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SELF-CONTRACTED CURVES HAVE FINITE LENGTH

EUGENE STEPANOV AND YANA TEPLITSKAYA

Abstract. A curve θ: I → E in a metric space E equipped with the distance d, where I ⊂ R

is a (possibly unbounded) interval, is called self-contracted, if for any triple of instances of
time {ti}

3
i=1 ⊂ I with t1 ≤ t2 ≤ t3 one has d(θ(t3), θ(t2)) ≤ d(θ(t3), θ(t1)). We prove that if

E is a finite-dimensional normed space with an arbitrary norm, the trace of θ is bounded,
then θ has finite length, i.e. is rectifiable, thus answering positively the question raised in [4].

1. Introduction

Let E be a metric space equipped with the distance d. A curve θ: I → E, where I ⊂ R is
an (possibly unbounded) interval, is called self-contracted, if for any triple of instances of time
{ti}3i=1 ⊂ I with t1 ≤ t2 ≤ t3 one has d(θ(t3), θ(t2)) ≤ d(θ(t3), θ(t1)). Of particular interest
are continuous self-contracted curves in a finite-dimensional space Rn equipped with some
norm. In [3] and [5] it has been shown that such curves arise as steepest decent curves for
convex and level set convex (sometimes called also quasi-convex) functions in the Euclidean
space. In [3] it has been proven that every self-contracted curve in a bounded subset of R2

(equipped with the usual Euclidean distance) necessarily has finite length, i.e. is rectifiable.
This result has been further extended to Rn with arbitrary n ≥ 1, again equipped with
Euclidean norm, in [1] (and, independently, in [5] for continuous self-contracted curves) and
to an arbitrary finite-dimensional Riemannian manifold in [2]. Note that the self-contracted
property is quite sensible to the change of the distance and even of the norm in Rn, namely,
it is easy to provide examples of curves self-contracted with respect to some norm and not
self-contracted with respect to an equivalent one: for instance, a curve moving along three
consecutive sides of the square [0, 1]2 (say, clockwise, from the origin to (0, 1), then to (1, 1)
and finally to (1, 0)) is self-contracted with respect to the maximum (i.e. ℓ∞2 ) norm in R2,
but not with respect to the Euclidean one. This raises the natural question whether it can
be extended to self-contracted curves in Rn equipped with an arbitrary norm. This question
has been posed in [4], and in the same paper a partial answer for uniformly convex smooth
(C2) norms has been given for the case n = 2. Here we give a positive answer for the case of
a generic norm in Rn, n ≥ 1, not necessarily smooth.

As opposed to [3, 1] (and to [4] which substantially extends the technique of [1]), where the
proofs are based on finite “continuous” analysis arguments fundamentally relying on [6], our
technique has some “discrete” flavor. Namely, we first provide an estimate on self-contracted
polygonal lines identified by the ordered set (A1, . . . , Ar) ∈ Er of their vertices (of course, the
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2 EUGENE STEPANOV AND YANA TEPLITSKAYA

use of the term “polygonal line” outside of a context of a linear vector space is an abuse of the
language). Namely, a vector of (A1, . . . , Ar) ∈ Er will be called self-contracted with respect
to the distance d (or with respect to the norm ‖ · ‖, if d is coming from some norm ‖ · ‖), if
d(Ak, Aj) ≤ d(Ak, Ai) whenever i ≤ j ≤ k. We show that if E is a finite-dimensional normed
space, then the total Euclidean length of the self-contracted polygonal line is estimated by the
Euclidean distance between its first and last vertex. This immediately proves the desired result
for self-contracted curves. The proof of the estimate of the length of self-contracted polygonal
lines is more or less discrete in nature and uses a specially tailored induction together with
some combinatorial type arguments on particular arrangements of sets of vertices.

2. Notation and preliminaries

For {A,B} ⊂ Rn we denote by (AB) the unique line defined by these points (of course,
when they are distinct), by [AB] the closed line segment with endpoints A and B, by |AB|
its Euclidean length. The notation | · | will always stand for the Euclidean norm in Rn, and
a · b will stand for the standard scalar product between a ∈ Rn and b ∈ Rn. For two vectors

{ν1, ν2} ⊂ Rn we denote by ̂(ν1, ν2) the angle between them, so that ̂(ν1, ν2) ∈ [0, π]. If
ℓ ⊂ Rn is a line and Π ⊂ Rn is a linear subspace of arbitrary positive dimension, we denote

by (̂ℓ,Π) the angle between them (i.e. the minimum angle between vectors belonging to ℓ and

Π respectively), so that (̂ℓ,Π) ∈ [0, π/2]. The angle at vertex B of a triangle with vertices A,
B, C will be denoted by ∠ABC. For a D ⊂ Rn we denote by ∂D its topological boundary and
by diamD its Euclidean diameter (i.e. the diameter with respect to the Euclidean distance).
For {a, b} ∈ R we write a ∨ b := max{a, b}.

The notation ν⊥ for a ν ∈ Rn, unless otherwise explicitly defined, will stand for the linear
subspace {v ∈ Rn : v·ν = 0}, and Π⊥ for a linear subspace Π ⊂ Rn will stand for its orthogonal
complement.

Fixed an ε > 0, we call a segment [AB] ε-horizontal with respect to the linear subspace

Π ⊂ Rn of arbitrary positive dimension, if ̂((AB),Π) ≤ ε, and ε-vertical with respect to this
subspace otherwise (we will abbreviate both notions to just horizontal or vertical respectively,
if both the subspace and ε are clear from the context). We use this notion in particular when
the subspace Π is one-dimensional and coincides with some axis xj of some chosen coordinate
system (the axis is seen as just a line, i.e. ignoring its direction). By pΠ we denote the
orthogonal projection onto Π.

If E is an arbitrary set, and (A1, . . . , Ar) ∈ Er is an arbitrary vector of points of E, then
a vector (Aj1 , . . . , Ajk) ∈ Ek with 1 ≤ j1 < j2 < . . . < jk ≤ r, will be called subvector of
(A1, . . . , Ar), denoted by (Aj1 , . . . , Ajk) ⊂ (A1, . . . , Ar). If necessary, we identify the vector
(A1, . . . , Ar) ∈ Er with the set {A1, . . . , Ar}, so that we write just (A1, . . . , Ar) ⊂ E. In case
E = Rn, we call the variation of (A1, . . . , Ar) ∈ Er (denoted by ℓ(A1, . . . , Ar)) the Euclidean
length of the the polygonal line A1 . . . Ar := ∪r−1

j=1[AjAj+1] i.e.

ℓ(A1, . . . , Ar) :=

r−1
∑

i=1

|AiAi+1|.

Further, for a linear subspace Π ⊂ Rn of arbitrary positive dimension we define the variation
of (A1, . . . , Ar) along Π by

ℓΠ(A1, . . . , Ar) := ℓ(pΠ(A1), . . . , pΠ(Ar)).
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For a curve θ : I → Rn, where I ⊂ R is an interval (not necessarily finite), we denote by ℓ(θ)
its parametric length defined by the usual formula

ℓ(θ) := sup
{

ℓ
(

{θ(tj)}mj=1

)

: {tj}mj=1 ⊂ I,m ∈ N
}

.

3. Main results

The following theorem is the first main result of this paper.

Theorem 3.1. Let Ai ∈ Rn, i = 1, . . . , r, and the vector (A1, . . . , Ar) is self-contracted with
respect to the norm ‖ · ‖, then

ℓ(A1, . . . , Ar) ≤ C|A1Ar|
for some C > 0 depending only on ‖ · ‖ and on the space dimension n.

An immediate consequence of the above result is the following theorem on self-contracted
curves giving the complete answer to the question posed in the Introduction.

Theorem 3.2. Let E be a finite-dimensional space equipped with the norm ‖ · ‖, and let
θ : I → E, where I ⊂ R is a (possibly unbounded) interval, be a self-contracted curve with
trace in a bounded set D ⊂ E. Then ℓ(θ) ≤ CdiamD for some C > 0 depending only on ‖ · ‖
and on the space dimension n.

Proof. Consider an arbitrary finite set {ti}ri=1 ⊂ I, ti ≤ ti+1. We have now that for Ai := θ(ti)
the vector (A1, . . . , Ar) is self-contracted in E. Thus

ℓ(A1, . . . , Ar) ≤ C|A1Ar| ≤ CdiamD

by Theorem 3.1, concluding the proof. �

Remark 3.3. The proofs of the above Theorems 3.1 and 3.2 never use essentially the symmetry
of the norm ‖ · ‖. If the norm is not symmetric (i.e. not necessarily satisfying the assumption
‖ − x‖ = ‖x‖ for all x ∈ E), with the distance (now not necessarily symmetric anymore)
defined still by d(x, y) := ‖y−x‖, then the geometric meaning of the self-contracted property
of the curve does not change with respect to the standard situation of a symmetric norm,
that is, for every triple of instances of time {ti}3i=1 ⊂ I with t1 ≤ t2 ≤ t3 and θ(t1) on the
boundary of a ball of the norm (now a generic, not necessarily symmetric bounded convex
absorbing set) centered at θ(t3) one has that θ(t2) cannot be strictly outside of the latter ball.
Then using Lemma A.2 one has to change its claim as described in Remark A.3. This would
change the constant 3/4 in the claim of Lemma 5.10 and hence also the explicit constants in
all the subsequent lemmata have to be substituted by constants dependent only on the norm
‖ ·‖, but all the respective results will remain true up to such modification of constants. Thus
both Theorem 3.1 and Theorem 3.2 are in fact true for possibly not symmetric norms.

Remark 3.4. It is important to note that not every self-contracted curve with bounded trace
in a finite-dimensional normed space is continuous. In fact, the easy example θ : [0, 1] → R

defined by θ(t) := 0 for t ∈ [0, 1/2) and θ(t) := 1 for t ∈ [1/2, 1] provides a discontinuous
self-contracted curve even in R.

