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THE AUGMENTED MARKING COMPLEX OF A SURFACE

MATTHEW GENTRY DURHAM

ABSTRACT. We build an augmentation of the Masur-Minsky marking complex by Groves-Manning combi-
natorial horoballs to obtain a graph we call the augmented marking complex, AM(S). Adapting work of
Masur-Minsky, we show this augmented marking complex is quasiisometric to Teichmiiller space with the
Teichmiiller metric. A similar construction was independently discovered by Eskin-Masur-Rafi [EMRI3].
We also completely integrate the Masur-Minsky hierarchy machinery to AM(S) to build flexible families
of uniform quasigeodesics in Teichmiiller space. As an application, we give a new proof of Rafi’s distance
formula for 7(S) with the Teichmiiller metric. We have included an appendix in which we prove a number
of facts about hierarchies that we hope will be of independent interest.

1. INTRODUCTION

The study of various combinatorial complexes built from simple closed curves on surfaces has greatly
advanced the state of knowledge of the geometry of Teichmiiller space, 7(S), the mapping class group,
MCG(S), and hyperbolic 3-manifolds. In [Br03], Brock showed that 7(S) with the Weil-Petersson metric is
quasiisometric to the graph of pants decompositions on S, P(S), an insight which he used to prove that the
Weil-Petersson distance between two points in 7(.S) is coarsely the volume of the convex core of the quasi-
Fuchsian hyperbolic 3-manifold they simultaneously uniformize. Beginning with their proof of hyperbolicity
of the curve complex, C(S), in [MM99], the hierarchy machinery Masur-Minsky developed in [MMO0Q] was
essential in the proof of the Ending Lamination Theorem ([Min03|], [BCMTI]) for hyperbolic 3-manifolds.
Moreover, in [MMO00], Masur-Minsky built the marking complex, M(S), and prove it is quasiisometric to
MCG(S) in any word metric, an analogy essential to the proofs of the rank conjecture ([BMO0S]) and quasi-
isometric rigidity ([BKMM]) theorems for the mapping class group.

The main goal of this paper is to build a combinatorial complex, the augmented marking complex, which
is quasi-isometric to 7(.5) in the Teichmiiller metric:

Theorem 1.0.1. The augmented marking complex, AM(S), is MCG(S)-equivariantly quasiisometric to
T(S) in the Teichmiiller metric.

A large part of this paper is spent adapting the Masur-Minsky hierarchy machinery for M(S) and P(.S) to
AM(S). We use these augmented hierarchies for AM(S) to build families of uniform quasigeodesics called
augmented hierarchy paths and derive a version of Rafi’s distance formula for the Teichmiiller metric (The-
orem [2.6.1), thereby completing the unification of the coarse geometries of MCG(S) and T(S) in the Weil-
Petersson and Teichmiiller metrics by a common framework developed in [MM99, [MMOQ0, [Raf05] Raf07].
In a recent paper, Eskin-Masur-Rafi ([EMR13]) used AM(S) and augmented hierarchy paths, which they in-
dependently discovered, to prove the Brock-Farb Geometric Rank Conjecture for 7(S) with the Teichmiiller

metric (see [BF06]). Bowditch [Bowl14], Behrstock-Hagen-Sisto [BHS14], and the author [Durl4] have also
used AM(S) to give different, independent proofs of the rank conjecture.

Our construction follows upon the work of Masur and Minsky on the curve and marking complexes

[MM99, MMO0] and Rafi’s applications of their machinery to Teichmiiller geometry [Raf05] [Raf07], though
we emphasize that our work is independent of Rafi’s. We now briefly discuss the context of these results.

The Teichmiiller space of a surface S, denoted T (.9), is the space of hyperbolic metrics on S up to isotopy.
The geometry of the thin part of 7(.S), those metrics for which the hyperbolic lengths of some curves on the
surface are small, is fundamentally different from its complement, the thick part. One can see this in the
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Theorem [L.0.1]

(T(5),dr) AM(S)

Masur-Minsky [MMOQQ]
MCG(S) M(5S)

Brock [Br03]
(T(S), dwp) P(S)

Masur-Minsky [MM99]
T(S) C(S)

FIGURE 1. The above figure represents a flow of ideas: the vertical arrows indicate a reduc-
tion of complexity, while all horizontal arrows are MCG(S)-equivariant quasiisometries.

completion of T(S) in the Weil-Petersson metric, where curves are pinched to nodes and the geometry of
the boundary strata is that of a product of the Teichmiiller spaces of the complements of the pinched curves.
While this stark phenomenon does not exactly hold in the Teichmiiller metric, Minsky proved in [Min96]
that the Teichmiiller metric on the thin part of 7(S) is quasiisometric to the product of the Teichmiiller
spaces of the complements of the short curves and a product of horodisks, one for each short curve (see
Theorem with the sup metric; that is, the thin parts of 7(S) coarsely have a product structure.

In [MM99], Masur and Minsky proved that Harvey’s complex of simple closed curves [Ha81] on S, denoted
by C(S5), is d-hyperbolic and that the electrification of the thin parts of 7(S) is quasi-isometric to C(S) and
thus hyperbolic. While this provides for a substantial amount of control over the large-scale geometry of
C(S) and the thick part of 7(.5), C(5) is locally infinite, whereas 7 (S) is proper with the Teichmiiller metric,
and thus hyperbolicity does little a priori to inform upon the local geometry of either. In [MMOQO0], they intro-
duced the machinery of hierarchies of tight geodesics which record the combinatorial information sufficient
to gain a great deal of control over the local geometry of C(.S), proving it shares some properties with locally
finite complexes. These hierarchies also contain the information sufficient to build quasigeodesics in the
associated marking complex, M(.5), called hierarchy paths. They proved that the progress along a hierarchy
path coarsely occurs in subsurfaces to which the end markings have heavily overlapping projections. Using
the hierarchy machinery, they proved that M(S) is MCG(S)-equivariantly quasiisometric to MCG(S) with
any word metric and obtained a coarse distance formula for MCG(S) (Theorem below).

The connection between the work of Masur-Minsky and the Teichmiiller metric was largely developed by
Rafi; see [Rafl4] for a summary of the current state of this project. A Teichmiiller geodesic is a path through
a space of metrics on S and one may ask when a given curve o € C(S) is shorter than some fixed constant. In
[Raf05], Rafi proved that the hyperbolic length of a curve along a Teichmiiller geodesic, G, is shorter than the
constant from Minsky’s Product Regions theorem (Theorem at some point along G if the vertical and
horizontal foliations which determine G heavily overlap on a subsurface of which that curve is a boundary
component. In its sibling paper, [Raf07], Rafi took this condition on foliations and translated it into the
context of the curve complex. He proves G enters the thin part of 7(5) of a subsurface Y < S if and only if
the curves which constitute dY are short along G, which happens if and only if Y is filled by subsurfaces to
whose curve complexes the vertical and horizontal foliations have sufficiently large projections. In addition,
he adapted the Masur-Minsky coarse distance formula for MCG(S) to obtain a coarse distance formula for
T(S) with the Teichmiiller metric (Theorem below).

The outline of the paper is as follows: In Section 2, we give the background necessary for the paper; in
Section 3, we show how to build AM(S) from M(S); in Section 4, we define augmented hierarchies, and
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show how to translate most of [MMOQ] to our setting; in Section 5, we explain how to build augmented
hierarchy paths; in Section 6, we derive a distance formula for AM(S) and prove that augmented hierarchy
paths are uniform quasigeodesics; in Section 7, we prove that AM(S) and (T(S),dr) are quasiisometric;
finally, in the Appendix, we prove structural results about hierarchies which may be of interest to the experts.

Acknowledgements The author would like to thank Daniel Groves for his great encouragement and
guidance. He would also like to thank to Jonah Gaster, Hao Liang, Howard Masur, Yair Minsky, and Kasra
Rafi for interesting conversations.

2. PRELIMINARIES

For the remainder of the paper, let S be a connected, orientable surface of finite type with negative Euler
characteristic.

In this section, we recall from [MMOQ] the basic construction of the marking complex for a surface of
finite type, M(S). We then briefly explain Rafi’s combinatorial model [Raf07] for Teichmiiller space in the
Teichmiiller metric, (7(S),dr). Finally, we introduce the notion of a combinatorial horoball from [GMO§].

2.1. Notation. To simplify the exposition, we adopt some standard notation from coarse geometry. Given
a pair of constants, C1,Ce > 0, and a pair of quantities, A and B, we write A =(¢, ¢,) B or simply A = B if

1
— A-Co<B<C;-A+(Cs
Cy

In this paper, any such constants C; and Cs involved in a coarse equality depend on the topology of S.

2.2. Curve complexes and subsurface projections. The complez of curves of S, denoted C(S), is a sim-
plicial complex whose simplices consist of disjoint collections of isotopy classes of simple closed curves on S.
In the case where S is a once-punctured torus or four-holed sphere, minimal intersection replaces disjointness
as the adjacency relation. For Y,, an annulus in S with core curve o, C(Y,,) = C(«) is the simplicial complex
with vertices consisting of paths between the two boundary components of the metric compactification, Y,
of }N/m the cover of S corresponding to Yy, up to homotopy relative to fixing the endpoints on the boundary;
two paths are connected by an edge if they have disjoint interiors.

We will be considering only the 1-skeleton of C(S) with its path metric. Endowed with this metric, we
have a remarkable theorem of Masur and Minsky [MM99]:

Theorem 2.2.1. C(S) is infinite-diameter and Gromov hyperbolic.

The curve complex is locally infinite, but the links of vertices are often (products of) Gromov hyperbolic
graphs, which gives us a substantial amount of control over the global geometry of C(S), via the hierarchy
machinery in [MMO00Q].

Consider a curve o € C(S). Then the link of « is C(S\a), where C(S\«) is the join C(Sy) = C(Sz2) if « is
separating and S\a = S; [[Se. More generally, if Y < S is any proper subsurface, then C(Y") lives in the
1-neighborhood of dY < C(9).

We are often interested in understanding the combinatorial relationship between two curves or simplices
of C(S) from the perspective of C(Y') for some subsurface Y < S. Let o < C(S) be any simplex and let
Y < S be any subsurface of S which is not a pair of pants. The subsurface projection of a to Y is the
canonical completion of the arcs in a n Y along the boundary of a regular neighborhood of a n'Y and 0Y
to curves in Y. We denote this projection by 7y (a) and remark that it is a simplex in C(Y). If Y, is an
annulus with core v and « intersects y transversely, then 7, () is the finite, diameter-1 set of lifts of o to

}N/',Y which connect the two boundary components of Y.,. See Section 2 of [MMO00] for more details.

For any two simplices «, 8 < C(S) and subsurface Y < S, we use the shorthand dy («, 8) = dy (7y (), 7y (8)).



(a) (b) (c)

FIGURE 2. (a) A marking p € M(S) on a genus two surface, where the red curves are
base(u) and the blue curves are the transversal; (b) p after a twist move around the left
base curve; (c) p after a flip move at the left transverse pair.

Subsurface projections are essential objects in the Masur-Minsky hierarchy machinery. One of the main
outputs of that machinery is the distance formula for M(S), Theorem below.

2.3. Marking complexes. A marking, p, on a surface S is a collection of transverse pairs, («,t,), where
the o form a simplex in C(S, called the base of p, denoted base(y), and each t, is a diameter-1 set of vertices
in the annular complex C(a) (see Section 2.4 of [MMOQ] ), called the set of transversals. We say a marking
w is complete if base(u) is a pants decomposition of S, and clean, if the only base curve each transversal ¢,
intersects is its paired base curve, a.

We remark that, in any complete clean marking, each transversal intersects either one or two other
transversals. Indeed, since the base curves form a pants decomposition, one can decompose S into a collec-
tion of pairs of pants where the base curves form the cuffs and the transverse curves are cut into essential arcs
in the pairs of pants. In each pair of pants, each transverse arc must intersect exactly one other transverse
arc. In the case that « is two cuffs in one pair of pants (that is, « and ¢, fill a one-holed torus), t,, intersects
only one other transverse curve; otherwise, each transverse curve intersects two others.

The marking complex of S, denoted M(S), is a graph whose vertices are complete clean markings and
two markings are connected by an edge if they can be related by one of two types of elementary moves,
called twists and flips, which we define now.

Given a marking p and a pair (a,t,) in p, a twist move around « involves replacing p with T, (1), where
T, is a Dehn twist or half-twist around «, depending on whether a U t, fills a once-puncture torus or a
four-holed sphere, respectively. By construction, ¢, is the only curve in g which intersects «, so this reduces
to (o, te) — (a, Ta(ta))-

Given a pair (a,t,), a flip move performed at « involves a flip (o, t,) — (ta, @) and some extra changes
to preserve cleanliness, which we now explain. As noted above, each transverse curve intersects (either one
or two) others, so now that a transverse curve has become a base curve, at least one other transverse pair
has been made unclean. In [Lemma 2.4, [MMO0Q]], Masur and Minsky show that by choosing replacement
transversals to minimize distance in the annular curve complexes of their bases, one has a finite number
of possible new transversals which are all uniformly close to each other. The purpose of this cleaning is to
preserve the twisting data around « while allowing for future flip moves to occur without the resulting base
sets failing to be pants decompositions. See Figure

In the rest of the paper, we assume that all markings are clean and complete.

Definition 2.3.1 (Subsurface projections for markings). We will be interested in subsurface projections for
markings. For any pe€ M(S) and Y < S any subsurface which is not an annulus whose core is in base(u),
we define the subsurface projection of u to C(Y) by my (1) = wy (base(p)). In the case that Y is an annulus
with core o € base(u) with transversal to, then Ty (1) = tq.

We now define the projection of a marking on S to a marking on a subsurface:
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Definition 2.3.2 (Projections of markings to markings on subsurfaces). Let p € M(S) and Y < S be

any subsurface. We build mrqyy(p) inductively as follows. Choose a curve ay € my (i), then build a pants

decomposition on' Y by choosing a; € Ty it o. (). From this pants decomposition, build a marking on'Y
j=1%j

by choosing transverse pairs (o, To,(1)). We define maqyy(n) = M(Y) to be the collection of all markings
resulting from varying the choices of the .

