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Abstract. We study a characterization of slice Carleson measures and of Carleson measures
for both the Hardy spaces Hp(B) and the Bergman spaces Ap(B) of the quaternionic unit ball
B. In the case of Bergman spaces, the characterization is done in terms of the axially symmetric
completion of a pseudohyperbolic disc in a complex plane. We also show that a characterization
in terms of pseudohyperbolic balls is not possible.

1. Introduction

Carleson measures have been introduced around 1960 by Carleson, see [6], to prove the corona
theorem and to solve interpolation problems. A finite, positive, Borel measure µ on the open
unit disc D ⊂ C is called a Carleson measure for the Hardy space Hp(D) if∫

D
|f(z)|dµ ≤ C‖f‖Hp , f ∈ Hp(D)

where the constant C depends only on p ∈ (0,∞). Carleson also proved that the measure µ
is Carleson for Hp(D) if and only if for all Carleson squares of sidelenght 1 − r, r ∈ (0, 1),
θ0 ∈ [0, 2π]

S(θ0, r) = {ρeiθ ∈ D : r ≤ ρ < 1, |θ − θ0| ≤ 1− r}
the condition

µ(S(θ0, r)) ≤ C(1− r)
holds for some constant C > 0. This condition shows that, for a measure, the property of being
Carleson for Hp(D) does not depend on p.

Later, Hastings [20] (but see also [22] for a wider context) proved a similar characterization for
the measures which are Carleson for the Bergman space Ap(D) showing that a finite, positive,
Borel measure µ is a Carleson measure for Ap(D) if and only if

µ(S(θ0, r)) ≤ C(1− r)2

for some constant C > 0 for all Carleson squares S(θ0, r) of sidelenght 1− r. In particular, for
a measure, the property of being Carleson for Ap(D) does not depend on p.
The Carleson boxes are clearly not invariant under automorphism of the unit disc, so in order
to obtain a characterization of the Carleson measures in an invariant way, one should consider
the hyperbolic geometry of the disc and consider instead the pseudohyperbolic discs, see the
work by Luecking [21] and also [19]. A pseudohyperbolic disc ∆(z0, r) with center z0 and radius
r > 0 is defined as

∆(z0, r) =

{
z ∈ C :

∣∣∣∣ z − z0

1− z̄0z

∣∣∣∣ < r

}
.
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2 I. SABADINI AND A. SARACCO

Luecking showed that a finite, positive measure is Carleson for Ap(D) if and only if

µ(∆(z0, r)) ≤ C|∆(z0, r)|
for some constant C > 0 depending only on r and for pseudohyperbolic discs ∆(z0, r), z0 ∈ D,
for some (and hence for all) r ∈ (0, 1).
The characterization of Carleson measures of the Bergman spaces was then extended to more
general settings, like strongly pseudoconvex domains, see e.g. [8] and [2].
In this paper we will study, in the quaternionic setting, the characterization of Carleson measures
in the Hardy and Bergman spaces on the open unit ball B. This study was initiated by Arcozzi
and Sarfatti in [5] who treated the case of the Hardy space H2(B). Here we extend their result
to the case of Hp(B) and to the case of the Bergman spaces Ap(B), for any p. It is important to
note that, in the complex case, to have a characterization of Carleson measures in H2(D) allows
to prove the result for Hp(D) for any p. In this setting, the method that applies in the complex
case is not so immediately applicable as it is not true, in general, that the p/2-power of a slice
regular function is slice regular.

Furthermore, it is a delicate question to understand which is an appropriate notion of pseu-
dohyperbolic metric and pseudohyperbolic ball. In fact, the function ρ : B × B → R+ defined
by

ρ(q, α) =

∣∣∣∣ α− q1− qᾱ

∣∣∣∣
is a distance only if q belongs to the complex plane CI containing α. We can then define the
disc ∆I(α, r) ⊂ CI with center α and radius r ∈ (0, 1) and its axially symmetric completion
∆(α, r). The distance ρ (later on denoted by ρI) is used to show a result which characterizes
Carleson measure µ in the Bergman spaces Ap(B) as the measures for which

µ(∆(α, r)) ≤ C|∆I(α, r)|
for some (and hence for all) r ∈ (0, 1), where C is a constant depending on r only. More in
general, when q ∈ B, the function ρ should be substituted by its slice regular extension, namely
by the function, still denoted by ρ,

ρ(q, α) =
∣∣(1− qᾱ)−∗ ∗ (q − α)

∣∣ .
The function ρ(q, α) is now a distance in B, see [4], which allows to define hyperbolic balls in H.
However, we show that it is not possible to characterize Carleson measures in terms of these balls.
This is a major difference with respect to the complex case and shows that the pseudohyperbolic
metric does not carry the intrinsic information needed to characterize Carleson measures.
The plan of the paper is as follows. After the introduction and some preliminary results, in
Section 3 we characterize slice Carleson measures and then Carleson measures in Hp(B) for any
p. In Section 4 we prove the characterization in the case of the Bergman spaces Ap(B) for any
p in terms of the axially symmetric completion of a pseudohyperbolic disc in a complex plane.
In Section 5 we study the quaternionic analog of pseudohyperbolic balls, also showing that it is
not possible to characterize Carleson measures for the Bergman spaces in terms of these balls.
Acknowledgments. The authors thank Giulia Sarfatti for useful discussions.

2. Preliminary results

There are several ways to generalize the notion of holomorphy to the quaternionic setting. In
the past few years, slice regularity attracted the attention of several researchers and this will be
the notion of holomorphy we will consider in this paper. We repeat here some useful definitions
and results on this function theory, see [11], [17].
First of all, we recall that the skew field of quaternions H is defined as the set of elements
q = x0 + x1i + x2j + x3k where x` ∈ R, ` = 0, . . . , 3 and i2 = j2 = −1, ij = −ji = k. For any
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q ∈ H, its conjugate q̄ is defined as q̄ = x0 − x1i − x2j − x3k, moreover the norm of q is the
Euclidean norm |q| = (x2

0 + x2
1 + x2

2 + x2
3)1/2. It is immediate that |q|2 = qq̄ = q̄q.

By S we denotes the 2-dimensional unit sphere of purely imaginary quaternions, namely

S = {q = ix1 + jx2 + kx3, such that x2
1 + x2

2 + x3
3 = 1}.

An element I ∈ S is such that I2 = −1 and thus the elements of S are also called imaginary
units. For any fixed I ∈ S the set CI := {x + Iy; | x, y ∈ R} is a complex plane, moreover
H =

⋃
I∈SCI . Obviously, the real axis belongs to CI for every I ∈ S.

