00], Masur-Minsky first related the size of a hierarchy to the sum of the size of its large links, then
used the MpSq-analogue of Lemma 6.3.1 to obtain their distance formula. While this approach goes through
to our setting, we first derive the distance formula then relate it to augmented hierarchies via Lemma 6.3.1.

Theorem 6.4.1 (Distance formula for AMpSq). For each K ąM6, there are constants C1, C2 ą 0 depending
only on S and K such that for any rµ, rη P AMpSq, we have

dAMpSqprµ, rηq —pC1,C2q

ÿ

dY prµ,rηqąK

dY prµ, rηq

Proof. The second inequality follows from Proposition 5.4.1 and Lemma 6.3.2. For the first inequality, we
adapt the hierarchy-free proof of the MpSq-distance formula from Aougab-Taylor-Webb [ATW15].

Let rµ, rη P AMpSq and let rµ “ rµ0, . . . , rµN “ rη be any geodesic in AMpSq between them. Let M “ 10
and L “ 4 be the constants from Lemmata 6.1.2 and 6.1.1, respectively. Set K “ 5M ` 3L and let
LKprµ, rηq “ tY |dY prµ, rηq ą Ku be the set of K large links for rµ and rη.

For each Y P LKprµ, rηq, let iY be the largest index k such that dY prµ0, rµkq ď 2M ` L and tY the small-
est index j with tY ě iY such that dY prµj , rµN q ď 2M ` L. Let IY “ riY , tY s Ă t0, 1, . . . , Nu. Since
dY prµi, rµi`1q ă L for each i, dY prµ0, rµiY q, dY prµtY , rµN q ě 2M `L, and dY prµiY , rµtY q ěM `L by definition of
K, each such IY is nonempty. Moreover, we

The following is essentially [MM00][Lemma 6.11], but the proof is from [ATW15]:

Lemma 6.4.2. If Y,Z P LKprµ, rηq and Y&Z, then IY X IZ “ H.

Proof of Lemma 6.4.2. The proof is an easy application of Lemma 6.1.2. Assume for a contradiction that
there is a k P IY X IZ . Then Lemma 6.1.2 implies that either dY pBZ, rµ0q ďM or dZpBY, rµ0q ďM . Assume
the former, since the proof in the latter case is the same.
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Using the triangle inequality, we have:

dY pBZ, rµkq ě dY prµ0, rµkq ´ dY prµ0, BZq ě 2M ` 1´M ěM ` 1

Thus Lemma 6.1.2 implies dZpBY, rµkq ďM so that

dZpBY, rµN q ě dZprµk, rµN q ´ dZprµk, BY q ě 2M ` 1´M ěM ` 1

with Lemma 6.1.2 again implying that dY pBZ, rµN q ďM . Having assumed dY pBZ, rµ0q ďM , we have

dY prµ0, rµN q ď dY prµ0, BZq ` dY pBZ, rµN q ď 2M ă K

which contradicts the fact that Y P LKprµ, rηq, completing the proof of Lemma 6.4.2. �

Returning to the proof of Theorem 6.4.1, consider the collection tIY |Y P LKprµ, rηqu, which is a covering
of t0, 1, . . . , Nu. Let s “ 2ξpSq ´ 6 be the number of pairwise non-overlapping domains. By Lemma 6.4.2,
each k P t0, 1, . . . , Nu is contained in at most s such IY . Thus

ÿ

Y PLKprµ,rηq

|IY | ď s ¨ dAMpSqprµ, rηq

Applying Lemma 6.1.1, we have

dY prµ, rηq ď dY prµiY , rµtY q ` 4M ` 2L ď L|IY | ` 4M ` 2L

Since dY prµ, rηq ě 5M ` 3L for each Y P LKprµ, rηq by definition, it follows that 1
5L ¨ dY prµ, rηq ď |IY |.

Combining all this, we get

ÿ

Y PLKprµ,rηq

dY prµ, rηq ď 5sL ¨ dAMpSqprµ, rηq

which completes the proof of the theorem. �

6.5. Efficiency of augmented hierarchies. The following is an immediate corollary of Theorem 6.4.1 and
Lemmata 6.3.2 and 6.3.1:

Theorem 6.5.1. For each K 1 ą M6 there are constants C 11, C
1
2 ą 0 depending only on S and K 1 such that

for any rµ, rη P AMpSq and augmented hierarchy rH between them, we have

ÿ

dY prµ,rηqąK1

dY prµ, rηq —C11,C12 |
rH|

Theorem 6.5.1 proves that augmented hierarchy paths are globally efficient. While their local efficiency
can be proven using a subsurface projection argument well-known to the experts, in Proposition 8.3.3 of
the Appendix 8, we prove that subpaths of augmented hierarchy paths are themselves augmented hierarchy
paths in a natural way. Combining this with Theorem 6.5.1, we have:

Corollary 6.5.2. Augmented hierarchy paths are uniform quasigeodesics in AMpSq.

See the Appendix 8 for more properties of hierarchy paths, augmented or otherwise.