Lemma 2.4 in [MMO0] and Lemma 6.1 of [Beh06] show that the freedom in this process builds a bounded
diameter subset of M(Y). We remark however that if 0Y" < base(t), then myyy (@) is a unique point in
M(Y), since every curve in base(u) either projects to itself in C(Y') or has an empty projection.

Remark 2.3.3. The process of constructing 7oy (1) preserves any curve o € base(j) which happens to lie
inY, for a € my(u) and my preserves disjointness. Otherwise, we could have chosen to build 7aqyy (1) by
first preferentially choosing curves in base(u) which lie in'Y.

2.4. Hierarchies, large links, and the Masur-Minsky distance formula. Since a substantial portion
of this paper is spent adapting the Masur-Minsky machinery to Teichmiiller space, we now only briefly out-
line the features of the Masur-Minsky hierarchies. The main references for the hierarchy theory are [MMO0]
and [Min03], and we will point the reader to the corresponding sections when possible; the initial exposition
begins in [MMO00] [Section 4]. See also the theses of Tao [Taol3] and Behrstock [Beh06] for nice introductions
to the theory. Our treatment begins in Section

Given any two markings p1, us € M(S), a hierarchy, H, between p; and us is family of special geodesics
gy < C(Y') with partial markings associated, denoted I(gy) and T(gy ). Each such geodesic is supported on
a distinct subsurface Y < S, such that the geodesics satisfy a number of subordinancy relations among the
gy determined by the associated partial markings; see Subsection 4.1 of [MMO00]. Any such hierarchy H can
be used to build a uniform quasigeodesic between p and n in M(S), called a hierarchy path.

Given any pair of markings py, us € M(S), we say that a subsurface Y < S is a K-large link for py and
po if dy (p1, p2) > K. [MMOO][Lemma 6.12] tells us large links are the main building blocks of hierarchy
paths:

Lemma 2.4.1 (Lemma 6.12 in [MMOO]). There exists a K > 0 such that for any pi,pe € M(S) and
subsurface Y < S such that dy (u1,u2) > K, then Y supports a geodesic gy € H for any hierarchy H
between p1 and .

Remark 2.4.2 (Large link). The intuition behind the term large link is as follows: If Y < S is a large link
for p1, pa, we know from Lemma[27.1] that Y supports some geodesic gy € H; moreover, Y will necessarily
appear as the component of some Z\«w where Z < S is a subsurface supporting a geodesic gz € H and o € gz.
While the length of gy in C(Y) is dy (u1,pu2) > K, gy lives in the link of o € gz as a path in C(Z), and
hence the link of « is large from the viewpoint of p1 and ps.

One of the main results of the hierarchy machinery is the inspirational Masur-Minsky distance formula
for M(S), which says that the M(S)-distance between markings is coarsely the sum of their large links:
Theorem 2.4.3 (M(S) distance formula; Theorem 6.12 of [MMO00]). For K > 0 as in Lemma and
any k > K, there are E1, E5 > 0, such that for any py, us € M(S)

da(s) (11, ) =By, By) Z dy (p1, p2)
dy (p1,p2)>k
2.5. The thick part and Minsky’s product regions. One of the main corollaries to the hyperbolicity
of C(S) is [MM99][Theorem 1.2], which states that the electrification of (7(.5), dr) is quasiisometric to C(.5).
In contrast, Minsky showed in [Min96][Theorem 6.1] that the thin regions of (7(S), dr), where at least one
curve is short, are quasiisometric to a product space with its sup metric.

Let v = 71,...,7n be a simplex in C(S), and let Thin(S,7v) = {0 € T(S)|ls(7) < €}, where l5(v;) is the
hyperbolic length of v; in o, for each i. Let

(1) T =T(S\w) x [ [ H,
5 -



be endowed with the sup metric, where S\~y a disjoint union of punctured surfaces and each H.,, is a horodisk,
that is, a copy of the upper half-plane model of H? with imaginary part > 1.

Theorem 2.5.1 (Product regions; Theorem 6.1 in [Min96]). The Fenchel-Nielsen coordinates on T (S) give
rise to a natural homeomorphism II : T(S) — T,, and for € > 0 sufficiently small, this homeomorphism
restricted to Thine(S, ) distorts distances by a bounded additive amount.

In what follows, fix € > 0 to be sufficiently small so that holds. When we say that a curve « is short
for some o € T(5), we mean that I,(a) < e.

Remark 2.5.2. Up to quasiisometry, we may take the sup or product metric on the product space in ,
though Minsky’s version with the sup metric is finer and results in only an additive error.

2.6. Rafi’s combinatorial model. The main result of [Raf07] is an adaptation of the machinery in [MMO00]
to the setting of (7(S),dr). In particular, Rafi obtains a distance estimate in Theorem 6.1 of [Raf07] ana-
logus to the Masur-Minsky formula (Theorem above), restated below in Theorem [2.6.1]

Given o € T(5), a shortest marking p, € M(S) for o is a marking inductively built by choosing a shortest
curve in g € C(S) on o with respect to extremal length, Ext,, then choosing a shortest curve a € C(S\a1),
etc., until one has arrived at a shortest pants decomposition of S. One completes this to a shortest marking
by choosing shortest curves 3; which intersect o; but not «o; for j # ¢. The result is a complete, clean
marking, of which there are finitely-many by [[MMO00], Lemma 2.4]. We note that the collection of curves
which are shorter in ¢ than the constant € in Minsky’s Theorem form a simplex in C(S) by the Collar
Lemma. Thus in the case that ¢ € Thin, for some simplex v < C(5), we necessarily have v c base(ts).

Theorem 2.6.1 (Rafi’s formula; Theorem 6.1 in [Raf07]). Let € > 0 be as in Theorem [2.5.1, There exists
k > 0 such the following holds:

Let 01,09 € T(S), define A to be the set of curves short in both o1 and o2, and define A; to be the set of
curves short in o1 and not in A. Let u; be the shortest marking for o;. Then

(2) dr (o1, 02) = Y [dy (1, p2) ), + Y Tog [da(pna, o), + max dy, (01, 02) + max log 7——

Y ag ;:1:6175 lai (Oé)
One of the main products of this paper, Theorem is an independent, combinatorial proof of Rafi’s
distance formula.

2.7. Bers pants decompositions. Our augmented markings are markings with some length data. When
we associate a point in 7(S) to an augmented marking, it will be important that the extremal lengths of
the curves we choose for the marking are uniformly bounded. We will not use the greedy algorithm used to
build the shortest markings for Rafi’s Theorem Recall the following theorem of Bers:

Theorem 2.7.1 (Bers). There is a constant L > 0 depending only on the topology of S, such that for any
point o € T(S), there is a pants decomposition P, with l,(a)) < L for each a € Px.

For any X € T(S), any Px € P(S) as in Theorem is called a Bers pants decomposition.

The following lemma is a consequence of the Collar Lemma:

Lemma 2.7.2. There exist constants €y, Ly > 0 depending only on S such that the following holds. Let
o € T(S) and let P, be any Bers pants decomposition for o. Then:

(1) For any a € C(S), if l,(a) < €9, then a € P,.

(2) For any € P,, Ext,(8) < Lo.

Proof. For (1), we can choose € small enough so that if v intersects o where I, () < €, then I, () > L by
the Collar Lemma. For (2), the Collar Lemma states that there is a regular neighborhood of § on o, with
diameter depending only on I,(8), which is an embedded annulus. The reciprocal of this diameter is thus
both an upper bound for Ext, () and bounded above because l,(8) is, completing the proof. O

For the rest of the paper, fix ¢y > 0 sufficiently small satisfying both Lemma and Theorem [2.5.1]
6



2.8. Combinatorial horoballs. Combinatorial horoballs were introduced by Groves and Manning in [GMOS§]
in the context of relatively hyperbolic groups; see [CC92)] for an earlier, similar construction. In particular,
suppose that G is a finitely-generated group and P = {P,..., P,} is a finite collection of finitely-generated
subgroups of G. Among other equivalences, in [Theorem 3.25, [GMO08]] they showed that the augmentation
of the Cayley graph of G by combinatorial horoballs along the subgroups in P is hyperbolic if and only if G
is relatively hyperbolic to P in the sense of Gromov.

While MCG(S) is not relatively hyperbolic to any family of subgroups (Theorem 8.1 in [BDMO0S]), the
process of adding efficient paths to the marking complex via combinatorial horoballs to build the augmented
marking complex is reminiscent of and indeed inspired by the relatively hyperbolic construction. We use
combinatorial horoballs to model the hyperbolic upper half-planes which appear in the product structure of
the thin parts discovered by Minsky [Min96] in Theorem [2.5.1] We fully explain the construction of AM(S)

in the next section.

Definition 2.8.1 (Combinatorial horoball). Let X be any simplicial complex. The combinatorial horoball
based on X, H(X), is the 1-complex with vertices H(X)©) = X(©) x ({0} UN) and edges as follows:

o Ifr,ye X© and ne {0} UN such that 0 < dx(z,y) < e", then (x,n) and (y,n) are connected by
an edge in H(X).
o Ifze X© andne {0} UN, then (z,n) is connected to (x,n + 1) by an edge.

The metric on H(X) is the path metric, where each edge is isometric to [0, 1].
Remark 2.8.2. X sits inside of H(X) as the full subgraph containing the vertices X(©) x {0}.
As with horoballs in H", combinatorial horoballs are uniformly hyperbolic:

Theorem 2.8.3 (Theorem 3.8 in [GMOS]). Let X be any simplicial complex. Then H(X) is §-hyperbolic
where § is independent of X.

Remark 2.8.4. The combinatorial horoballs we use are a simple case of the above, for X is the orbit of a
Dehn twist or half-twist and thus a copy of Z.

The following is a usual fact from Groff [Grf12][Lemma 6.2]:

Lemma 2.8.5. Let q¢: A — B be a (k,c)-quasiisometry of graphs. Then there exists a (1,C)-quasiisometry
G:H(A) — H(B), where C depends only on k and c.

We need the understand efficient paths in combinatorial horoballs. Fortunately, they have a nice descrip-
tion from Lemma 3.10 in [GMOS]:

Lemma 2.8.6 (Lemma 3.10 in [GMOS]). Let H(X) be a combinatorial horoball and x,y € H(X) distinct
vertices. Then there is a uniform quasigeodesic y(x,y) = v(y,x) between x and y which consists of at most
two vertical segments and a single horizontal segment of length at most 3.

Moreover, any other geodesic between x and y is Hausdorff distance at most 4 from this quasigeodesic and
no geodesic can have a horizontal segment of length greater than 4.

Following [[GMOS], Section 5.1], we define preferred paths for H(X).

Suppose that z,y € X have dx(z,y) = C. For any (z,a),(y,b) € H(X), consider the path between
these two points which consists of (at most) three segments: a vertical segment from (x,a) to (z,[InC7), a
horizontal segment of one edge from (y, [InC]), and another vertical segment from (y,[InC1]) to (y,b). In
the case that a or b = In C, then the respective vertical segment is not included and the horizontal segment
connects at either height a or b, depending on whether or not a > b.

These paths are not geodesics (which are similar but will differ slightly in vertical height depending on
the divisibility of C), but they are uniform quasigeodesics which are a uniformly bounded distance from
geodesics, with the bound independent of X. This can be seen from the easily verified fact that no geodesic
can contain a horizontal segment of length greater than 5 (see Figure 3 in the proof of Lemma 3.11 in
[GMOS]). Because they are easy to define, these are the preferred paths through horoballs we consider in
what follows. It is obvious from their definition that they are unique. See Figure [4]
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FIGURE 3. A busy (4 x 8)-slice of the base of a combinatorial horoball over Z; every edge
has length 1. Notice that at height 2, each vertex is connected to half the others by edges,
while all vertices are connected by edges at height 3.

FIGURE 4. Two paths between a pair of points in a combinatorial horoball: The red path
is a preferred path, while the blue path is a geodesic.

3. CONSTRUCTION OF AM(S)

The main idea of the construction of AM(S) is to model the product regions discovered by Minsky [Min90]
using M(S) as the thick part. We begin by showing a combinatorial horoball over an orbit of a Dehn twist
or half-twist in M (S) is quasiisometric to a horodisk. We then define AM(S) as a graph and make some
observations about its structure. We finish the section by defining the maps identifying AM(S) with 7(5)
and prove some basic facts about the identification.

3.1. The horoballs H, are quasiisometric to horodisks. Let H, ) be the combinatorial horoball over
the orbit of the action of (T,) on u1, where y contains a transverse pair (a,t,). A typical point in H s ) is
of the form (o, T¥(t,),n), where T¥(t,) records the horizontal position, n records the vertical position, and
a and t,, identify the particular horoball. When the context is clear, we write (o, T (t4),n) = (k,n). We
also frequently suppress the transverse curve when referring to a horoball and simply write H, when the
context is clear.

We begin this section with an elementary proof of the fact that horodisks are quasiisometric to combina-
torial horoballs over orbits of Dehn twists or half-twists. In order to do this, we use a set of criteria for a
map to be a quasiisometry from the lemma in Subsection 4.2 of [CC92]:

Lemma 3.1.1. Let X and Y be spaces with path metrics. In order for ¢ : X — Y to be a quasiisometry, it
suffices that

(1) for some L >0,Y < Np(¢(X));

(2) for some K > 0 and for all 1,22 € X, dy (¢(z1), p(x2)) < K - dx(x1,22); and

(3) for each M > 0 there exists an N > 0 such that if dx (z1,22) > N then dy (¢p(x1), p(x2)) > M.

Proposition 3.1.2 (Horoballs are quasiisometric to horodisks). Let u € M(S), (a,ty) a transverse pair
in w, and H,, the combinatorial horoball over the orbit of the action of (Tw) on u. Then H, with the path
metric is quasi-isometric to a horodisk with the Poincaré metric.

