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DERIVED CATEGORIES OF N-COMPLEXES

OSAMU IYAMA, KIRIKO KATO AND JUN-ICHI MIYACHI

ABSTRACT. We study the homotopy category Ky (B) of N-complexes of an
additive category B and the derived category Dy (A) of an abelian category
A. First we show that both Ky (B) and Dy (A) have natural structures of tri-
angulated categories. Then we establish a theory of projective (resp., injective)
resolutions and derived functors. Finally, under some conditions of an abelian
category A, we show that Dy (A) is triangle equivalent to the ordinary derived
category D(Morn_2(.A)) where Morn_2(A) is the category of sequential N —2
morphisms of A.

0. INTRODUCTION

The notion of N-complexes, that is, graded objects with N-differentials d (dV =
0), was introduced by Mayer [32] in his study of simplicial complexes. Recently
Kapranov and Dubois-Violette gave abstract framework of homological theory of
N-complexes [22] [10]. Since then the N-complexes attracted many authors, for
example [4] 5] 9] [T} [12] 13} 20} 22} B3] [34]. The aim of this paper is to give a solid
foundation of homological algebra of N-complexes by generalizing classical theory of
derived categories due to Grothendieck-Verdier. In particular we study homological
algebra of N-complexes of an abelian category A based on the modern point of view
of Frobenius categories (see [17] for the definition) and their corresponding algebraic
triangulated categories.

In section 2l we study the category Cn(B) of N-complexes over an additive
category B and the homotopy category Ky (B). Precisely speaking, we introduce
an exact structure on Cy (B) to prove the following results.

Theorem 0.1 (Theorems 21 and 2.6]). (1) The category Cn(B) has a struc-
ture of a Frobenius category.
(2) The category Ky (B) has a structure of a triangulated category.

We give an explicit description of the suspension functor ¥ and triangles in
Kn (B). Unlike the classical case N = 2, the suspension functor ¥ does not coincide
with the shift functor ©. However we have the following connection between ¥ and
O in KN (B)

Theorem 0.2 (Theorem 7). There is a functorial isomorphism X2 ~ O~ on
Kn(B).

In Section B] we introduce the derived category Dy (A) of N-complexes for an
abelian category A. We generalize the theory of projective resolutions of com-
plexes initiated by Verdier [42] and extended to unbounded complexes by Spal-
tenstein and Bockstedt-Neeman [411 [7]. Our main result is the following, where
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Prj A (resp., Inj.A) is the subcategory of projective (resp., injective) objects in A
and K3 (A) (resp., K% (A), Kiy(A)) is the homotopy category of N-acyclic (resp.,
K-projective, K-injective) N-complexes (see Definitions B3] B.20). We denote by
Ky (Prj A) (resp., Ky”(Prj A), Ky*(Prj.A)) the subcategory of Ky (Prj A) consisting
of N-complexes bounded above (resp., bounded above with bounded homologies,
bounded above and N-acyclic). For other unexplained notations, we refer to the
paragraph before Theorem

Theorem 0.3 (Theorems BI6 and B2T)). The following hold for § =nothing, b.
(1) Assume that A has enough projectives.
(a) (K;,’h(Prj A),Ky*(A)) is a stable t-structure in K]_V’u(A) and we have
triangle equivalences Ky (Prj A) ~ Dy (A) and Ky (Prj.A) ~ D} (A).
(b) If A is an Abd-category, then (KR (A),Ky(A)) is a stable t-structure
in Ky (A) and we have a triangle equivalence KY (A) ~ Dy (A).
(2) Assume that A has enough injectives.
(a) (KL (A, Kﬁ’u(lnj A)) is a stable t-structure in K;’h(.A) and we have
triangle equivalences Ki (Inj A) ~ D& (A) and K" (Inj A) ~ D} (A).
(b) If Ais an Ab4*-category, then (K (A), Kiy(A)) is a stable t-structure
in Kn(A) and we have a triangle equivalence Ky (A) ~ Dy (A).

Moreover, we generalize a result of Krause [29] characterizing the compact ob-
jects in classical homotopy categories. We deal with a locally noetherian Grothendieck
category, that is, a Grothendieck category with a set of generators of noetherian
objects. We give the following result, where C° denotes the subcategory of compact
objects in an additive category C.

Theorem 0.4 (TheoremB.27). Let A be a locally noetherian Grothendieck category
with the subcategory noeth A of noetherian objects in A.
(1) Kn(InjA) is compactly generated.
(2) The canonical functor Ky (Inj. A) — Dy (A) induces an equivalence between
Kn (Inj.A)¢ and D% (noeth A).

We generalize the classical existence theorem of derived functors to our setting
by showing that any triangle functor Ky (A) — Ky (A") has a left/right derived
functor Dy (A) — Dn+(A’) (see Definition B30) under certain mild conditions on
A. Our result is the following.

Theorem 0.5 (Theorem B33). Let A, A’ be abelian categories, F : Ky(A) —
Kn/(A") a triangle functor. Then the following hold.

(1) If Ais an Ab4-category with enough projectives, then the left derived functor
LF :Dn(A) — Dn/(A') exists.

(2) If A is an Abd*-category with enough injectives, then the right derived func-
tor RF : Dy(A) — Dn/(A) exists.

In section @ we give our main result in this paper. We show that the derived cat-
egory Dy (AA) is triangle equivalent to the ordinary derived category D(Mory_2(.A))
of Mory_2(A), where Mory_2(A) is the category of sequences of N — 2 morphisms
of A (see Definition [.T]).

Theorem 0.6 (Theorems2 and[L10). Let A be an Ab3-category with a small full
subcategory of compact projective generators. Then we have a triangle equivalence
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for § =nothing, +, —, b.
D% (A) ~ D¥(Mory _5(A)).

As applications, we have the following triangle equivalences. Here B is an addi-
tive category, Mory 5 (B) is the category of sequences of N —2 split monomorphisms
of B (see Definition [41]) and Tn_1(R) is the upper triangular matrix ring of size
N — 1 over a ring R. For a full subcategory C of an additive category B with
arbitrary coproducts, Addz C is the category of direct summands of coproducts of
objects of C in B. For a ring R, mod R (resp., prj R) is the category of finitely
presented (resp., finitely generated projective) R-modules.

Corollary 0.7 (Corollary £12] Proposition [LTH). (1) Let B be an additive cat-
egory with arbitrary coproducts. If the subcategory B¢ of compact objects
of B is skeletally small and satisfies B = Add(B¢), then we have triangle
equivalences Ky (B) =~ K™ (Mora™_o(B)) and K% (B) ~ K" (Mori ,(B)).