Any non real quaternion q is uniquely associated to an element in S, specifically we can set
Iq := (ix1 + jx2 + kx3)/|ix1 + jx2 + kx3|. It is obvious that q belongs to the complex plane
CIq . Thus the quaternion q = x0 + x1i + x2j + x3k can be written as q = x0 + Iqy0 where
y0 = |ix1 + jx2 + kx3|. The set of elements of the form x0 + Iy0 when I varies in S will be
denoted by [q]; it is a 2-dimensional sphere consisting of elements with the same real part and
the same modulus as q. An open set U is said to be axially symmetric if for any q ∈ U the
whole sphere [q] is contained in U .

Definition 2.1. Let U be an open set in H and f : U → H be real differentiable. The function
f is said to be (left) slice regular or (left) slice hyperholomorphic if for every I ∈ S, its restriction
fI to the complex plane CI = R + IR passing through origin and containing I and 1 satisfies

∂If(x+ Iy) :=
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ Iy) = 0,

on U ∩ CI . Analogously, a function is said to be right slice regular in U if

(fI∂I)(x+ Iy) :=
1

2

(
∂

∂x
fI(x+ Iy) +

∂

∂y
fI(x+ Iy)I

)
= 0,

on U ∩ CI .

In the sequel, given an open set U ⊂ H and I ∈ S, we will sometimes write UI to denote
U ∩ CI .
Let us consider I, J ∈ S with I and J orthogonal, so that I, J, IJ is an orthogonal basis of H.
Let us write the restriction fI(x+ Iy) = f(x+ Iy) of f to the complex plane CI as

f = f0 + If1 + Jf2 +Kf3 = F +GJ

where f0 + If1 = F , and f2 + If3 = G. This observation immediately gives the following result:

Lemma 2.2 (Splitting Lemma). If f is a slice regular function on U , then for every I ∈ S, and
every J ∈ S, orthogonal to I, there are two holomorphic functions F,G : U ∩CI → CI such that
for any z = x+ Iy

fI(z) = F (z) +G(z)J.

Another useful result is the following:

Theorem 2.3. A function f : B(0; r) → H is slice regular on B(0; r) if and only if it has a
series representation of the form

(1) f(q) =

∞∑
n=0

qn
1

n!
· ∂

nf

∂xn
(0) =

∞∑
n=0

qnan,

uniformly convergent on B(0; r).

To state the next fundamental property of slice regular functions, we recall that a domain U
in H is called s-domain if U ∩ CI is connected for all I ∈ S.
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Theorem 2.4 (Representation Formula). Let f be a slice regular function defined on an axially
symmetric s-domain U ⊆ H. Let J ∈ S and let x ± Jy ∈ U ∩ CJ . Then the following equality
holds for all q = x+ Iy ∈ U :

f(x+ Iy) =
1

2

[
f(x+ Jy) + f(x− Jy)

]
+ I

1

2

[
J [f(x− Jy)− f(x+ Jy)]

]
=

1

2
(1− IJ)f(x+ Jy) +

1

2
(1 + IJ)f(x− Jy).

(2)

This formula is important as it allows to reconstruct the values of a slice regular function
when its values are known on a complex plane. In particular, we have that if J ∈ S, U is an
axially symmetric set, and f : U ∩ CJ → H satisfies ∂Jf = 0 then the function

(3) ext(f)(x+ Iy) =
1

2

[
f(x+ Jy) + f(x− Jy)

]
+ I

1

2

[
J [f(x− Jy)− f(x+ Jy)]

]
is the unique slice regular extension of f to U .
Given an open set UJ ⊆ CJ we can define the so-called axially symmetric completion as

U =
⋃
I∈S
{x+ Iy : x+ Jy ∈ UJ}.

It is clear that the sum of two slice regular functions is slice regular. However, in general,
the pointwise product of two slice regular functions is not slice regular. Bearing in mind the
definition of product between two power series f(q) =

∑∞
n=0 q

nan, g(q) =
∑∞

n=0 q
nbn with

coefficients in a ring converging in B(0;R) for some R > 0 (in particular two polynomials) we
define

(f ∗ g)(q) =
∑

qncn, cn =
n∑
k=0

akbn−k.

This notion can be extended to functions f, g slice regular on an axially symmetric s-domain,
but we do not enter the details here and we refer the interested reader to [11, 17]. A notion more
important for us will be the one of inverse of a function with respect to he ∗-multiplication. To
this end, we have to introduce some more notations which are of independent interest limiting
the definitions to the case of functions slice regular on a ball B(0;R):

Definition 2.5. Given the function f(q) =
∑∞

n=0 q
nan slice regular on B(0;R), we define its

regular conjugate

f c(q) =
∞∑
n=0

qnan

and its symmetrization (or normal form)

fs(q) = (f ∗ f c)(q) = (f c ∗ f)(q).

The inverse of f with respect to the slice regular multiplication is denoted by f−∗ and is given
by

f−∗(q) = (f s(q))−1f c(q).

It is defined for q ∈ B(0;R) such that fs(q) 6= 0.

It is not true, in general, that the composition of two slice regular functions, when it is defined,
is a slice regular function. However, it is true in a suitable subclass of slice regular functions
defined below:

Definition 2.6. A function f slice regular in an open set U is called quaternionic intrinsic if

f(U ∩ CI) ⊆ CI , ∀I ∈ S.
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If U is an axially symmetric open set, it can be shown that a slice regular function f is
quaternionic intrinsic if and only if f(q) = f(q̄) for all q ∈ U . This also justifies the terminology
”intrinsic” that comes from the analogous property in the complex case. It is useful to note that
a function slice regular on the ball B(0;R) with center at the origin and radius R is quaternionic
intrinsic if and only if its power series expansion has real coefficients. Moreover, we have

Proposition 2.7. Let f , g be slice regular in the open sets U ′, U ⊆ H, respectively, g(U) ⊆ U ′
and let g be quaternionic intrinsic. Then f(g(q)) is slice regular in U .

3. Carleson measures in Hardy spaces

Purpose of this section is to define the (slice) Carleson measures for Hp(B) and to prove their
characterization. Let us first recall the definition of Hardy spaces Hp(B), see [15]:

Definition 3.1. Let p ∈ (0,+∞). We define

Hp(B) = {f : B→ H | f is slice regular and ‖f‖p < +∞},
where

‖f‖p = sup
I∈S

lim
r→1−

(∫ 2π

0
|f(reIθ)|pdθ

)1/p

.

In the sequel, we will also be in need of the following spaces:

Definition 3.2. Let p ∈ (0,+∞) and BI = B ∩ CI . We define

Hp(BI) = {f : B→ H | f is slice regular and ‖fI‖p < +∞},
where

‖fI‖p = lim
r→1−

(∫ 2π

0
|f(reIθ)|pdθ

)1/p

.

Remark 3.3. It is clear that Hp(B) ⊆ Hp(BI) for any p ∈ (0,+∞). However, it can be proved
that f ∈ Hp(B) if and only if f ∈ Hp(BI) for some (and hence for all) I ∈ S; this is a quite
general phenomenon which, basically, follows from the Representation Formula, see [7, 14], and
[15] for this specific case.