Proof of Proposition[3.1.9 Let A be the standard horodisk with the Poincaré metric. Define a map ¢ :
Ho — A by ¢(a, TE(ts),n) = ¢(k,n) = (k,e™). We verify that ¢ satisfies the conditions from Lemma

To see that ¢(Hy) is quasidense in A and thus satisfies condition [1} observe that ¢(#,) is all the points
of the form (n,e*), where n,k € Zs¢. Since the A-distance between two horizontally adjacent vertices in
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¢(Hs) is uniformly bounded by the distance between two vertices at height 1, every point in A is at most
distance 1 from a vertical geodesic line in ¢(H,). Similarly, the distance between two vertically adjacent
vertices in ¢(H,) is bounded by L. Thus ¢(Hs) is quasidense in A.

€

We now verify condition [2] on endpoints of edges of H,. Vertical edges are geodesics in H,, and ¢ sends
them to vertical segments which are geodesics of the same length in A. Similarly, a horizontal edge in H,
connecting (k1,n) and (ko,n) where |k1 — ka| < e™, is a geodesic of length 1. A calculation verifies that the
da ((k1,e™), (ko,e™)) is bounded by %, confirming condition

Finally, we check condition Suppose that we have x1 = (k1,n1),22 = (ka,n2) € H, such that
da ((k1,e™), (ko,e™)) is bounded. We claim that implies |k3 — k2| and |n; — ne| are bounded. From
this, it follows immediately that d;, ((k1,n1), (k2,n2)) is bounded, confirming condition [3| for the vertices.

Now we check condition [3| for points in the interior of the edges. Assume that at least one of |k —
ka|,|n1 — no| is large, for a contradiction. As noted above, ¢ sends vertical geodesics in H, to vertical
geodesics in A of the same length, so if k1 = kg, then dy_(x1,22) = da(@d(x1), d(x2)), so we may assume
k1 # ko. Without loss of generality, assume that k1 < ko and n; < ny. Consider the A-geodesic trian-
gle 7 with vertices @ = [(k1,e™), (k1,e™)],b = [(k1,e"2), (ka2,e"2)],¢ = [(ky1,e™), (k2,e"?)]; we note that
cla = da(d(z1), d(z2)).

Since we are assuming that |¢| is bounded, our assumption that one of |k; — ka| or |ny —ns| is large implies
that one of |a| or |b| is large. It follows immediately the triangle inequality that both |a| and |b| are large. By
S-hyperbolicity of A, ¥/ is -thin. Note that angle in ¥/ at the vertex (k;,e") where @ and b meet is bigger
than 7. If we parametrize a and b moving away from (ki1,e") by f5 : [0,]a]] — A and f; : [0,[b]] — A,
then da (fa(t), f3(t)) > & for t > 6. Thus J-thinness of 57 implies that ¢ must be d-close to @ and b for almost
their entire lengths. Since they were long , it implies that ¢ must have been long, a contradiction. |

3.2. Building AM(S) from M(S). We are now ready to define the augmented marking complex for a
surface, denoted AM(S). AM(S) is a simplicial 1-complex with vertices and edges as follows.

A vertex Ji € AM(S), called an augmented marking, is a complete clean marking, Tams) (1) = p e M(S)
along with a collection of lengths for the curves in base(u) = {1, ..., an}:

A= (/~La D, (ﬁ)v R Dan(ﬁ))
where the D, (1) are nonnegative integers. The D,, (i) are called the length data of [i. When the context
is clear, we shorten this to D,. We also write (o, tn, Dy) € It if a € base(ft) with transverse curve ¢, and
length D,.

Remark 3.2.1 (Thick and thin). The integer D, coarsely stands in for how short «; is in a given augmented
marking, in terms of extremal (or hyperbolic) length, with D, positive implying «; is short; this analogy is
made explicit in the definition of the map G : AM(S) — T(S) in Subsection 7.5 below. When Dq, (fi) = 0
for all o; € base(p), we say that i is in the thick part of AM(S). Similarly, if Dy, () > 0, we say «; s
short in [I and [ is in the a;-thin part of AM(S).

More generally, let p < C(S) be a simplex. We say that i € AM(S) is in the p-thin part of AM(S) if
D.(it) > 0 for each a € p. If, in addition, Dg(ft) = 0 for all B € C(S\p), we say that [t is thick relative to p.

There are three types of edges in AM(U(S). The first type is the elementary flip move from M(S).
The second type is a twist move, which comes from bundles of elementary twist moves from M(S) and
corresponds to a horizontal edge in a combinatorial horoball. The last type is a vertical move, which involves
adjusting the length data and corresponds to a vertical edge in a combinatorial horoball. We connect two
augmented markings fi1, [is € AM(O)(S ) by an edge in each of the following cases:

o Flip moves: If pi,us € M(S) differ by a flip move at a transverse pairing (o, t) — (¢, ), and if
i1, fi2 have the same base curves and length data, with D, (fi1) = D, (fi2) = 0.
o Twist moves: If a € base(uy) = base(ua), Do(f11) = Du(fie) = k > 0, and iy = T2 i with
0<n<ek
9



o Vertical moves: If pu1 = ps and if fig, fig only differ in length data by 1 in one component, say
Dy (f11) = Do(fi2) + 1 and Dg(fi1) = Dg(fiz) for all 8 € base(u1)\a = base(usz)\cv.

Remark 3.2.2 (No flipping a short curve). If i € AM(S), Do (1) > 0 and (o, t) a transverse pair, then it is
not possible, by construction, to perform a flip move (a,t) — (t, ), for only base curves can be short. This
is precisely to guarantee that the Teichmiiller distance between the image under the map G of two augmented
markings which differ by an elementary move is uniformly bounded; see Lemma below.

Since M(S) is locally finite and each augmented marking has at most 2 vertical edges for each base curve,
we have the following immediately from the definition:

Lemma 3.2.3. AM(S) is locally finite, but not uniformly locally finite.

The metric on AM(S) is the path metric, where each edge is given length 1. We close this subsection
with a series of remarks.

Remark 3.2.4 (M(S) — AM(S)). For any subsurface Y < S, there is a natural inclusion of iy : M(Y) —
AM(Y) given by iy (p) = (1,0,...,0) and we call this embedded copy of M(S) the thick part of AM(Y)
and points therein thick points. In particular, when Y = S, we think of ig(M(S)) < AM(S) as the thick
part of AM(S). As we will see in Subsection[7.3, ig(M(S)) can be identified with the thick part of T(S),
Justifying our terminology.

Remark 3.2.5 (Combinatorial horoballs in AM(S)). Let p € M(S) and (a,t) a transverse pair in p.
Consider the orbit, X, < M(S), of p under {T,,) < MCG(S), the subgroup generated by the Dehn twist or
half-twist about . Consider the image of X, in AM(S), namely is(Xy). Then ig(X,) lies at the base of
the combinatorial horoball H, < AM(S).

Remark 3.2.6 (Shadows). There is a natural map mpqs) : AM(S) — M(S) defined by mpqsy (1) = p for
any fi € AM(S), which we call the shadow map. Similarly, any path in AM(S) shadows a path in M(S).

Remark 3.2.7 (Thin parts and product regions). Let p < C(S) be a simplex. If we ignore the technical
concerns about cleaning markings after flip moves, then the collection of p-thin points in AM(S), which we
call the p-thin part of AM(S), coarsely has the structure of the I1-skeleton of [],c, Hao x AM(S\p) (See

Theorem for comparison,).

aep

4. AUGMENTED HIERARCHIES

In this section, we develop the AM(S)-analogue of the Masur-Minsky hierarchy machinery. Informally,
an augmented hierarchy will be a hierarchy in which the geodesics in annular curve complexes have been
replaced by geodesics in combinatorial horoballs. Much of the work in [MMO00] goes through to this setting
unchanged, as the role the annular geodesics plays in a standard hierarchy almost entirely hinges on the core
of the annuli in question.

4.1. Combinatorial horoballs over annular curve graphs. We must first replace annular curve graphs
with combinatorial horoballs over them. Recall from Subsection [2.8] that any graph admits a combinatorial
horoball, that combinatorial horoballs are uniformly hyperbolic (Theorem , and that the combinatorial
horoballs over quasiisometric graphs are quasiisometric (Lemma [2.8.5).

Following [MMO0Q][Subsection 2.4], we observe that annular curve graphs C(«) are quasiisometric to Z.
For any curve a € C(.S), choose an arc 8, € C(a). For v € C(«), let v - 8 denote the algebraic intersection
number of v with 8. The map ¢g, : C(a) — Z, given by ¢g, (v) = v- B is a (1, 2)-quasiisometry, independent
of the choice of 5. The map ¢g, essentially records twisting around « relative to 8.

Lemma implies that H(C(«)) = H(«) is uniformly quasiisometric to H(Z) for each a € C(S).
Proposition gives us:

Lemma 4.1.1. For any o € C(S), H(a) is uniformly quasiisometric to a horodisk in H?2.
Vertices x € H(«) are pairs, & = (tq, Do), where t,, € C(a) and D, € Z>o.

In what follows, we build augmented hierarchies by replacing geodesics in C(a)) with geodesics in H(«).
10



4.2. Augmented hierarchies defined. In this subsection, we will define augmented hierarchies, following
the lead of [MMO0][Sections 4 and 5].

Let Y < S be nonannular and g € C(Y) be a geodesic vy, ...,v,, where the vertices v; are possibly
simplices. For any ¢ > 1, note that v; N v;12 # J since g is a geodesic. Let F(v; U v;42) be the subsurface
of Y which they fill. We say g is tight if 0F (v; U v;42) = v;11 for each i and g has associated initial and
terminal augmented markings, i(g) and ’i‘(g) respectively; tight geodesics exist by [MMO0][Lemma 4.5]. If
Y is an annulus with core a, then we take C(Y') = H(«) and we adopt the convention that any geodesic in
H(«) is tight. From now on, we will assume that all such marked geodesics are tight.

Let Y < S be a nonannular subsurface and i € AM(S) be an augmented marking. The restriction of i
to Y, denoted [i|y, is the set of transverse triples («, to, Do) in i whose base curve a meets Y essentially. If
Y < S is an annulus, then we set fily = Ty (q)(f)-

Let X,Y < S be subsurfaces with X nonannular. Let gx < C(X) be a geodesic. We say that Y is a
component domain of gx if Y is a component of X\v for some v € gx. Suppose that Y is component domain
for the i*" vertex of gx, namely v; € gx, Y < X\v;. We note that this determines v; uniquely.

We define the initial augmented marking of Y relative to gx to be

~ - if v; is not the first vertex of
i, gy) = {vl 1 if v; is not the first vertex of gx

I(gx)|y, if v; is the first vertex of gx

Similalry, we define the terminal augmented marking of Y relative to gx to be

~ Vit if v; is not the last vertex
T(Y,9x) =+ ~ . .
T(gx)|y, if v;is the last vertex
We say that a subsurface Y < S is directly backward subordinate to gx and write gx ,/ Y if Y is a
component domain of gx and I(Y, gx) # ¢. Similarly, Y < S is directly forward subordinate to gz, written
Y N\ 9z, if Y is a component domain of gz and T(Y,gz) # &. For a tight geodesic gy < C(Y), we write
9x v gy if gx Y and I(gy) = I(Y, gx ); similarly, we write gy \, gz if Y \, gz and T(gy) = T(Y,gz).

We can now state the definition of an augmented hierarchy, which is essentially [MMO0][Definition 4.4]:

Definition 4.2.1 (Augmented hierarchies). A hierarchy between two augmented markings i, 77 € M(S) is a
collection of tight geodesics H satisfying the following:
(H1) There is a distinguished main geodesic, g € H with D(gz) = S, such that ?(gﬁ) = p and i’(f]ﬁ) =
7.
(H2) Let gx,gz € H andY < S such that gx /Y \\ §z, then there is a unique gy € H with gx /" gy \\
9z
(H3) For every gy € H with gy # gy there are gx, gz € H with gx /" gy "\ 9z-

4.3. Augmented hierarchies exist. The proof of the existence of augmented hierarchies hews closely to
original proof of the existence of hierarchies in [MMOQ][Theorem 4.6].

Theorem 4.3.1 (Augmented hierarchies exist). Given any pair of augmented markings [i,7 € AM(S), there
exists an augmented hierarchy H with I(H) = i and T(H) = 1.
Proof. We say that a collection of tight geodesics Hisa partial augmented hierarchy if it satisfies conditions

(1) and (3) and uniqueness part of (2) from Definition [4.2.1} but not necessarily the existence part.

Choose vertices P € base(ji) and Q € base(7) and let gz € C(S) be any tight geodesic between them with
i(gﬁ) = and i‘(gﬁ) = 7). Then Hy = {97} is a partial augmented hierarchy, and we will construct a finite
11



sequence of partial augmented hierarchies ﬁn, which terminates in an augmented hierarchy.

We call a triple (Y, b, f) with domain Y and b, f € H, an unutilized configuration if b/ Y\, f but Y
does not support a geodesic k in H,, with b ,/ k\ f.

(Y,

by [ ) be any unutilized conﬁguration in H,. Let gy, < C(Y,,) be any tlght geodesic with
,bn) and T(gy,) = T(Ya, fn). Then bn /G Jv, \\ f,, and we can take Hn+1 =Hu {gv.,}

. Let (Ya,
L(gy,) = 1(Yn

It is easy to see that the number of domains Y of each complexity £(Y) = m for m < &(S) supporting
unutilized triples is nonincreasing as a function of n. Since each step H, — H, 1 eliminates an unutilized

domain, the sequence H » 1s finite and the terminal partial augmented hierarchy H is an augmented hierarchy.
|

4.4. Hierarchies associated to an augmented hierarchy. In [MMO00][Section 8], Masur-Minsky in-
troduce the notion of hierarchies without annuli, which consist of tight geodesics on nonannular domains
satisfying the usual subordinancy relations, where markings are replaced by pants decomposition. Hierar-
chies without annuli are useful for studying the geometry of the pants graph P(S) and, via work of Brock
[Br03], the Weil-Peterrson metric on 7(S). Every hierarchy determines a unique hierarchy without annuli
and, as noted in [MMO0] [Section 8], the hierarchy machinery translates seamlessly to the nonannular setting.
The key idea is that nearly every relevant piece of information encoded in a hierarchy is determined by its
nonannular geodesics, with the annular geodesics playing a peripheral role.