7. AMpSq is quasiisometric to T pSq

The goal of this section is the Main Theorem 7.4.6, which proves that AMpSq is quasiisometric to T pSq
with the Teichmüller metric. We first make some estimates relating extremal length to curve graph distance,
then we define the maps between AMpSq and T pSq. Finally, we prove that they are quasiisometries.
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7.1. Extremal length, intersection numbers, and curve complex distance. In this subsection, we
will show that two curves with bounded extremal length with respect to one metric have bounded intersection
number. First, we need the following useful result of Minsky:

Lemma 7.1.1 (Lemma 5.1 in [Min92]). For any σ P T pSq and α, β P CpSq, we have

Extσpαq ¨ Extσpβq ě iSpα, βq
2

Next, recall Kerckhoff’s formula:

Theorem 7.1.2 (Theorem 4 in [Ker78]). For any σ1, σ2 P T pSq,

e2dT pσ1,σ2q “ sup
αPCpSq

Extσ1pαq

Extσ2
pαq

The following was observed by Rafi [Raf07][Proposition 3.5]:

Lemma 7.1.3. For any σ1, σ2 P T pSq, if α, β P CpSq are such that Extσ1
pαq,Extσ2

pβq — 1, then log iSpα, βq ă

dT pσ1, σ2q. In particular, if dT pσ1, σ2q — 1, then iSpα, βq — 1.

Proof. The proof is an easy application of Lemma 7.1.1 and Theorem 7.1.2:

iSpα, βq ď Extσ1
pαq ¨ Extσ1

pβq ď Extσ1
pαq ¨ Extσ2

pβqe2dT pσ1,σ2q

Since Extσ1
pαq,Extσ2

pβq — 1, applying log to both sides gives the first conclusion, which is easily seen to
apply the second conclusion. We note the bounds on extremal length determine the bounds on intersection
number. �

We will also use the following well-known estimate relating curve complex distance to intersection number:

Lemma 7.1.4. For any α, β P CpSq, we have dCpSqpα, βq ă iSpα, βq.

Proof. When ξpSq ą 4, this is [MM99][Lemma 2.1]. When ξpSq “ 4, then this is an easy argument in the
Farey graph. When S is an annulus or horoball, this follows from arguments in [MM00][Subsection 2.4]. �

Combining these ideas, we have:

Proposition 7.1.5. Let σ1, σ2 P T pSq be such that dT pσ1, σ2q — 1. For any α, β P CpSq with Extσ1
pαq,Extσ2

pβq —
1 and Y Ă S such that πY pαq, πY pβq ‰ H, we have dY pα, βq — 1.

Proof. Since πY pαq, πY pβq ‰ H, dY pα, βq is defined, and Lemmata 7.1.3 and 7.1.4 imply that

dY pα, βq ă iY pα, βq ă iSpα, βq — 1

completing the proof. �

7.2. From T pSq to AMpSq. We are now ready to define maps between AMpSq and T pSq which we later
prove are quasiisometries in Theorem 7.4.6.

Let α P CpSq and σ P T pSq. Define a map dα : T pSq Ñ Zě0 by

dαpσq “

#

max
!

k
ˇ

ˇ

ˇ

ε0
2k`1 ă Extσpαq ă

ε0
2k

)

if Extσpαq ă ε0

0 if Extσpαq ě ε0

For each σ P T pSq, let µσ be any marking such that basepµσq is a Bers pants decomposition for σ, as in
Theorem 2.7.1, and so that we have chosen traversals to basepµσq to minimize lσ. Note there may be finitely
many choices of transversals for each base curve and thus finitely many such markings µσ.

Define F : T pSq Ñ AMpSq by F pσq “ pµσ, dα1
pσq, . . . , dαnpσqq where basepµσq “ tα1, . . . , αnu. We think

of F as choosing a shortest augmented marking for each σ P T pSq, and outside the context of the map F ,
we may write rµσ for a shortest augmented marking for a point σ P T pSq. The following lemma proves that
F is coarsely well-defined:

Lemma 7.2.1. For any σ P T pSq, we have diamAMpSq pF pσqq — 1.
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Proof. Let σ P T pSq and let rµσ, rµ
1
σ P F pσq Ă AMpSq. Recall from Lemma 2.7.2 that Extσpαq ă L0 for

each α P baseprµσq Y baseprµ1σq, where L0 depends only on S. The goal is to bound all subsurface projections
between rµσ and rµ1σ, allowing us to invoke the distance formula, Theorem 6.4.1.

Let Y Ă S be nonannular. If there are not α P baseprµσq and β P baseprµ1σq with iSpα, βq ą 0 and
πY pαq, πY pβq ‰ H, then clearly dY prµσ, rµ

1
σq ă 4 by Lemma 6.1.1. If there are, then since Extσpαq,Extσpβq ă

L0, it follows from Proposition 7.1.5 that dY pα, βq — 1, with Lemma 6.1.1 implying dY prµσ, rµ
1
σq — 1.

Now let γ P CpSq be any curve. If γ R baseprµσqYbaseprµ1σq, then Proposition 7.1.5 implies that dγprµσ, rµ
1
σq

is uniformly bounded. Since Dγprµσq “ Dγprµ
1
σq “ 0, we can conclude that dHpγqprµσ, rµ

1
σq — 1. If γ P rµσX rµ1σ,

then dHpγqprµσ, rµ
1
σq — 1 by definition.

Finally, if γ P rµσ but γ R rµσ, then lσpγq ą ε0 by Lemma 2.7.2. It follows then the length of the shortest
transverse curve to γ, tγ , has lσptγq uniformly bounded, with the Collar Lemma implying that Extσptγq is
uniformly bounded. Since γ R rµ1σ, there is a γ1 P baseprµ1σq with iSpγ, γ

1q ą 0. Since Extσpγ
1q ă L0, we can

then apply the above intersection number argument to derive that dHpγqprµσ, rµ
1
σq — 1.

�

7.3. From AMpSq to T pSq. We now construct an embedding G : AMpSq Ñ T pSq in terms of Fenchel-
Nielsen coordinates. Consider an augmented marking rµ P AMpSq with rµ “ pµ,Dα1

, . . . , Dαnq. In building
coordinates for Gprµq, we are given a clear choice of a pants decomposition, basepµq, and bounds for the
length coordinates, ε0

2Dαi`2 ă lαi ă
ε0

2Dαi`1 . Given a choice of length coordinates, say lαi “
ε0

2Dαi`
3
2

, we can

use the transverse curve data pαi, tiq to pick out a unique twisting numbers, ταiptiq, and thus a unique metric
on S, as follows.