The example below shows that no similar result can be expected in an infinite-dimensional
situation (even in an infinite-dimensional Hilbert space instead of the Euclidean one).
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Example 3.5. Let ℓ2 stand for the standard Hilbert space of square summable sequences
equipped with its usual norm ‖ · ‖2, {ek}∞k=1 standing for its usual orthonormal basis. Then
the curve θ : [0,+∞) → ℓ2 defined by

θ(t) :=

{

0, t ∈ [0, 1) ,
∑k−1

j=1
1
j ej , t ∈ [k − 1, k) , k ∈ N, k ≥ 2,

is self-contracted because

‖θ(k), θ(l)‖22 =

k−1
∑

j=l

1

j2
>

k−1
∑

j=m

1

j2
= ‖θ(k), θ(m)‖22

when l < m < k, {l,m, k} ⊂ N, and its trace belongs even to a compact subset of ℓ2 (the
Hilbert cube), but ℓ(θ) ≥∑∞

k=1 1/k = +∞. The same curve restricted to every finite interval
of time, say, [0, n], n ∈ N, provides an example of a self-contracted curve in a bounded subset
of the Euclidean space Rn, for which the constant C in Theorem 3.2 tends to infinity as
n → +∞. The same example can be also easily interpreted in the language of self-contracted
polygonal lines rather than curves. It is also an easy exercise to transform this example in
the one with continuous self-contracted curves.

It is worth providing also another simple though instructive example.

Example 3.6. Let L2(0, 1) stand for the standard Lebesgue space of square integrable functions
over (0, 1) equipped with its usual norm still denoted ‖ · ‖2 (there is obviously no confusion
with the previous example, though the notation for the norm is the same), and the curve
θ : [0, 1] → L2(0, 1) be defined by θ(t) := 1[0,t], the characteristic function of the interval

[0, t], t ∈ [0, 1]. It is obviously self-contracted because ‖θ(t) − θ(s)‖2 = |t − s|1/2, and the
same relationship shows that it is not rectifiable, though its image is a compact set (as a
continuous image of [0, 1]). Note that this is nothing but a standard construction of the
isometric embedding into L2(0, 1) of the “snowflake” space [0, 1] equipped with the distance

d(t, s) := |t− s|1/2.
The rest of the paper will be dedicated to the proof of Theorem 3.1, first in an easy

particular case and then in the general situation.

4. The heart of the proof: an easy case

Before presenting the quite lengthy and technical proof of Theorem 3.1 in its full generality,
we provide here for the readers’ convenience its extremely simple version for a particular
situation of the two-dimensional space R2 equipped with the maximum norm ‖(x1, x2)‖∞ :=
|x1| ∨ |x2|, so that its closed unit ball B is the square [−1, 1]2. This proof, though quite
immediate, represents the heart of our general construction, and hence hopefully simplifies
the reading of the general proof. We will further comment on how the general proof is obtained
from this easy particular situation.

Proof of Theorem 3.1, easy case. The ball B = [−1, 1]2 can be represented as the union of
N = 4 triangles {Pi}Ni=1, the vertices of each of the triangles Pi being the origin and two
neighboring vertices of the square [−1, 1]2. We assume the triangles to be intersecting each
other only at the origin (so they are neither open nor closed). By scaling we may assume
without loss of generality that Aj ∈ B + Ar for all j = 1, . . . , r. The rest of the proof is
divided then in three steps.
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Ar x1

x2

Pi

B+Ar

(a)

Ar x1

x2

Pi

B+Ar

(b)

Ar

x1

x2

Pi

B+Ar

(c)

Figure 4.1. (a) Proof of the easy case of Theorem 3.1 (n = 2, maximum
norm), Step 2; (b) the case n = 2, the unit ball is a convex polygon; (c) the
case n = 2, generic norm.

Step 1. We claim that

(4.1) ℓ(A1, . . . , Ar) ≤ C1

N
∑

i=1

ℓ((A1, . . . , Ar) ∩ (Pi +Ar)) + C2|A1Ar|

for some positive constants C1 and C2. In fact, consider an arbitrary j ∈ {1, . . . , r − 1}
such that Aj+1 ∈ Pi + Ar, but Aj 6∈ Pi + Ar for some i = 1, . . . , N . Then for every fixed
i ∈ {1, . . . , N} either

(i) j is the first integer in {1, . . . , r} such that Aj+1 ∈ Pi +Ar, i.e. {s ∈ {1, . . . , j} : As ∈
Pi + Ar} = ∅. In this case, since {Aj , Aj+1} ∈ λB + Ar with λ := ‖A1Ar‖ (because
(A1, . . . , Ar) is self-contracted), then

|AjAj+1| ≤
√
2‖AjAj+1‖ ≤ 2

√
2‖A1Ar‖ ≤ 2

√
2|A1Ar|.

For each i = 1, . . . , N except one (for which A1 ∈ Pi + Ar) there is clearly one and
only one such j and hence the sum of Euclidean lengths of all such line segments
|AjAj+1| through all Pi, i = 1, . . . , N , is estimated from above by C2|A1Ar|, with
C2 := (N − 1)2

√
2 = 6

√
2;

(ii) or there is an

s(j) := max{s ∈ {1, . . . , j} : As ∈ Pi +Ar},

and s(j) < j by the definition of s(·), hence

|AjAj+1| ≤
√
2‖AjAj+1‖ ≤

√
2‖As(j)Aj+1‖ ≤

√
2|As(j)Aj+1|.
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Then with C2 :=
√
2 one has

∑

j∈{1,...,r−1}

{Aj ,Aj+1}⊂Pi+Ar

|AjAj+1|+
∑

j∈{1,...,r−1}

as in (ii)

|AjAj+1|

≤ C2









∑

j∈{1,...,r−1}

{Aj ,Aj+1}⊂Pi+Ar

|AjAj+1|+
∑

j∈{1,...,r−1}

as in (ii)

|As(j)Aj+1|









= C2ℓ((A1, . . . , Ar) ∩ (Pi +Ar)).

Hence, from (i) and (ii), we get (4.1).
Step 2. Assume now that (A1, . . . , Ar) ⊂ Pi +Ar for some i = 1, . . . , N , and show that

(4.2) ℓ(A1, . . . , Ar) ≤ C|A1Ar|
for some universal constant C > 0. We consider to this aim the system of cartesian coordinates
with axes passing through Ar (considered then as the origin of the system), with the axis
x2 directed perpendicular to the side of Pi coinciding with a side of the square ∂B (see
Figure 4.1(a)), and the axis x1 parallel to the latter side. Then

(4.3) ℓ(A1, . . . , Ar) ≤
r−1
∑

j=1

(

|x1j+1 − x1j |+ |x2j+1 − x2j |
)

= ℓx1(A1, . . . , Ar) + ℓx2(A1, . . . , Ar),

where xlj := pxl(Aj), l = 1, 2, j = 1, . . . , r. But x2j+1 ≤ x2j for all j (because (A1, . . . , Ar) is

self-contracted and (A1, . . . , Ar) ⊂ Pi +Ar), so that

(4.4) ℓx2(A1, . . . , Ar) =

r−1
∑

j=1

|x2j+1 − x2j | = −
r−1
∑

j=1

(x2j+1 − x2j) = |x2r − x21|.

To estimate ℓx1(A1, . . . , Ar), observe that there is a subset (Aq1 , . . . , Aql) ⊂ (A1, . . . , Ar)
having the same ℓx1 but with (x1qj − x1qj+1

)(x1qj−1
− x1qj) < 0, i.e. the projection of (AqjAqj+1)

over x1 is directed oppositely to that of (Aqj−1Aqj ), for all j = 2, . . . , l − 1. The respective
set of indices Λ := {q1, . . . , ql} is formed by downward induction, namely, setting ql := r,
ql−1 := r − 1 and then for each j having determined qj and qj+1, finding the maximum
index s < j such that (x1qj − x1qj+1

)(x1s − x1qj ) < 0 and setting qj−1 := s. Since clearly

ℓx1(Aj−1, Aj , Aj+1) = ℓx1(Aj−1, Aj+1) when the projections of (Aj−1Aj) and of (AjAj+1)
over x1 have the same direction, then

ℓx1(Aq1 , . . . , Aql) = ℓx1(A1, . . . , Ar),

and therefore we may assume without loss of generality (up to renaming the indices) that
the original vector (A1, . . . , Ar) has the property that the projection of (AjAj+1) over x1 is
directed oppositely to that of Aj−1Aj , for all j = 2, . . . , r − 1. Now, we note that

|x1j+1 − x1j−1| ∨ |x2j+1 − x2j−1| = ‖Aj−1Aj+1‖ ≥ ‖AjAj+1‖ ≥ |x1j+1 − x1j |
implies that

(i) either |x1j+1 − x1j | ≤ |x2j+1 − x2j−1| (i.e. the segment (Aj−1Aj+1) is “vertical” in the

sense that its maximum norm is given by the length of its projection onto x2),
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(ii) or |x1j+1−x1j | ≤ |x1j+1−x1j−1| (i.e. the segment (Aj−1Aj+1) is “horizontal” in the sense

that its maximum norm is given by the length of its projection onto x1).

In case (ii) x1j+1 is closer to x1j than to x1j−1 but lies on the same side of x1j as x1j−1, so that

|x1j+1 − x1j | ≤
1

2
|x1j − x1j−1|,

and therefore in either of the cases

|x1j+1 − x1j | ≤
1

2
|x1j − x1j−1|+ |x2j+1 − x2j−1|.

Thus, by induction,

|x1j+1 − x1j | ≤
|x12 − x11|
2j−1

+
1

2

j+1
∑

k=3

|x2k − x2k−2|
2j−k

,

and therefore,

(4.5)

ℓx1(A1, . . . , Ar) =
r−1
∑

j=1

|x1j+1 − x1j | ≤ |x12 − x11|
r−1
∑

j=1

1

2j−1
+

1

2

r−1
∑

j=1

j+1
∑

k=3

|x2k − x2k−2|
2j−k

= |x12 − x11|
r−1
∑

j=1

1

2j−1
+

r
∑

k=3

|x2k − x2k−2|
r−1
∑

j=k−1

1

2j−k+1

≤ 2|x12 − x11|+ 2

r
∑

k=3

|x2k − x2k−2| ≤ 2|x12 − x11|+ 2ℓx2(A1, . . . , Ar)

≤ 2|x12 − x11|+ 2|x21 − x2r | by (4.4)

≤ 2|A1A2|+ 2|A1Ar| ≤ 4
√
2|A1Ar|+ 2|A1Ar| since {A1, A2} ⊂ Ar + ‖A1Ar‖B.