(2) For a ring R, we have a triangle equivalence K?V(prj R) ~ K*(prj Ty_1(R))
fort = — b, (—,b). For a right coherent ring R, we have a triangle equiv-
alence ng(mod R) ~ D*(mod Tx_1(R)) for §f =nothing, —,b.

In [I6], we will study more precise relations between the homotopy categories.

1. PRELIMINARIES

In this section, we collect preliminary results on additive and triangulated cate-
gories. We will omit proofs of elementary facts.

Lemma 1.1. In an abelian category, consider a pull-back (resp., push-out) diagram

x .o x
N

y L.y

and morphisms (¢' f') : X' ®Y = Y, (?) : X - X'®Y. Then the following
hold.

(1) If f" (resp., f) is epic (resp., monic), then the above diagram is also push-
out (resp., pull-back), and f (resp., [’) is also epic (resp., monic).

(2) The induced morphism Ker f — Ker f' is an isomorphism (resp., an epi-
morphism).

(3) The induced morphism Cok f — Cok f' is a monomorphism (resp., an
isomorphism).

(4) We have an exact sequence 0 — Cok f — Cok f" — Cok (¢’ ') — 0 (resp.,
0 — Ker (}) — Ker f — Ker f’ — 0.

A commutative square is called ezact if it is pullback and push-out [39].
Lemma 1.2. In an abelian category, consider two pull-back squares (X) and (Y)

A——B——C

ay (X)) b (V) e

D——F——=F.

Then the square (X+Y) is exact if and only if the squares (X) and (Y) are exact.
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Lemma 1.3. In an abelian category, consider an exact square with a split epimor-
phism d.

Ao —Y o p

v=(t1 L2)\L d:(dl) \L(%)

D & . BacC
Then there exists an isomorphism a : A ® B & C — D such that t = a (é g) and

da=(§47)-

Proof. Since d is a split epimorphism, there exists t3 : C' — D such that dyt3 =0
and dots = 1. Then a = (11 1o t3) satisfies the desired conditions. O

For a triangulated category 7 and a full subcategory C of T, we denote by
triC = triy C the smallest triangulated subcategory of 7 containing C, and by
thickC = thicksC the smallest triangulated subcategory of 7 containing C and
closed under direct summands, and by LocC = Locy C the smallest triangulated
subcategory of 7 containing C and closed under coproducts.

Definition 1.4 (Triangle Functor). Let 7 and 7" be triangulated categories with
suspensions Y7 and X7 respectively. A triangle functor is a pair (F,«), where
F : T — T'is an additive functor and o : F¥7+ 5 ¥ F is a functorial isomor-
phism such that (FX,FY,FZ, F(u), F(v),axF(w)) is a triangle in 7’ whenever
(X,Y, Z,u,v,w) is a triangle in 7. If a triangle functor F' is an equivalence, then
we say that T is triangle equivalent to T".

Let (F,a),(G,8) : T — T’ be triangle functors. A functorial morphism of
triangle functors is a functorial morphism ¢ : F — G satisfying (X7 ¢)a = BopXr.

Let 7 be a triangulated category and U, V be full subcategories. The category
of extensions U * V is the full subcategory of T consisting of objects X such that
there exists a triangle U = X -V — XU with U e and V € V.

Note that (U * V) «* W = U x (V * W) holds by octahedral axiom.

Definition 1.5 ([36]). Let T be a triangulated category. A pair (U, V) of full trian-
gulated subcategories of T is called a stable t-structure (also known as semiorthog-
onal decomposition, torsion pair, Bousfield localization) in T provided that

Hom7(U,V)=0 and T =U=*V.

In this case, the canonical quotient 7 — T /U (resp., T — T/V) has a right
(resp., left) adjoint, and we have a triangle equivalence 7 /U ~V (resp., T /V ~U).

Lemma 1.6. [21I] Let T be a triangulated category and U, V be full triangulated
subcategories. Then the following conditions are equivalent.

(1) VU CU=V.

(2) U xV is a triangulated subcategory of T .

(3) Any morphism f: U =V withU €U and V €V factors through an object
mUNV.

In this case, (U/(UNV),V/UNV)) is a stable t-structure in (UxV)/(UNYV). Hence
we have triangle equivalences U/(UNV) =~ (U« V)/V and V/UNV) =~ U« V)/U.
Thus the canonical functors U/(UNV) = T/V and V/UNYV) = T /U are fully
faithful.
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2. HOMOTOPY CATEGORY OF N-COMPLEXES

In this section, we study the homotopy category of N-complexes. We fix a
positive integer N > 2. Throughout this section B is an additive category. An
N-compler X = (X*,dY) is a diagram

di71 . dl . di+1
o0y O g O

with X* € B and d% € Homg(X*, X"™!) satisfying
i+N—1 i+1 7
d; . .d);r d =0
for any ¢ € Z. We often denote the r-th power of dx by
{r} _ gi+r i+1 gi
dy’ =dyr - diftdy

without mentioning grades, where dg?} = 1. A morphism f : X — Y between
N-complexes is a commutative diagram
dé;l i i+1

XL xE X il X

\Lf'z \Lfi+1
di71 ! dl ! di+1
LY oy Yy Y

with f* € Homg(X% Y?) for any i € Z. We denote by Cn(B) the category of
N-complexes.

We call an N-complex X bounded above (resp., bounded below) if X* = 0 for all
i >0 (resp., i < 0), and bounded if X is both bounded above and bounded below.
We denote by Cy(B) (resp., C(B), CX (B)) the full subcategory of bounded above
(resp., bounded below, bounded) N-complexes.

Our approach to the category Cx(B) of N-complexes is based on the theory of
exact categories [40] (see [24] for modern account). Let Sy (B) be the collection of

sequences 0 — X Ly % 7z 500f morphisms in Cy(B) such that 0 — X* EAN
Yi L5 Zi =5 0 is split exact in B for any integer i. Then we have the following

basic observation.

Theorem 2.1. The category (Cn(B),Sn(B)) of N-complexes is a Frobenius cate-
gory.