In this subsection, we explain how to associate a hierarchy to any augmented hierarchy. Unlike with
hierarchies without annuli, this process will not be unique. Nonetheless, it will provide us a framework upon
which to rebuild the work from [MMO00][Sections 4 and 5] in our setting.

Let H be an augmented hierarchy between [, 77 € AM(S). For each nonannular geodesic gy € H , relabel it
as gy and assign it new initial and terminal markings by I(gy) = maq(y) (I(gy)) and T(gy) = WM(y)(’i‘(gy)),
respectively. Let Hy be the collection of the nonannular gy € H with these new initial and terminal markings;
these geodesics are tight in the original sense of [MMOO0][Definition 4.2]. The following lemma confirms that
Hy is a partial hierarchy:

Lemma 4.4.1. Hy is a partial hierarchy.

Proof. We must prove that Hy satisfies properties (1), (3), and the uniqueness part of (2) of [MMO0] [Definition
4.4]. Property (1) is obvious from the definition.

To see (3), suppose that gi, € Hy. Then there is a gy € H with D(gy) = D(g¢y). Since H is an
augmented hierarchy, there exist gx, gz € H with gx gy \\ ¢gz. In particular, T(gy) = T(Y, gx) and
T(gy) = T(Y,gz). By definition, I(g}) = marey) X% ) = maqev)I(Y, 9x)) = I(Y, gx ), which is nonempty
if and only if T(Y, gx) is. Thus ¢y /" ¢ and similarly g3 \ ¢7.

A similar argument shows that the uniqueness part of (2) holds.
d

The unutilized configurations in Hj are precisely the annular domains whose cores are curves appearing
along geodesics in Hy, which coincide with those annular domains supporting geodesics in H. For each unuti-
lized configuration (Y, gx, gz) in Hp, where Y is an annulus with core «, let gy € H be the geodesic in H(a),
with initial and terminal vertices gy int, Gy ter € gy. Choose a tight geodesic gy between wc(a)(gy,im) and
Te(a) (Gyiter), With I(gy) = I(Y, gx) and T(gy) = T(Y, gx). It follows from the proof of [MMOQO][Theorem
4.6] that the result from adding these tight geodesics to Hy is a hierarchy, H. We call H a hierarchy associ-
ated to H.
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The following proposition describes the relationship between an augmented hierarchy and any hierarchy
associated to it:

Proposition 4.4.2. Let H be an augmented hierarchy between [1,7 € AM(S) and let H be any hierarchy
associated to H. Then the following hold:

(1) The map @ : H — H given by ®(Gy) = gy is a bijection

(2) For any gy € H, we have gy int = Te(v)(Gy,int) and gy ier = Te(y)(Gy,ter), where Gy, int, Jy,ter € Gy

are its initial and terminal vertices. N

(3) For any gy € H, we have Ilgy) = Ty Gy ) and T(gv) = mpm(y) (T(Gv))-

(4) For any triple gx, gy, Gz € H we have gx /gy "\ Gz n H if and only if gx /" gy \\ g9z in H
Proof. (1) and (3) follow from the definition. To see (2), simply observe that gy in: = 7c(v)(Jy,int) and
gy ter = wc(y)(gy ter) When Y is nonannular, and the relation holds by construction when Y is an annulus.
To see (4), observe that I(gy) = I(Y,gx) = mm(y)((Y;9x)) = T (T (9v)) and T(gy) = T(Y,g7) =
WM(y)( (Y, 9z2)) = 7T/\/((y)('I‘(gY))- Since maqvy(I(Y, gx)) # & and 7y Y)( (Y,§z)) # & if and only if
1(Y,Gx) # & and T(Y, §z) # &, (4) follows. O

Note that the above correspondence of subordinancy is independent of how we complete H to a hierarchy
H. Indeed, all the relevant data is contained in Hj.

4.5. Augmenting the hierarchical technicalities. In this subsection, we sketch the translation of [MMO00Q] [Section
4] to the augmented setting. As with hierarchies without annuli, most of the main constructions adapt with-
out alteration. As such, the content of this subsection is mostly a series of observations and applications of

Proposition .42

We begin with an augmented version of [MMO0](Theorem 4.7). Given a domain Y S and an augmented
hierarchy H , let
ST(Y)={gze HY c D(jz) and 1(jz)ly # &}
and
ST(Y)={gx e HY € D(§x) and T(jx)ly # &}
These are the forward and backward sequences of Y, respectively. The following is the augmented analogue
of [MMO0][Theorem 4.7]:

Theorem 4.5.1 (Structure of Sigma). Let H be an augmented hierarchy and Y any subsurface.
(1) If if(Y) is nonempty, then it has the form of a sequence: gz = gx, . -+ /" Gx,-
Similarly, if ENI’L(Y) is nonempty, then it has the form of a sequence: gz, i -+ \\ 9z,, = 5~
(2) If ii(Y) are both nonempty, and £(Y') # 3, then §x, = Jz,, and Y intersects every verter of gx,
nontrivially.
(3) IfY is a component domain of any geodesic gw € H and E(Y) # 3, then

ixeS V)ejx,/ - /YadjzeSt(Y)eY N\ -\ jz
If, furthermore Z+(Y) are both nonempty, then Xg =Y = Zj.
(4) Geodesics in H are determined by their support. That is, if gx,gz € H have X = Z, then gx = gz-

Proof. Let H be a hierarchy associated to H as constructed in Subsection The proof is an easy application
of [MMO0][Theorem 4.7] to H and Proposition [£.4.2} O

We say that an augmented hierarchy H is complete if for every subsurface Y with {(Y) # 3, if Y is a

component domain of some geodesic in H , then Y is the support of some geodesic in H. The following is an
immediate consequence of Theorem

Lemma 4.5.2. Given any augmented hierarchy, if I(H) and T(H) are complete augmented markings, then
H is complete.
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Proof. If £(Y) # 3, then both I(H)|y, T(H)|y # &. Thus J37 € SH(Y),E7(Y), and so Y supports a
geodesic in H by Theorem m ). O

We now construct augmented versions of the tools that originally went into proving [MMO00][Theorem
4.7], as we need them in the next section. For the rest of the subsection, fix a hierarchy H associated to H.

Recall the definition of a footprint of a subsurface on a geodesic. For any subsurface Y < S and geodesic
Jx € H with X nonannular, let ¢, (Y) be the set of vertices of gx disjoint from Y if Y is an annulus with
core v, ¢g, (V) are simply those vertices of gx disjoint from «. If gx € H is the geodesic corresponding to
gx, then ¢5, (Y) = ¢g, (Y). We note that augmented versions of [MMO0][Lemma 4.10 and Corollary 4.11]
follow immediately from this observation.

Masur-Minsky define two partial orders on geodesics in a hierarchy which we will recall and redefine for
augmented hierarchies. We will show that the correspondence between H and H preserves these orders. The
first is time-order [MMOO] [Definition 4.16]:

Definition 4.5.3 (Time order). Given two geodesics §x,Jz € ﬁ, we say gx 1s time-ordered before gz and
write §gx < Gz if there is a geodesic gy € H with X,Z 'Y and max ¢3,(X) < min ¢z, (V).

Observe that if §x <; gz and gx,gz,9v € H are the corresponding geodesics, then max ¢y, (X) =
max ¢g, (X) < min¢g, (Y) = ming,, (Y), and so gx < gz if and only if gx <; gz.

Given a geodesic gy € H , a position on gy is either a vertex or one of T(gy) or ’I‘(gy). We can extend
the natural linear order on the vertices gy to a linear order on positions by taking I(gy) < v < T(gy) for
all v € gy. A pointed geodesic is a pair (gy,v), where v is some position on gy .

We can define a notion of footprint on pointed geodesics as follows: Given a pointed geodesic (gy,v) and

a geodesic gx € ﬁ, we set
{ 05 (Y) fYcX
v

ﬁgéx (gy,v) = if X=Y

If gx, gy € H are the geodesics corresponding to x, gy € ﬁ, then it is clear that gZA)gx (gy,v) = égx (gv,v)
unless X =Y is an annulus, in which case <, restricts to the linear orders on positions of gx and gx.

We can now define a partial order on pointed geodesics:

Definition 4.5.4. Given two pointed geodesics (Gx,vx),(§z,vz), we write (§x,vx) <p (Gz,vz) if and only
if there exists some geodesic gy € H with gx \, - \\ gy .~ -+ ./ Gz and

max dg, (G, vx) < min gy, (3, vz)
If gx,9v,9z € H are the geodesics corresponding to gx,Jy,gz € ﬁ, then observe that gx N\, -+ \y

gy o -/ gz and maxégy(gx,vx) = maxqﬁgy(gx,vx) < minégy(gz,vz) = minq{)gy(gz,vz), so that

(gx,vx) <p (Gz,vz) if and only if (9x,vx) <p (9z,vz), unless X =Y = Z is an annulus, in which case <,
is again just the linear orders on positions of gx and gx.

‘We have shown:

Lemma 4.5.5. Let H be an augmented hierarchy and H any associated hierarchy. Then:
(1) Both <¢ and <, are strict partial orders.
(2) For any gx,gy € H with corresponding geodesics gx,gy € H, then
gx <t gy < gx <t gy
(3) If in addition X andY are nonannular, then

(gx,l‘) <p (§Y7y) < (gX,Z‘) <P (gy7y)
14



As with hierarchies, we have the following four mutually exclusive cases for (x,z) <, (v, ¥):

® gx <t gy

e gx =gy andx <y

® gx \u -\ gy and max ¢z, (X) <y
* gx ./ ./ gy and z < min ¢z, (Y).

We think of a pointed geodesic as giving a position on a geodesic in H , so that <, gives a partial order
on positions on a geodesic. In the next section, we describe how to build coordinates, called slices, on an
augmented hierarchy, which are special arrangements of these positions. We will upgrade <, to a partial
order on these coordinates, which we can then use to build paths in AM(S) which make definite progress
through the augmented hierarchy.

5. AUGMENTED HIERARCHY PATHS

In this section, we explain how to build augmented hierarchy paths from augmented hierarchies. Similar
to hierarchy paths, this process involves resolving an augmented hierarchy into a sequence of slices, then
finding a sequence of associated augmented markings which we connect with boundedly-many elementary

moves in AM(S).

5.1. Augmented slices. In this subsection, we develop the notion of a slice of an augmented hierarchy,
which is roughly a way of giving coordinates in the augmented hierarchy which respect the subordinancy
relations. The definition of a slice of a hierarchy [MMO0][Section 5] is the same as that of an augmented
slice, except that one takes geodesics in combinatorial horoballs over annular curve graphs instead.

Definition 5.1.1 (Augmented slices). An augmented slice T of an augmented hierarchy H is a collection
of pairs (gx,x) with x € gx € H satisfying the following:

(S1) A geodesic gx appears at most once in T.

(S2) There is a distinguished pair (§z,vz) € T called the bottom pair of 7 and gz is the bottom geodesic.

(S3) For every pair (gy,y) € T other than the bottom pair, there is a pair (§x,x) € T of which Y is a
component domain.

We say that T is complete if

(S4) Given a pair (gy,y) € T, for every component domain X of (gy,v), there exists a pair (§x,x) € T.

An augmented slice 7 is called initial if for each pair (§y,y) € T, ¥ = Gy,int. A complete initial slice is
uniquely determined by its bottom geodesic, and H has a unique initial slice with bottom geodesic gz. We
can define terminal augmented slices similarly.

To each augmented slice 7, there is a unique way to associate an augmented marking fi> as follows: First,
observe by induction that the vertices o appearing in nonannular geodesics in 7 are disjoint and distinct,
so that they form a maximal simplex in C(S), which we make base(fiz). We can then associate transversal
and length coordinates to each base curve a € base(fiz) if 7 contains a pair (gx,x) with & = (t,, D), where
X is an annulus with core «, by choosing t, and D, as the transversal and length coordinate for o in .
Note that a complete slice determines a complete augmented marking. Typically, this underlying marking
is not clean, so one can clean the transversals to base curves by choosing new transversals that minimize
the distance in the corresponding annular curve graphs. We say that any such complete, clean augmented
marking is compatible with its associated slice. The number of such compatible augmented markings is
uniformly bounded, similar to [MMO00][Lemma 2.4]:

Lemma 5.1.2. There ezists C' > 0 depending only on S such that for any augmented slice T of an augmented
hierarchy H, the number of augmented markings compatible T is less than C, each of which differs by a
bounded number of twist moves.

Proof. Fix a clean augmented marking fi compatible with 7. Then base(fi) = base(fiz) and Dy (&) = Dy (fiz)
for all @ € C(S) by definition. Because C(«) = Z, for each triple («,ts, Dyo) € Jiz, there is a choice of clean
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transversal 8 € C(«) which minimizes dy (ta, 7o (83), where the minimum is uniformly bounded, completing
the proof. O

5.2. Partial order on slices. In [MMO00][Section 5], Masur-Minsky define a partial order on the set of
complete slices of H. We now do this for augmented slices.

Let V(H) be the set of complete augmented slices on H. Given 7,7 € V(H), we say ¥ <, 7 if and only
if 7 # 7’ and for any (gy,y) € 7, either (gy,y) € 7’ or there is some (gx,x) € 7 with (§v,y) <p (§x, ).

Lemma 5.2.1. Let H be an augmented hierarchy. Then <, is a strict partial order on V (H).