Plugging (4.5) and (4.4) into (4.3), we get (4.2) as claimed.
Step 3. Denoting now (Aj1

i
, . . . , A

j
m(i)
i

) := (A1, . . . , Ar) ∩ (Pi + Ar) for each i = 1, . . . , N ,

where jli ∈ {1, . . . , r} (and, clearly, j
m(i)
i = r), one has applying the result of Step 2 (with j1i

instead of 1 and j
m(i)
i instead of r) the estimate

ℓ((A1, . . . , Ar) ∩ (Pi +Ar)) ≤ C|Aj1i
A

j
m(i)
i

| = C|Aj1i
Ar| ≤ C

√
2|A1Ar|,

and hence applying (4.1), we conclude the proof. �

From an easy particular case to the general situation. The above argument captures
all the essential features of the complete proof: namely, the division of the unit ball B of the
norm in a finite number of “cone-like” subsets Pi, the reduction of the estimate of the variation
of (A1, . . . , Ar) to the estimates of variations of its subvectors in each Pi (i.e. Step 1 of the
above proof, cfr. Step 1 of the proof of the key Lemma 6.13 in the sequel), and the separate
estimate of the variation of a polygonal line inside each Pi along each of the appropriately
chosen axes with a separate consideration of “vertical” and “horizontal” line segments (i.e.
Step 2 of the above proof). However, there are several substantial difficulties arising on this
way, which we list below.
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(i) The first difficulty comes already when trying to generalize the above argument to the
case n = 2 and the unit ball B of the norm ‖ · ‖ an arbitrary convex polygon rather
than a square. The division of B into triangles Pi and the choice of the axes for each
Pi is natural and clearly the same as in our simple model case of the maximum norm,
see Figure 4.1(b), so that the self-contracted polygonal line with vertices inside Pi

with this choice never goes upwards in the direction of x2. However, the argument of
Step 2 of the above model proof becomes much more involved because the estimates
for “horizontal” and “vertical” parts of the polygonal line are not at all that simple
as in the case of the maximum norm.

(ii) The next difficulty comes with the case of a generic norm ‖ · ‖ (i.e. with the unit ball
not necessarily a polygon) in R2 (i.e. still n = 2). In this case it is only possible to
choose the division of the unit ball B of the norm ‖ · ‖ into the sets Pi such that with
some natural choice of the direction x2 for each Pi the self-contracted polygonal line
with vertices inside Pi might go upwards in the direction of x2 but “not too much”,
see Figure 4.1(c). This naturally leads to quantitative notions of the “horizontality”
and “verticality” for line segments.

(iii) However, the major difficulty comes when trying to adapt these arguments to the
generic space dimension n. In fact, consider even the simplest case, say, of the max-
imum norm ‖ · ‖ in R3, with the unit ball B of the norm being the cube [−1, 1]3.
The sets Pi then are (quite similarly to the case of a maximum norm in R2) the six
pyramids with one of the vertices in the origin, the bases being the faces of the cube
(which in a sense justifies the notation Pi for them). With the natural choice of coor-
dinates for each of such pyramids (x3 perpendicular to the base) the self-contracted
polygonal line with vertices inside the pyramid can only go downwards in the direction
of x3, but has a lot of freedom in the other two directions. Hence, intuitively, one has
to consider separately the “horizontal” parts of this polygonal line making separate
estimates for their subparts belonging again to different pyramids (of course, related
to the pyramid Pi originally considered), with vertices shifted away from the origin.
This leads to the notion of admissible ordered sets of pyramids (see Definition 5.6),
each such set producing a natural system of not necessarily orthogonal coordinates,
and to a technically involved inductive argument for the generic space dimension.
Very roughly speaking, in a generic space dimension n, in each of the sets Pi we will
calculate separately the variation of the “vertical” part of the self-contracted vector,
which is easy by monotonicity (or “almost monotonicity” in the case of a generic norm,
when Pi is no more a pyramid) of xn coordinates of the vertices, the axis xn being
determined by the set Pi, and then, by induction, the variation of its “horizontal”
part. When calculating the latter, we will arrange this part in subparts belonging to
different sets Pj, each one determining the respective axis xn−1, and estimate again
separately the variation of its “vertical” and “horizontal” parts (now with respect to
xn−1), proceeding by backward induction.

Note that as explained above, in principle one can avoid using induction for n = 2;
however, the general proof we provide uses induction even in this relatively simple
case. Last but not least, it is worth mentioning that for a generic norm ‖ · ‖ the sets
Pi are no more pyramids and may have a quite complicated structure (although this
would not affect the proof).
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5. Preliminary constructions

5.1. Partition of a convex body. For a convex set D ⊂ Rn we say that νx ∈ Rn is a vector
of external normal to D at x ∈ ∂D, if there is a support hyperplane Π to D at x orthogonal
to νx and νx is directed towards the open half-space bounded by Π and not containing D.
Clearly, an x ∈ ∂D may have many external normal vectors, unless ∂D is smooth.

We will need the following construction.

Proposition 5.1. Let D ⊂ Rn be a convex set. Then for every δ > 0 there is a cover of ∂D
by a finite number of sets {Ti}Ni=1 (with some N = N(δ) ∈ N) with the following property:
for every i ∈ {1, . . . , N} there is a vector νi such that for every x ∈ Ti there is a vector of

external normal νx to D at x with ̂(νx, νi) < δ.

Proof. Given a δ > 0, we take a finite cover of Sn−1 as in the statement being proven, i.e.
find {T̃i}Ni=1 (with some N = N(δ) ∈ N), ∪N

i=1T̃i = Sn−1 such that for every i ∈ {1, . . . , N}
there is a vector νi with the property that for every x ∈ T̃i the unique vector of external unit

normal νx to Sn−1 at x satisfies ̂(νx, νi) < δ. It suffices to define now Ti to be the set of all
x ∈ ∂D that admit a unit vector of external normal νx to D coinciding with some vector of
external unit normal νy to Sn−1 at some y ∈ T̃i. �

Remark 5.2. Although the sets Ti mentioned in the above Proposition 5.1 may be overlapping,
we may easily make them disjoint by substituting Ti with Ti \ ∪i−1

j=1Tj.

Applying the above Proposition 5.1 with Remark 5.2 to the closed unit ball B of ‖ ·‖, given
a δ > 0, we find an N = N(δ) ∈ N and a finite family of disjoint sets {Ti}Ni=1 and vectors
{νi}Ni=1 such that ∪iTi = ∂B and for every i ∈ {1, . . . , N} and every x ∈ Ti there is a vector

of external unit normal νx to D at x with ̂(νx, νi) < δ. Define then Pi := ∪t∈[0,1]tTi, and note
that now by construction one has Pi ∩ Pj = {0} for i 6= j. We will further frequently use the
following fact.

Lemma 5.3. Let (A1, . . . , Ar) ⊂ Pi + Ar for some i ∈ {1, . . . , N} be self-contracted with

respect to the norm ‖ · ‖. Then ̂((AjAj+1), (νi)⊥) > δ, j ∈ {1, . . . , r − 1} implies

(Aj −Aj+1) · νi > 0.

Proof. The result follows from Lemma 5.4 below applied with D := Ar + λB, T := Ar + λTi,
where λ := ‖Aj − Ar‖, Aj in place of A1 and Aj+1 in place of A2, once we observe that
Aj+1 ∈ D by self-contracted requirement on (A1, . . . , Ar). �

The following immediate geometric fact has been used in the above proof.

Lemma 5.4. Let D ⊂ Rn be a convex set, δ > 0, T ⊂ ∂D, ν ∈ Rn be such that for every

x ∈ T there is a vector of external normal νx to D at x with (̂νx, ν) < δ. If A1 ∈ T, A2 ∈ D

and ̂((A1A2), ν⊥) > δ, then (A1 −A2) · ν > 0.

Proof. If B ∈ Rn satisfying ̂((A1B), ν⊥) > δ is such that (B−A1) · ν ≥ 0, then ̂(B −A1, ν) <
π/2− δ, so that

̂(B −A1, νA1) ≤ ̂(B −A1, ν) + ̂(ν, νA1) <
π

2
− δ + δ =

π

2
.
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A1 + ν⊥
A1

D

A1

ν
<δ

<δ

A1 + ν⊥ B

νA1

T

Figure 5.1. Construction of the proof of Lemma 5.4.

Hence B belongs to the open half-space bounded by the hyperplane A1 + ν⊥A1
and not con-

taining D (see Figure 5.1). Thus, it is impossible that (A2 − A1) · ν ≥ 0 because A2 ∈ D,
which concludes the proof. �

For a linear subspace Π ⊂ Rn of arbitrary dimension, and an ε ≥ 0 we define

Vε(Π) := {z ∈ R
n : ̂((0, z),Π) ≤ ε} ∪ {0},

We also need the following statement.

Lemma 5.5. Let D ⊂ Rn be a bounded convex set with nonempty interior intD, and 0 ∈ intD.
Then there is an ε0 > 0 and a ξ̄ ∈ (0, π/2) (depending only on D) such that for every linear
subspace Π ⊂ Rn of arbitrary dimension, and every x ∈ Vε0(Π) ∩ ∂D one has that every

external normal νx to D at x satisfies (̂νx,Π) < ξ̄.

Proof. If the claim is false, then there is a sequence of linear subspaces {Πk}, and of points

{xk} ⊂ ∂D such that limk
̂(νxk

,Πk) = π/2. Up to passing to subsequences (not relabeled),
we may assume that Πk → Π in the sense of Hausdorff (for some linear subspace Π ⊂ Rn),
xk → x ∈ ∂D, νxk

→ ν (for some ν ∈ Rn) and support hyperplanes xk + (νxk
)⊥ to D at xk

orthogonal to νxk
converge to x + ν⊥ which is necessarily a support hyperplane to D at x

(as limit of support hyperplanes) as k → ∞. Since then (̂ν,Π) = π/2, one has Π ⊂ ν⊥, and
hence 0 ∈ ν⊥, which means 0 ∈ ∂D, contradicting the assumption 0 ∈ intD. �

We apply the above Lemma 5.5 to D := B (the closed unit ball of ‖ · ‖), and find an ε0 > 0
and a ξ̄ depending only on B (hence on ‖ · ‖) such that for every linear subspace Π ⊂ Rn of
arbitrary dimension and every x ∈ Vε0(Π) ∩ ∂D one has that every external normal νx to B

at x satisfies (̂νx,Π) < ξ̄ < π/2. Hence denoting

Aε(Π) := {i ∈ {1, . . . , N} : Ti ∩ Vε(Π) 6= ∅},

we have that (̂νi,Π) < ξ̄ + δ for all i ∈ Aε0(Π). Thus there is a δ̄ > 0 depending only on ξ̄

(hence only on ‖ · ‖) such that (̂νi,Π) < ξ for all i ∈ Aε0(Π) and for some ξ ∈ (0, π/2), which
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still depends only on ‖ ·‖, when δ < δ̄ (one may take, say, ξ := ξ̄/2+π/4 and δ̄ := π/4− ξ̄/2).
The following notion will be at the heart of our inductive construction.