For an object M of B and integers s and 1 <r < N, let

_ d577‘+1 d572 _ ds—l
pEM): - 00— M S Mt S s M0

be an N-complex given by M*~" = M (0 <i<r—1)andd* " =1, (0 <i <r—1).
One can easily check the functorial isomorphisms

(2.2)

Home 5 (X, iy (M) = Homs (X", M) and Homc, () (v (M), X) = Homs (M, X"~ 1)
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where f € Homp(X*®, M) and g € Homp(M, X*~N*!) are mapped to p% and X
respectively by the following commutative diagrams.

i (M) - 0 M L et oM 0
i | s ld“\’*l}f |

X - o4 xsN 4 ys—N+1 4 o xs 4 st 4
i~ ! a0 o
i (M) : 0 M L et oM 0

Lemma 2.3. The object 3 (M) is projective-injective in (Cn(B),Sn(B)) for any
object M € B and any integer s.

Proof. For any exact sequence 0 = X — Y — Z — 0 in Sy (B), the isomorphism
[22) gives a commutative diagram of exact sequences

0 —— Homc , (8)(Z, py (M)) —— Homc, 5y (Y, pin (M) —— Homc , 5y (X, pn (M))

% b 5

0 ——— Homp(Z°, M) ———— > Homp(Y*, M) ———— > Homp(X*, M) ——— 0,

where the lower sequence is exact since 0 — X* — Y*® — Z% — 0 is split exact.
This means that p%; (M) is injective. Dually one can show that p3, (M) is projective.
O

Let X € Cy(B) be given. We have morphisms py - P (XN X

a'nd )\711)(71 : X - /’L’?\’](Xn)7 HSing (m) Set PX = (p?xn7N+l )n : @nez u%(Xn7N+l) —

X and Ax = (AT, )n * X = @,z #{(X"). Then we have the following exact

sequences in Sy (B).

(2.4)

0= Kerpx 5 @@ ur(X" M) 25 X 0, 0 X 25 @ uh(X") 25 Cok Ax — 0.
nezZ neZ

of Theorem [2]. The exact sequences (Z4) with Lemma[Z3lshow that (Cx (B), Sn(B))
has enough projectives and enough injectives. Let X be an arbitrary projective
(resp., injective) object. Then, on the first (resp., second) sequence of (Z4]), X
is a direct summand of the middle term. By Lemma [Z3] X is injective (resp.,
projective). O

The stable category F of a Frobenius category (F,S) has the same objects as F
and the homomorphism set between X,Y € F is given by

Homz(X,Y) = Homz(X,Y)/Z(X,Y)

where Z(X,Y) is the subgroup of Hom#(X,Y") consisting of morphisms which factor
through some projective-injective object of (F,S). By [I7], £ has a structure of a
triangulated category, which is nowadays called an algebraic triangulated category.
Now we shall describe the stable category of our Frobenius category (Cn (B), Sy (B))
more explicitly. Indeed, as in the classical case, it coincides with the homotopy cat-
egory of N-complexes. Recall that a morphism f: X — Y of N-complexes is called
null-homotopic if there exists s* € Homg(X*, Y~V *1) such that
N-1
(25) fi _ Z d?l ---di/_N+jSi+j_ld§_j_2---dg(

Jj=1
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for any ¢ € Z. For morphisms f,g: X — Y in Cy(B), we denote f ~ g if f— g is
null-homotopic. We denote by Ky (B) the homotopy category, that is, the category
consisting of N-complexes such that the homomorphism set between X, Y € Ky (B)
is given by

Homg (5)(X,Y) = Homc (5 (X, Y)/ ~ .

Theorem 2.6. The stable category of the Frobenius category (Cn(B), Sy (B)) is the
homotopy category Kn(B) of B. In particular, Ky(B) is an algebraic triangulated
category.

Proof. Tt suffices to show that a morphism f : X — Y is null-homotopic if and only
if f factors through the morphism Ax : X — @, .4 % (X") given in (2.4). This
can be easily checked by ([2.2]). O

Now we define functors ¥, 7! : Cx(B) — Cn(B) by
Y1X =Kerpy and X = Cok\y

in the exact sequences (Z4)). Then ¥ and X! induce the suspension functor and
its quasi-inverse of the triangulated category Ky (B).
On the other hand, we define the shift functor © : Cx(B) — Cn(B) by

O(X)" = X! and dgx) = d¥*

for X = (X' d%) € Cy(B). This induces the shift functor © : Ky (B) = Ky (B)
which is a triangle functor. Unlike classical case, ¥ does not coincide with ©.
However we have the following observation.

Theorem 2.7. There is a functorial isomorphism %2 ~ ON on Ky (B).

To prove this, we give a more explicit description of ¥ and ¥71. Let X = (X¢,d*)
be an object of Cx(B). In (Z4)), the first sequence is given by

—d 1 0 --- 0 O
—dr o 1 0 0
m—1 ) . B
(z7lx)m = Xt odm ., = : Do :
i:m@vH . —diN=3} o o0 1 0
—dN=2} |0 0 1
—dN=1 0 o 0 0
1 0 0 0
—d 1 0 0
0 —d 1 0
(ex)™ = . . . . . and (px)™ = ( dalNV-1} giv=2} ... g 1).
0 0 e —d 1
0 0 0 —d
while the second sequence by
0 1 0 0 0
0 0 1 0 0
m+N—1 . . . . . .
(ZX)m _ @ ){i7 dgle — : : . . : . ,
i=m+1 0 0 0 e 1 0
0 0 0 0 1

_gIN-T | _giv=2r _gIv=3y oo g{Rr g
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1 —d 1 0 -~ 0 0
d 0 —-d 1 -+ 0 0

()\X)’UL — and (nX)’UL — 0 0 —d A 0 0
av-2) ST

d{N-1} 0 0 0 ... —d 1

of Theorem [2.7, We shall construct a functorial isomorphism > — ©V¥X =1, Given
an object X = (X% d") € Cy(B), we have (SX)™ = @M1 X1 = (n-1x)m+N

1=m-+1
for each m by @4). Let ¢% : (XX)™ — (X1 X )™+ be a morphism given as
1 0 0 e 0
d 1 0 e 0
{2}
pu—| d d 1 0
dN-2) gIN-3y . 4 1

Then it is easy to check that ¢x makes the following diagram commutative
d’V?‘L
(Xx)™ =X (X))t
\Ld)? dm+N \L 7‘;+1
(Eflx)erN s-1lx 5 (Eflx)erNJrl.
Thus ¢x : X — OVY 71X is an isomorphism in Cy(B).