In the sequel we will also use the reproducing kernel for H2(B) that was introduced in [3]:

Definition 3.4. The reproducing kernel of H2(B) is the function

(4) k(q, w) = (1− 2Re(w)q + |w|2q2)−1(1− qw) = (1− q̄w̄)(1− 2Re(q)w̄ + |q|2w̄2)−1.

The kernel k(q, w) is defined for all q such that 1 − 2Re(w)q + |w|2q2 6= 0 (or, equivalently,
for all w such that 1− 2Re(q)w̄ + |q|2w̄2). It is the sum of the series

∑+∞
n=0 q

nw̄n. Moreover:

a) k(q, w) is slice regular in q and right slice regular in w̄;

b) k(q, w) = k(w, q).

The function k(q, w) is such that k(q, w) ∗ (1− qw̄) = (1− qw̄) ∗ k(q, w) = 1, as it can be easily
verified and thus we can write k(q, w) = (1−qw̄)−∗ where the ∗-inverse is computed with respect
to the variable q (but note that k(q, w) also equals the right ∗-inverse of (1− qw̄) in the variable
w̄).

Definition 3.5. A finite, positive, Borel measure µ on the unit ball B ⊂ H is said to be a
Carleson measure for Hp(B) if for any f ∈ Hp(B)

(5)

∫
B
|f(q)|p dµ(q) ≤ C ‖ f ‖pHp(B).‖ f ‖

p
Hp(B) ,

the constant C in the estimate depending only on µ.
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Any measure µ on B can be decomposed as µ = µR + µ̃ where supp(µR) ⊆ B ∩ R and
µ̃(B ∩ R) = 0. Obviously, a measure µ is a Carleson measure if and only if µR and µ̃ are
Carleson.
The Disintegration Theorem implies that any finite measure µ on B such that µ(B∩R) = 0 can
be decomposed as

µ(x+ Iy) = µ+
I (x+ Iy) ν(I)

where µ+
I is a probability measure on

B+
I = {x+ Iy ∈ B : y ≥ 0}

and ν is the measure on the Borel sets E of the sphere S defined by

ν(E) = µ{x+ Iy ∈ B : y > 0, I ∈ E}.
With this notation, for any f ∈ L1(B, dµ) we have (see [5], [16]):

(6)

∫
B
f(x+ Iy) dµ(x+ Iy) =

∫
S

∫
B+
I

f(x+ Iy) dµ+
I (x+ Iy) dν(I).

Thus, if µ is a finite measure on B written in the above form µ = µR + µ̃, applying the Disinte-
gration Theorem to µ̃ we can write

(7)

∫
B
f(x+ Iy) dµ(x+ yI) =

∫
B∩R

f(x) dµR(x) +

∫
S

∫
B+
I

f(x+ yI) dµ̃+
I (x+ yI) dν(I).

We can introduce, for any I ∈ S, the measure µI = µR + µ̃+
I + µ̃+

−I which is the restriction of
the measure µ to BI , and we can write the definition of slice Carleson measure:

Definition 3.6. A finite, positive, Borel measure µ is said to be a slice Carleson measure for
Hp(B) if for any f ∈ Hp(B) and any I ∈ S

(8)

∫
BI
|f(x+ yI)|p dµI(x+ yI) ≤ C ‖ f ‖pHp(B). ‖ f ‖

p
Hp(B) ,

the constant C in the estimate depending only on µ.

We can rewrite the left hand side of (8) obtaining the condition:∫
BI
|f(x+ yI)|p dµI(x+ yI) =

∫
B∩R
|f(x)|p dµR(x) +

∫
B+
I

|f(x+ yI)|p dµ̃+
I (x+ yI)

+

∫
B+
−I

|f(x+ y(−I))|p dµ̃+
−I(x+ y(−I))

. ‖ f ‖pHp(B) .

(9)

We now define the analog of the Carleson box (or Carleson square, see [19]) in this framework,
see [5].

Definition 3.7. Let q = reJθ0 be an element in B and let AI(θ0, r) be the arc of ∂BI defined
by

AI(θ0, r) = {eIθ ∈ ∂BI : |θ − θ0| ≤ 1− r},
and let SI(θ0, r) be the Carleson box in the plane CI defined by

SI(θ0, r) = {ρeIθ ∈ BI : eIθ ∈ AI(θ0, r), r ≤ ρ < 1}.
We say that the set

S(θ0, r) =
⋃
I∈S

SI(θ0, r)

is a symmetric box.
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Remark 3.8. For any q = reIθ0 , the length of the arc AI(θ0, r), denoted by |AI(θ0, r)|, is
2(1− r) and it is independent of I ∈ S.

The relation between slice Carleson measures and Carleson measures for H2(B) given in
Proposition 3.1 in [5] immediately extends to the spaces Hp(B):

Proposition 3.9. If a measure µ is slice Carleson for the Hardy space Hp(B), then it is also
Carleson.

Proof. Let µ be a slice Carleson measure for Hp(B), so that it is also finite by assumption.
Moreover, using (7), we obtain that for any f ∈ Hp(B),∫

B
|f(q)|p dµ(q) =

∫
B∩R
|f(x)|p dµR(x) +

∫
S
dν(I)

∫
B+
I

|f(z)|p dµ̃+
I (z)

. ‖ f ‖pHp(B) +

∫
S
dν(I) ‖ f ‖pHp(B) . ‖ f ‖

p
Hp(B) .

�

Next result is the generalization of Proposition 3.3 in [5] to the present setting.

Proposition 3.10. A finite, positive, Borel measure µ is a slice Carleson measure for Hp(B)
if and only if for all I ∈ S, and for all z = reIθ0 ∈ BI

(10) µI(SI(r, θ0)) . |AI(r, θ0)|.

Proof. Assume that µ is slice Carleson. Then, in view of Remark 3.3, (8) holds for all f ∈
Hp(BI), then it holds, in particular, also for any F ∈ Hp(BI) that maps BI into itself. This
means that µI is a Carleson measure for complex Hardy space Hp(D) ⊂ Hp(BI). The classical
characterization theorem for Carleson measures of complex Hardy spaces (-from now on classical
Carleson theorem - see e.g. [18]) gives us the statement.