Proof. We proceed as in the proof [MMOO][Lemma 5.1] by showing that <, is transitive, since it is never
reflexive by definition. Suppose 71 <5 Ta <5 T3 for 7; € V(H).

By definition of <, for ¢ = 1,2, given any pair p; € 7;, there exists a pair p;;1 € T;41 such that either
Di <p Dit1 O D; = pi+1. Since <, is a strict partial order (Lemma , either p1 <, p3 or p1 = ps,
implying either 71 <, T3 or 71 = 73. Since augmented slices in ‘N/(ﬁ ) are complete, we must have some
p1 € T1 with p; ¢ To. Thus p1 <, p2 and thus p; <, ps, implying ps ¢ 71, since pairs in the same slice are
not <,-comparable by [MMO00][Lemmas 4.18(1) and Lemma 4.19], which hold for augmented hierarchies by
Lemma A58 O

5.3. Elementary moves of augmented slices. In this subsection, we describe, following [MMO0] [Section
5], how to resolve an augmented hierarchy into a sequence of complete augmented slices which are related
by certain elementary moves, which we define shortly. Informally, an elementary move of augmented slices is
one which make progress by one vertex along some geodesic in H. First, we need to define transition slices,
which will record the reorganization that accompanies this progress.

Let gx € H and suppose T € gy is not the last vertex of gx, with z’ its successor. We presently define
transition slices for x and ', & and &', which have the property that iy = Jiz7 = ¢ U 2’ when &(X) > 4.

Let & be the smallest slice with bottom pair (§x,«) such that, for any (§z,2) € 7 and Y a component
domain of (Z, z),

(E1): If 2’|y # & and Y supports a geodesic gy € H, then (gy,y) € &, where y is the terminal vertex of
gy -
(E2): If 2|y = &, then no geodesic in Y is included in 7.
One builds & inductively and confirms easily that it satisfies (S1)-(S3) of Definition We call the
domains in (E2) unused domains for . Similarly, we may define 6’ as the smallest slice with bottom pair
(gx, "), such that for any (§z,2) € 7 and Y a component domain of (Z, z),

(E1"): If 2|y # & and Y supports a geodesic gy € ﬁ, then (gy,y) € &, where y is the initial vertex of gy .
(E2'): If 2|y = J, then no geodesic in Y is included in &.
We remark on transition slices for y, v € gy € H with £(Y) < 4:
e If Y is an annulus, then & = {(gy,y)} and ¢’ = {(gv,¥')}.
e If Y is a once-punctured torus, then y and g’ intersect in Y. Let X and X’ be annuli with cores
y,y', respectively. Then & = {(gv,y), (9x, 73, (y)} and & = {(gv, ¥'), (Gx', 7, (¥))}-
e If Y is a four-holed sphere, then y and 3’ intersect twice, so mx(y') = T(gx) has two components,
one of which is the last vertex of gx.

The following lemma characterizes transition slices for most geodesics and is a restatement and direct
consequence of [MMO0][Lemma 5.2]:

Lemma 5.3.1. Let y,y’ be successive vertices along a geodesic gy € H with E(Y) >4, and let 5,5 be the
associated transition slices. Then no geodesics in & and &' have annular domains, the associated augmented
markings [iz and iz have no transversals and are both equal to y vy, and the unused domains in & and &’
are exactly the component domains of (Y,y v y').
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Proof. Let H be any hierarchy associated to H. Let gy € H with EY) > 4 and let y € gy be not
the terminal vertex of gy with successor y' € gy. If 7,5’ are the associated transition slices, set o =
{(9z:7c(2)(2)) [(Gz,2) € &} and o' = {(92,7c(2)(2)) |(§z,2) € &'}. It follows easily from Proposition
that o and o’ are the transition slices for y,y’ along gy. Thus the lemma follows from [MMO00][Lemma
5.2]. |

Definition 5.3.2 (Forward elementary move of augmented slices). Let y,y’ be successive vertices along

gy € H with transition slices ,0'. We say that two complete augmented slices T and 7' are related by a
forward elementary move of augmented slices along gy fromy toy if 6 < 7,5 <7, and T\o = 7\&'.

The next lemma confirms that a forward elementary move in V(H) makes progress in <, as in [MM00][Lemma
5.3], whose proof is identical:

~

Lemma 5.3.3. Suppose 7,7’ € V(PNI) and are related by an elementary move T — 7' along gy € H. Then
T<sT.

Proof. Since & # &', we have T # 7'. Let (§x,X) € T such that (§x,z) ¢ 7. Then (§x,x) € & and thus
X cY and ¢'|x # &, by definition of . If gx = §y, then (§x,z) = (Gv,y) <p (§v,¥’'), and we are done.
If not, then ¢g, (X) contains y and not y’, so that max ¢z, (X) = v < ¢/, implying (gx,z) <p (9v,¥’),
completing the proof. |

5.4. Resolutions of augmented slices. In this subsection, we prove that every complete augmented
hierarchy H admits a sequence of elementary moves between its initial and terminal augmented slices, called
a resolution of H. Importantly, the length of any such resolution is bounded by |H| = Zgyeﬁ |gy|- The
proof is a straight-forward adaptation of [MMO0][Proposition 5.4], so we leave some details to the reader.

Proposition 5.4.1 (Resolutions exist). Any complete augmented hierarchy admits a sequence of forward
elementary moves 7o — -+ — Tn where Ty is the initial slice, Tn the terminal slice, and N < |H|.

Proof. First, suppose that 7 € 17(];' ) is not the terminal slice of H. Then there exists (gy,y) € T such that
y is not the terminal vertex of gy with successor y’. Choose gy minimally so that if (§x,z) € T and X c Y,
then x is the terminal vertex of gx. Because gy is minimal and 7 is complete, the subset

F={(gx.v)eFX cY,¢/|x # &}
satisfies the two transition slice properties (E1) and (E2). Using (E1’) and (E2’), one can build the other

transition slice ¢’ for y and y'. Set 7 = &’ U (7\&). One can confirm, as done in [MMO0][Proposition 5.4],
that 7/ is a complete augmented slice, thus making 7 — 7/ a forward elementary move.

This builds a sequence of slice 7 — 7 — - -, which terminates, say at Ty, because each move makes
progress with respect to <4 and V(H) is finite. It remains to prove that N < |H|.

To see this, suppose that (§z,2) € 7, and (§z, 2’) € T, for n < m. Then 7, <5 Ty, and so z < 2’. If not,
then (§z,2") <p (§z, z) implying by definition of <, that there is some (g, w) € T, with (G2, 2) <, (gw,w),
which is a contradiction of the fact that pairs in the same slice are not <,-comparable, as in Lemma [5.2.1
This shows that vertices cannot reappear once traversed by the resolution process.

By definition, a forward elementary move advances exactly one step along a geodesic and replaces pairs
(9y, Gy ter) with pairs (Gx, §x,int), leaving all other pairs fixed. It follows from the previous paragraph that
N < Zgyeﬁ = |H|, completing the proof.

|

5.5. Augmented hierarchy paths defined. Given any augmented hierarchy H , Proposition builds
a sequence Tg — 7; — - - - 7y of forward elementary moves, where 7y and Ty are the initial and terminal aug-
mented slices of H , respectively. For each i, let i; be any augmented marking compatible with 7;, choosing
o = 1t and iy = 7. This gives a sequence of augmented markings @ = fip — --- — iy = 7], which we call
an augmented hierarchy path between i and 7j.
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Eventually, we will prove that augmented hierarchy paths are uniform quasigeodesics in AM(S). The
following lemma, similar to [MMOO][Lemma 5.5], is the first step in this process. It proves that each step in
an augmented hierarchy path moves a uniformly bounded distance in AM(S).

Lemma 5.5.1. There exists a B > 0 depending only on S so that d ans)(fls, Biv1) < B, for each i =
0,...,N—1.

Proof. Suppose that 7; — T;11 comes from a transition y — ¢’ along gy € H. If Y is an annulus, let
y = (ta, Da(fis)) € H(a) and y' = (i, Da(fli+1)) € H(). If Do(fi) = Da(fiir1), then do(ta,t;,) < 2720,
so a bounded number of twist moves in AM(S) yields an augmented marking /i; ; compatible with 7j.
If Do(fi;) # Da(fiiv1), then 7; — 711 encodes a vertical move and sy (fi) = Taq(s)(Hiv1), implying
darm(s)(His fliy1) = 1.

Now suppose that £(Y) = 4. Then recall from before that the transition slices are &; = {(gv,y), (§x,x)}
and 5541 = {(Gv,V'), (§x’,2')}, where X and X’ are annuli with cores y and y’, respectively, and = and 2’
are vertices of mx (y') and mx/(y), respectively. Construct a clean augmented marking [i; compatible with
7; which contains the triple (y, 7x(y'), Dx(f})), where Dx (fi}) = 0 necessarily. A flip move on [} along y
results in an augmented marking fi;_ , with the triple (v, 7x/(y), Dx/(fi;,,)), with all other base curves of
i, being the same as those of [i;, Dy (fi;) = Do (fi;, ;) for all a € C(S), and the transversals at uniformly
bounded distance by Lemma m Thus fi;,, is a uniformly bounded number of twist moves along the
base curves from an augmented marking /ij, ; compatible with 7;,;. Since the distance between augmented
markings compatible with the same augmented slice is uniformly bounded by Lemma this implies
darm(s)(His fli1) is uniformly bounded.

Finally, if £(Y') > 4, then 7; and 7;4+1 have the same base curves and positions on their horoball geodesics.
Thus fi; and [i; 41 are both compatible with 7; and 751, implying that d s a4 (s) (i, fli+1) is uniformly bounded
in this case again by Lemma [5.1.2] completing the proof.

|
6. LENGTH AND EFFICIENCY OF AUGMENTED HIERARCHY PATHS

In this section, we convert the structural results in the previous section to prove that augmented hierarchy

paths are uniform quasigeodesics in AM(S), from which we give a combinatorial proof of Rafi’s distance
formula for 7(S), Theorem [2.6.1]

6.1. Projecting augmented markings to subsurfaces. In this subsection, we define subsurface projec-
tions for augmented markings, the AM(S)-analogue of those for markings, as in Definition [2.3.1]

Let Y < S be any subsurface and i € AM(S) any augmented marking. If Y is an annulus with core «,
then set my (1) = Ty (o) (1) = (7o (1), Da(f)) € H(a). If Y is nonannular, set 7y (1) = 7y (745 (12))-

The following lemma proves that subsurface projections are 4-lipschitz:
Lemma 6.1.1 (Lemma 2.3 in [MMO0O0]). For any it € AM(S) and subsurface Y < S, diamy (my (1)) < 4.
Proof. The only case left to consider is when Y is an annulus with core o. Then

diamy, () (T3(0) (1)) < diamg (7 (g5 (H))) < 4
completing the proof. O

Given two subsurfaces X, Y < S, we write XAY if X n'Y # J and neither is contained in the other.
The following lemma is due to Behrstock [Beh06], but the effective bound is due to Leininger [Manl10]. It
holds for augmented markings by definition of the subsurface projection:

Lemma 6.1.2 (Behrstock’s inequality). If XY with £(X),&(Y) = 4, then for any it € AM(S), we have

min{dy (i, 0X), dx (i, Y)} < 10

18



One of the key tools of [MMOQQ] is the following theorem:

Theorem 6.1.3 (Bounded geodesic image theorem; Theorem 3.1 in[MMOQ]). There is a constant My > 0
such that the following holds. Let v = C(S) be any geodesic and Y < S any subsurface. If de(g)(v,0Y) > 1,
then diame(yy(y) < Mo.

Proof. We need only prove it when Y = H,, for some o € C(S). Since d¢(s) (7, @) > 1, Da(7i) = 0 for each
i € v and so diamy, (7) = log diame s () < diame(ay () = 1, completing the proof. O

6.2. The forward and backward paths of a subsurface. Let Y < S be any subsurface. In this
subsection, we will show how to convert £+ (Y) and £~ (Y) into sets of pointed geodesics which package all
the relevant combinatorial information in H about Y. In the next subsection, we will use these packages to
prove a version of the Large Links Lemma for AM(S) and augmented hierarchies.

We proceed as in [MMOO][Subsection 6.1]. First, recall that Theorem implies that £ (Y) has the

form gz, \\ -+ gz, = 93, and E*(Y) has the form gz = gx,, " -+ v/ Gx,- Let
= {(gz,z)|z € gz e SE(Y) and zly # @}

Lemma 6.2.1. The partial order <, restricts to a linear order on o.

~

Proof. For each gz, € SHY), let 2 € gz, be the position immediately following max ¢5, (Y) (or z; = T(gz,)
if max ¢, (V) is the last vertex). Then gz, contributes a segment o, = {(gzi,zi) <p - <p (sz'i‘(gzi))}
By the augmented version of [MMO0Q][Corollary 4.11] (see Subsection , max ¢g, (Y) = maxdg, (Xi—1),
0 (Gz, ., T(Gz, 1)) <p (Gz:,#)- It follows that the union of the o} are linearly ordered. Similarly, each o}
has the form {@X“i(gxi)) <p - <p (ngxi)}, where z; is the last position before min ¢g, (V).

]

Let o™ be the concatenation oy U --- U o, with the same linear order, and 0~ = o,, U --- U gy . If both

ii(Y) are nonempty, then the gx, = gz, and ¢z, (Y') = & by Theorem 2), so all its positions are in
o, and they follow and precede all pairs of o, and 0’;'_ , respectively, for all ¢ > 0. Denote the position on the
top geodesic by ¢?.