Next let f be a morphism from X to Y in Cx(B). It is routine to show (VY71 f)px =
¢y X f holds. Thus ¢ gives a functorial isomorphism 3 ~ Ny ~1 (]

We denote by Ky (B) (resp., K (B), KX (B)) the full subcategory of Ky(B)
corresponding to Cy(B) (resp., C{(B), CX(B)). Then they are full triangulated
subcategories of Ky (B) by the above descriptions of 3 and ¥

Definition 2.8 (Hard truncations). For an N-complex X = (X, d°), set
TenX i = X2 5 X X 50—
TonX toor = 0= X" = XM 5 X2
Then we have a triangle 75, X — X — 7<,_1X — X(7>,X) in Kn(B).
Later we will use the following observation.

Lemma 2.9. We have the following.
(1) For any C € B, i,s € Z and 0 < r < N, we have X**Fus(C) ~
(i) =0
py=THC) (B=1).
(2) KR (B) =tri{u(C) | C € B, 0<s<N}.

Proof. (1) For each C' € B and r,i € Z with 1 <r < N — 1, we have a term-wise
split exact sequence 0 — - "NT5(C) — py VT (C) — py = T(C) — 0 in C(B).
Since pyV#(C) is a projective-injective object in Cy(B), we have the desired
isomorphisms in Ky (B).

(2) Using triangles in Definition 28 we can show KX (B) = tri{us(C) | C € B, s €
Z} by an induction on the number of non-zero terms. Moreover, we can replace
the condition s € Z by 0 < s < N since %2 ~ % holds by Theorem 77 We can
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further replace it by 0 < s < N since u(C) = SuN"1(C) belongs to tri{u;(C) |
CeB, 0<s<N}. O

We end this section with an explicit description of the mapping cone. For a

morphism f: Y = (Y e') - X = (X% d') in Cx(B), the mapping cone C(f) is
given by the diagram

O—>Y—>I(Y) ——3Y ——0

b o |

O—>X—>C(f)—>EY—>O

o O
|
()
>
z o
L
=
(o)
>
z o
[ V)
»,
|
o
(V)
5
-
4]

~
o
o
=)

0

|
o]
-
=
o

—_

and 1/1?1 =10 -—e
0

m+N—1 . . . . . .
where C(f)™ =X"a( € YY), dg : ; ; - - :
imma1 = 0 0 0 1 0

Thus we have a triangle Y Lx 4 C(f) LY in Kn(B).

3. DERIVED CATEGORY OF IN-COMPLEXES

In this section, we introduce the derived category of N-complexes as the Verdier
quotient of the homotopy category with respect to the N-quasi-isomorphisms as in
the case of 2-complexes.

3.1. Homologies of N-complexes. Let A be an abelian category, and Prj.A
(resp., Inj.A) the subcategory of A consisting of projective (resp., injective) ob-
jects of A. Let X be an N-complex in A
g odit o dh o~
co XL X X X X

For 0 <r < N and i € Z, we define

(o) (X) = Ker(dif ™™ - dl), B,y (X) o= Im(dic - i),

(r(X) = Cok(diy ' - dx ™), Hy(X) = Z{y (X)/ By_p)(X)-

For example, Z?N) (X) = ?0) (X) X" and Z(O)( ) (N)( ) = 0 hold. With
this in mind, using the notation d(r) = dX|Z?T) (x), we can understand a homology

as follows
(3.1)

n n—N+r d(TLN)N+T d“"jrz) n—1 dz"jrl]) n
H{, (X) = Cok | Z{)" " (X) Ly (X) ——= Z(H(X) ).

(r+1)
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xn— N+1 xn— N+2 xn— 1 Xn+1
Zn—= N4+2 yn— N+2 n—N+3 Zn—= 1 pn- zn
(N 1) (N-1) (N 1) (N—1) (N 1) (N 1) (N 1) (N 1)

NSNS NSNS

N+3 N+3 N+4
Z?N 2) DZLN 2) Z?N 2) (N 2) (N 2) Z(N 2)
n—N+4 +1
Z(n=3) Z(N s

N \/ /
\/\/

zty Py ozt

N

FIGURE 1.

For 1 <r < N — 1, we have a pull-back diagram with the canonical inclusion L?T).

n dF’”) n
(3.2) 0 —— Z{1)(X) —— Z{,(X) ——Z{ 7, (X)

n n +1
H l\bm (D) Vr?r 1

A1) p
0 ——= Z{3)(X) —— Zitpy 1y (X) —= Z{3H(X),

Then (Df,)) forms a commutative diagram in Figure 1.

Definition 3.3. We call X € Cy(A) N-acyclic if Hfr)(X) =0forany 0 <r <N
and ¢ € Z.

For example, the complex ' (M) is N-acyclic for any M € A and i € Z. An
N-complex X is N-acyclic if and only if there exists some r with 0 < r < N such
that H{,)(X) = 0 for each integer i [22].

For f =nothing, —, +, b, let CE\’,a(A) (resp., Kg\}a(A)) denote the full subcategory
of CgV(A) (resp., KgV(A)) consisting of N-acyclic N-complexes.

Proposition 3.4. We have the following.
(1) K?{,a(A) is a thick subcategory of K?V(A) forhp=—,+,b.
(2) H{,y(EX) = H{{", (X) and H{,)(Z7'X) = HZ(NN;F)T(X) hold for any X €
Cn(A).

To prove this, we recall that Cy(A) forms an abelian category. A sequence
O—>Xi>YiZ—>OisexactifandonlyifO%Xi1>YiiZi—>Ois (not
necessarily split) exact in A for each 7. In this case, for any 0 <r < N and i € Z,
we have the following exact sequence [I0].

(3.5)
O 7 Qs 7 ﬁ* i+r a* i+r ﬁ* i+r
— H{y(X) — H(T?(Y) (r)(Z) H(E (X)) = H(E oY) = H(E (Z)
P HEY 0 25 BN () S N (2) P HEE () S
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of Proposition[37] (2) It is immediate by applying (B.5]) to the exact sequences
4.

(1) Tt follows from (2) that K?{,a(A) is closed under ¥ and ©71. Let X — Y —
Z — YX be a triangle in Ky (A). This comes from a term-wise split short exact
sequence. Therefore if X and Y belong to Kg\’,a(A), then so does Z by ([3.3)). O

As in the classical case, we have the following observation.

Lemma 3.6. If X € Ky (A) and P € Ky(PrjA) (resp., T € K§(Inj.A)), then we
have Homg () (P, X) = 0 (resp., Homy () (X, I) = 0).