Definition 5.6. We will call the (ordered) (n − i + 1)-tuple of sets (Pαi
, . . . ,Pαn), with

αj ∈ {1, . . . , N}, j = i, . . . , n, i ∈ {1, . . . , n} admissible, if for all j = i+ 1, . . . , n one has

αj−1 ∈ Aε0(Π
j−1), where Πj−1 := (span {ναk}nk=j)

⊥,

or, equivalently, Tαj−1 ∩ Vε0(Π
j−1) 6= ∅, that is,

(5.1) ̂(ναj−1 ,Πj−1) < ξ for all j = i+ 1, . . . , n.

In case i = n the ordered (n − i + 1)-tuple (Pαi
, . . . ,Pαn) reduces to a singleton which is by

definition always considered admissible.

Each admissible ordered n-tuple of sets (Pα1 , . . . ,Pαn) will determine in a natural way a
(not necessarily orthogonal) coordinate system (different for different admissible n-tuples): in
fact, the axes xj , j = 2, . . . , n, will be directed along vectors ναj determined by the sets Pαj

,

while the axis x1 will be chosen orthogonal to all xj with j = 2, . . . , n. The idea of the proof of
Theorem 3.1 is then as follows: the whole vector (A1, . . . , Ar) will be appropriately arranged
in subvectors naturally corresponding to some admissible ordered n-tuples (Pα1 , . . . ,Pαn) so
that the total variation of each of subvectors could be evaluated in a coordinate system
determined by the respective n-tuple, and the total variation of the whole vector would then
be estimated by the sum of variations of the chosen subvectors.

Finally, we will need the following simple geometric lemma.

Lemma 5.7. Let Π ⊂ Rn be a k-dimensional linear subspace, {νi}ki=1 ⊂ Π such that

(5.2)
̂

(

xi,
(

span{νj}kj=i+1

)⊥
)

≤ ζ, i = 1, . . . , k − 1

for some ζ ∈ (0, π/2), where xi := span{νi}, i = 1, . . . , k. Then there is a constant C =
Ck(ζ) > 0 such that for every A ∈ Rn one has

|pΠ(A)| ≤ C

k
∑

i=1

|pxi(A)|.

Proof. Note first that according to the condition (5.2) on {νj}, these vectors are linearly

independent and hence Π = span {νi}ki=1. One further notes that it is enough to prove the
statement for A ∈ Π, which in this case reduces to

(5.3) |A| ≤ Ck(ζ)

k
∑

i=1

|pxi(A)|.

In fact then for an arbitrary A ∈ Rn one has the estimate

|pΠ(A)| ≤ Ck(ζ)
k
∑

i=1

|pxi(pΠ(A))| ≤ Ck(ζ)
k
∑

i=1

|pxi(A)|,

the latter inequality being valid because |pxi(pΠ(A))| = |pxi(A)|.
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We therefore prove (5.3) for A ∈ Π. For this purpose we use the (finite) induction on k.
The statement is trivial for k = 1 (with C1(ζ) := 1). Suppose it is true for k = m. To prove
it for k = m+ 1, for an arbitrary linear subspace Π ⊂ Rn of dimension m+ 1 we denote

Πm :=
(

span {νj}m+1
j=2

)⊥
∩Π,

Π⊥
m := span {νj}m+1

j=2 .

Note that for A ∈ Π one has

(5.4)
px1(A) = px1(pΠm(A) + pΠ⊥

m
(A)) = px1(pΠm(A)) + px1(pΠ⊥

m
(A))

= pΠm(A) cos
̂(x1,Πm) + pΠ⊥

m
(A) sin ̂(x1,Πm),

and thus

|A| ≤ |pΠm(A)| + |pΠ⊥
m
(A)|

=
1

cos ̂(x1,Πm)

(

|px1(A)| − |pΠ⊥
m
(A)| sin ̂(x1,Πm)

)

+ |pΠ⊥
m
(A)| by (5.4)

≤
(

1 + tan ̂(x1,Πm) +
1

cos ̂(x1,Πm)

)

(

|px1(A)|+ |pΠ⊥
m
(A)|

)

≤
(

1 + tan ζ +
1

cos ζ

)

(

|px1(A)| + |pΠ⊥
m
(A)|

)

because ̂(x1,Πm) ≤ ζ

≤
(

1 + tan ζ +
1

cos ζ

)

(

|px1(A)|+ Cm(ζ)
k+1
∑

i=2

|pxi(A)|
)

by inductive assumption,

which implies the claim with Cm+1(ζ) :=
(

1 + tan ζ + 1
cos ζ

)

(Cm(ζ) ∨ 1). �

From now on we denote

(5.5) C(ζ) := max
k∈{1,...,n}

Ck(ζ),

where Ck(ζ) > 0 is defined by Lemma 5.7 (in fact, we may clearly always take Ck(ζ) non-
decreasing with k, in which case C(ζ) = Cn(ζ)). Clearly, for a fixed ζ the constant C(ζ)
depends only on the space dimension n.

5.2. Preliminary lemmata on self-contracted polygonal lines. In the sequel we will
extensively use without any further reference the following immediate observations.

Remark 5.8. If (A1, . . . , Ar) is self-contracted, then so is any its subvector (Aj1 , . . . , Ajk).

Remark 5.9. If (A1, . . . , Ar) is self-contracted, then

|AjAm| ≤ C|A1Ar|
for all (j,m) ⊂ {1, . . . , r} and for some C > 0 depending only on ‖ · ‖. In fact, the self-
contracted property of (A1, . . . , Ar) implies {Aj , Am} ⊂ Ar + λB, where B is the closed unit
ball of ‖ · ‖ and λ = |A1Ar|, so that |AjAm| ≤ λdiamB, hence one may take C := diamB.

We will also need the following lemmata.
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Q
O

α

P

B

∂B

O

Qν Rν Πν

Pν

(A) (B)

Figure 5.2. Constructions in the proof of Lemma 5.10. (A): Definition of
∆(α). (B): Proof of ∆(α) > 0.

Lemma 5.10. There is a constant ε1 ∈ (0, π/2) depending only on the norm ‖ · ‖ such that
when the vector (A1, A2, A3) is self-contracted with respect to the norm ‖ · ‖, ∠A1A2A3 ≤ 2ε1,
then |A2A3| ≤ 3/4|A1A2|.
Proof. Let B as usual stand for the closed unit ball of the norm ‖ · ‖. By Lemma 5.5 the
minimum over P ∈ ∂B angle between (OP ) and any support hyperplane to B at P ∈ ∂B, is
at least π/2− ξ̄ > 0. For an arbitrary α ∈ (0, π/2 − ξ̄) denote

∆(α) := inf{|PQ| : {P,Q} ⊂ ∂B, P 6= Q,∠OPQ ≤ α},
see Figure 5.2(A). We have that ∆(α) > 0. In fact, otherwise there is a sequence {Pν , Qν}ν ⊂
∂B, Pν 6= Qν , limν Pν = limν Qν = P ⊂ ∂B, ∠OPνQν ≤ α. Choose an arbitrary support
hyperplane Πν to B at Qν . Without loss of generality we may assume the existence of a limit
limν Πν = Π, and thus Π is a support hyperplane to B at P . Denoting Rν := Πν ∩ (OPν), we
get

̂((OP ),Π) = lim
ν

̂((OPν),Πν) ≤ lim
ν

∠ORνQν

≤ lim
ν

∠OPνQν because Pν ∈ [ORν ],

≤ α,

see Figure 5.2(B), which is impossible for α ∈ (0, π/2 − ξ̄), because ̂((OP ),Π) ≥ π/2 − ξ̄.
Consider the set D3 := {z ∈ Rn : ‖A2 − z‖ ≤ ‖A1 − z‖} (see Figure 5.3) and observe that

{A2, A3} ⊂ D3. By Lemma A.2 there is an ε̄ > 0 such that

(5.6) |A2Cα| ≤ 3/4|A1A2| when ∠A1A2Cα ≤ 2ε̄, Cα ∈ M(A1, A2),

whereM(A1, A2) stands for the mediatrix of the segment [A1A2] (i.e. the set of points equidis-
tant from the endpoints of the segment). Fix an arbitrary α ∈ (0, π/2−ξ̄) and let ε1 := ε̄∧α/2,
so that ∆(2ε1) ≥ ∆(α) > 0 by definition of ∆(·). We can find an r ≥ ‖A2 − A3‖ such that
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r∆(2ε1) > |A1A2|, thus for every {P,Q} ⊂ ∂(rB + C), C ∈ Rn, P 6= Q, ∠CPQ ≤ 2ε1 one
has |PQ| > |A1A2|. Suppose that ∠A1A2A3 ≤ 2ε1. Consider the point C ∈ [A2A3) with
‖A2 − C‖ = r. One has A2 ∈ ∂(rB + C). Thus if Q ∈ (A1A2) ∩ ∂(rB + C), Q 6= A2 and
is on the line (A1A2) on the same side of A2 as A1, then |A2Q| > |A1A2|, which implies
A1 ∈ rB + C, i.e. ‖A1 − C‖ < r = ‖A2 − C‖, or, in other words, C ∈ Dc

3. Thus there is a
point C ′ ∈ [A3, C] such that C ′ ∈ M(A1, A2), see Figure 5.3. Therefore,

|A2A3| ≤ |A2C
′| ≤ 3/4|A1A2|,

the last inequality being due to (5.6). �

M(A1, A2)

C

C′

A1 A3

A2

Q

D3

Figure 5.3. Proof of the claim of Lemma 5.10.

Corollary 5.11. Assume that the vector (A1, . . . , Ar) is self-contracted with respect to the
norm ‖ · ‖ and has alternating directions along some axis x = span{ν} for some ν ∈ Rn, i.e.
the finite sequence of numbers {(Ak+1 − Ak) · ν}r−1

k=1 has alternating signs. If each segment
[AkAk+1], k = 1, . . . , r−1, is ε1-horizontal with respect to x, where ε1 > 0 is as in Lemma 5.10,
then

ℓ(A1, . . . , Ar) ≤ 4|A1A2|.(5.7)

Proof. By triangle inequality for ̂((Ak−1Ak), x) and ̂((AkAk+1), x) we get ∠Ak−1AkAk+1 ≤
2ε1. Hence applying Lemma 5.10 to each consecutive triple (Ak−1, Ak, Ak+1) yields

|AkAk+1| ≤ 3/4|Ak−1Ak|, k = 2, . . . , r − 1.