Conversely, let µ be such that (10) holds. Then, for the classical Carleson theorem, µI is
a Carleson measure for Hp(D) ⊂ Hp(BI). According to the Splitting Lemma, any f ∈ Hp(B)
restricted to BI decomposes as f(z) = F (z) +G(z)J , with J ∈ S, J ⊥ I, and F , G holomorphic
on BI . Thus∫

BI
|f(z)|p dµI(z) =

∫
BI

(
|F (z)|2 + |G(z)|2

)p/2
dµI(z)

≤
∫
BI

(
2 max

(
|F (z)|2, |G(z)|2

))p/2
dµI(z)

=

∫
BI

2p/2 max (|F (z)|p, |G(z)|p) dµI(z)

≤ 2p/2
(∫

BI
|F (z)|p dµI(z) +

∫
BI
|G(z)|p dµI(z)

)
. ‖ F ‖pHp(BI) + ‖ G ‖pHp(BI)≤ 2 ‖ f ‖pHp(B)

which means that µ is slice Carleson. �

Theorem 3.11. A finite, positive, Borel measure µ is a Carleson measure for Hp(B) if and
only if for every q = reJθ0 ∈ B

(11) µ(S(θ0, r)) . |AI(θ0, r)| ,

|AI(θ0, r)| being the lenght of the arc AI(θ0, r), and I ∈ S.
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Proof. The condition of being Carleson and condition (11) are both additive, hence we split any
measure µ as the sum of two measures µ = µR + µ̃ with suppµR ⊂ B∩R and µ̃(B∩R) = 0, and
prove the theorem for µR and µ̃.

Let µR be a measure with support in B ∩ R. Hence µR is Carleson if and only if it is slice
Carleson. Moreover µR(SI(θ0, r)) = µR(S(θ0, r)) for any imaginary unit I. Hence Proposition
3.10 implies the thesis.

Let µ̃ be a measure such that µ̃(B ∩ R) = 0.
First, we suppose that µ̃ is a measure such that any symmetric box S(θ0, r) = S(q) if q = reIθ0

has measure controlled by |AI(q)|. Thus, for any w ∈ B

|AI(w)| & µ̃(S(w)) =

∫
S(w)

dµ̃(q) =

∫
S

(∫
SI(w)

dµ̃+
I (z)

)
dν(I)

=

∫
S

(∫
SJ0

(x+yJ0)
dµ̃+proj

I (x+ yJ0)

)
dν(I)

where J0 is any fixed imaginary unit, SJ0(w) is the projection of the symmetric box S(w) on

the fixed B+
J0

and µ̃+proj
I is the projection of the measure µ̃+

I on the same slice:

µ̃+proj
I (E) = µ̃+

I ({x+ yI | y > 0, x+ yJ0 ∈ E})
dµ̃+proj

I (x+ yJ0) = dµ̃+
I (x+ yI),

for any E ⊂ B+
J0

. Then, the measure

∫
S
dµ̃+proj

I (x+ yJ0)dν(I)

is Carleson for Hp(BJ0). Now, let f ∈ Hp(B). Using the Representation Formula, if I denotes
the imaginary unit of q, and J 6= ±I is any imaginary unit, we have

∫
B
|f(q)|p dµ̃(q) =

=

∫
S

∫
B+
I

∣∣∣∣1− IJ2
f(x+ yJ) +

1 + IJ

2
f(x− yJ)

∣∣∣∣p dµ̃+
I (x+ yI) dν(I)

.
∫
S

∫
B+
I

(|f(x+ yJ)|p + |f(x− yJ)|p) dµ̃+
I (x+ yI) dν(I)

where we have used the fact that the map x 7→ xp if convex if p ≥ 1 and so

(12)

∣∣∣∣1− IJ2
f(x+ yJ) +

1 + IJ

2
f(x− yJ)

∣∣∣∣p ≤ 2p−1 (|f(x+ yJ)|p + |f(x− yJ)|p)

while if 0 < p < 1 the map x 7→ xp is subadditive on the positive real axis, thus

(13)

∣∣∣∣1− IJ2
f(x+ yJ) +

1 + IJ

2
f(x− yJ)

∣∣∣∣p ≤ (|f(x+ yJ)|p + |f(x− yJ)|p) .
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Then we have∫
B
|f(q)|p dµ̃(q) .

∫
S

∫
B+
I

(|f(x+ yJ)|p + |f(x− yJ)|p) dµ̃+
I (x+ yI) dν(I)

=

∫
B+
J

|f(x+ yJ)|p
∫
S
dµ̃+proj

I (x+ yJ) dν(I) +

+

∫
B+
−J

|f(x− yJ)|p
∫
S
dµ̃+proj

I (x− yJ) dν(I)

=

∫
B+
J

|f(x+ yJ)|p
∫
S
dµ̃+proj

I (x+ yJ) dν(I) +

+

∫
B+
J

|f(x+ yJ)|p
∫
S
dµ̃+proj

I (x+ yJ) dν(I)

= 2 ‖ f ‖pHp(BI)

and this concludes the proof. Conversely, suppose µ̃ is Carleson for Hp(B). Consider the function

K(q) =
1

4π

∫
S
ku+vI(q) dA(I)

where ku+vI(q) = kw(q) = k(q, w) = (1 − qw)−∗ is the reproducing kernel for H2(B) (see (4))

and dA(I) is the area element on S. Then, using that kw(q) = kq(w) for any w, q ∈ B, the
Representation Formula and the fact that

∫
S I dA(I) = 0, we have

K(q) =
1

4π

∫
S
ku+vI(q) dA(I) =

1

4π

∫
S
kq(u+ vI) dA(I)

=
1

4π

∫
S

(
1− IJ

2
kq(u+ vJ) +

1 + IJ

2
kq(u− vJ

)
dA(I)

=
1

4π

(∫
S
kq(u+ vJ)

1− JI
2

dA(I) +

∫
S
kq(u− vJ)

1 + JI

2
dA(I)

)
= kq(u+ vJ)

(
1

2
−
J
∫
S I dA(I)

8π

)
+ kq(u− vJ)

(
1

2
+
J
∫
S I dA(I)

8π

)
=

1

2
(kq(u+ vJ) + kq(u− vJ)) =

1

2
(ku+vJ(q) + ku−vJ(q))

=
1

2

(
(1− qw)−∗ + (1− qw)−∗

)
.

From this formula we deduce

K(q) =
1

2

(
(1− q w)−∗ + (1− qw)−∗

)
=

1

2

(
(1− 2qRe(w) + q2|w|2)−1(1− qw) + (1− 2qRe(w) + q2|w|2)−1(1− qw)

)
=

1

2
(1− 2qRe(w) + q2|w|2)−1(2− q(w + w))
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and

K(q) =
1

2

(
(1− qw)−∗ + (1− qw)−∗

)
=

1

2

(
(1− 2qRe(w) + q2|w|2)−1(1− qw) + (1− 2qRe(w) + q2|w|2)−1(1− qw)

)
=

1

2
(2− (w + w)q)(1− 2qRe(w) + q2|w|2)−1

=
1

2
(1− 2qRe(w) + q2|w|2)−1(2− q(w + w)),

where we used that w+w ∈ R. Thus we have K(q) = K(q) and the function K(q) is quaternionic
intrinsic. Note that K(q) is the sum of functions in H2(B) and, as such, it belongs to H2(B).
Moreover, it is a slice regular function in the ball, bounded, and never vanishing. Note that for
any positive real number ν we define qν = ext(zν) which is everywhere defined. So the 2

p -power

K2/p is defined for any p and it is a quaternionic intrinsic bounded slice regular function in the
ball, hence it is a function in Hp(B).