Proof. Let f: P — X be as follows.

n—2 n—1
dar dn

P.... pn—2 pn—1 pn 0
\Lf \Lfnizn—z \Lfn7;7171 \Lfn dn i’
X xn2 X o xn-1 X _xn X xntl o ..

Since d% f* = 0 and H{})(X) = 0, there is s : P" — X" N*! such that
fr=dyt e di N s Since diy (T —dy R dy N s = d -
frdp ! =0, thereis "1 : P"71 — X"~ N guch that "t = d% 2. dy N Tsmdp T+
d}d e d}st"_l. Repeating similar argument, we obtain s* : P* — XN+ for
i < n satisfying (2.35]). O

Now let B be an additive category, pick X € Cn(B) and M € B. Then we have
N-complexes Homg(X, M) and Homp (M, X)) of abelian groups with Homp (M, X)" :=
Homp(M, X™) and Hompg(X, M)" := Homg(X ™, M). One can easily check the
following analogs of ([2.2)) for each 0 < r < n.

(3.7)
Homc () (17 (M), X) = Z " (Homp (M, X)),  Homy () (u7:(M), X) =~ H ;" (Homs (M, X)),
Homc (5) (X, p7(M)) = Z,5(Homgp (X, M)), Homy , (5) (X, (M) = H§ (Homp (X, M)).

We prepare the following observations which will be used later.

Lemma 3.8. Let X € Ky(A), M € A, and 0 <r < N be given.
(1) We have a commutative diagram of exact sequences

Hom 4 (M, X*~ N+ —= Hom 4 (M, Z?T’)T+1(X)) — Homg () (n5.(M), X) ————> 0

Yatv=r) [ v

0 = Homu (M, B{y" (X)) = Homa(M,Z{ """ (X)) - Hom (M, H{ " (X)) = Extly (M, B{3" 1) (X))

(2) If M is projective in A, then Homg 4y (5 (M), X') ~ Hom 4 (M, Hf;)TH(X)).
(3) If X € Kn(Inj A) is N-acyclic, then Homy () (15 (M), X) == Ext}y (M, Z{ M HX).

Proof. (1) The upper sequence is exact by B and Z?;)TH(HomA(M,X)) o~
Hom 4 (M, Zf;f“(X)). The lower one is clearly exact.

(2) Immediate from (1).

(3) We have a short exact sequence 0 — Zf;,ﬁ[:r)l(X) — XN+ Zf;)TH(X) —
0. Applying Hom4(M, —) and using injectivity of X*~N*! we have an exact
sequence

Hom 4 (M, X*~N*1) — Hom (M, Z{ " (X)) = Exty (M, Z{ M (X)) = 0.
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Comparing with the upper exact sequence in (1), we have the desired isomorphism.
O

Lemma 3.9. For a commutative diagram [B2), the following hold.

(1) IfH{(X) =0, then (D?S*)'T_l_s) is an exact square for anyr < s < N—1.

In particular, (ngl + D?Tfl) +- 4 D?];ivf)”) is an exact square.

(2) X is N-acyclic if and only if d?r-i—l) is an epimorphism for any 0 <r < N
and n € 7.

(3) X is isomorphic to 0 in Kn(A) if and only if df’, ) is a split epimorphism

forany 0 <r < N andn € Z.

Proof. (1) (2) The assertions immediately follow from (BI).

(3) We prove the ‘only if’ part. Clearly d?r 41y Is a split epimorphism for X =
wiy(M). Since every projective-injective object of Cy(A) is in Add{u% (M) | s €
Z, M € A}, the assertion follows.

To show the converse, set W{,y(X) = @::_& Z?l‘gi(X) for 1 < r < N. Then

we have natural morphisms pf) = (01) : Wy (X) — W?Ttll)(X) and i) =
(6) + Wiy(X) = W{11)(X). We show the existence of an isomorphism afyy
(m(X) = Z{,y(X) such that the following diagram commute.
o (X) —— o w0
. o— " int1 frh—
’(V (m(X) ) ’W” 20 (X)
Wn (X) pr L?!T) Wn+1(X) Ln+|1
(r+DAE) D ¢ ™) — n+1 o
G+ —y . Olry — .
Z?’r+1)(X) A y1) Z(j)l(X)'

For r = 1, set a?l) = 1. Suppose r > 1 and that we have defined a?i) for any
n,i € Z with 0 < 7 < r. Applying Lemma [[.3] to the exact square

P

Wiy (X) = Z¢H (X) @ Wi (X) WL (X)
g in+1
¢ (r) = (r) (a?tl)ild?Jrl) \L (r—1)
Z?r«kl)(X) W?rtll)(X) @ ZEL;)rT(X) _ W?j)l(X)v

we get an isomorphism af; y : W1y (X) = Z{41)(X) as desired.

Consequently we have an isomorphism afly, : W{iy)(X) = @ij\;_ol Z?Si(X ) —
(n)(X) = X™. Since d" = L?;il)d?N) : X™ — X! holds, it is easy to check

X =@, ez #x(Z{1)(X)) in Cy(A). Thus X is zero in Ky (A). O

Definition 3.10. A morphism f : X — Y of Ky(A) is called an N-quasi-
isomorphism if Hi,)(f) : H{,y(X) — H{,)(Y) is an isomorphism for any 0 <7 < N
and ¢ € Z, or equivalently by (B3], the mapping cone C(f) is N-acyclic. For

f§ =nothing, 4+, —, b, the derived category of N-complexes is defined as the quotient
category

DY (A) = K (A)/ K5 (A).

By definition, a morphism in K?v(A) is an N-quasi-isomorphism if and only if it
is an isomorphism in DE\,(A).



DERIVED CATEGORIES OF N-COMPLEXES 13

Proposition 3.11. (1) If0 - X Loy % 7 50 is an exact sequence in the
abelian category Cn (A), then it can be embedded into a triangle X Ly s
Z % $X in Dy(A).
(2) For any triangle X Ly %2255y in Dn(A), we have a long exact
sequence

hx i fx i gx i P i+r fx it+r 9= i+r
—  H{,y(X) m(Y) — Hiy(2) — HJ\,#)(X) — H(T\rﬂn)(y) — H(;r\rfr-)

5 HEN(X) S HEN () 25 B (2) S5 BN (X)

Proof. (1) We have the following commutative diagram of exact sequences in Cx (A).