For each i, αi either bounds one or two pairs of pants, depending on whether αi lives in a four-holed
sphere or a one-holed torus. As we have chosen lengths for all the curves in the pants decomposition, the
metrics on the pairs of pants are uniquely determined.

In the case of the four-holed sphere, consider the two unique essential geodesic arcs, β1, β2 in the pairs of
pants connecting αi to itself. Let ταiptiq be the unique twisting number associated to the gluing of the pairs
of pants at αi which connects β1 to β2 to realize ti.

Similarly, for the case when αi bounds two cuffs on one pair of pants which glue into a one-holed torus,
there is a unique geodesic arc, β, connecting the two copies of αi. Let ταiptiq be the unique twisting number
associated to the gluing of the copies of αi which connected the two ends of β to realize ti.

We can now define G : AMpSq Ñ T pSq by Gprµq “
`

lαi , ταiptiq
˘

i
. Since G sends each augmented marking

to a unique point for which each curve in the base of that marking is short, the shortest augmented marking
for any point in the image of G is unambiguous by Lemma 2.7.2; that is, F ˝Gprµq “ rµ. Thus

Lemma 7.3.1. F ˝G “ idAMpSq; in particular, G is an embedding and F is a surjection.

7.4. The quasiisometry. We prove, in a series of lemmata, that G is a quasiisometry by showing F and
G satisfy the conditions of the following elementary lemma:

Lemma 7.4.1. Let X and Y be metric spaces. If g : X Ñ Y and f : Y Ñ X are both L-lipschitz and
there exists a K ą 0 such that dXpfpgpxqq, xq ă K for each x P X, then g is a pL, 2LKq-quasiisometric
embedding. If gpXq Ă Y is also quasidense, then g is a quasiisometry.

Proof. Let x1, x2 P X. Then

dXpx1, x2q ă L ¨ dY pgpx1q, gpx2qq ă L2 ¨ dX pf pgpx1qq , f pgpx2qqq ď L2dXpx1, x2q ` 2L2K

with the triangle inequality implying the last inequality. Dividing everything by L completes the proof. �

We begin by proving that F is lipschitz, the proof of which proceeds similarly to Lemma 7.2.1:
23



Lemma 7.4.2. There is a constant L2 “ L2pSq ą 0 such that for any σ1, σ2 P T pSq with dT pσ1, σ2q “ 1,
dAMpSqprµσ1 , rµσ2q ă L2.

Proof. Suppose that σ1, σ2 P T pSq with dT pσ1, σ2q “ 1. We will uniformly bound all subsurface projections
between rµσ1

and rµσ2
. The result will then follow from the distance formula, Theorem 6.4.1.

Let Y Ă S be any nonannular subsurface and let α P baseprµσ1q, β P baseprµσ2q with πY pαq, πY pβq ‰ H.
By definition of F and Lemma 2.7.2, we have Extσ1

pαq,Extσ2
pβq — 1 for any α P baseprµσ1

q, β P baseprµσ2
q.

It then follows from Proposition 7.1.5 and Lemma 6.1.1 that dY prµσ1
, rµσ2

q — 1.

It remains to bound projections in horoballs. Let α P CpSq and note that Dαprµσ1q — Dαprµσ2q by definition
and Theorem 2.5.1, because dT pσ1, σ2q “ 1. It will thus suffice to bound projections to annular complexes.
There are four cases, depending on whether α P baseprµσiq for each i.

If α R baseprµσ1
qYbaseprµσ2

q, then there are curves β P baseprµσ1
q and γ P baseprµσ2

q with iSpα, βq, iSpα, γq ą
0. Thus Proposition 7.1.5 and Lemma 6.1.1 imply that dαprµσ1 , rµσ2q — 1, as required.

Now suppose that α P baseprµσ1
q Y baseprµσ2

q. Since dT pσ1, σ2q “ 1, Theorem 2.5.1 implies there exists
constants C 1, D1 ą 0 depending only on S such that if mintDαprµxqDαprµyqu ą C 1, then dHpαqprµx, rµyq ă D1.

If not, then Extσ1
pαq and Extσ2

pαq are uniformly bounded above and below. Thus there exist curves
β1, β2 P CpSq with iSpβi, αq ą 0 and Extσipβiq — 1 for i “ 1, 2. Since the length of α is uniformly bounded
below in both σ1 and σ2, it follows that the shortest transverse curves to α in σ1, σ2 must have uniformly
bounded twisting around α relative to β1, β2 in σ1, σ2, respectively.

For i “ 1, 2, if α P baseprµσiq, then let tα,i be its transversal. The above argument then implies that
dαpβi, tα,iq — 1. If α P baseprµσ1q X baseprµσ2q, then the triangle inequality implies that dαprµσ1 , rµσ2q — 1.

If α P baseprµσ1
q but α R baseprµσ2

q, then there is some curve γ P baseprµσ2
q with iSpγ, αq ą 0, and since

Extσ2
pγq — 1, Proposition 7.1.5 applied to γ and β1 implies that dαprµσ1

, rµσ2
q — 1. This completes the proof.

�

Next, we prove that G is lipschitz:

Lemma 7.4.3. There is a constant L1 “ L1pSq ą 0 such that for any rµ1, rµ2 P AMpSq adjacent vertices in
AMpSq, dT pSq pGprµ1q, Gprµ2qq ă L1.