Thus,

ℓ(A1, . . . , Ar) =

r−1
∑

k=1

|AkAk+1| ≤ |A1A2|
r−1
∑

k=1

(

3

4

)k−1

≤ 4|A1A2|

proving (5.7). �

6. Inductive construction

From now on we consider the constants ε0 > 0 defined by Lemma 5.5 and ε1 > 0 defined
by Lemma 5.10. Let also δ̄ and ξ be as defined in Section 5.1, the constant C(ξ) be defined
by (5.5) and set

δ0 := δ̄ ∧ arctan
sin ε0

8(n − 1)C(ξ)
∧ arctan

(

1

8(n− 1)(3 cot ε1 + 8/ sin ε1)C(ξ)

)

.
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The proof of Theorem 3.1 will be based on the following assertion.

Proposition 6.1. Assume that δ ∈ (0, δ0). Then there exists a constant C > 0 depending
only on ‖ · ‖ and on δ such that whenever the vector (A1, . . . , Ar) ⊂ Rn is self-contracted with
respect to the norm ‖ · ‖ and (A1, . . . , Ar) ⊂ Pαn +Ar for some αn ∈ {1, . . . , N}, then

(6.1) ℓ(A1, . . . , Ar) ≤ C|A1Ar|,

with C > 0 depending only on ‖ · ‖, n, δ and ξ.

Remark 6.2. Note that both the self-contracted property and (6.1) are stable under scalings
and translations.

Taking for the moment this result for granted, we may easily prove Theorem 3.1.

Proof of Theorem 3.1. Up to scaling we may assume that the closed unit ball B of the norm
‖ · ‖ in Rn satisfies minx∈∂B |x| ≥ 1. We identify now Rn with the subset Rn × {0} of Rn+1

and write every element x ∈ Rn+1 as a pair x̃ = (x′, xn+1), x
′ ∈ Rn, xn+1 ∈ R, so that every

element of x ∈ Rn is identified with some (x, 0) ⊂ Rn+1. Equip Rn × [0, 1] with the norm

defined so that its closed unit ball be B̃ := B × [−1, 1]. Define the decomposition of this

closed unit ball B̃ as follows. If the family of sets {Tj}Nj=1 is the disjoint cover of ∂B ⊂ Rn

defined by Proposition 5.1, we define the disjoint cover of ∂B̃ by the family consisting of sets
T̃j := Tj × (−1, 1), j = 1, . . . , N , and two additional sets T̃N+1 := B × {1} and T̃N+2 :=
B × {−1}. Clearly, this cover satisfies the property defined by Proposition 5.1. We set then

P̃i := ∪t∈[0,1]tTi. Now we consider (A1, . . . , Ar) as a subset of Rn+1. Recalling Remark 6.2,
without loss of generality we may scale all Aj so as to have |A1Ar| = 1 and then shift them by a
fixed vector so as to have Ar = (0, 1) and all Aj belong to the hyperplane {xn+1 = 1}. Clearly,
the vector (A1, . . . , Ar, 0) is still self-contracted with respect to the introduced norm in Rn+1

and (A1, . . . , Ar, 0) ⊂ P̃N+1 by construction. Applying Proposition 6.1 with (A1, . . . , Ar, 0)
instead of (A1, . . . , Ar), R

n+1 (with the introduced norm) instead of Rn (with the original

norm ‖ · ‖), n+ 1 instead of n, P̃j instead of Pj and αn+1 := N + 1, we get

ℓ(A1, . . . , Ar) ≤ ℓ(A1, . . . , Ar, 0) ≤ C|A1| ≤ C
√
2 = C

√
2|A1Ar|

with C > 0 as claimed. �

The proof of Proposition 6.1 is the immediate application of the following inductive state-
ment with i := n.

Proposition 6.3. Assume that δ ∈ (0, δ0). Then for every i ∈ {1, . . . , n} there exists a
constant Ci > 0 depending only on ‖ · ‖, n, δ and ξ such that whenever (n − i + 1)-tuple
(Pαi

, . . . ,Pαn) is admissible, the vector (Aj)
r+n−i
j=1 ⊂ Rn is self-contracted with respect to the

norm ‖ · ‖ and (A1, . . . , Ar) ⊂ Pαj
+Ar+n−j for all j = i, . . . , n, then

ℓ(A1, . . . , Ar) ≤ Ci|A1Ar|.

The proof of the above Proposition 6.3 is just a (finite) induction on i ∈ {1, . . . , n} with the
base of induction given by Lemma 6.4 and the inductive step given by Lemma 6.13 provided
in the sequel.



16 EUGENE STEPANOV AND YANA TEPLITSKAYA

6.1. Base of induction. We prove the following statement that will serve as a base of
induction.

Lemma 6.4. Let

δ ∈
(

0, δ̄ ∧ arctan

(

1

8(n− 1)(3 cot ε1 + 8/ sin ε1)C(ξ)

))

,

where ε1 > 0 is defined by Lemma 5.10 (this is true in particular when δ ∈ (0, δ0)), and the
n-tuple (Pα1 , . . . ,Pαn) with αj ∈ {1, . . . , N}, j = 1, . . . , n, be admissible. Assume that the
vector (A1, . . . , Ar, Ar+1, . . . Ar+n−1) ⊂ Rn is self-contracted with respect to the norm ‖·‖ and
(A1, . . . , Ar) ⊂ Pαj

+Ar+n−j for all j = 1, . . . , n. Then

(6.2) ℓ(A1, . . . , Ar) ≤ C1|A1Ar|

for some constant C1 > 0 depending only on the norm ‖ · ‖, n, δ and ξ.

The rest of this section will be dedicated to the proof of the above Lemma 6.4. To this aim
we consider the coordinate system with the origin in Ar and axes xj directed along vectors ναj

determined by the sets Pαj
with αj ∈ {1, . . . , N}, j = 2, . . . , n, and x1 := (span {ναj}nj=2)

⊥

(with arbitrarily chosen direction). For brevity we denote Aj
i := pxj(Ai).

6.1.1. Common lemmata. We will need a couple of assertions that will serve both for the base
of induction and for the inductive step.

Lemma 6.5. Assume that δ ∈ (0, δ̄), and that for some i ∈ {2, . . . , n} the (n − i + 2)-tuple
of sets (Pαi−1 , . . . ,Pαn) is admissible. Then for every vector (A1, . . . , Ar) one has

ℓ(Πi−1)⊥(A1, . . . , Ar) ≤ C(ξ)
n
∑

j=i

ℓxj
(A1, . . . , Ar),

where, as usual, xj = span {ναj}, j = i, . . . , n, and Πi−1 = (span {ναj}nj=i)
⊥.

Proof. Applying Lemma 5.7 with Π := (Πi−1)⊥, k := n − i + 1, νj := ναj , j = i, . . . , n and
ζ := ξ (the conditions of Lemma 5.7 are satisfied in view of (5.1), recalling that δ < δ̄), we
get

|p(Πi−1)⊥(A)| ≤ C(ξ)

n
∑

j=i

|pxj (A)|

for every A ∈ Rn, and plugging in the latter inequality A := Am+1 − Am, m = 1, . . . , r − 1,
and summing over such m, we get the claim. �

Lemma 6.6. Let (A1, . . . , Ar) be such that for some ν ∈ Rn, denoting by xk := (Ak −Ar) ·ν,
one has xk < xk−1 whenever ̂((Ak−1Ak), ν⊥) > δ, Then

(6.3) ℓx(A1, . . . , Ar) ≤ |A1Ar|+ 2ℓx⊥(A1, . . . , Ar) tan δ,

where x = span {ν}.
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Proof. For j ∈ {2, . . . , n} we have

x1 − xr = −
r
∑

k=2

(xk − xk−1) = −
∑

k∈{2,...,r},xk>xk−1

|xk − xk−1|+
∑

k∈{2,...,r},xk<xk−1

|xk − xk−1|

= −ℓx(A1, . . . , Ar) + 2
∑

k∈{2,...,r},xk>xk−1

|xk − xk−1|,

so that

ℓx(A1, . . . , Ar) ≤ |xr − x1|+ 2
∑

k∈{2,...,r},xk>xk−1

|xk − xk−1|

≤ |xr − x1|+ 2
∑

k∈{2,...,r},xk>xk−1

|px⊥(Ak)− px⊥(Ak−1)| tan δ.

Thus,

ℓx(A1, . . . , Ar) ≤ |xr − x1|+ 2ℓx⊥(A1, . . . , Ar) tan δ

≤ |A1Ar|+ 2ℓx⊥(A1, . . . , Ar) tan δ

proving the claim. �

We will also need the following easy calculation.

Lemma 6.7. If for some i ∈ {1, . . . , n} one has

(6.4) Lj ≤ L0 + C
n
∑

k=i

Lk, j = i, . . . , n,

with some C ∈ (0, (n − i + 1)−1/2), then
∑n

j=iLj ≤ 2(n − i + 1)L0 and Lj ≤ 2L0 for all
j = i, . . . , n.

Proof. Summing (6.4) over j = i, . . . , n, we obtain
n
∑

j=i

Lj ≤ (n− i+ 1)L0 + (n− i+ 1)C

n
∑

j=i

Lj,

so that in view of (n− i+ 1)C ≤ 1/2 one has
n
∑

j=i

Lj ≤ 2(n − i+ 1)L0,

and hence the statement is proven by plugging the latter relationship into (6.4). �

6.1.2. Estimate of the variation of (A1, . . . , Ar) along each xj, j = 2, . . . , n. .

Lemma 6.8. Assume that

(6.5) δ ∈
(

0, δ̄ ∧ arctan
1

4(n− 1)C(ξ)

)

(this is true in particular when δ is as in Lemma 6.4), the n-tuple (Pα1 , . . . ,Pαn) with αj ∈
{1, . . . , N}, j = 1, . . . , n, and the vector (A1, . . . , Ar, Ar+1, . . . Ar+n−1) ⊂ Rn satisfy conditions
of Lemma 6.4. Then one has

(6.6) ℓxj(A1, . . . , Ar) ≤ 2|A1Ar|+ 4ℓx1(A1, . . . , Ar) tan δ, j = 2, . . . , n.
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Proof. Note first that in the particular case when δ is as in Lemma 6.4, then the trivial
inequality 3 cos ε1 + 8 ≥ (sin ε1)/2 (with ε1 > 0 defined by Lemma 5.10) implies 3 cot ε1 +
8/ sin ε1 ≥ 1/2, and therefore δ satisfies (6.5).