Thanks to the fact that µ̃ is Carleson for Hp(B), we get that∫
B
|K2/p(q)|p dµ̃ . ‖ K2/p ‖pp

and thus the following chain of estimates:∫
B
|K2/p(q)|p dµ̃ . ‖ K2/p ‖pp(14)

= sup
I∈S

lim
r→1−

1

2π

∫ 2π

0
|K2/p(reIθ)|p dθ

= sup
I∈S

lim
r→1−

1

2π

∫ 2π

0
|K(reIθ)|2 dθ

= ‖ K ‖22 ≤
1

1− |w|
.

Moreover ∫
B
|K2/p(q)|p dµ̃ &

∫
S(w)
|K2/p(q)|p dµ̃(15)

=

∫
S(w)
|K|2 dµ̃ ≥

∫
S(w)

1

(1− |w|2)2
dµ̃

=
µ̃(S(w))

(1− |w|2)2
,

where we used the fact that for all q ∈ B (and thus also for all q ∈ S(w)) the inequality
|K(q)| ≥ 1

1−|w|2 holds.

We conclude that

µ̃(S(w)) .
(1− |w|2)2

1− |w|
≤ 4(1− |w|)

and the assertion follows. �

4. Carleson measures in Bergman spaces

The Bergman space A2(U) has been studied in a series of papers, see [9], [12], [13], [14]. In
[7] the authors study the weighted Ap(U) Bergman spaces and, as a special case, we have the
following definition:
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Definition 4.1. Let U ⊆ H be an axially symmetric s-domain. For p > 0, we define the slice
regular Bergman space Ap(U) as the quaternionic right linear space of all slice regular functions
on U such that

(16) sup
I∈S

∫
U∩CI

|f(z)|p dλ(z) <∞,

where λ is the Lebesgue measure on CI . For p > 0, and any fixed I ∈ S, we define the slice
regular Bergman space Ap(UI) as the quaternionic right linear space of all slice regular functions
on UI = U ∪ CI such that

(17)

∫
U∩CI

|f(z)|p dλ(z) <∞.

As it is proved in [7], the slice regular Bergman space Ap(U) can be equipped with the norm

(18) ‖f‖Ap(U) =

(
sup
I∈S

∫
U∩CI

|f(z)|p dλ(z)

) 1
p

.

From now on, we will consider U = B, and the norm in Ap(B) will be denoted by ‖ · ‖Ap .
In this section, we will characterize Carleson measures for the Bergman spaces. These mea-

sures are defined as follows:

Definition 4.2. Let µ be a finite, positive, Borel measure on B. We say that µ is a Carleson
measure for Ap(B) if for any f ∈ Ap(B) the inequality

(19)

∫
B
|f(z)|p dµ . ‖f‖pAp

holds. We say that µ is a slice Carleson measure for Ap(B) if for any f ∈ Ap(B) the inequality

(20)

∫
BI
|f(z)|p dµI . ‖f‖pAp

holds, where µI = µR + µ̃+
I + µ̃+

−I .

The argument used in the proof of Proposition 3.9 yields the following:

Proposition 4.3. If a measure µ is slice Carleson for Ap(B) then it is also Carleson.

In [4] the authors define a pseudohyperbolic metric using the slice regular Moebius transfor-
mation:

(21) ρ(w,α) = |(1− qα)−∗ ∗ (q − α)||q=w = |(1− qw)−∗ ∗ (q − w)||q=α.

If α ∈ CI we can consider the restriction ρI to CI . Then ρI reduces to the pseudohyperbolic
distance on the slice CI :

ρI(z, α) =

∣∣∣∣ z − α1− zᾱ

∣∣∣∣ .
We define the pseudohyperbolic disc (in CI) with center α and radius r as

∆I(α, r) = {z ∈ CI : ρI(z, α) < r},

and

∆(α, r) = {q = x+ Jy ∈ H : z = x+ Iy ∈ ∆I(α, r)}.
Note that ∆(α, r) is the axially symmetric completion of ∆I(α, r), i.e.

∆(α, r) =
⋃
I∈S

∆I(α, r).
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Let us denote by |∆I(α, r)| the area of ∆I(α, r). Since ∆I(α, r) is a pseudohyperbolic disc in
CI , we have

(22) |∆I(α, r)| = π
r2(1− |α|2)2

(1− r2|α|2)2
.

Moreover, we recall the following results (see e.g. [19]) stated using our notations:

Proposition 4.4. For any fixed I ∈ S and for r ∈ (0, 1) there exist a sequence of points
{αk} ⊂ BI and an integer n0 such that

(23)
∞⋃
k=1

∆I(αk, r) = BI .

Moreover, no point z ∈ BI belongs to more than n0 discs ∆I(αk, R), where R = 1
2(1 + r).

Proposition 4.5. Let µ be a finite, positive, Borel measure on BI . Then µI(∆I(α, r)) ≤
C|∆I(α, r)| if and only if µI(SI(z)) ≤ |AI(z)|2.

We now prove a result characterizing slice Carleson measures.

Theorem 4.6. Let µ be a finite, positive, Borel measure on BI and let p ∈ (0,∞) be fixed. The
following are equivalent:

(1) The measure µ is slice Carleson for Ap(B).
(2) The inequality µI(∆I(α, r)) ≤ C|∆I(α, r)| holds for all r ∈ (0, 1) for some constant C

depending on r only, and for all ∆I(α, r), α ∈ BI .
(3) The inequality µI(∆I(α, r)) ≤ C|∆I(α, r)| holds for some r ∈ (0, 1) for some constant C

depending on r only, and for all ∆I(α, r), α ∈ BI .

Proof. (1)=⇒(2). Let us assume that µ is slice Carleson for Ap(B).Then (20) holds in particular
for the classical Bergman space Ap(D) identified with a subset of Ap(BI) for some fixed I ∈ S.
Thus (2) follows from the complex case.
(2)=⇒(3) is trivial, so we show that (3)=⇒(1). Let I ∈ S be fixed and let us write f(z) =
F (z) + G(z)J , where F,G are holomorphic functions. We know that the statement holds for
F,G, because it holds in the complex case, thus∫

BI
|F (z)|pdµI .

∫
BI
|F (z)|p dλ∫

BI
|G(z)|pdµI .

∫
BI
|G(z)|p dλ

from which, reasoning as in the proof of Proposition 3.10, we have∫
BI
|f(z)|pdµI =

∫
BI

(|F (z)|2 + |G(z)|2)p/2 dµI

≤ 2p/2
(∫

BI
|F (z)|p dµI +

∫
BI
|G(z)|p dµI

)
.