Proof. Let ε ą 0 be as in Theorem 2.5.1. First, suppose that rµ1 and rµ2 differ by a vertical edge or horizontal
edge in a horoball, Hα, where α P baseprµ1qX baseprµ2q. Recall that the length of α in both Gprµ1q and Gprµ2q

is less than ε by the definition of G. By Minsky’s Theorem 2.5.1, Gprµ1q and Gprµ2q coarsely live in the
product Hα ˆ T pSzαq. The projections of Gprµ1q and Gprµ2q to T pSzαq are identical, so dT pGprµ1q, Gprµ2qq

is (up to an additive constant) equal to the distance in Hα of the projections of Gprµ1q and Gprµ2q to Hα,
again by Minsky’s Theorem 2.5.1. This distance is coarsely the corresponding distance in a horodisk, via
Proposition 3.1.2, which is precisely 1 by Lemma 7.3.1. Thus there is a uniform bound on dT pGprµ1q, Gprµ2qq.

Now suppose that rµ1 and rµ2 differ by a flip move, so that they only differ in their underlying mark-
ing. Then, as argued in [Raf07][Lemma 5.6], there are only finitely many pairs of such markings up to
homeomorphism, and the result follows from the local finiteness of AMpSq, Lemma 3.2.3. �

Finally, we prove that GpAMpSqq Ă T pSq is quasidense, but before we do so, we need:

Lemma 7.4.4. Every point in the ε0-thick part of T pSq is a uniformly bounded distance away from the
ε-thin parts of T pSq. This bound depends only on the topology of S.

Proof. If σ P T pSq is in the ε0-thick part of T pSq and µσ P MpSq is the shortest marking for σ with
basepµσq “ tγ1, . . . , γnu “ γ P CpSq, then there is a uniform upper bound on the length of the γi, which
depends only on the topology of S. Thus there is a uniform bound on the distance between σ and some
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point σthin P Thinγ , which is obtained by scaling the lengths of the curves in γ in σ to be less than ε0. In
fact, this holds for points in the ε0-thick part of T pY q for every subsurface Y Ă S, with the same constant
bounding the distance to a uniformly thin part. �

Lemma 7.4.5. GpAMpSqq is quasidense in T pSq.

Proof. We show by induction that GpAMpSqq is quasidense in the ε0-thin parts of T pSq. Let σ P T pSq and
let F pσq “ rµσ P AMpSq a shortest augmented marking for σ. It suffices to show that there is a uniform
bound on the distance between σ and Gprµσq. Suppose first that σ P Thinγ where γ “ tγ1, . . . , γnu Ă CpSq
is a maximal simplex, i.e. pants decomposition, of S. Then by Theorem 2.5.1, σ and Gprµσq coarsely live in
ś

iHγi and have length coordinates which differ at most by ε0
2 . As there is a uniform bound on the distance

in each Hγi and on the dimension of the simplex γ, it follows that σ and Gprµσq are uniformly close.

Now suppose that σ P Thinγ where γ “ tγ1, . . . , γn´1u Ă CpSq is a simplex of dimension one less than
maximal. Then σ and Gprµσq coarsely live in

ś

iHγi ˆ T pSzγq. If µσ is the shortest marking for σ, with
basepµσq “ tγ1, . . . , γn´1, αu, then α was the shortest curve in σ in CpSzγq and Gprµσq lives in

ś

iHγi ˆHα.
By Lemma 7.4.4, there is a uniform bound on the distance between πT pSzγqpσq and Thinα Ă T pSzγq. Thus
there is a uniform bound on the distance between σ and ThinγYtαu Ă T pSq by Theorem 2.5.1. Since
GpAMpSqq is quasidense in ThinγYtαu, it follows by induction that GpAMpSqq is quasidense in T pSq,
completing the proof. �

Combining Lemmata 7.4.3, 7.4.2, and 7.3.1 with Lemma 7.4.1, we have:

Theorem 7.4.6. AMpSq with the path metric is quasi-isometric to T pSq with the Teichmüller metric.

As an application of Theorems 7.4.6 and 6.4.1, we have a new proof of Rafi’s distance formula for T pSq:

Theorem 7.4.7 (A distance formula for T pSq). There exists a K 1 “ K 1pSq ą 0 such that for any σ1, σ2 P

T pSq with shortest augmented markings rµσ1
, rµσ2

P AMpSq, we have

dT pSqpσ1, σ2q —
ÿ

dY prµσ1 ,rµσ2 qąK

dY prµσ1
, rµσ2

q `
ÿ

dHpαqprµσ1 ,rµσ2 qąK

dHpαqprµσ1
, rµσ2

q

where the Y Ă S are nonannular.

8. Appendix: Hierarchical technicalities

In this appendix, we prove a number of technical results about hierarchies. Perhaps the main goal is
to prove that subpaths of hierarchy paths are hierarchy paths in a natural way. We also analyze special
subsegments of hierarchy paths during which progress through a subsurface is made. We have sequestered
this section from the rest of the paper to enhance the coherence of the main exposition. We hope that some
of these results will be of independent interest.

In order to minimize notational clutter, we will work with standard hierarchies, but everything holds
mutatis mutandis for augmented hierarchies and hierarchies without annuli.

8.1. Active segments. In this subsection, we introduce the notion of an active segment of a subsurface
along a hierarchy path.

For any geodesic gY P H, let vY,int and vY,ter be the initial and terminal vertices of gY , respectively.
Let τgY ,int be the first slice containing the pair pgY , vY,intq and τgY ,ter the last slice containing the pair
pgY , vY,terq, with their respective augmented markings, µY,int and µY,ter.