For a generic δ satisfying (6.5), since (A1, . . . , Ar) ⊂ Pαj
+ Ar+n−j for j ∈ {2, . . . , n}

as requested by Lemma 6.4, then (A1, . . . , Ar) satisfies conditions of Lemma 6.6 (with ναj

instead of ν) in view of Lemma 5.3, and hence by Lemma 6.6 one has

(6.7)
ℓxj(A1, . . . , Ar) ≤ |A1Ar|+ 2ℓ(xj)⊥(A1, . . . , Ar) tan δ ≤ |A1Ar|+ 2ℓ(A1, . . . , Ar) tan δ

≤ |A1Ar|+ 2ℓx1(A1, . . . , Ar) tan δ + 2ℓ(x1)⊥(A1, . . . , Ar) tan δ.

By Lemma 6.5 with i := 2, we get

ℓ(x1)⊥(A1, . . . , Ar) ≤ C(ξ)
n
∑

k=2

ℓxk
(A1, . . . , Ar).

Thus (6.7) becomes

(6.8) ℓxj(A1, . . . , Ar) ≤ |A1Ar|+ 2ℓx1(A1, . . . , Ar) tan δ + 2 tan δC(ξ)

n
∑

k=2

ℓxk
(A1, . . . , Ar).

We may now apply Lemma 6.7 with

L0 := |A1Ar|+ 2ℓx1(A1, . . . , Ar) tan δ,

Lj := ℓxj
(A1, . . . , Ar),

i := 2 and C := 2 tan δC(ξ) (recalling tan δ < 1/(4(n − 1)C(ξ))) to get the claim. �

6.1.3. Estimate of the variation of (A1, . . . , Ar) along x1. Everywhere in this subsection we
denote for brevity of notation A⊥

j := p(x1)⊥(Aj).

Lemma 6.9. Assume that the vector (A1, . . . , Ar) is self-contracted with respect to the norm
‖ · ‖. Then for an arbitrary line x1 one has

(6.9) ℓx1(A1, . . . , Ar) ≤ C1ℓ(x1)⊥(A1, . . . , Ar) + C2|A1Ar|,
with some positive constants C1 and C2 depending only on the norm ‖·‖, and in particular, one
can take C1 := 3 cot ε1+8/ sin ε1, where ε1 > 0 is defined by Lemma 5.10, and C2 := diamB,
where B is the closed unit ball of ‖ · ‖.
Proof. Let ε1 > 0 be as in Lemma 5.10. Starting from the last line segment [Ak−1Ak]
ε1-horizontal with respect to x1 (i.e. with maximum k ∈ {2, . . . , r} such that [Ak−1Ak] is
horizontal) we find the minimum q ∈ {1, k−1} such that (Aq, Aq+1, . . . , Ak) satisfies conditions
of Lemma 6.11 (with x1 instead of x and ε := ε1). Now we repeat the same operation with
q − 1 instead of r, and continue in this way by backward induction as far as possible. In
this way we find a finite sequence of disjoint intervals {qi, qi +1, . . . , ki}νi=1 of {1, . . . , r} such
that (Aqi , Aqi+1, . . . , Aki) satisfies conditions of Lemma 6.11 (again with x1 instead of x and
ε := ε1), while the subvector

(Aj)j∈Λ ⊂ (A1, . . . , Ar)

obtained from (A1, . . . , Ar) by canceling all the points Aj with j ∈ ∪ν
i=1{qi + 1, . . . , ki − 1},

satisfies conditions of Lemma 6.12. Therefore, denoting for convenience (Ã1, . . . , Ãρ) :=
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(Aj)j∈Λ, we get

ℓx1(A1, . . . , Ar) = ℓx1(Ã1, . . . , Ãρ)−
ν
∑

i=1

|A1
qiA

1
ki |+

ν
∑

i=1

ℓx1

(

(Aj)
ki
j=qi

)

≤ ℓx1(Ã1, . . . , Ãρ)

+ 2 cot ε1

ν
∑

i=1

ℓ(x1)⊥

(

(Aj)
ki
j=qi

)

by Lemma 6.11 with x1 instead of x

≤ Cℓ(x1)⊥(Ã1, . . . , Ãρ) + |Ã1Ã2|

+ 2cot ε1

ν
∑

i=1

ℓ(x1)⊥

(

(Aj)
ki
j=qi

)

by Lemma 6.12

≤ Cℓ(x1)⊥(A1, . . . , Ar) + |Ã1Ã2|+ 2ℓ(x1)⊥(A1, . . . , Ar) cot ε1

= (C + 2cot ε1)ℓ(x1)⊥(A1, . . . , Ar) + |Ã1Ã2|,
which concludes the proof (up to setting C1 := C + 2cot ε1, C2 := diamB, where B is the
closed unit ball of ‖·‖, and recalling that by Lemma 6.12 one can take C := cot ε1+8/ sin ε1),

because |Ã1Ã2| ≤ C2|A1Ar| by Remark 5.9 (since (Ã1, . . . , Ãρ) ⊂ (A1, . . . , Ar)). �

Corollary 6.10. Under conditions of Lemma 6.4 one has

(6.10) ℓx1(A1, . . . , Ar) ≤ C1

n
∑

i=2

ℓxi(A1, . . . , Ar) +C2|A1Ar|,

with some positive constants C1 depending only on ‖ · ‖, n and ξ, and C2 depending only on
‖ · ‖. In particular, one can take C1 := (3 cot ε1 + 8/ sin ε1)C(ξ), where ε1 > 0 is defined by
Lemma 5.10, and C2 := diamB, B standing for the closed unit ball of ‖ · ‖.
Proof. By Lemma 6.5 with i := 2, one has

ℓ(x1)⊥(A1, . . . , Ar) ≤ C(ξ)

n
∑

k=2

ℓxk
(A1, . . . , Ar).

Plugging this estimate into the inequality (6.9) from Lemma 6.9, one gets the result. �

The following lemmata have been used in the proof of the above Lemma 6.9.

Lemma 6.11. Let (A1, . . . , Ar) be such that

(A) each line segment [AiAr], i = 1, . . . , r − 1, is ε-horizontal with respect to the axis x,
passing through Ar parallel to ν, and directed in the direction of ν.

(B) each line segment [AkAk+1], k ∈ {1, . . . , r − 1} which is ε-horizontal with respect
to x has projection on x of the same direction as that of [Ar−1Ar], i.e. denoting by
xk := (Ak −Ar) · ν, one has

(xk+1 − xk)(xr − xr−1) ≥ 0.

Then [A1Ar] has projection on x of the same direction as that of [Ar−1Ar], i.e.

(6.11) (xr − x1)(xr − xr−1) ≥ 0,

and

(6.12) ℓx(A1, . . . , Ar) ≤ |xr − x1|+ 2ℓx⊥(A1, . . . , Ar) cot ε.
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It is worth emphasizing that the above Lemma 6.11 does not require that (A1, . . . , Ar) be
self-contracted.

Proof. We first prove that for each k = 1, . . . , r − 1, the line segment [AkAr] has projection
on x of the same direction as that of [Ar−1Ar], i.e.

(6.13) (xr − xk)(xr − xr−1) ≥ 0,

so that in particular (6.11) follows. The relationship (6.13) is proven by backward induction on
k. In fact, the base k = r−1 is automatic, while the inductive step is proven by contradiction
as follows. Suppose that (6.13) holds for some k = j, where j ∈ {2, . . . , r − 1}, but does not
hold for k = j − 1. By assumption (B) this is only possible when [Aj−1Aj ] is ε-vertical with
respect to the x axis. Denoting for brevity a := Ar −Aj−1 and b := Aj −Ar, we have that a

and b have the same direction with respect to x, i.e. (a ·ν)(b ·ν) > 0 and (̂a, ν ′) ≤ ε, (̂b, ν ′) ≤ ε
with either ν ′ = ν or ν ′ = −ν. Then

cos ̂((Aj−1Aj), x) ≥ cos ̂(a+ b, ν ′) =
cos((̂a, ν ′))|a| + cos((̂b, ν ′))|b|

|a+ b|

≥ cos ε
|a|+ |b|
|a+ b| ≥ cos ε,

so that ̂((Aj−1Aj), x) ≤ ε contradicting ε-verticality of [Aj−1Aj] with respect to the x axis
and hence concluding the proof of (6.13).

To prove (6.12), we note that

xr − x1 =
∑

i∈{1,...,r−1}

[AiAi+1] horizontal

(xi+1 − xi) +
∑

i∈{1,...,r−1}

[AiAi+1] vertical

(xi+1 − xi),

so that by (B), one has

|xr − x1| ≥

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i∈{1,...,r−1}

[AiAi+1] horizontal

(xi+1 − xi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
∑

i∈{1,...,r−1}

[AiAi+1] vertical

|xi+1 − xi|

=
∑

i∈{1,...,r−1}

[AiAi+1] horizontal

|xi+1 − xi| −
∑

i∈{1,...,r−1}

[AiAi+1] vertical

|xi+1 − xi|

=

r−1
∑

i=1

|xi+1 − xi| − 2
∑

i∈{1,...,r−1}

[AiAi+1] vertical

|xi+1 − xi|

≥
r−1
∑

i=1

|xi+1 − xi| − 2
∑

i∈{1,...,r−1}

[AiAi+1] vertical

|px⊥(Ai+1 −Ai)| cot ε

≥ ℓx(A1, . . . , Ar)− 2ℓx⊥(A1, . . . , Ar) cot ε,

concluding the proof. �
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Lemma 6.12. Assume that the vector (A1, . . . , Ar) be self-contracted with respect to the
norm ‖ · ‖. Let also ε ∈ (0, ε1], where ε1 is defined by Lemma 5.10, and for each line segment
[AkAk+1] with k = 2, . . . , r− 1 which is ε-horizontal with respect to x1 axis the preceding line
segment [Ak−1Ak] is either also ε-horizontal with respect to x1 axis and its projection on x1

is directed oppositely to that of [AkAk+1], i.e.

(x1k+1 − x1k)(x
1
k − x1k−1) < 0,

or is ε-vertical with respect to x1 axis, and so is [Ak−1Ak+1]. Then

(6.14) ℓx1(A1, . . . , Ar) ≤ Cℓ(x1)⊥(A1, . . . , Ar) + |A1A2|,
with some positive constant C depending only on ε (and in particular, one can take C :=
cot ε+ 8/ sin ε).

Proof. We denote by H (resp. V ) the set of subvectors (Aqk , Aqk+1, . . . , Aqk+1
) ⊂ (A1, . . . , Ar)

such that each line segment [AiAi+1], i = qk, . . . , qk+1−1 is ε-horizontal (resp. ε-vertical) with
respect to x1 axis and either qk = 1 or the preceding line segment line [Aqk−1Aqk ] is ε-vertical
(resp. ε-horizontal) with respect to x1 axis. Consider the partition 1 = q1 < q2 < . . . < qσ = r
of the set {1, . . . , r} such that each subvector (Aqk , Aqk+1, . . . , Aqk+1

), k = 1, . . . , σ, either
belongs to H or to V .