(∫
BI
|F (z)|p dλ+

∫
BI
|G(z)|p dλ

)
≤ ‖F‖pAp + ‖G‖pAp ≤ 2‖f‖pAp .

�

Next result characterizes Carleson measures in terms of the axially symmetric completion of
a pseudohyperbolic disc.
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Theorem 4.7. Let µ be a positive, finite measure on B and let p ∈ (0,∞) be fixed. The following
are equivalent:

(1) The measure µ is Carleson for Ap(B).
(2) The inequality µ(∆(α, r)) ≤ C|∆I(α, r)| holds for all r ∈ (0, 1) for some constant C

depending on r only, and for all ∆I(α, r), α ∈ BI .
(3) The inequality µ(∆(α, r)) ≤ C|∆I(α, r)| holds for some r ∈ (0, 1) for some constant C

depending on r only, and for all ∆I(α, r), α ∈ BI .

Proof. (1)=⇒(2). Let us assume that µ is Carleson for Ap(B). As in the proof of Theorem 3.11,
we can assume that µ(B ∩ R) = 0.
Let us set

H(q) =
1

4π

∫
S
hu+vI(q) dA(I)

where

hu+vI(q) = hw(q) = (1− qw)−2∗ = (1− 2q̄w̄ + q̄2w̄2)(1− 2Re(w)q̄ + |w|2q̄2)−2

is, modulo the factor 1
π , the Bergman kernel for A2(B), see [10], [14]. Reasoning as in the second

part of the proof of Theorem 3.11, and using the fact that hw(q) = hq(w) we have that

(24) H(q) =
1

4π

∫
S
hu+vI(q) dA(I) =

1

2
(hu+Iv(q) + hu−Iv(q))

and so H(q) belongs to A2(B) since it is superposition of functions in A2(B). Moreover, we have

H(q̄) = H(q) and so H(q) is quaternionic intrinsic, nonvanishing in B. By its definition, it is
clear that the function H(q) depends also on the variables u, v, even though this dependence is
not explicitly stated. The Representation formula implies

hw(q) + hw̄(q) =
1

2

(
hω(q) + hω̄(q) + (hω̄(q))− hω(q)) IIw

+ hω̄(q) + hω(q) + (hω(q))− hω̄(q)) IIw)
)

= hω(q) + hω̄(q)

(25)

for any w,ω belonging to the same sphere.
For any p > 0 we can consider H2/p(q) (see Proposition 2.7) which is a function in Ap(B). Since
µ is Carleson for Ap(B) we have∫

B
|H2/p(q)|p dµ . ‖ H2/p ‖pAp(B)(26)

= sup
I∈S

∫
BI
|H2/p(q)|p dλ

= sup
I∈S

∫
BI
|H(q)|2 dλ

= sup
I∈S

∫
BI
|hw(q) + hw̄(q)|2 dλ

.
1

(1− (u2 + v2))2

where last inequality is due to the fact that by (25) we can choose w on the same complex plane
as q and thus the inequality is obtained from the analogous inequality in the complex case.
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On the other hand, ∫
B
|H2/p(q)|p dµ &

∫
∆(w,r)

|H2/p(q)|p dµ(27)

=

∫
∆(w,r)

|H(q)|2 dµ

≥
∫

∆(w,r)

1

(1− |w|2)2
dµ

≥ µ(∆(w, r))
(1− r|w|)4

(1− |w|2)4
.

Using the hypothesis, we have

µ(∆(w, r))
(1− r|w|)4

(1− |w|2)4

≤
∫
B
|H2/p(q)|p dµ

. ‖H2/p‖pAp .
(28)

Using (26) and (27) we obtain

µ(∆(w, r)) . ‖H‖pp
(1− |w|2)4

(1− r|w|)4
.

(1− |w|2)2

(1− r|w|)4

. |∆I(w, r)|
1

r2(1− r|w|)2
≤ |∆I(w, r)|

1

r2(1− r)2

and the assertion follows.
The fact that (2) implies (3) is obvious, so we show that (3) implies (1). Thus we assume that
(3) is in force for some r ∈ (0, 1). Then we take the axially symmetric completion of both sides
of (23), so that we obtain

B =
∞⋃
k=1

∆(αk, r),

from which it follows that, if z ∈ CJ and q ∈ CI :∫
B
|f(q)|p dµ ≤

∞∑
k=1

∫
∆(αk,r)

|f(q)|p dµ

=

∞∑
k=1

∫
∆(αk,r)

∣∣∣∣1− IJ2
f(z) +

1 + IJ

2
f(z̄)

∣∣∣∣p dµ
≤ C

∞∑
k=1

∫
∆(αk,r)

(|f(z)|p + |f(z̄)|p) dµ,

(29)

where we used the Representation Formula and (12), (13) so that C = 1 or C = 2p−1. Lemma
13 in [19] yields that for all z ∈ ∆J(αk, r) the following inequality holds:

(30) |f(z)|p ≤ 4(1−R)−4

|∆J(αk, R)|

∫
∆J (αk,R)

|f(s)|p dλ(s), R =
1

2
(1 + r).
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Note that if z ∈ ∆J(αk, R) then z̄ ∈ ∆J(αk, R) thus, continuing the computations in (29), and
using (30) we obtain

C

∞∑
k=1

∫
∆(αk,r)

(|f(z)|p + |f(z̄)|p) dµ

≤ C
∞∑
k=1

∫
∆(αk,r)

(
4(1−R)−4

|∆J(αk, R)|

∫
∆J (αk,R)

|f(s)|p dλ+
4(1−R)−4

|∆J(αk, R)|

∫
∆J (αk,R)

|f(s)|p dλ

)
dµ

≤ C
∞∑
k=1

µ(∆(αk, r))

(
4(1−R)−4

|∆J(αk, R)|

∫
∆J (αk,R)

|f(s)|p dλ+
4(1−R)−4

|∆J(αk, R)|

∫
∆J (αk,R)

|f(s)|pdλ

)

≤ C1

∞∑
k=1

|∆J(αk, r)|

(
4(1−R)−4

|∆J(αk, R)|

∫
∆J (αk,R)

|f(s)|p dλ+
4(1−R)−4

|∆J(αk, R)|

∫
∆J (αk,R)

|f(s)|pdλ

)
,

where we obtained last inequality using our assumption in point (3). Formula (22) yields

|∆J(αk, r)|
|∆J(αk, R)|

=
r2(1−R2|α|2)2

R2(1− r2|α|2)2
≤ 1

(1− r2|α|2)2
≤ 1

(1−R)2

and similarly
|∆J(αk, r)|
|∆J(αk, R)|

≤ 1

(1−R)2
.