0 0
b b

0 X I(X) »X 0
s fos I

0 Y —%>C(f) —= %X 0
bo b
Z Z
v v
0 0

Then X LV % C(f) & XX is a triangle in Ky (A). Since I(X) is N-acyclic, s
— —1

is an N-quasi-isomorphism. Thus we have a triangle X Ly =9, 4 2 53X in

Dn(A).

(2) We have only to verify the assertion for the triangle X Ly C(f) —» XY.
Applying (BI) to a short exact sequence 0 - X — YV ¢ I(X) — C(f) — 0 in
Cn(A), we get the desired sequence. O

Definition 3.12 (Truncations). For an N-complex X = (X% d*), set

(2)

N drNH N drg N drtt
—N+1 - —
OcnX oo S XN —>Z?N_1J)r (X) (X)) =0—---

Lemma 3.13. For an N-compler X = (X', d') and an integer n, the following
hold.
(1) Hér)(agn(X)) o~ Hér)(X) forany0O<r <N andi+r <n-+1.
(2) If Hér)(X) =0 holds for any 0 < r < N and i > n+ 1, then the canonical
mnjection o<, X — X is an N-quasi-isomorphism.

Proof. (1) If i +r < n + 1, then Zér)(X) is the kernel of d{"} : anﬂ-H)(X) —

X which maps into Z(f", ., (X). Hence Z{,)(X) = Z{,)(0<,X). Clearly

BZ(ler)(O'SnX) = BZ(Nfr)(X) )
(2) It remains to show H{, (o<, (X)) ~ H{,y(X) for i <n and i +7 > n+ 1. Since
ZZ('T) (0<nX) = anﬂ-H)(X) holds, we have a commutative diagram

JtN—r}

Ny (O () — H (020 X) — 0

(n—i+N—r+1)

Xi-N+r atv—r

Z{ry(X) H{,)(X) —0
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of exact sequences. The left square is exact. Indeed it follows from Lemmas [Tl
and since (Dgs)) is an exact square for j + s > n + 1 by Lemma [39(1). Thus
we have the desired isomorphism. O

Proposition 3.14. Let § = +, —,b. The canonical functors DY (A) — Dg\,(.A) —
Dn(A) are fully faithful. Therefore DEV(.A) is equivalent to the full subcategory of
Dn(A) consisting of objects in K?V(A).

Proof. We only show that Dy (A) — Dn(A) is fully faithful. Let f : X — Y be
any morphism with X € Ky (A) and Y € Ky (A). For sufficiently large n, f factors
through the natural morphism o<, (Y) — Y. Since o<, (Y) belongs to K*(A) by
Lemma BI32), we get the conclusion from Lemma O

3.2. Elementary morphisms. In this subsection, we introduce the N-complex
version of an elementary map of degree i in the sense of Verdier [42]. We start with
the following observation.

) gi-1 4
D_eﬁnition—Proposition 3.15. For an object X : --- — Xt X xt X
XL — ... in Cy(A) and a morphism u : M — X' in A, we take successive

pull-backs

R d/i—r—l .
Yzfrfl yi-r

ui—r—l\l, (Eifrfl) \LuifT
Xifrfl Xifr
dé;T71
for 0 < r < N — 1, where Y? = M and u' = u. Then there are a morphism
d"=N . X=N 5 yi=N+lin A and a morphism

. Ji-N g N+1 i1 diu )
Vi(X,u) : s XN Sy N yi~? M —=5 xitt
im(u) ‘ m‘*N“i (BIZNHD ui71¢ (B iu ‘
X . . Xi*N : Xi*Nﬁ»l : . Xi71 : Xz : X’i+1
4N Ji-NH1 gic1 di
X X X X

in Cn(A). Moreover the following conditions are equivalent.
(1) pi(u) is an N-quasi-isomorphism.
(2) The commutative diagram (E*~N*+1 4 ... 4 F=1) is an exact square.
(3) The commutative diagrams (E*~N*1) ... (E'"1) are exact squares.
(4) (uwdV=1): M@ XN+l & X' is an epimorphism.

Proof. Set Y = V;(X,u) and u = p;(u).

(2) < (3)< (4). These are clear from Lemmas [[2] and [[1]

(1) = (4). The morphism % induces a morphism u : ¥ — X of 2-complexes as
follows:

{N-1} {N-1} {N-1}
v. dy yi-N dy yi-N+1 dy M dy yi+l dy yi+N dy
| [ R | |
7 . XifN Xi7N+1 Xl Xi+1 Xi+N
: dg(N—l} dx d:g{N—l} dx dg(N—l} dx

The assumption forces u to be a 2-quasi-isomorphism. Then [42 TII. 2.1.2(c]
implies that (u dN=1): M @ X*"N*+! 5 X’ is an epimorphism.
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(3) = (1). We shall show that HE;)S(ﬂ) : Hz;)S(Y) — Hz;)S(X) is an isomorphism
for each s € Z, 0 < r < N. Set the commutative squares (A), (B), (C), (D) as

follows:

. airt aiv-rt airt aiv-rt
Yz—N—s . Yz—N—s-i—r Yi—s Yz—s-l—r Yz-l—N—s
| (4) e At T T I
Xifos Xifoerr i—s Xiferr XiJers
d{T‘} d{N*T} d{T} d{N*T}

X X X X

Assume that (A) and (C) are exact. Consider the diagram with exact rows
G () e 2 (V) e HE () 0
jea" @ Eg@ s @

Cloy (X)) —= 2" (X) —= H ;' (X) —0.

Lemma [T implies that CZ('T_)N —5*7 (@) and ZET_)S (@) are isomorphisms. Hence so is

Hz;)s(ﬁ) Similarly Hzr) (@) is an isomorphism provided that (B) and (D) are exact.
Therefore it is enough to show that either (A), (C) or (B), (D) are exact. To prove

this, notice that for any integer j other than ¢ — N or ¢, the following square is
exact.
o d] .
yi Y yi+l
Xi X xit+l
Lemma (1)=-(2) implies that (B) and (D) are exact if s € {0,1,...,7 — 1},
otherwise (A) and (C) are exact. Therefore one of the above two conditions holds.
O

3.3. Resolutions of N-complexes. The aim of this subsection is to establish
Theorems B.16], 3.21] which are well-known for the classical case N = 2.