We call ΓY “ rµY,int, µY,ters Ă Γ the active segment of Y along Γ. It is clear from the definition of an
elementary move of augmented slices that ΓY is contiguous. We remark our notion of active segment is
similar to Rafi’s notion of active interval of a Teichmüller geodesic from [Raf14].

See Subsection 8.4 for a structural result about active segments.
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8.2. Subordinancy and slices. Let H be any hierarchy between µ, η PMpSq, and let Γ be any hierarchy
path based on H. Let gY P H and recall from Subsection 8.1 the definition of an active segment of Y along
Γ, namely ΓY . The following lemma connects direct subordinancy for gY P H to the initial and terminal
slices of ΓY , τY,int and τY,ter, respectively:

Lemma 8.2.1 (Subordinancy and slices). Let H and Γ be as above. Let gX , gY P H with DpgXq “ X
and DpgY q “ Y . If pgX , xq P τY,int and Y is a component domain of pX,xq, then gX Ö gY . Similarly, if
pgX , xq P τY,ter and Y is a component domain of pX,xq, then gY Œ gX .

Proof. We prove the direct backward subordinate case, as the direct forward subordinate case is similar.
The proof involves understanding what happens in the transition into the initial slice of ΓY . Let µ P Γ be
the marking preceding µY,int along Γ and let τµ Ñ τY,int be the slices in the resolution of H which gives
Γ. Since τµ Ñ τY,int is an elementary move of slices, there are by definition some geodesic gW P H and
vertices w,w1 P gW so that τµ Ñ τY,int is essentially realizing the transition from w to w1 along gW . The
reorganization of the hierarchical data is contained in the transition slices σ Ă τµ and σ1 Ă τY,int with
τµzσ “ τY,intzσ

1. We shall find gY and gX in these transition slices.

Let yint P gY be the initial vertex of gY . By assumption and the fact that τµzσ “ τY,intzσ
1, we must have

that pgY , yintq P σ
1, as τY,int is the first slice involving gY . This implies by definition of σ1 that w|Y ‰ H.

Property (S3) of slices implies there is a pair pgX , xq P σ
1, where gX P H with DpgXq “ X and Y a component

domain of pX,xq. Consider the simple case where gX Ö Y ; in order to conclude that gX Ö gY , we need to
prove IpgY q “ IpY, gXq. Applying [MM00][Theorem 4.7(1)], there exists gZ P H with gY Œ gZ , which implies
that Y Œ gZ . Part (H2) of the definition of a hierarchy implies there is g1Y P H with gX Ö g1Y Œ gZ , but
[MM00][Theorem 4.7(4)] states that geodesics in H are uniquely determined by their domains, so g1Y “ gY
and gX Ö gY .

In the general case, IpY, gXq “ IpgXq|Y , and we do not know what the latter marking is. We will in
fact show that IpgXq “ w1|X , but this requires an inductive application of the above argument. To begin,
property (S3) of slices implies there is a sequence of pairs tpgXi , xiqu

n
i“1 in σ1 with pgX1

, x1q “ pgY , Y q,
pgX2

, x2q “ pgX , xq, and pgXn , xnq “ pgW , w
1q such that, for each 1 ď i ă n, Xi is a component domain

of pXi`1, xi`1q; moreover, the definition of σ1 implies that xi is the initial vertex of gXi when 1 ď i ă n.
Since w1 is not the initial vertex of gW , we have IpXn´1, gXnq “ w|Xn´1 , which is nonempty by definition
of σ1. Moreover, since H is a hierarchy, [MM00][Theorem 4.7 (1)] implies that there is some gZn P H
with gXn´1

Œ gZn , implying that Xn´1 Ö gZn . The definition of a hierarchy then implies that there is
g1Xn´1

P H with Dpg1Xn´1
q “ Xn´1 and gW Ö g1Xn´1

Œ gZn . But [MM00][Theorem 4.7 (4)] implies that

geodesics in H are uniquely determined by their domains, so g1Xn´1
“ gXn´1 and gW Ö gXn´1 , implying

IpgXn´1
q “ IpXn´1, gW q “ w1|Xn .

Now considering gXn´1 , xn´1 is its initial vertex, so IpXn´2, gXn´1q “ IpgXn´1q|Xn´2 “
`

w1|Xn´1

˘

|Xn´2 “

w1|Xn´2 , which is nonempty by definition of σ1. This implies that gXn´1 Ö Xn´2. Proceeding as above, we
find a gZn´1

P H with gXn´2
Œ gZn´1

and, as before, we can conclude that gXn´1
Ö gXn´2

, implying that
IpgXn´2

q “ IpXn´2, gXn´1
q “ w1|Xn´2

. Proceeding by induction, we see that for 1 ď i ă n, that gXi`1
Ö gXi

and IpgXiq “ w1|Xi . in particular, gX Ö gY and IpgY q “ w1|Y , which completes the proof of the lemma. �

8.3. Subpaths of hierarchies. In this subsection, we prove that subpaths of hierarchy paths are them-
selves hierarchy paths in a natural way.

Truncating hierarchies. Let H be any hierarchy between µ, η PMpSq, Γ a hierarchy path based on H, and
rµ0, η0s Ă Γ any subpath. We will define a way to truncate the geodesics in H to their relevant contributions
to rµ0, η0s. Initial and terminal marking data are then inductively added to the truncated geodesics. In
Lemma 8.3.1, we prove the resulting collection, H0, is a hierarchy. We then show in Lemma 8.3.2 that the
original slice resolution of H from which Γ was obtained is a slice resolution for H0. We immediately obtain
that rµ0, η0s is a hierarchy path based on H0 in Proposition 8.3.3.
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Let gY P H with DpgY q “ Y . Suppose gY P H is such that ΓY Xrµ0, η0s ‰ H. We can form a new geodesic
g1Y Ă CpY q as follows: If µ0 P ΓY with τµ0 the corresponding slice, then there exists a pair pgY , vY,µ0q P τµ0

and we can remove the (possibly empty) initial segment of gY to obtain a geodesic g1Y with initial vertex
vY,µ0

; we similarly truncate the end segment of gY if it contributes to a pair in τη0 . If µ0 P ΓY , we say ΓY is
initially truncated by rµ0, η0s; similarly, if η0 P ΓY , we say ΓY is terminally truncated by rµ0, η0s. We note
that vY,µ0 and vY,η0 can be the initial and terminal vertices of gY , respectively. If ΓY Ă rµ0, η0s, set g1Y “ gY .