The following lemma is the augmented analogue of [MMOO][Lemma 6.1]:

Lemma 6.2.2 (Sigma projection). There are constants My, Ma depending only on S such that zfﬁ 18 any
hierarchy and Y < S is any subsurface, then

diamy (my (o7 (v, H))) <My and  diamy (my (o™ (v, H))) < M,
Moreover, if Y is properly contained in the top domain of i(Y), then
diamy (ny(a(y, ﬁ))) < M,

Proof. The Bounded Geodesic Image Theorem bounds diamy (7y (05 (Y))) and diamy (my (¢°)) when
Y is properly contained in the top domain. The transition from the last position of o} to the first position
of 07:_1 involves adding disjoint curves, so it projects to a bounded step in C(Y) by Lemma the same

holds for other transitions in ¢. Finally, the number of number of segments ii(Y) contributes is bounded
by £(S) — £(Y). This completes the proof. a

6.3. Large links. In this subsection, we prove an augmented version of the Large Links Lemma [2.4.1] As
with [MMOO0][Lemma 6.2], it follows almost immediately from Lemma

~ o~ ~

Lemma 6.3.1 (Large links for AM(S)). If Y < S is any subsurface and dy (I(H), T(FI)) > Mo, then'Y
supports a geodesic jy € H. Conversely, if gy € H, then ‘\gy\ —dy (I(H) ))‘ 2M
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Proof. Let gx, = gz, be the top geodesic of i(Y) We have that either Xo =Y or Y ¢ Xg. If the latter,

~ o~

then Y does not support a geodesic and Lemma |6.2.2| implies dy (T(ﬁ),T(H)) < diamy (7my (o)) < Mo,

proving the first statement.

For the second statement, if Y = Xy, then gy = gx, by Theorem Since ¢ and o~ contain both
T(gy), T(H) and I(gy ), I(H), respectively, Lemma implies that

dy (av), X(H)) ,dy (T(av), T(H)) < My
completing the proof. O

Let Ms = 2M; + 5 and Mg = 4(My + M5 + 4), where My, My are the constants from Lemma and
respectively. For any 1,7 € AM(S) and augmented hierarchy H between them, set Gps, (1, 7) = {gy €

H|dy (fi,7) > Msg}. Note that |Gy, (1, 7)] = ZgyegMG (i |9 | 1s independent of the choice of H up to coarse
equality by Lemma [6.3.1

Lemma 6.3.2. There are constants do,dy > 0 dependent only on S such that |Gas, (7, 7)| > do - |H| — d.

Proof. As noted in the proof of [MMO00][Theorem 6.10], the proof is an easy counting argument using the
key fact that the number of component domains of any geodesic in H is a constant multiple of its length,
where the constant only depends on S. ([l

6.4. A distance formula for AM(S). In this subsection, we derive a version of the Masur-Minsky distance
formula for AM(S), which is related to Rafi’s Theorem [2.6.1]

In [MMO00], Masur-Minsky first related the size of a hierarchy to the sum of the size of its large links, then
used the M(S)-analogue of Lemma to obtain their distance formula. While this approach goes through
to our setting, we first derive the distance formula then relate it to augmented hierarchies via Lemma

Theorem 6.4.1 (Distance formula for AM(S)). For each K > Mg, there are constants Cy,C2 > 0 depending
only on S and K such that for any 1,7 € AM(S), we have

dans) (1) =(cy,02) Z dy (1, 77)
dy (fm)> K

Proof. The second inequality follows from Proposition and Lemma For the first inequality, we
adapt the hierarchy-free proof of the M(S)-distance formula from Aougab-Taylor-Webb [ATWT5].

Let 1,77 € AM(S) and let i = fg, ..., iy = 7] be any geodesic in AM(S) between them. Let M = 10
and L = 4 be the constants from Lemmata [6.1.2] and [6.1.1] respectively. Set K = 5M + 3L and let
Lk (p,7) ={Y|dy(,7) > K} be the set of K large links for i and 7.

For each Y € Lk ([i,17), let iy be the largest index k such that dy (fo, fir) < 2M + L and ty the small-
est index j with ty > 4y such that dy (g, fin) < 2M + L. Let Iy = [iy,ty] < {0,1,...,N}. Since
dy ([, fliv1) < L for each ¢, dy (fio, fLiy ), dy (Bty , fin) = 2M + L, and dy (i, , i, ) = M + L by definition of
K, each such Iy is nonempty. Moreover, we

The following is essentially [MMO0][Lemma 6.11], but the proof is from [ATWT5]:
Lemma 6.4.2. IfY,Z € Lk (f,7) and YWNZ, then Iy n Iz = .

Proof of Lemma[6.4.24 The proof is an easy application of Lemma Assume for a contradiction that
there is a k € Iy n Iz. Then Lemma implies that either dy (07, [ip) < M or dz(dY, i) < M. Assume
the former, since the proof in the latter case is the same.
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Using the triangle inequality, we have:

dy (0Z, i) = dy (fio, i) — dy (i, 0Z) =2 2M +1—-M = M + 1
Thus Lemma implies dz(0Y, fir) < M so that

dz(0Y,fin) = dz(fik, fin) — dz(ig, 0Y) =2M +1—M > M + 1
with Lemma again implying that dy (0Z, iy) < M. Having assumed dy (0Z, i) < M, we have

dy (i, fin) < dy ([0, 02Z) + dy(0Z,in) < 2M < K

which contradicts the fact that Y € L (i, 7), completing the proof of Lemma [6.4.2} O
Returning to the proof of Theorem consider the collection {Iy|Y € Lk (f,7)}, which is a covering

of {0,1,...,N}. Let s = 2£(S) — 6 be the number of pairwise non-overlapping domains. By Lemma
each k€ {0,1,..., N} is contained in at most s such Iy. Thus

DUy < s daps) (i)
YELK(ﬁvﬁ)

Applying Lemma we have
dy (3, 7) < dy (Jisy , fity ) + 4M + 2L < L|Iy | + 4M + 2L

Since dy (fi,7) = 5M + 3L for each Y € Lk(fi,7) by definition, it follows that - - dy (7, 7) < [Iy].
Combining all this, we get

2 dy (fi,7) < 55L - d gpmqs) (F5 1)
Vel (i)

which completes the proof of the theorem. O

6.5. Efficiency of augmented hierarchies. The following is an immediate corollary of Theorem [6.4.1| and

Lemmata [6.3.2] and [6.3.1}

Theorem 6.5.1. For each K' > Mg there are constants C7,C4 > 0 depending only on S and K' such that
for any [1,7 € AM(S) and augmented hierarchy H between them, we have

Z dy ([, 1) =cy,cy |H|
dy (R,m)>K’
Theorem proves that augmented hierarchy paths are globally efficient. While their local efficiency
can be proven using a subsurface projection argument well-known to the experts, in Proposition [8.3.3] of

the Appendix [§] we prove that subpaths of augmented hierarchy paths are themselves augmented hierarchy
paths in a natural way. Combining this with Theorem we have:

Corollary 6.5.2. Augmented hierarchy paths are uniform quasigeodesics in AM(S).

See the Appendix [§] for more properties of hierarchy paths, augmented or otherwise.

7. AM(S) 1S QUASIISOMETRIC TO T (5)

The goal of this section is the Main Theorem [7.4.6] which proves that AM(S) is quasiisometric to 7(S5)
with the Teichmiiller metric. We first make some estimates relating extremal length to curve graph distance,
then we define the maps between AM (S) and T (S). Finally, we prove that they are quasiisometries.
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7.1. Extremal length, intersection numbers, and curve complex distance. In this subsection, we
will show that two curves with bounded extremal length with respect to one metric have bounded intersection
number. First, we need the following useful result of Minsky:

Lemma 7.1.1 (Lemma 5.1 in [Min92]). For any o € T(S) and «a, 5 € C(S), we have
Ext, () - Ext, (8) = is(a, B)?
Next, recall Kerckhoff’s formula:
Theorem 7.1.2 (Theorem 4 in [Ker78]). For any 01,02 € T(5),
) Ext,, (@)
accts) Exto, (@)
The following was observed by Rafi [Raf07][Proposition 3.5]:

Lemma 7.1.3. For any o1,02 € T(S5), if a, B € C(S) are such that Ext,, (o), Exty, (8) = 1, thenlogig(a, 8) <
dr(o1,09). In particular, if dr(oy,09) =< 1, then ig(a, 8) = 1.

Proof. The proof is an easy application of Lemma and Theorem [7.1.2}
is(a, B) < Exty, (@) - Exty, (8) < Exte, () - Exty, (B)eQdT(”l"”)

Since Ext,, («), Exty, (8) = 1, applying log to both sides gives the first conclusion, which is easily seen to
apply the second conclusion. We note the bounds on extremal length determine the bounds on intersection
number. ]

62dT(0'1,02) —

We will also use the following well-known estimate relating curve complex distance to intersection number:
Lemma 7.1.4. For any o, 3 € C(S), we have d¢(s)(a, B) < is(a, ).

Proof. When &(S) > 4, this is [MM99][Lemma 2.1]. When £(S) = 4, then this is an easy argument in the
Farey graph. When S is an annulus or horoball, this follows from arguments in [MMO00][Subsection 2.4]. O

Combining these ideas, we have:

Proposition 7.1.5. Let 01,02 € T(S) be such that dp(o1,02) = 1. For any «, B € C(S) with Ext,, («), Exty, () =
1 andY < S such that my (o), my (8) # &, we have dy (a, ) = 1.

Proof. Since my (), wy (8) # &, dy («, 8) is defined, and Lemmata and imply that
dY(aaﬂ) < iY(aaB) < iS(aaﬂ) =1
completing the proof. O
7.2. From T(S) to AM(S). We are now ready to define maps between AM(S) and T(S) which we later
prove are quasiisometries in Theorem
Let a € C(S) and o € T(S). Define a map dy, : T(S) — Zxo by
da(0) = { glax{k

For each o € T(5), let u, be any marking such that base(u,) is a Bers pants decomposition for o, as in
Theorem and so that we have chosen traversals to base(y,) to minimize [,. Note there may be finitely
many choices of transversals for each base curve and thus finitely many such markings p,-.

sedr < Exto(a) < ;—2} if Ext,(a) < €
if Ext,(a) = €

Define F': T(S) — AM(S) by F(0) = (o, da, (0), ..., da, (o)) where base(p,) = {a1, ..., an}. We think
of I as choosing a shortest augmented marking for each o € T(S), and outside the context of the map F,
we may write [i, for a shortest augmented marking for a point o € 7(5). The following lemma proves that
F is coarsely well-defined:

Lemma 7.2.1. For any o € T(S), we have diam gpq(s) (F(0)) = 1.
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Proof. Let o € T(S) and let fi,, il € F(o) € AM(S). Recall from Lemma that Ext,(«) < Lo for
each « € base(fi,) U base(fi., ), where Ly depends only on S. The goal is to bound all subsurface projections
between [i, and i, allowing us to invoke the distance formula, Theorem

Let Y < S be nonannular. If there are not a € base(fi,) and 8 € base(f,) with ig(a,8) > 0 and
my (o), my (B) # &, then clearly dy (fiy, [i,) < 4 by Lemma If there are, then since Ext, (o), Ext,(8) <
Ly, it follows from Proposition that dy (o, 8) = 1, with Lemma implying dy (fi,, fil,) = 1.

Now let v € C(S) be any curve. If v ¢ base(fi,) U base(fi, ), then Proposition implies that d. (fis, fil,)
is uniformly bounded. Since D, (fi,) = D, (fi,,) = 0, we can conclude that dy () (fis, fi,,) = 1. If v € [i, N i,
then dy(+) (Hs, fir,) = 1 by definition.

Finally, if v € fi, but v ¢ Jiy, then I, (7) > ¢ by Lemma It follows then the length of the shortest
transverse curve to v, t.,, has [, (¢y) uniformly bounded, with the Collar Lemma implying that Ext,(t,) is
uniformly bounded. Since « ¢ [i’ , there is a v’ € base(fi},) with is(y,7’) > 0. Since Ext, (") < Lo, we can
then apply the above intersection number argument to derive that dy () (fio, fi,) = 1.

(Il

7.3. From AM(S) to T(S). We now construct an embedding G : AM(S) — T(S) in terms of Fenchel-
Nielsen coordinates. Consider an augmented marking i € AM(S) with i = (4, Doy -+ -5 Da,, ). In building
coordinates for G(ft), we are given a clear choice of a pants decomposition, base(u), and bounds for the
length coordinates, ﬂiﬁ <lo, < ﬂiﬁ Given a choice of length coordinates, say l,, = QDE%, we can
use the transverse curve data («;, t;) to pick out a unique twisting numbers, 7, (¢;), and thus a unique metric
on S, as follows.

For each i, «; either bounds one or two pairs of pants, depending on whether «; lives in a four-holed
sphere or a one-holed torus. As we have chosen lengths for all the curves in the pants decomposition, the
metrics on the pairs of pants are uniquely determined.

In the case of the four-holed sphere, consider the two unique essential geodesic arcs, 31, 82 in the pairs of
pants connecting «; to itself. Let 7, (¢;) be the unique twisting number associated to the gluing of the pairs
of pants at «; which connects 5, to 8y to realize ;.

Similarly, for the case when a; bounds two cuffs on one pair of pants which glue into a one-holed torus,
there is a unique geodesic arc, 8, connecting the two copies of a;. Let 74, (¢;) be the unique twisting number
associated to the gluing of the copies of a; which connected the two ends of 8 to realize ¢;.

We can now define G : AM(S) — T(S) by G(fi) = (la,,Ta, (t:)),- Since G sends each augmented marking
to a unique point for which each curve in the base of that marking is short, the shortest augmented marking
for any point in the image of G is unambiguous by Lemma that is, F o G(it) = [i. Thus

Lemma 7.3.1. F oG = idgps); in particular, G is an embedding and F' is a surjection.

7.4. The quasiisometry. We prove, in a series of lemmata, that G is a quasiisometry by showing F' and
G satisfy the conditions of the following elementary lemma:

Lemma 7.4.1. Let X and Y be metric spaces. If g : X — Y and f :' Y — X are both L-lipschitz and
there exists a K > 0 such that dx(f(g(z)),z) < K for each x € X, then g is a (L,2LK)-quasiisometric
embedding. If g(X) c Y is also quasidense, then g is a quasiisometry.