For a full additive subcategory B of an abelian category A and § =nothing, —, +, b,
we denote by C?{,a(B) (resp., Cg\’,b(B), Cg\’,_ (B), Cg\fr(B)) the full subcategory of
CE\,(B) consisting of N-complexes X satisfying that Hér)(X) =0forany 0 <r < N
and for all (resp. all but finitely many, sufficiently large, sufficiently small) i € Z.
The corresponding subcategory of KgV(B) is denoted by Kg\’,a(B) (resp., K?{,b(B),
K5 (B). K" (B)).

Theorem 3.16. The following hold for g=nothing, b.

(1) If A has enough projectives, then (K;\,’h(Prj A), Ky (A)) is a stable t-structure
in Pé;,’h(fl) and we have triangle equivalences Ky (Prj A) ~ Dy(A) and
Ky (Prj A) ~ D% (A).

(2) If A has enough injectives, then (K3 (A), K]J(,’h(lnj A)) is a stable t-structure
in Kph(A) and we have triangle equivalences K3 (Inj A) ~ DX (A) and
K (Inj A) ~ D} (A).

Our proof of Theorem B.I0l is based on Verdier’s method [42] III, Section 2.2].

Definition 3.17. Let M be an additive full subcategory of A satisfying the fol-
lowing.
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V1 For any epimorphism v : X — L with X € A and L € M, there is an
epimorphism v : L — L with L’ € M which factors through u.

V5 For any exact sequence 0 - X — L,, — -+ — Lo — 0 with Lg,---, L, €
M, there is an epimorphism L' — X with L' € M.

Let M be the full subcategory of A consisting of objects X satisfying the following
conditions.
(1) X has an oco-M-presentation, that is, an exact sequence - -+ — L, — -+ —
L1 — Lo — X — 0 with L, € M for any 7 > 0.
(2) For any exact sequence 0 — X' — L, — -+ — Ly - X — 0 with
Lo, -+ ,L, € M, X' has an co-M-presentation.

Obviously we have M C M.

For example, M = Prj A satisfies (V) and (V2). If A has enough projectives,
then M = A.

Lemma 3.18. Let M be an additive full subcategory of A satisfying (V1) and (Va).

(1) [42} 11T 2.2.4] For an exzact sequence 0 — X —Y — Z — 0, if two out of
three terms belong to M\, then so does the other.

(2) For an epimorphism p : X — L with L € M\, there exists a morphism
w: M — X with M € M such that pu is an epimorphism.

Proof. (2) Take an epimorphism 7 : My — L with My € M and a pull-back
diagram

K 2~ My
'y ,
X —— L.

Then p’ and 7’ are epimorphisms. The condition (V;) gives a morphism k : M — K
with M € M such that p'k is an epimorphism. Set u = 7'k, then pu = 7p'k is an
epimorphism. 0

Proposition 3.19. Under the conditions (Vi) and (Va), we have the following.

—~

(1) Given X € Cy(M), there exists an N -quasi-isomorphism s : L — X with
LeCy(M).

(2) We have Ky (M) = Ky (M)  Ky*(M) for § =nothing, b.

Kyt (M) K;«‘“(M)) i KaZ (M)

_ N
(3) We have a stable t-structure (K;a(M), Ko (A Ko ()

and a triangle

Ky EM) |, Ky (M)
Ky ™ (M) T K™ (M)

equivalence for i =nothing, b.

Proof. (1) We shall construct a series of N-quasi-isomorphisms v, 41 : Ly, = Lpt1
satisfying L,, € Cy(M), L}, € M (i > n) and v}, ., = id (i > n+1) by an induction
on n.

We set L,, = X and v, = idx for m large enough. Suppose we get L,, and v, 1.
Since L € M, there exists an epimorphism f : M — L} with M € M. Then
L1 =V,(Ly, f) and v, = p,(f) satisfy the conditions above. Indeed, v,, is an N-
quasi-isomorphism by Definition-Proposition BI5(4)=(1), L},_; € M (i > n — 1)
and vl = id (i > n) by the construction, and L} _; € M (i < n — 1) by Lemma
3I8(1).
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Since v}, 4 : L, — L% 4 (i > n+ 1) is an identity, the canonical morphism L :=
1i£1Ln — X gives a desired N-quasi-isomorphism.

(2) It suffices to prove ”C”. Given an object X € K;\,(./\//\l), there exists an N-quasi-
isomorphism L % X with L € Ky (M) by (1). Then C(s) € Ky (M) is N-acyclic,
and we have Ky (M) C Ky (M) x Ky*(M). If X € Ky®(M), then L € Ky (M)
holds, and hence KyP(M) € K" (M) x Ky (M).

(3) Set U = Ky*(M) and V = Ky*(M). Then U +V = K" (M) holds by (2). Ap-

i § U vy (KyEem) K;«am?))
plying Lemmal?ﬂ, we have a stable t-structure (78v, 7rp) = (K]’V"“(M)’ K™ ()
i UxV KPR Ky 5M) U Uy KD

uny K;,"“(M) K;,"“(M) —uny — v K;,"“(M)'

and triangle equivalences

of Theorem [774. We only prove (1) since (2) is the dual. Set M = Prj.A, then
M = A. By Lemma 36 we have Ky*(M) = 0. By Proposition BI%3), we
have a stable t-structure (KR,’“(Prj A),Ky*(A)) in K;\,’h(A) and a triangle equiva-
lence K;,’h(Prj A) ~ E;Z\V’:Ej; This is Dy (A) if f=nothing, and D} (A) if § = b by
Proposition 314 O

Recall that an abelian category A is an Ab3-category (resp., Ab3*-category)
provided that it has an arbitrary coproduct (resp., product) of objects. It is clear
that coproducts (resp., products) preserve cokernels (resp., kernels). Moreover A is
an Abd-category (resp., Abd*-category) provided that it is an Ab3-category (resp.,
Ab3*-category), and that the coproduct (resp., product) of monomorphisms (resp.,
epimorphisms) is monic (resp., epic) (see e.g. [39]).

Definition 3.20 (cf. [74T]). We say that X € Ky (A) is K-projective if Homy 4y (X,
KN (A)) = 0. We say that X € Ky(A) is K-injective if Homg , (4)(K¥(A), X) =
0. We denote by KR (A) (resp., Kiy(A)) the full triangulated subcategory of
Kn (A) consisting of K-projective (resp., K-injective) N-complexes. A projective N -
resolution (resp., injective N -resolution) of X € Ky (A) is an N-quasi-isomorphism
Px — X (resp., X — Ix) with Px € K% (A) N Ky(PrjA) (resp., Ix € Kiy(A) N
K (Inj A)).