For (Aqk , Aqk+1, . . . , Aqk+1
) ∈ H by the assumption of the statement being proven the line

segments of this polygonal line have alternating directions with respect to x1 axis and hence
by Corollary 5.11 we have

ℓx1

(

{Aj}qk+1

j=qk

)

≤ ℓ
(

{Aj}qk+1

j=qk

)

≤ 4|AqkAqk+1|.
For (Aqk , Aqk+1, . . . , Aqk+1

) ∈ V , we just estimate

ℓx1

(

{Aj}qk+1

j=qk

)

=

qk+1−1
∑

j=qk

|A1
jA

1
j+1| ≤

qk+1−1
∑

j=qk

|A⊥
j A

⊥
j+1| cot ε = ℓ(x1)⊥

(

{Aj}qk+1

j=qk

)

cot ε.

We have now

(6.15)

ℓx1(A1, . . . , Ar) =

σ−1
∑

k=1

ℓx1(Aqk , . . . , Aqk+1
)

=
∑

k∈{1,...,σ−1},

{Aj}
qk+1
j=qk

∈V

ℓx1

(

{Aj}qk+1

j=qk

)

+
∑

k∈{1,...,σ−1},

{Aj}
qk+1
j=qk

∈H

ℓx1

(

{Aj}qk+1

j=qk

)

≤ cot ε
∑

k∈{1,...,σ−1},

{Aj}
qk+1
j=qk

∈V

ℓ(x1)⊥

(

{Aj}qk+1

j=qk

)

+ 4
∑

k∈{1,...,σ−1},

{Aj}
qk+1
j=qk

∈H

|AqkAqk+1|.

For each k ∈ {1, . . . , σ − 1} such that (Aqk , . . . , Aqk+1
) ∈ H except k = 1 we estimate

|AqkAqk+1| ≤ |Aqk−1Aqk |+ |Aqk−1Aqk+1| ≤
1

sin ε

(

|A⊥
qk−1A

⊥
qk
|+ |A⊥

qk−1A
⊥
qk+1|

)

≤ 1

sin ε

(

2|A⊥
qk−1A

⊥
qk
|+ |A⊥

qk
A⊥

qk+1|
)

≤ 2

sin ε

(

|A⊥
qk−1A

⊥
qk
|+ |A⊥

qk
A⊥

qk+1|
)

,

and if (Aq1 , . . . , Aq2) = (A1, . . . , Aq2) ∈ H, then just

|Aq1Aq1+1| = |A1A2|.
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Plugging this into (6.15), we get

ℓx1

(

{Aj}rj=1

)

≤ cot ε
∑

k∈{1,...,σ−1},

{Aj}
qk+1
j=qk

∈V

qk+1−1
∑

j=qk

|A⊥
j+1A

⊥
j |+

8

sin ε

∑

k∈{2,...,σ−1},

{Aj}
qk+1
j=qk

∈H

(

|A⊥
qk−1A

⊥
qk
|+ |A⊥

qk
A⊥

qk+1|
)

+ |A1A2|

≤
(

cot ε+
8

sin ε

)

∑

k∈{1,...,σ−1},

{Aj}
qk+1
j=qk

∈V

qk+1−1
∑

j=qk

|A⊥
j+1A

⊥
j |+

8

sin ε

∑

k∈{2,...,σ−1},

{Aj}
qk+1
j=qk

∈H

|A⊥
qk
A⊥

qk+1|+ |A1A2|,

because [Aqk−1Aqk ] is ε-vertical with respect to x1 axis for {Aj}qk+1

j=qk
∈ H. Hence

ℓx1

(

{Aj}rj=1

)

≤
(

cot ε+
8

sin ε

)

ℓ(x1)⊥(A1, . . . , Ar) + |A1A2|

as claimed, concluding the proof. �

6.1.4. Estimate of ℓ(A1, . . . , Ar). Finally we are able to prove Lemma 6.4 providing the esti-
mate on the total variation of (A1, . . . , Ar).

Proof of Lemma 6.4. Plugging (6.10) (Corollary 6.10) into (6.6) (Lemma 6.8), we get

ℓxj(A1, . . . , Ar) ≤ (2 + 4C2 tan δ)|A1Ar|+ 4C1 tan δ
n
∑

i=2

ℓxi(A1, . . . , Ar), j = 2, . . . , r,

where C1 and C2 are as in Corollary 6.10, i.e. C1 := (3 cot ε1+8/ sin ε1)C(ξ) and C2 := diamB,
where B is the closed unit ball of ‖ · ‖. We may now apply Lemma 6.7 with

L0 := (2 + 4C2 tan δ)|A1Ar|,
Lj := ℓxj

(A1, . . . , Ar),

i := 2 and C := 4C1 tan δ (recalling tan δ < 1/(8(n− 1)C1) under conditions of the statement
being proven) to get

ℓxj(A1, . . . , Ar) ≤ (4 + 8C2 tan δ)|A1Ar|, j = 2, . . . , r,

and plugging the latter estimate back into (6.10), we get

ℓx1(A1, . . . , Ar) ≤ (C1(n− 1)(4 + 8C2 tan δ) + C2)|A1Ar|,

which concludes the proof. �
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6.2. Inductive step. We prove now the following statement that will serve as an inductive
step.

Lemma 6.13. Assume that

δ ∈
(

0, δ̄ ∧ arctan
sin ε0

8(n − 1)C(ξ)

)

,

where ε0 > 0 is defined in Lemma 5.5, and suppose that the following inductive hypothesis
holds: if for some i ∈ {2, . . . , n − 1} there exists a constant Ci−1 > 0 such that whenever
the (n− i+2)-tuple (Pαi−1 , . . . ,Pαn) is admissible, the vector (A1, . . . , Ar, Ar+1, . . . Ar+n−i+1)
is self-contracted with respect to the norm ‖ · ‖ and (A1, . . . , Ar) ⊂ Pαj

+ Ar+n−j for all
j = i− 1, . . . , n, then

(6.16) ℓ(A1, . . . , Ar) ≤ Ci−1|A1Ar|.
Then this property holds also for i+1, i.e. there exists a constant Ci > 0 (depending only on
the norm ‖ · ‖, on Ci−1, on n, δ and ξ) such that whenever the (n− i+1)-tuple (Pαi

, . . . ,Pαn)
is admissible, the vector (A1, . . . , Ar, Ar+1, . . . , Ar+n−i) is self-contracted with respect to the
norm ‖ · ‖ and (A1, . . . , Ar) ⊂ Pαj

+Ar+n−j for all j = i, . . . , n, then

(6.17) ℓ(A1, . . . , Ar) ≤ Ci|A1Ar|.
Proof. Let the n-tuple of sets (Pαi

, . . . ,Pαn) with αj ∈ {1, . . . , N}, j = i, . . . , n, be admissible,

the vector (Aj)
r+n−i
j=1 be self-contracted with respect to the norm ‖·‖ and (A1, . . . , Ar) ⊂ Pαj

+

Ar+n−j for all j = i, . . . , n. Let xj be the axis in the direction ναj determined by Pαj
passing

through Ar, and consider the (i − 1)-dimensional linear subspace Πi−1 := (span {ναj}nj=i)
⊥.

The rest of the proof will be organized in several steps.
Step 1. We act similarly to the proof of Lemma 6.9. Namely, starting from the last

line segment [Ak−1Ak] with 1 < k ≤ r which is ε0-horizontal with respect to Πi−1 (i.e. with
maximum k ∈ {2, . . . , r} such that [Ak−1Ak] is ε0-horizontal with respect to this subspace),
if it exists, we find the minimum q ∈ {1, . . . , k − 1} such that for every j ∈ {q, . . . , k− 1} the
line segment [AjAk] is ε0-horizontal with respect to Πi−1. Note that in this way, if q > 1,
then [Aq−1Ak] is ε0-vertical with respect to Πi−1. Now we repeat the same operation with
q − 1 instead of r, and continue in this way by backward induction as far as possible. In this
way we find a finite (possibly empty) sequence of disjoint subintervals {ql, ql + 1, . . . , kl}νl=1
of {1, . . . , r} such that for every j ∈ {ql, . . . , kl − 1} the line segment [AjAkl ] is ε0-horizontal
with respect to Πi−1, while [Aql−1Akl ] is ε0-vertical with respect to this subspace (if ql > 1).

We claim that

(6.18) ℓ(Aql , . . . , Akl) ≤ C̄1

∑

Pαi−1 : (Pαi−1 ,Pαi
,...,Pαn )

admissible

ℓ((Aql , . . . , Akl)∩ (Pαi−1 +Akl))+ C̄2|AqlAkl |

for all l = 1, . . . , ν, where C̄1 > 0 depends only on the norm ‖ · ‖, and C̄2 > 0 depends on
the norm and on δ. To show this claim, consider an arbitrary j ∈ {ql, . . . , kl − 1} such that
Aj+1 ∈ Pαi−1 + Akl , but Aj 6∈ Pαi−1 + Akl for some Pαi−1 such that (Pαi−1 ,Pαi

, . . . ,Pαn) is
admissible. Then either

(i) j is the first index in {ql, . . . , kl} such that Aj+1 ∈ Pαi−1 +Akl , i.e.

{s ∈ {ql, . . . , j} : As ∈ Pαi−1 +Akl} = ∅,
in which case we just use (Aj , Aj+1) ⊂ (Aql , . . . , Akl) to estimate |AjAj+1| ≤ C|AqlAkl |
by Remark 5.9 for some C > 0 depending only on ‖ · ‖; the sum of Euclidean lengths
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of all such line segments |AjAj+1| through all Pαi−1 such that (Pαi−1 ,Pαi
, . . . ,Pαn) is

admissible, is estimated therefore from above by C̄2|AqlAkl |, where C̄2 := CN(δ);
(ii) or there is an

s(j) := max{s ∈ {ql, . . . , j} : As ∈ Pαi−1 +Akl},
and s(j) < j by the definition of s(·), hence (Aj , Aj+1) ⊂ (As(j), . . . , Aj+1) which
implies |AjAj+1| ≤ C|As(j)Aj+1| again by Remark 5.9 for C > 0 depending only on

‖ · ‖ (same as C in (i)). Therefore, with C̄1 := C ∨ 1 one has
∑

j∈{ql,...,kl−1}

{Aj ,Aj+1}⊂Pαi−1+Akl

|AjAj+1|+
∑

j∈{ql,...,kl−1}

as in (ii)

|AjAj+1|

≤
∑

j∈{ql,...,kl−1}

{Aj ,Aj+1}⊂Pαi−1+Akl

|AjAj+1|+ C
∑

j∈{ql,...,kl−1}

as in (ii)

|As(j)Aj+1|

≤ C̄1











∑

j∈{ql,...,kl−1}

{Aj ,Aj+1}⊂Pαi−1
+Akl

|AjAj+1|+
∑

j∈{ql,...,kl−1}

as in (ii)

|As(j)Aj+1|











= C̄1ℓ((Aql , . . . , Akl) ∩ (Pαi−1 +Akl)).