Proof. Let 1,22 € X. Then
dx (z1,22) < L-dy (g(w1), g(22)) < L* - dx (f (9(21)), f (9(2))) < L?dx (1, 22) + 2L°K
with the triangle inequality implying the last inequality. Dividing everything by L completes the proof. [

We begin by proving that F' is lipschitz, the proof of which proceeds similarly to Lemma
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Lemma 7.4.2. There is a constant Ly = Lo(S) > 0 such that for any o1,09 € T(S) with dr(o1,02) = 1,
darm(s)(Foy, foy) < La.

Proof. Suppose that 01,09 € T(S) with dr(o1,02) = 1. We will uniformly bound all subsurface projections
between iy, and fis,. The result will then follow from the distance formula, Theorem

Let Y < S be any nonannular subsurface and let o € base(fi,, ), 8 € base(fiy,) with my (a), 7y (8) # &.
By definition of F' and Lemma we have Ext,, (), Exty, () =< 1 for any « € base(fiy, ), 8 € base(fiy, )
It then follows from Proposition and Lemma that dy (flgy , oy ) = 1.

It remains to bound projections in horoballs. Let o € C(S) and note that Dy, (i, ) = Do (fls,) by definition
and Theorem [2.5.1} because dr(o1,02) = 1. It will thus suffice to bound projections to annular complexes.
There are four cases, depending on whether « € base(fi,,) for each i.

If o« ¢ base([iy, )Ubase(fi,, ), then there are curves 8 € base(fiy, ) and v € base(fi,, ) with ig(a, 8),is(a,y) >
0. Thus Proposition and Lemma imply that do (s, , fle,) = 1, as required.

Now suppose that « € base(fi,,) U base(fiy,). Since dr(o1,02) = 1, Theorem implies there exists
constants C’, D’ > 0 depending only on S such that if min{Dq (fiz)Da(fiy)} > C’, then dyy o) (Fz, fiy) < D'

If not, then Ext,, (o) and Ext,,(«) are uniformly bounded above and below. Thus there exist curves
B1, P2 € C(S) with ig(8;,«) > 0 and Ext,, (5;) = 1 for ¢ = 1,2. Since the length of « is uniformly bounded
below in both o1 and o9, it follows that the shortest transverse curves to « in o1, 09 must have uniformly
bounded twisting around « relative to 81, 82 in 01, 02, respectively.

For i = 1,2, if a € base(fiy,), then let ¢, ; be its transversal. The above argument then implies that
do(Bistai) = 1. If a € base(fiys, ) N base(fis, ), then the triangle inequality implies that dq (fis,, flo,) = 1.

If o € base(fi,, ) but « ¢ base(fis, ), then there is some curve vy € base(fi,,) with ig(y,a) > 0, and since
Ext,, () = 1, Proposition applied to v and /31 implies that do, (fis, , fe,) = 1. This completes the proof.
]

Next, we prove that G is lipschitz:

Lemma 7.4.3. There is a constant L1 = L1(S) > 0 such that for any [i1, i € AM(S) adjacent vertices in
AM(S), dr(s) (G(A1), G(fiz)) < Li.

Proof. Let € > 0 be as in Theorem [2.5.1] First, suppose that fi; and [iz differ by a vertical edge or horizontal
edge in a horoball, H,, where a € base(fi1) N base(fiz). Recall that the length of o in both G(f11) and G(fi2)
is less than € by the definition of G. By Minsky’s Theorem [2.5.1] G(fi1) and G(fiz) coarsely live in the
product H, x T(S\«). The projections of G(fi1) and G(fiz) to T (S\«) are identical, so dr(G(fi1), G(f2))
is (up to an additive constant) equal to the distance in H, of the projections of G(fi1) and G(fi2) to H,,
again by Minsky’s Theorem [2.5.1] This distance is coarsely the corresponding distance in a horodisk, via
Proposition [3.1.2] which is precisely 1 by Lemma[7.3.1} Thus there is a uniform bound on dr(G(f1), G(fi2)).

Now suppose that fi; and pip differ by a flip move, so that they only differ in their underlying mark-
ing. Then, as argued in [Raf07][Lemma 5.6, there are only finitely many pairs of such markings up to
homeomorphism, and the result follows from the local finiteness of AM(S), Lemma O

Finally, we prove that G(AM(S)) c T(S) is quasidense, but before we do so, we need:

Lemma 7.4.4. Every point in the eg-thick part of T(S) is a uniformly bounded distance away from the
e-thin parts of T(S). This bound depends only on the topology of S.

Proof. If 0 € T(S) is in the eo-thick part of T(S) and u, € M(S) is the shortest marking for o with

base(ps) = {y1,---,n} = v € C(S), then there is a uniform upper bound on the length of the ~;, which

depends only on the topology of S. Thus there is a uniform bound on the distance between ¢ and some
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point oypin € Thin., which is obtained by scaling the lengths of the curves in v in o to be less than €. In
fact, this holds for points in the €p-thick part of 7(Y") for every subsurface Y < S, with the same constant
bounding the distance to a uniformly thin part. |

Lemma 7.4.5. G(AM(S)) is quasidense in T(S).

Proof. We show by induction that G(AM(S)) is quasidense in the ep-thin parts of 7(S). Let o € T(S) and
let F(o) = fiec € AM(S) a shortest augmented marking for o. It suffices to show that there is a uniform
bound on the distance between o and G(fi,). Suppose first that o € Thin, where v = {71,...,7,} < C(S5)
is a maximal simplex, i.e. pants decomposition, of S. Then by Theorem o and G(Ji,) coarsely live in
| [; H.,; and have length coordinates which differ at most by %. As there is a uniform bound on the distance
in each H,, and on the dimension of the simplex v, it follows that ¢ and G(fi,) are uniformly close.

Now suppose that o € Thin, where v = {y1,...,7n—1} < C(S) is a simplex of dimension one less than
maximal. Then ¢ and G(Ji,) coarsely live in [ [, H,, x T(S\7). If uy is the shortest marking for o, with
base(tie) = {71, .., ¥m—1,a}, then a was the shortest curve in o in C(S\y) and G(fi,) lives in [ [, H,,, x H,.
By Lemma there is a uniform bound on the distance between w7 s\ (o) and Thing < T(S\7). Thus
there is a uniform bound on the distance between ¢ and Thin,,a < T(S) by Theorem Since
G(AM(S)) is quasidense in Thin, (.}, it follows by induction that G(AM(S)) is quasidense in T(S),
completing the proof. O

Combining Lemmata [7.4.3] [7.4.2] and [7.3.1] with Lemma [7.4.1] we have:
Theorem 7.4.6. AM(S) with the path metric is quasi-isometric to T (S) with the Teichmiiller metric.
As an application of Theorems and we have a new proof of Rafi’s distance formula for 7(S):

Theorem 7.4.7 (A distance formula for 7(S)). There exists a K' = K'(S) > 0 such that for any 01,09 €
T(S) with shortest augmented markings iy, , fio, € AM(S), we have

dr(s)(o1,02) = > dy (flg, , floy) + > dyg(a) (Foy s flery)
dy (ﬁal 7ﬁ02)>K d?—i(a)(ﬁal aﬁ02)>K
where the Y < S are nonannular.

8. APPENDIX: HIERARCHICAL TECHNICALITIES

In this appendix, we prove a number of technical results about hierarchies. Perhaps the main goal is
to prove that subpaths of hierarchy paths are hierarchy paths in a natural way. We also analyze special
subsegments of hierarchy paths during which progress through a subsurface is made. We have sequestered
this section from the rest of the paper to enhance the coherence of the main exposition. We hope that some
of these results will be of independent interest.

In order to minimize notational clutter, we will work with standard hierarchies, but everything holds
mutatis mutandis for augmented hierarchies and hierarchies without annuli.

8.1. Active segments. In this subsection, we introduce the notion of an active segment of a subsurface
along a hierarchy path.

For any geodesic gy € H, let vy ;n: and vy, be the initial and terminal vertices of gy, respectively.
Let 74y int be the first slice containing the pair (9v,vy.int) and Tgy ter the last slice containing the pair
(9y, vy ter), with their respective augmented markings, py,in: and py ier-

We call I'y = [py,int, vy ter] © I' the active segment of Y along I'. It is clear from the definition of an
elementary move of augmented slices that I'y is contiguous. We remark our notion of active segment is
similar to Rafi’s notion of active interval of a Teichmiiller geodesic from [Rafl4].

See Subsection [84] for a structural result about active segments.
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8.2. Subordinancy and slices. Let H be any hierarchy between p,n € M(S), and let T be any hierarchy
path based on H. Let gy € H and recall from Subsection the definition of an active segment of Y along
T', namely I'y. The following lemma connects direct subordinancy for gy € H to the initial and terminal
slices of I'y, Ty,int and Ty, ter, Tespectively:

Lemma 8.2.1 (Subordinancy and slices). Let H and I' be as above. Let gx,gy € H with D(gx) = X
and D(gy) =Y. If (9x,x) € Tyint and Y is a component domain of (X,x), then gx , gy. Similarly, if
(9x,%) € Tyter and Y is a component domain of (X,x), then gy \| gx-

Proof. We prove the direct backward subordinate case, as the direct forward subordinate case is similar.
The proof involves understanding what happens in the transition into the initial slice of I'y. Let u € I' be
the marking preceding piy,in; along I' and let 7, — Ty s be the slices in the resolution of H which gives
I'. Since 7, — Ty,nt is an elementary move of slices, there are by definition some geodesic gy € H and
vertices w,w’ € gy so that 7, — Tyn: is essentially realizing the transition from w to w’ along gw. The
reorganization of the hierarchical data is contained in the transition slices ¢ < 7, and ¢’ < 7Ty in: with
Tu\0 = Ty,int\0’. We shall find gy and gx in these transition slices.

Let yint € gy be the initial vertex of gy. By assumption and the fact that 7,\c = 7y,int\0’, we must have
that (gy, Yint) € 0’, as Ty ins is the first slice involving gy. This implies by definition of ¢’ that w|y # .
Property (S3) of slices implies there is a pair (gx,x) € o', where gx € H with D(gx) = X and Y a component
domain of (X, ). Consider the simple case where gx ,/ Y; in order to conclude that gx ,/ gy, we need to
prove I(gy) = I(Y, gx ). Applying [MMOO][Theorem 4.7(1)], there exists gz € H with gy | gz, which implies
that Y N\ gz. Part (H2) of the definition of a hierarchy implies there is ¢4 € H with gx " ¢4 \ gz, but
[IMMOO][Theorem 4.7(4)] states that geodesics in H are uniquely determined by their domains, so g} = gy

and gx / gy.

In the general case, I(Y, gx) = I(gx)|y, and we do not know what the latter marking is. We will in
fact show that I(gx) = w’|x, but this requires an inductive application of the above argument. To begin,
property (S3) of slices implies there is a sequence of pairs {(gx,,z;)}’, in ¢’ with (9x,,21) = (9v,Y),
(9x,,22) = (9x,), and (gx,,zn) = (gw,w’) such that, for each 1 < i < n, X; is a component domain
of (X;41,x;+1); moreover, the definition of ¢’ implies that z; is the initial vertex of gx, when 1 <14 < n.
Since w’ is not the initial vertex of gw, we have I(X,,_1,9x,) = w|x,,_,, which is nonempty by definition
of o/. Moreover, since H is a hierarchy, [MMO0][Theorem 4.7 (1)] implies that there is some gz, € H
with gx, , \\ 9z,, implying that X,,_1 " gz,. The definition of a hierarchy then implies that there is
g, , € H with D(¢g% ) = Xn1 and gw " g%, |, \ gz,. But [MMOO|[Theorem 4.7 (4)] implies that
geodesics in H are uniquely determined by their domains, so g’X%1 = gx,_, and gw . 9x,_,, implying

L(gx, ,) = I(Xn_1,9w) = W'|x,.

Now considering gx,_,, Tn—1 is its initial vertex, so I(X,—2,9x,_,) = H(gx,_)|x0_o = (W']x,_,) | x0s =
w'|x, _,, which is nonempty by definition of ¢’. This implies that gx,_, ./ X,—2. Proceeding as above, we
find a gz, , € H with gx, , \\ 9z, , and, as before, we can conclude that gx, , ./ ¢x, _,, implying that
I(gx, ,) = I(Xn—2,9x,_,) = W'|x,_,. Proceeding by induction, we see that for 1 <i < n, that gx,,, ./ gx,
and I(gx,) = w'|x,. in particular, gx " gy and I(gy) = w'|y, which completes the proof of the lemma. O

8.3. Subpaths of hierarchies. In this subsection, we prove that subpaths of hierarchy paths are them-
selves hierarchy paths in a natural way.

Truncating hierarchies. Let H be any hierarchy between p,n € M(S), I' a hierarchy path based on H, and
[40, 0] < T any subpath. We will define a way to truncate the geodesics in H to their relevant contributions
to [mo,mo]- Initial and terminal marking data are then inductively added to the truncated geodesics. In
Lemma [8.3.1] we prove the resulting collection, Hy, is a hierarchy. We then show in Lemma that the
original slice resolution of H from which I" was obtained is a slice resolution for Hy. We immediately obtain
that [1, 0] is a hierarchy path based on Hy in Proposition [8.3.3]
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Let gy € H with D(gy) =Y. Suppose gy € H is such that T'y n[ug, n0] # &. We can form a new geodesic
gy < C(Y) as follows: If g € I'y with 7, the corresponding slice, then there exists a pair (gy, vy,u,) € Tuo
and we can remove the (possibly empty) initial segment of gy to obtain a geodesic g4 with initial vertex
Vy, o5 We similarly truncate the end segment of gy if it contributes to a pair in 7,,,. If 1o € 'y, we say I'y is
initially truncated by [po,no]; similarly, if no € I'y, we say Ty is terminally truncated by [uo,n0]. We note
that vy,,, and vy,;,, can be the initial and terminal vertices of gy, respectively. If I'y < [0, M0], set g5 = gy

Building the initial and terminal markings. Let H = {¢}{-|I'y n [po,n0] # &}. In order to complete
H’ into a collection of tight geodesics, we need to attach initial and terminal marking data to the ¢},. We
only describe how to build initial marking data, as terminal marking data are built similarly. For the initial
marking data, the key is determining to which geodesic in Hy each g4 should be directly backward subordi-
nate, and there are two cases. First, suppose that I'y is initially truncated. We can build I(g} ) inductively
from pp as follows.