Building the initial and terminal markings. Let H 1 “ tg1Y |ΓY X rµ0, η0s ‰ Hu. In order to complete
H 1 into a collection of tight geodesics, we need to attach initial and terminal marking data to the g1Y . We
only describe how to build initial marking data, as terminal marking data are built similarly. For the initial
marking data, the key is determining to which geodesic in H0 each g1Y should be directly backward subordi-
nate, and there are two cases. First, suppose that ΓY is initially truncated. We can build Ipg1Y q inductively
from µ0 as follows.

Let g1H be the truncation of the main geodesic gH at µ0 and η0. Set Ipg1Hq “ µ0 and Tpg1Hq “ η0. Given
any g1Y P H

1 with Dpg1Y q “ Y , it follows from the definition of truncation that g1Y is initially truncated from
gY P H if and only if τµ0 contains some pair pg1Y , vY,µ0q P τµ0 . Since τµ0 is complete, repeated applications of
property (S3) of slices gives a finite sequence of pairs tpgXi , xiqu

n
i“1 with X1 an annulus, gXn “ gH , Y “ Xk

for some k, and DpgXiq “ Xi with Xi a component domain of pXi`1, xi`1q for each i. For each i, it follows
from the definition of truncation that either gXi is initially truncated at xi to a geodesic g1Xi P H

1 with new
initial vertex vXi,µ0 “ xi, or xi is the initial vertex of gXi . Either way, we may set Ipg1Xn´1

q “ µ0|Xn´1 ,

and then inductively define Ipg1Xiq “ IpXi, g
1
Xi`1

q “ Ipg1Xi`1
q|Xi ; we note that each Ipg1Xiq is a complete

marking on Xi because µ0 is a complete marking on S. Since each vXi,µ0 is the initial vertex of g1Xi , it
follows that IpXi, g

1
Xi`1

q “ Ipg1Xi`1
q|Xi , which is complete and thus nonempty by induction. In particular,

we have Ipg1Y q “ IpgXiq. It follows that g1H Ö g1Xn´1
Ö ¨ ¨ ¨ Ö g1X1

Ö g1Y . We construct Tpg1Y q in a similar

fashion in the case that gY is terminally truncated.

For the second case, suppose that g1Y P H with Dpg1Y q “ Y and ΓY is not initially truncated. We need to
perform an analysis similar to the proof of Lemma 8.2.1, but truncation adds an extra wrinkle. Let τY,int be
the slice in H which determines the initial marking of ΓY . Then pgY , yq P τY,int, where y is the initial vertex
of gY . As before, repeated applications of (S3) gives a sequence tpgXi , xiqu

n
i“1 with gXn “ gH and, for each i,

DpgXiq “ Xi with Xi a component domain of pXi`1, xi`1q. Since ΓY X rµ0, η0s ‰ H, it follows that there is
a least 1 ď m ď n such that ΓXm is initially truncated, with each ΓXk initially truncated for k ě m. Above,
we defined Ipg1Xm´1

q “ IpXm´1, g
1
Xm
q “ Ipg1Xmq|Xm´1 , which is a complete marking on Xm´1. If xm´1 is not

the initial vertex of g1Xm´1
, then we still have that IpXm, g

1
Xm´1

q “ IpXm´2, gXm´1
q which is nonempty by

assumption and we may define Ipg1Xm´2
q “ IpgXm´2q “ IpXm´2, gXm´1q “ IpXm´2, g

1
Xm´1

q, implying that

g1Xm´1
Ö g1Xm´2

. Otherwise, xm´1 is the initial vertex of g1Xm´1
, and we set Ipg1Xm´2

q “ IpXm´2, g
1
Xm´1

q “

Ipg1Xm´1
q|Xm´2

, which is a complete marking on Xm´2 and thus nonempty. Repeating this process, we can

define Ipg1Y q “ IpY, g1X1
q by induction. As in Lemma 8.2.1, we find that g1Xn Ö ¨ ¨ ¨ Ö g1Y . We define Tpg1Y q

similarly in the case where ΓY is not terminally truncated.

The truncated hierarchy. Let H0 be the collection of the geodesics from H 1 with their marking data
as constructed above. Note that every geodesic in H0 is tight as each is obtained by truncating a tight
geodesic, truncation preserves the tightness property, and each geodesic has initial and terminal markings
which respect the subordinancy relations. Thus H0 is a collection of tight geodesics. Observe also that
any subsurface Y Ă S is the support of at most one geodesic in H0, as this property holds for H by
[MM00][Theorem 4.7(4)]. We now confirm that H0 is a hierarchy by checking it satisfies the three properties
of Definition 4.2.1.