Thus, using these inequalities, Proposition 4.4 and the fact that ∆J(αk, r) ⊂ BJ for any αk, we
have

C1

∞∑
k=1

|∆J(αk, r)|

(
4(1−R)−4

|∆J(αk, R)|

∫
∆J (αk,R)

|f(s)|p dλ+
4(1−R)−4

|∆J(αk, R)|

∫
∆J (αk,R)

|f(s)|pdλ

)

≤ C1

∞∑
k=1

4

(1−R)6

(∫
∆J (αk,R)

|f(s)|p dλ+

∫
∆J (αk,R)

|f(s)|p dλ

)

≤ C1
4n0

(1−R)6

(∫
BJ
|f(s)|p dλ+

∫
BJ
|f(s)|p dλ

)
≤ C1

4n0

(1−R)6
sup
J∈S

(∫
BJ
|f(s)|p dλ+

∫
BJ
|f(s)|p dλ

)
. ‖f‖pAp(B).

Following the chain of inequalities we have proved that∫
B
|f(q)|p dµ ≤ C̃‖f‖pAp(B)

and thus (1) holds. �

5. Carleson measures and pseudohyperbolic balls

In this section, let α = a+ Ib ∈ B and by d = d(α, ∂B) denote the Euclidean distance of α to
the boundary of the unit ball.

Let ρ be the pseudohyperbolic distance defined in (21) and B(α, r) be the pseudohyperbolic
ball of center α and pseudohyperbolic radius r, i.e.

B(α, r) = {q ∈ B | ρ(q, α) < r} .
The result in Theorem 4.7 is essentially a result on the axially symmetric completion of a

pseudohyperbolic disc in a complex plane. A similar result for pseudohyperbolic balls is false.
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In order to show that, some estimations on the volume and shape of a pseudohyperbolic ball
are needed. These cannot be obtained by straightforward generalizing the complex case, since a
composition with a Moebius transformation is involved. Thus we will follow the strategy in [2],
where a more intrinsic approach is used.

Lemma 5.1. There exists a constant C1 such that for every α ∈ B and r ∈ (0, 1)

∀q ∈ B(α, r)
1− r
C1

d ≤ d(q, ∂B) ≤ C1

1− r
d .

Proof. Observe that

B(α, r) ∩ CI = ∆I(α, r)

and this is one of the connected components of ∆(α, r) ∩ CI .
Let J ∈ S be any imaginary unit. Then

ρ(α, x+ yJ) ≥ ρ(α, x+ yI)

so we have that

B(α, r) ⊂ ∆(α, r) .

Hence, if q = q1 + q2J ∈ B(α, r), also q′ = q1 + q2I ∈ B(α, r) and d(q, ∂B) = d(q′, ∂B). Thus
it is sufficient to prove the statement for all q′ ∈ B(α, r) ∩ CI . But this is the corresponding
statement for the complex case, see e.g. [2]. �

Lemma 5.2. Let α ∈ BI . There exist two positive constant C2(r), c2(r), depending only on r
such that:

c2(r)d4 ≤ |∆I(α, r)| ≤ C2(r)d4

Proof. As already remarked, ∆I is (see [5]) a disc of radius r1 = r 1−|α|2
1−r2|α|2 centered at the point

q1 = 1−r2

1−r2|α|2 α.

Notice that

|∆I | = πr2
1 = πr2 (1− |α|2)2

(1− r2|α|2)2
= πr2 d4

(1− r2(1− d2)2)2

Thus

πr2d4 ≤ |∆I | ≤ πr2 d4

(1− r2)2
,

since 0 < d ≤ 1. �

Let η be the Lebesgue 4-dimensional measure normalized so that η(B) = 1, and let us now
estimate the η-volume of a pseudohyperbolic ball:

Lemma 5.3. For every r ∈ (0, 1) there exist two constants C3(r) and c3(r) such that for every
α ∈ B

c3(r) d8 ≤ η(B(α, r)) ≤ C3(r) d8 .

Proof. To get such estimates on the η-volume of a pseudohyperbolic ball B(α, r), we will find
two domains B1(α, r), B2(α, r) such that

B1(α, r) ⊂ B(α, r) ⊂ B2(α, r)

and then estimate the η-volume of these.

Estimate from above. We will divide the construction of B2(α, r) in two cases. Let first α be
such that ρ(α, a) < r. Then we set

B2(α, r) = B(a, 2r) ⊃ B(α, r) ,
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and B(a, 2r) is simply a Euclidean ball of Euclidean radius (see proof of the previous lemma, or
[5])

R = 2r
1− |a|2

1− 4r2|a|2
≤ 2r

1− 4r2
(d2 + b2) .

Since |b| is the Euclidean distance between a and α, and a ∈ ∆I(α, r) ⊂ B(α, r), one gets in the
same way that

|b| < 2 · radius(B(α, r)) <

(
2r

1− r2

)
d2 .

Hence

R ≤ 2r

1− 4r2
d2

(
1 + d2 4r2

(1− r2)2

)
≤ C4(r)d2 .

From these inequalities, the desired estimate on the η-volume follows immediately.

Second case: ρ(α, a) ≥ r. Notice that in this case B(α, r) ⊂ B2(α, r), where

B2(α, r) = {q = x+ Jy ∈ B | ρ(x+ Iy, α) < r, ρ(a+ Jb, α) < r} .

Since B2(α, r) ∩ R = ∅, the volume of B2(α, r) can be computed using Pappus-Guldinus
theorem and thus it is given - up to a renormalization constant - by the area of ∆I (estimated in

Lemma 5.2) times the area of the set Γ = B2(α, r)∩ [q1] where q1 = 1−r2

1−r2|α|2 α is the Euclidean

center of ∆I .
Let q be any element in [α]. Then q = a + Iqb and, by taking a suitable J ⊥ I, we can

write Iq = cos θI + sin θJ , so that q = a + b(cos θI + sin θJ). By direct computation of the
pseudohyperbolic distance ρ(q, α), one gets that q = a+ b(cos θI+ sin θJ) ∈ B2(α, r) if and only
if

x2

d4 + x2
< r ,

where x is the Euclidean distance between q and α, i.e.

(31) x2 <
d4r

1− r
.

Figure 1.
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The area |Γ| of Γ can be estimated by:

|Γ| ≤ 2π(supx2)
|q1|2

|α|2
= 2π

d4r

1− r
· 1− r2

1− r2|α|2
= 2πd4r

1 + r

1− r2(1− d2)
≤ 2πd4r

1 + r

1− r2

Thus

η(B(α, r)) ≤ C3(r)d8

as claimed.

Estimate from below. Let us consider again the intersection

∆I = B(α, r) ∩ CI .

As already observed, ∆I is an Euclidean disc of radius r1 = r 1−|α|2
1−r2|α|2 centered at the point

q1 = 1−r2

1−r2|α|2 α.