Let g% be the truncation of the main geodesic gy at po and 7. Set I(g%) = po and T(g%) = no. Given
any gy € H' with D(g{,) =Y, it follows from the definition of truncation that ¢ is initially truncated from
gy € H if and only if 7,, contains some pair (g, vy,,) € Tpu,. Since 7, is complete, repeated applications of
property (S3) of slices gives a finite sequence of pairs {(gx,,x;)}_; with X; an annulus, gx, = g5, Y = Xj
for some k, and D(gx,) = X; with X; a component domain of (X;;1,x;+1) for each ¢. For each i, it follows
from the definition of truncation that either gx, is initially truncated at x; to a geodesic gy, € H' with new
initial vertex vy, ,, = ¥;, or x; is the initial vertex of gx,. Either way, we may set I(g'y ) = polx,_,,
and then inductively define I(gy,) = I(Xi, g, ,) = I(dk,,,)|x,; we note that each I(g’,) is a complete
marking on X; because p is a complete marking on S. Since each vy, ,, is the initial vertex of Q/va it
follows that I(X;, g’XiH) = I(ngiﬂ)| x,, which is complete and thus nonempty by induction. In particular,
we have I(gy) = I(gx,). It follows that g /g%, ./ -+ ./ g%, v gy We construct T(g}) in a similar
fashion in the case that gy is terminally truncated.

For the second case, suppose that ¢gi- € H with D(¢}-) =Y and I'y is not initially truncated. We need to
perform an analysis similar to the proof of Lemma but truncation adds an extra wrinkle. Let Ty, ;n: be
the slice in H which determines the initial marking of I'y. Then (gy,¥) € Ty,int, Where y is the initial vertex
of gy. As before, repeated applications of (S3) gives a sequence {(gx;,x;)}7~, with gx, = gg and, for each i,
D(gx,) = X; with X; a component domain of (X;41,2;4+1). Since I'y n [uo, no] # &, it follows that there is
a least 1 < m < n such that I'x, is initially truncated, with each I'x, initially truncated for k > m. Above,
we defined I(g% ) =1(Xm-1,9% ) =1(dk, )lx,_,, which is a complete marking on X, 1. If z,,,_ is not
the initial vertex of g’y , then we still have that I(X,, g% ) = I(Xm-2,9x,,_,) which is nonempty by
assumption and we may define I(g ) = I(gx,,_,) = I(Xm—2,9x,,_,) = L(Xm_2,9% ), implying that
9%, _, « 9, _,- Otherwise, z,, 1 is the initial vertex of g%y, and we set I(gy ) =1 X 2,9%, )=
I(g% ,)|x,._,, which is a complete marking on X, » and thus nonempty. Repeating this process, we can
define I(gy) = I(Y, gy, ) by induction. As in Lemma we find that g% - gy. We define T(gy)
similarly in the case where I'y is not terminally truncated.

The truncated hierarchy. Let Hy be the collection of the geodesics from H’ with their marking data
as constructed above. Note that every geodesic in Hj is tight as each is obtained by truncating a tight
geodesic, truncation preserves the tightness property, and each geodesic has initial and terminal markings
which respect the subordinancy relations. Thus Hj is a collection of tight geodesics. Observe also that
any subsurface Y < S is the support of at most one geodesic in Hy, as this property holds for H by
IMMO0][Theorem 4.7(4)]. We now confirm that Hy is a hierarchy by checking it satisfies the three properties
of Definition {211

Lemma 8.3.1. The collection of tight geodesics Hy is a hierarchy between gy and 1o

Proof. We set g4 € Hy to be the main geodesic of Hy, which has initial and terminal markings I(g}) = o
and T(g%) = no, respectively, thus satisfying property (H1). For property (H3), note that for each g} € Ho,
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we have built I(g) and T(g}) by first finding geodesics ¢’, g% € Ho such that ¢ /Y \| g%, and
then defining I(g%) = I(Y, ¢’ ) and T(g%) = T(Y,g%). In each case, we have shown these markings to be
nonempty, implying that ¢% /" ¢5 \\ g%. Thus (H3) is satisfied.

To see property (H2) holds, let ¢', g%, € Ho with D(¢x) = X,D(g%) = Z, and suppose ¥ < S is a
component domain of (X,z) and (Z,z) with x € ¢’ and z € ¢/, such that ¢% /Y \, ¢5. We need to
prove there exists a g4 € Hy with ¢ ./ ¢% \\ ¢%. In the case where either I'x is initially truncated at x
or 'z is terminally truncated at z, we find gy in the slices for those points of truncation. We deal with the
untruncated case slightly differently, so we begin with it.

First, suppose that I'x and I'z are not initially and terminally truncated at x and z, respectively—that is,
x and z are not the initial and terminal vertices of ¢’ and g%, respectively. Then I(Y, gx) = I(Y, ¢ ) # &
and T(Y, gz) = T(Y, g%) # &, which imply that gx ,/ Y \, gz. Since H is a hierarchy, it follows by defini-
tion that there is a unique geodesic gy € H with D(gy) =Y with gx .,/ gy \\ gz. In this case, it follows that
Ty is neither initially nor terminally truncated, implying that gy = ¢} € Hp. Using the ending markings
defined above, we have I(g},) = I(gy) = I(Y,9x) = I(Y,¢) and T(g) = T(g9y) = T(Y,92) = T(Y, g5),
implying ¢% . g% \ 9% by definition.

Now suppose that I'x is initially truncated at x. Then (¢, z) € 7, and property (S3) of slices implies
that there is a pair (gy,y) € 7, with D(gy) = Y. It follows then that 1 € I'y; thus I'y is initially truncated
and there is g}, € Hy with D(g},) =Y. Moreover, it follows from the inductive construction of I(g}-) above
that g% ./ ¢%. A similar argument implies g§- \, g% if I'z is initially truncated at z. We note that ¢} is
unique because gy € H is unique by [MMO00][Theorem 4.7(4)].

There are two mixed cases, where either I'x or I'; is truncated, but not both; each can be handled in
the same fashion as the other. In the case where I'x is truncated at x, we have already shown that there
are gy € H and ¢4 € Hy with D(gy) = D(g%) =Y such that ¢’ , ¢i. We have also shown that Y \ gz
since I'z is not truncated at z. Since Y supports a geodesic gy € H, [MMO0][Theorem 4.7(1)] implies that
gy "\ gz and it follows from the above argument that gi- \, g%.

(|

Resolving the truncated hierarchy. Having proved that Hj is a hierarchy, we can now prove:
Lemma 8.3.2. The resolution of slices 7, = 71 — -+ — 7, = 7, of H 1is also a resolution of slices of Hy.

Proof. First of all, it follows from the definitions that each slice in the above resolution is a complete slice
on Hy. It suffices to prove that each move 7; — 7,41 is an elementary move of slices.

Since 7; — 7,41 is an elementary move along some geodesic gy € H from v to v/ where v,v’ € gy, there are
initial and terminal transition slices, o and o', respectively, such that o c 7;, ¢/ < 741, and 7;\o = 741\0".
Any geodesic gx involved in 7; or 7541 has a truncation g% € Hp by definition. Let Y < S be such that
Y|, # O so that (gy,y) € o, where y is the terminal vertex of gy. Then it follows from the definition of
o that 7; is the terminal slice of I'y. As such, I'y is not terminally truncated at y and y is the terminal
vertex of g4, putting (¢, y) in the Hy initial transition slice from 7; to 7,41. Similarly, if Z|, # J so that
(9z,%) € o', then 7,41 is the initial slice of I'z and (g%, z) is in the Hy terminal transition slice from 7; to
Ti11- That is, o and ¢’ are the Hy-transition slices for 7; — 7,11, proving that it is an elementary move in Hy.

This proves that 7, = 71 — --- — 7, = 7,, is a resolution of slices of Hy. O

Thus we have shown:

Proposition 8.3.3. The subpath [po,n0] < T is a hierarchy path based on Hy. In particular, subpaths of
hierarchy paths are hierarchy paths.

As an immediate corollary of Proposition and [MMOO][Theorem 6.10], we have:

Corollary 8.3.4. Hierarchy paths are uniform quasigeodesics in M(S).
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Remark 8.3.5. The fact that hierarchy paths are uniform quasigeodesics is well-known to the experts, but
has not, to our knowledge, ever been recorded. We note that Proposition|8.3.5 is a stronger statement than
necessary for this fact.

8.4. Structure of active segments. Given a hierarchy path I" based on a hierarchy H between u,n € M(S)
and a nonannular subsurface Y with nonempty active segment 'y, every marking u € I'y naturally restricts
to a complete, clean marking uly € M(Y). In the case that Y is an annulus with core «, uly = to, where
t, is the transversal to v in p. In this subsection, we prove that the restriction of I'y to M(Y") coincides
with a hierarchy path naturally defined from the restricted hierarchy for I'y- constructed in Proposition [8.3.3
For the purposes of this subsection, a hierarchy and hierarchy path on an annular domain are just a geodesic.

By Proposition we may consider I'y as a hierarchy path based on H’, so we may suppose without
loss of generality that I' = 'y, H = H', and py,ine = p and pyer = 0. Let Hy = {gz € H|Z < Y} be
the collection of all tight geodesic in H supported on subsurfaces of Y with the same initial and terminal
markings as in H. Note that if gz € Hy with D(g9z) = Z < Y, then I(gz)|z = I(9z) and T(gz)|z = T(9z).

Lemma 8.4.1. Hy is a hierarchy between py = uly and ny = nly.

Proof. In the case that Y is an annulus with core o, Hy = {gy} and the conclusion is obvious. Suppose Y
is nonannular. Let gy € Hy be the base geodesic of Hy, with I(gy) = py and I(gy) = ny by definition. Let
Tint — **+ — Tier be the sequence of elementary moves of slices which give I'. Let gz € H' with Z < Y and
suppose (g%, z) € Tz, int, Where Tz ;n is a initial slice of the active segment of Z along I', namely I'; . Since
I =Ty, there is a y € gy with (gy,y) € 7 and Lemma implies there is a sequence of {gx,}", < H,
with X, =Y, X; =2, and gv . 9x,_, .~ -+ ./ gz. Similarly, gz ™\, - -+ \\ gy In particular, all geodesics
in Hy other than gy are directly forward and backward subordinate to other geodesics in Hy. It follows
easily from the definitions that Hy is a hierarchy between py and ny . (]

Consider the resolution 7, = 7 — --- — 75 = 7, of slices of H which gives I'. For each 7; in this resolution,
let y1; € T be its corresponding marking and set 7v; = {(g9z, 2)|(9z,2) € ; and gz € Hy}. The set of {ry;}}¥,

possibly contains redundancies corresponding to elementary moves along 7, = 71 — --- — 7§ = 7, which
make progress on geodesics whose domains of support are not contained in Y’; removing these redundancies
and relabeling as necessary gives a sequence of slices 7, = 7y;1 — -+ — Ty,Nnv = Tp,. We may similarly

reparametrize ply = (p1)ly — -+ — (un)|ly = ny to py = py1 — --- — py,n+ = 1y, which we denote by
(Ty) ly. It follows from the definitions that (u;)|y is compatible with 7y ;.

Lemma 8.4.2. The sequence uy = piy,1 — -+ — [y,N’ = Ny s a hierarchy path based on Hy .

Proof. If Y is an annulus, then uy = py,1 — -+ — py,n = ny is the geodesic gy, satisfying the claim.
Otherwise, it suffices to show that 7v; — Ty;41 is an elementary move on slices of Hy for each 1 <7 < N'—1.
Each such pair 7y,; — Ty ;41 is restricted from an elementary move of slices 7; — 7;41. Since 7; and 741 are
complete slices on .S, it follows that 7y; and 7y ;11 are complete slices on Y. Having removed redundancies,
T; — T;41 realizes forward progress from z to 2’ along some geodesic gz € Hy . Let o0 < 7; and ¢’ < 741
with 7;\c = 7j41\0’ be the transition slices for 7, — 7j41. By definition [MMO00][Section 5], the domains
supporting geodesics o and o’ are component domains of gz\z' and gz\z, respectively. It follows from the
definition that o < 7y; and o’ < Ty,;41 with 7y ;\o = Ty;4+1\0’ are the transition slices the transition from
z to 2’ along gz in Hy. Thus 7y ; — Ty ;41 is an elementary move of slices in Hy, completing the proof. O

Combined with Proposition we have the following proposition about the structure of active segments
of hierarchy paths, which resembles [Rafl4][Theorem 5.3] for Teichmiiller geodesics:

Proposition 8.4.3 (The structure of active segments). Let K > 0 be the large link constant from Lemma
[241] and T' a hierarchy path based on a hierarchy H. Let I'y < T be the active segment of gy € H with
D(gy) =Y < S and Hy the corresponding restricted hierarchy in M(Y'). Then the following hold:

(1) For any segment [uo,no] < T' with [uo,no] N Ty = &, we have dy (o, no) < K
(2) The restriction of T'y to M(Y) can be reparametrized to a hierarchy path based on Hy .
Proof. Let Ty = [p,p1],T2 = [p2,n] < T be the two components of I'\I'y. These are both hierarchy
paths by Proposition based on hierarchies H; and Hs, respectively. Since gy is in both Hy and H,
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it follows that neither H; nor Hs contains a geodesic supported on Y. Thus Lemma [2.4.1] implies that
dy (@, 1), dy (p2,m) < K, completing the proof of (1).

(2) follows directly from Lemmata and O
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