Lemma 8.3.1. The collection of tight geodesics H0 is a hierarchy between µ0 and η0

Proof. We set g1H P H0 to be the main geodesic of H0, which has initial and terminal markings Ipg1Hq “ µ0

and Tpg1Hq “ η0, respectively, thus satisfying property (H1). For property (H3), note that for each g1Y P H0,
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we have built Ipg1Y q and Tpg1Y q by first finding geodesics g1X , g
1
Z P H0 such that g1X Ö Y Œ g1Z , and

then defining Ipg1Y q “ IpY, g1Xq and Tpg1Y q “ TpY, g1Zq. In each case, we have shown these markings to be
nonempty, implying that g1X Ö g1Y Œ g1Z . Thus (H3) is satisfied.

To see property (H2) holds, let g1X , g
1
Z P H0 with Dpg1Xq “ X,Dpg1Zq “ Z, and suppose Y Ă S is a

component domain of pX,xq and pZ, zq with x P g1X and z P g1Z such that g1X Ö Y Œ g1Z . We need to
prove there exists a g1Y P H0 with g1X Ö g1Y Œ g1Z . In the case where either ΓX is initially truncated at x
or ΓZ is terminally truncated at z, we find gY in the slices for those points of truncation. We deal with the
untruncated case slightly differently, so we begin with it.

First, suppose that ΓX and ΓZ are not initially and terminally truncated at x and z, respectively—that is,
x and z are not the initial and terminal vertices of g1X and g1Z , respectively. Then IpY, gXq “ IpY, g1Xq ‰ H
and TpY, gZq “ TpY, g1Zq ‰ H, which imply that gX Ö Y Œ gZ . Since H is a hierarchy, it follows by defini-
tion that there is a unique geodesic gY P H with DpgY q “ Y with gX Ö gY Œ gZ . In this case, it follows that
ΓY is neither initially nor terminally truncated, implying that gY “ g1Y P H0. Using the ending markings
defined above, we have Ipg1Y q “ IpgY q “ IpY, gXq “ IpY, g1Xq and Tpg1Y q “ TpgY q “ TpY, gZq “ TpY, g1Zq,
implying g1X Ö g1Y Œ g1Z by definition.

Now suppose that ΓX is initially truncated at x. Then pg1X , xq P τµ0
and property (S3) of slices implies

that there is a pair pgY , yq P τµ0
with DpgY q “ Y . It follows then that µ0 P ΓY ; thus ΓY is initially truncated

and there is g1Y P H0 with Dpg1Y q “ Y . Moreover, it follows from the inductive construction of Ipg1Y q above
that g1X Ö g1Y . A similar argument implies g1Y Œ g1Z if ΓZ is initially truncated at z. We note that g1Y is
unique because gY P H is unique by [MM00][Theorem 4.7(4)].

There are two mixed cases, where either ΓX or ΓZ is truncated, but not both; each can be handled in
the same fashion as the other. In the case where ΓX is truncated at x, we have already shown that there
are gY P H and g1Y P H0 with DpgY q “ Dpg1Y q “ Y such that g1X Ö g1Y . We have also shown that Y Œ gZ
since ΓZ is not truncated at z. Since Y supports a geodesic gY P H, [MM00][Theorem 4.7(1)] implies that
gY Œ gZ and it follows from the above argument that g1Y Œ g1Z .

�

Resolving the truncated hierarchy. Having proved that H0 is a hierarchy, we can now prove:

Lemma 8.3.2. The resolution of slices τµ “ τ1 Ñ ¨ ¨ ¨ Ñ τk “ τη of H is also a resolution of slices of H0.

Proof. First of all, it follows from the definitions that each slice in the above resolution is a complete slice
on H0. It suffices to prove that each move τi Ñ τi`1 is an elementary move of slices.

Since τi Ñ τi`1 is an elementary move along some geodesic gV P H from v to v1 where v, v1 P gV , there are
initial and terminal transition slices, σ and σ1, respectively, such that σ Ă τi, σ

1 Ă τi`1, and τizσ “ τi`1zσ
1.

Any geodesic gX involved in τi or τi`1 has a truncation g1X P H0 by definition. Let Y Ă S be such that
Y |v1 ‰ H so that pgY , yq P σ, where y is the terminal vertex of gY . Then it follows from the definition of
σ that τi is the terminal slice of ΓY . As such, ΓY is not terminally truncated at y and y is the terminal
vertex of g1Y , putting pg1Y , yq in the H0 initial transition slice from τi to τi`1. Similarly, if Z|v ‰ H so that
pgZ , zq P σ

1, then τi`1 is the initial slice of ΓZ and pg1Z , zq is in the H0 terminal transition slice from τi to
τi`1. That is, σ and σ1 are the H0-transition slices for τi Ñ τi`1, proving that it is an elementary move in H0.

This proves that τµ “ τ1 Ñ ¨ ¨ ¨ Ñ τk “ τη is a resolution of slices of H0. �

Thus we have shown:

Proposition 8.3.3. The subpath rµ0, η0s Ă Γ is a hierarchy path based on H0. In particular, subpaths of
hierarchy paths are hierarchy paths.

As an immediate corollary of Proposition 8.3.3 and [MM00][Theorem 6.10], we have:

Corollary 8.3.4. Hierarchy paths are uniform quasigeodesics in MpSq.
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Remark 8.3.5. The fact that hierarchy paths are uniform quasigeodesics is well-known to the experts, but
has not, to our knowledge, ever been recorded. We note that Proposition 8.3.3 is a stronger statement than
necessary for this fact.

8.4. Structure of active segments. Given a hierarchy path Γ based on a hierarchy H between µ, η PMpSq
and a nonannular subsurface Y with nonempty active segment ΓY , every marking µ P ΓY naturally restricts
to a complete, clean marking µ|Y PMpY q. In the case that Y is an annulus with core α, µ|Y “ tα, where
tα is the transversal to α in µ. In this subsection, we prove that the restriction of ΓY to MpY q coincides
with a hierarchy path naturally defined from the restricted hierarchy for ΓY constructed in Proposition 8.3.3.
For the purposes of this subsection, a hierarchy and hierarchy path on an annular domain are just a geodesic.