The pseudohyperbolic ball B1(α, r) with same center and radius of ∆I is contained in B(α, r)
and it is a Euclidean ball of radius r1.

Hence, since η(B) = 1, the η-volume of a ball of radius r1 is r4
1.

η(B(α, r)) ≥ η(B1(α, r)) = r4

(
1− |α|2

1− r2|α|2

)4

≥

≥ r4(1− |α|2)4 = r4d8 .

�

Now we give an estimate on the number of pseudohyperbolic balls needed to cover ∆(α, r).
Recall that by [α] we denote the 2-sphere of points with same real part and same modulus as α.

Lemma 5.4. There exist two constants c5(r) and C5(r) such that

(1) ∆(α, r) can be covered with at most C5(r)d−4 balls B(αj , 4r) such that all αj ∈ [α];
(2) if α = Iy, then ∆(Iy, r) contains at least c5(r)d−4 disjoint balls B(Jjy, r).

Proof. (1) If α = a+ Ib is such that ρ(α, a) < r, then α ∈ B(a, r) and B(α, r) ⊂ B(a, 2r). Thus
it holds B(α, 4r) ⊃ ∆(α, r).

Second case: if ρ(α, a) ≥ r, then we can choose C5(r)d−4 points αj ∈ [α] such that any point
β ∈ [α] has the square of the Euclidean distance from at least one of the points αj less that

r

1− r
d4 .

This can be done, indeed, if we choose C5(r)d−4 imaginary units Ij ∈ S with the property that
any imaginary unit J ∈ S has the square of the Euclidean distance from at least one of the
points Ij less that r

1−rd
4, defining αj = a+ Ijb one has the desired property. Thus

min ρ(β, αj) < r ,

thanks to (31).
Notice that for any point γ = x+ Jy ∈ ∆(α, r) then for β = a+ Jb ∈ [α] there exists αj such

that

ρ(γ, αj) ≤ ρ(γ, β) + ρ(β, αj) < 2r

thus proving the thesis.
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(2) If d2 ≤ 1
2 , then the inequality holds trivially with c5(r) = 1

4 . So we can suppose d2 > 1
2 .

As remarked in the proof of Lemma 5.3 the center of each B(Jjy, r) spans an area |Γ|

|Γ| ≤ 2πd4r
1 + r

1− r2
,

while the area spanned by the center of ∆(Iy, r) is |T |

|T | = 4π
(1− r2)2

(1− r2(1− d2))2
(1− d2)

Estimating 1− d2 with 1
2 , we have that

|T | ≥ 2π
(1− r2)2(
1− 1

2r
2
)2 .

The number of disjoint balls contained in the ∆(Iy, r) is approximately the ratio between these
areas, so it is greater then c5(r)d−4, as claimed. �

We can now prove that a result similar to Theorem 4.7 using pseudohyperbolic balls for
characterizing Carleson measures does not hold.

Notice that, due to Lemma 5.3 and Lemma 5.2, the Lebesgue measure of balls and their
intersections with the CI plane are equivalent to d to some power. Hence a characterization of
Carleson measure should be of the form
µ is Carleson if and only if µ(B(α, r)) ≤ Cdβ holds for all r ∈ (0, 1) for some constant C

depending on r only, and for all α ∈ B,
for some β ∈ R. But, actually:

Theorem 5.5. Let µ be a finite, positive, Borel measure on B ⊂ H
(1) If µ is Carleson, then µ(B(α, r)) ≤ Cd4 holds for all r ∈ (0, 1) for some constant C

depending on r only, and for all α ∈ B.
(2) If µ(B(α, r)) ≤ Cd8 holds for all r ∈ (0, 1) for some constant C depending on r only,

and for all α ∈ B, then µ is Carleson.
(3) The above are the two best estimates, i.e. one cannot fill the gap and get an if and only

if condition using the µ-measure of pseudohyperbolic balls.

Proof. (1) Since B(α, r) ⊂ ∆(α, r), if µ is Carleson, the estimate on the µ-volume of ∆(α, r)
gives the desired estimate on the µ-volume of B(α, r).

(2) By Lemma 5.4, ∆(α, r) can be covered with C5(r)d−4 balls B(αj , 4r), where |αj | = |α|,
hence d(αj , ∂B) = d for all j. If µ(B(α, 4r)) ≤ Cd8, then µ(∆(α, r)) ≤ C5(r)Cd4, hence µ is
Carleson.

(3-1) Estimate (1) is the best possible. Suppose indeed that µ is the Lebesgue measure on
Ci, i ∈ S fixed. Then µ(∆(α, r)) = |∆i(α, r)| if α ∈ Ci, and is less then that if α 6∈ Ci. Hence µ
is Carleson, and µ(B(α, r) = |∆i(α, r)| ≥ c3(r)d4 if α ∈ Ci (thanks to Lemma 5.2).

(3-2) Estimate (2) is the best possible. Fix r. Let us fix a plane CI and a sequence of points
αk = Iyk ∈ BI (k ∈ N) such that yk < yk+1 and the domains ∆(αk, 2r) are pairwise disjoint.
This can easily be done defining the points Iyk by induction on k. Let us define the measure µ
on B such that

(i) suppµ =
⋃
k∈N ∆(αk, r);
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(ii) µ|∆(αk,r)
= d(αk,∂B)4−ε

η(∆(αk,r))
η.

By Theorem 4.7, for every ε > 0, µ is not a Carleson measure.
By Lemma 5.4, there exists a constant c5(r) such that for each k ∈ N there are at least

c5(r)d(αk, ∂B)−4 disjoint pseudohyperbolic balls of centers αjk = Jj,kyk, where Jj,k ∈ S, and
pseudohyperbolic radius r. For these balls∑

j

µ(B(αjk, r)) ≤ µ(∆(αk, r)) = d(αk, ∂B)4−ε

hence

µ(B(αjk, r)) ≤
1

c5(r)
d(αk, ∂B)8−ε .

Let now B(α, r) be any pseudohyperbolic ball of pseudohyperbolic radius r. Then it intersect
at most one of the domains ∆(αk, r), let us say ∆(α

k̃
, r). Arguing as before, this ball is one

of a family of at least c5(r)d(α, ∂B)−4 pseudohyperbolic balls with disjoint intersection with
∆(α

k̃
, r). For these balls ∑

j

µ(Bj) ≤ µ(∆(α
k̃
, r)) = d(α

k̃
, ∂B)4−ε

hence

µ(B(α, r)) ≤ 1

c5(r)
d(α

k̃
, ∂B)8−ε .

Since α
k̃
∈ B(α, 2r), by Lemma 5.1,

d(α
k̃
, ∂B) ≤ C1

1− 2r
d(α, ∂B) ,

hence

µ(B(α, r)) ≤ C6(r)d(α, ∂B)8−ε ,

for every α ∈ B. This show that the 8th power in (2) is the best possible.
�
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