From (i) and (ii) we get therefore (6.18).
Step 2. By the inductive assumption for each Pαi−1 with (Pαi−1 ,Pαi

, . . . ,Pαn) admissible
one has for (Aj)j∈Λkl

:= (Aql , . . . , Akl) ∩ (Pαi−1 +Aki) (clearly, Λkl ⊂ {ql, ql + 1, . . . , kl}, and
kl ∈ Λkl) the estimate

(6.19) ℓ((Aj)j∈Λkl
) ≤ Ci−1|Aq̃lAkl |,

where q̃l stands for the first index in Λkl . But since (Aj)j∈Λkl
⊂ (Aql , . . . , Akl), then

|Aq̃lAkl | ≤ C|AqlAkl |
for some C > 0 depending only on the norm ‖ · ‖, and hence (6.19) implies ℓ((Aj)j∈Λkl

) ≤
C|AqlAkl |. Therefore, from (6.18) we get

(6.20) ℓ(Aql , . . . , Akl) ≤ C ′|AqlAkl |
for all l = 1, . . . , ν, where C ′ := C̄1Ci−1CN(δ) + C̄2 > 0 depends on δ and on ‖ · ‖, as well as
on Ci−1.

Step 3. Consider the subvector (Aj)j∈Λ ⊂ (A1, . . . , Ar) obtained from (A1, . . . , Ar) by
canceling all the points Aj with j ∈ ∪ν

i=1{qi + 1, . . . , ki − 1}. The inequality (6.20) yields
then, observing that clearly C ′ > 1, the estimate

(6.21) ℓ(A1, . . . , Ar) ≤ C ′ℓ((Aj)j∈Λ).

To estimate the right-hand side of (6.21), we first note that by Lemma A.1

|Aqi−1Aqi |+ |AqiAki | ≤ C|Aqi−1Aki |
for a C > 0 depending only on ‖ · ‖, if qi > 1, and thus for a subvector (Aj)j∈Λ̃ ⊂ (Aj)j∈Λ
obtained from (Aj)j∈Λ by canceling all Aqi , i = 1, . . . , ν except possibly qi = minΛ = 1 (i.e. qi
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equal to the first index in Λ which is 1 by construction), and recalling that {qi−1, qi, ki} ⊂ Λ
when qi > 1 again by construction, we get

(6.22) ℓ((Aj)j∈Λ) ≤ Cℓ((Aj)j∈Λ̃).

Thus, in view of (6.22) and (6.21) the proof will be concluded once we show that for some

C̃ > 0 depending possibly on ξ, hence on ‖ · ‖, as well as on n and i, one has

(6.23) ℓ((Aj)j∈Λ̃) ≤ C̃|Amin Λ̃Amax Λ̃| = C̃|A1Ar|,

the last equality being due to the fact that min Λ̃ = 1 and max Λ̃ = r by construction.
Step 4. It remains to prove (6.23). We will in fact show it with C̃ > 0 depending possibly

on ξ, hence just on ‖·‖. To this aim observe that all the segments of the polygonal line (Aj)j∈Λ̃
except possibly the first one are ε0-vertical with respect to Πi−1. Denoting for convenience
(Ã1, . . . , Ãρ) := (Aj)j∈Λ̃, we have therefore that

(6.24)

ℓΠi−1((Aj)j∈Λ̃) ≤ ℓ((Aj)j∈Λ̃) = |Ã1Ã2|+ ℓ(Ã2, . . . , Ãρ)

≤ |Ã1Ã2|+
1

sin ε0
ℓ(Πi−1)⊥((Aj)j∈Λ̃)

≤ C|Ã1Ãρ|+
1

sin ε0
ℓ(Πi−1)⊥((Aj)j∈Λ̃) by Remark 5.9,

with a constant C > 0 depending only on ‖ · ‖ (here in the last inequality we used (Ã1, Ã2) ⊂
(Aj)j∈Λ̃). But for each j ∈ {i, . . . , n} one has

(6.25)

ℓxj((Aj)j∈Λ̃) ≤ |Ã1Ãρ|+ 2 tan δℓ(xj)⊥((Aj)j∈Λ̃) by Lemma 6.6

≤ |Ã1Ãρ|+ 2 tan δℓ((Aj)j∈Λ̃)

≤ |Ã1Ãρ|+ 2 tan δ
(

ℓΠi−1((Aj)j∈Λ̃) + ℓ(Πi−1)⊥((Aj)j∈Λ̃)
)

≤ |Ã1Ãρ|+ 2 tan δℓΠi−1((Aj)j∈Λ̃) + 2C(ξ) tan δ

n
∑

k=i

ℓxk((Aj)j∈Λ̃),

the latter inequality being due to Lemma 6.5. By Lemma 6.7 with

L0 := |Ã1Ãρ|+ 2 tan δℓΠi−1((Aj)j∈Λ̃),

Lk := ℓxk((Aj)j∈Λ̃)

and C := 2C(ξ) tan δ, recalling that tan δ < 1/(4(n − i + 1)C(ξ)) by assumption of the
statement being proven, we obtain then from (6.25) the estimate

(6.26)

n
∑

j=i

ℓxj((Aj)j∈Λ̃) ≤ 2(n − i+ 1)|Ã1Ãρ|+ 4(n − i+ 1) tan δℓΠi−1((Aj)j∈Λ̃).

By Lemma 6.5 we have

(6.27)

ℓ(Πi−1)⊥((Aj)j∈Λ̃) ≤ C(ξ)

n
∑

j=i

ℓxj((Aj)j∈Λ̃)

≤ 2(n − i+ 1)C(ξ)|Ã1Ãρ|+ 4(n− i+ 1)C(ξ) tan δℓΠi−1((Aj)j∈Λ̃),
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the latter inequality being due to (6.26). Plugging (6.27) into (6.24) yields

ℓΠi−1((Aj)j∈Λ̃) ≤
(

C +
2(n− i+ 1)C(ξ)

sin ε0

)

|Ã1Ãρ|+
4(n − i+ 1)

sin ε0
C(ξ) tan δℓΠi−1((Aj)j∈Λ̃),

and hence, since tan δ < sin ε0/(8(n − i+ 1)C(ξ)), one has

(6.28) ℓΠi−1((Aj)j∈Λ̃) ≤ 2

(

C +
2(n − i+ 1)C(ξ)

sin ε0

)

|Ã1Ãρ|.

Finally, plugging (6.28) into (6.27) and recalling

4(n − i+ 1)C(ξ) tan δ ≤ 1

2
sin ε0,

we get

ℓ(Πi−1)⊥((Aj)j∈Λ̃) ≤ (4(n − i+ 1)C(ξ) + C sin ε0) |Ã1Ãρ|,
and which together with (6.28) gives (6.23) with C̃ := 3C +4(n− i+1)C(ξ) (1 + 1/ sin ε0) as
claimed. �

Appendix A. Auxiliary lemmata

We used the following easy statements.

Lemma A.1. If (A1, A2, A3) is self-contracted with respect to the norm ‖ · ‖, then
|A1A2|+ |A2A3| ≤ C|A1A3|,

for some C > 0 depending only on ‖ · ‖.
Proof. In fact, |A2A3| ≤ C|A1A3| with C as in the statement, which together with the triangle
inequality

|A1A2| ≤ |A1A3|+ |A2A3|,
implies the claim. �

For every couple of distinct points {A,B} ⊂ Rn denote by M(A,B) the closed set

M(A,B) := {z ∈ R
n : ‖A− z‖ = ‖B − z‖}

(called mediatrix or equidistant set of {A,B}). Clearly, M(λA, λB) = λM(A,B) for all λ ≥ 0
(in fact, even for all λ ∈ R if the norm is, as it is customary to assume, symmetric). Further,
M(A+ x,B + x) = M(A,B). Observe also that M(A,B) ∩ (AB) is the midpoint C0 of [AB]
if the norm is symmetric.

Lemma A.2. There is a constant ε̄ > 0 depending only on the norm ‖ · ‖ such that for every
C ∈ M(A,B) with ∠ABC ≤ 2ε̄ one has

|BC| ≤ 3/4|AB|.
Proof. Since the statement is invariant with respect to translation and scaling, we may assume
without loss of generality that |AB| = 1 and B is the origin, so that M(A,B) depends only
on the direction ν ∈ Sn−1 of the segment [BA]. Let ε(ν) stand for the maximum angle
α such that for C ∈ M(A,B) with ∠ABC ≤ α one has |BC| ≤ 3/4. It suffices to set
now ε̄ := infν∈Sn−1 ε(ν) and observe that ε̄ > 0. In fact, otherwise there is a sequence
{Ak} ⊂ Sn−1, Ak → A, and {Ck} ⊂ M(Ak, B), Ck → C ∈ Rn for some A ∈ Sn−1 and
C ∈ Rn with ∠AkBCk → 0 as k → ∞ and |BCk| > 3/4. Clearly therefore C ∈ M(A,B),
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|BC| ≥ 3/4 and ∠ABC = 0, hence C ∈ (AB), which implies that C is the midpoint of the
segment [AB] and hence |BC| = 1/2, this contradiction concluding the proof. �

Remark A.3. The proof of Lemma A.2 depends essentially on the fact that for {C} :=
M(A,B) ∩ (AB) one has C = C0, the midpoint of [AB]. It is worth noting however that if
the norm ‖ · ‖ is not assumed to be symmetric (i.e. one does not have ‖x‖ = ‖ − x‖ for all
x ∈ E), then M(A,B)∩ (AB) is still a singleton {C}, but it does not in general coincide with
C0, and one only has

c|AB| ≤ |AC| ≤ (1− c)|AB|
for some c ∈ (0, 1) depending only on ‖ · ‖. Thus the claim of Lemma A.2 should be changed
in this case to

|BC| ≤ (1− c̄)|AB|
for some c̄ ∈ (0, 1) depending only on ‖ · ‖.
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