By Proposition 8.3.3, we may consider ΓY as a hierarchy path based on H 1, so we may suppose without
loss of generality that Γ “ ΓY , H “ H 1, and µY,int “ µ and µY,ter “ η. Let HY “ tgZ P H|Z Ď Y u be
the collection of all tight geodesic in H supported on subsurfaces of Y with the same initial and terminal
markings as in H. Note that if gZ P HY with DpgZq “ Z Ă Y , then IpgZq|Z “ IpgZq and TpgZq|Z “ TpgZq.

Lemma 8.4.1. HY is a hierarchy between µY “ µ|Y and ηY “ η|Y .

Proof. In the case that Y is an annulus with core α, HY “ tgY u and the conclusion is obvious. Suppose Y
is nonannular. Let gY P HY be the base geodesic of HY , with IpgY q “ µY and IpgY q “ ηY by definition. Let
τint Ñ ¨ ¨ ¨ Ñ τter be the sequence of elementary moves of slices which give Γ. Let gZ P H

1 with Z Ă Y and
suppose pg1Z , zq P τZ,int, where τZ,int is a initial slice of the active segment of Z along Γ, namely ΓZ . Since
Γ “ ΓY , there is a y P gY with pgY , yq P τ and Lemma 8.2.1 implies there is a sequence of tgXiu

n
i“1 Ă H,

with Xn “ Y , X1 “ Z, and gY Ö gXn´1
Ö ¨ ¨ ¨ Ö gZ . Similarly, gZ Œ ¨ ¨ ¨ Œ gY . In particular, all geodesics

in HY other than gY are directly forward and backward subordinate to other geodesics in HY . It follows
easily from the definitions that HY is a hierarchy between µY and ηY . �

Consider the resolution τµ “ τ1 Ñ ¨ ¨ ¨ Ñ τN “ τη of slices ofH which gives Γ. For each τi in this resolution,
let µi P Γ be its corresponding marking and set τY,i “ tpgZ , zq|pgZ , zq P τi and gZ P HY u. The set of tτY,iu

N
i“1

possibly contains redundancies corresponding to elementary moves along τµ “ τ1 Ñ ¨ ¨ ¨ Ñ τN “ τη which
make progress on geodesics whose domains of support are not contained in Y ; removing these redundancies
and relabeling as necessary gives a sequence of slices τµY “ τY,1 Ñ ¨ ¨ ¨ Ñ τY,N 1 “ τηY . We may similarly
reparametrize µ|Y “ pµ1q|Y Ñ ¨ ¨ ¨ Ñ pµN q|Y “ ηY to µY “ µY,1 Ñ ¨ ¨ ¨ Ñ µY,N 1 “ ηY , which we denote by
pΓY q

ˇ

ˇ

Y
. It follows from the definitions that pµiq|Y is compatible with τY,i.

Lemma 8.4.2. The sequence µY “ µY,1 Ñ ¨ ¨ ¨ Ñ µY,N 1 “ ηY is a hierarchy path based on HY .

Proof. If Y is an annulus, then µY “ µY,1 Ñ ¨ ¨ ¨ Ñ µY,N 1 “ ηY is the geodesic gY , satisfying the claim.
Otherwise, it suffices to show that τY,i Ñ τY,i`1 is an elementary move on slices of HY for each 1 ď i ď N 1´1.
Each such pair τY,i Ñ τY,i`1 is restricted from an elementary move of slices τj Ñ τj`1. Since τj and τj`1 are
complete slices on S, it follows that τY,i and τY,i`1 are complete slices on Y . Having removed redundancies,
τj Ñ τj`1 realizes forward progress from z to z1 along some geodesic gZ P HY . Let σ Ă τj and σ1 Ă τj`1

with τjzσ “ τj`1zσ
1 be the transition slices for τj Ñ τj`1. By definition [MM00][Section 5], the domains

supporting geodesics σ and σ1 are component domains of gZzz
1 and gZzz, respectively. It follows from the

definition that σ Ă τY,i and σ1 Ă τY,i`1 with τY,izσ “ τY,i`1zσ
1 are the transition slices the transition from

z to z1 along gZ in HY . Thus τY,i Ñ τY,i`1 is an elementary move of slices in HY , completing the proof. �

Combined with Proposition 8.3.3, we have the following proposition about the structure of active segments
of hierarchy paths, which resembles [Raf14][Theorem 5.3] for Teichmüller geodesics:

Proposition 8.4.3 (The structure of active segments). Let K ą 0 be the large link constant from Lemma
2.4.1 and Γ a hierarchy path based on a hierarchy H. Let ΓY Ă Γ be the active segment of gY P H with
DpgY q “ Y Ă S and HY the corresponding restricted hierarchy in MpY q. Then the following hold:

(1) For any segment rµ0, η0s Ă Γ with rµ0, η0s X ΓY “ H, we have dY pµ0, η0q ă K
(2) The restriction of ΓY to MpY q can be reparametrized to a hierarchy path based on HY .

Proof. Let Γ1 “ rµ, µ1s,Γ2 “ rµ2, ηs Ă Γ be the two components of ΓzΓY . These are both hierarchy
paths by Proposition 8.3.3, based on hierarchies H1 and H2, respectively. Since gY is in both HY and H,
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it follows that neither H1 nor H2 contains a geodesic supported on Y . Thus Lemma 2.4.1 implies that
dY pµ, µ1q, dY pµ2, ηq ă K, completing the proof of (1).

(2) follows directly from Lemmata 8.4.1 and 8.4.2. �
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