Clearly K, (A) (resp., Kiy (A)) is a triangulated subcategory closed under coprod-
ucts (resp., products) in Ky (A). The canonical functor Ky (A) — Dy (A) restricts
to fully faithful functors K} (A) — Dy (A) and Kiy(A) — Dy(A) by Lemma [[G
By Lemma[Z8 Ky (Prj A) (resp., K} (Inj.A)) is contained in K% (A) (resp., Kiy(A)).

We have the following result which generalizes a classical result for the case
N =2 [71 4]].

Theorem 3.21. The following hold.

(1) Assume that A is an Abd-category with enough projectives. Then (KR, (A), Ky (A))
is a stable t-structure in Ky (A) and we have a triangle equivalence Ky (A) =~
Dn(A). Moreover, any object in KR.(A) is isomorphic to an object in
K (A) N Ky (Prj A), hence every object in Kn(A) admits a projective N -
resolution.

(2) Assume that A is an Ab4* -category with enough injectives. Then (K (A), Kiy(A))
is a stable t-structure in Ky (A) and we have a triangle equivalence Ky (A) ~
Dn(A). Moreover, any object in Ky (A) is isomorphic to an object in
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Kiy (A) N Ky (InjA), hence every object in Kn(A) admits an injective N-
resolution.

To prove Theorem B2T] we need the following easy observation.

Lemma 3.22. Let A be an Ab3-category, and f; : X; — Xip1 (i = 0,1,--+) a
sequence of morphisms in Cn(A). Assume that each j € Z admits some n € N

such that ff X! — Xg_i_l is a split monomorphism for i > n. Then we have an

ezact sequence 0 — [[;5,X; i AEELN [[s0Xi — lim X; — 0 in (Cn(A),Sn(A))

for the inductive limit lim X; in CN(A)._ Therefore ligXi s isomorphic to the
homotopy colimit hlim X; in Ky (A).
—

Ao . .
Proof. We have a split exact sequence 0 — [ ], X7 L i>0X; — lim X —
0 in A for any j by our assumption. Thus the assertions follow. 0

of Theorem [3Z1. We only prove (1) since (2) is the dual. By Lemma [[6] it is
enough to show Ky (A) = K} (A) * K3 (A) to prove the first statement.

For a complex X € Ky (A), we shall construct an N-quasi-isomorphism s : P — X
with P € K} (A) N Kn(Prj.A). Applying Lemma B:22 to a sequence ¢; : 0<; X —
0<i+1X of morphisms, we have X = li_rI>1Xi ~ hgn X; in Ky(A). By Theorem[3.10]

there is an N-quasi-isomorphism s; : P, — 0<; X with P; € Ky(Prj.A). Since the
mapping cone C(s;41) is N-acyclic, by Lemma [B.6 we have a commutative diagram
in Ky (A)

Si

Pi USiX

b je

Py — 0<in X —— C(siqa).

Therefore we have a morphism between triangles in Ky (A)

1-11. fi " v
1,7 —2 e P SI1LP,
i/Hisi i’HISI \LS \LEHiSi
[lio<iX T [[io<iX X E[Jo<iX.

Since A is Ab4, [];s; is an N-quasi-isomorphism, hence so is s. The upper triangle
shows P € K&, (A) N Kn (Prj.A).

Now we prove the second statement. For any X € K% (A), the above construction
gives a triangle P % X — Y — P[1] in Ky (A) with P € K} (A) N Ky (Prj A)
and Y € Ky (A). Since KR (A) is a triangulated subcategory of Ky (A), we have
Y € Ky (A) NKR (A). Thus Y ~ 0 and hence s is an isomorphism in Ky (A). O

Remark 3.23. Later we need a slightly more general version of Theorem [3.2]] as
follows.

Let A be an Ab4-category with enough projectives and P an additive subcategory
of Prj A closed under coproducts such that any object in Prj. A is an epimorphic
image from some object of P. Then the proof of Proposition gives triangle
equivalences

Ky (P) N KE (A) =~ Dy (A) and Ky(P) =~ Dy(A).
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For example, the category Free R of free modules over a ring R satisfies this condi-
tion.

—2 -1
Example 3.24. Take a projective 2-resolution - - - 4 p1 L pOof X € A
Then a projective N-resolution of X is given by the following.

degree : —-N-1 -N —N+1 —N+2 —1 0 1 2

1 d—? d—? 1 1 1 d~!
Py: —pP32sp22spl_ S pl_ ... _Sp1l2pl_ 0 50—s...

Although the 2-complex - - - A p1d po P ks 2-acyclic for some d? :
P% — X, the N-complex Y below is not N-acyclic for N > 2 since H%l)(Y) ~ X.
On the other hand, the following N-complex Z is N-acyclic. The truncation 7<¢Z
is not a projective N-resolution of X, but that of X071(X) = u% _;(X) since we
have a triangle ©7'X — Z — 7<¢Z — YO X.

degree : —N-1 -N —N+1 —N+2 —1 0 1 2
1 -3 a3 _9 d—2 -1 1 —1 1 1 1 a—! 0 d°
—2 1 0
Z:... tope2 t p2d pard po 1 _po 1 _pod ~y _g_.. .

Let M be a full subcategory of A. We denote by Cy a(A) the full subcategory
of Cny(A) consisting of X such that Hfr)(X) € Mforany 0 < r < N and i €
Z. Then Ky am(A) and Dy aq(A) denote the corresponding full subcategories of
Kn(A) and Dy (A) respectively. In the case that M is a Serre subcategory, that
is, closed under subobjects, quotient objects and extensions, then Ky aq(A) (resp.,
Dy . am(A)) is a thick subcategory of Kn(A) (resp., Dy(A)). We use the notations

C i (A) = CRHA) N Cv o (A), KR (A) = KRF(A) N Ky (A) and DY, (A) =
Dg\’,h(A) NDn am(A) for § =nothing, —, +, b and § =nothing, —, +, b. By Proposition
[B14, we have D%E’M(A) ~ DIJ)\LM(A) etc.

Proposition 3.25. Let M be an additive full subcategory of A satisfying (V1) and
(Va).
(1) For any X € Cy pq(A), there is an N-quasi-isomorphism L — X with
L e Cy(M).
(2) K;,:hM(A) C K;,’h(./\/l) * Ky (A) for i =nothing,b.

Proof. (1) There exists ng such that X* = 0 for any i > ng. Set L,, = X. We
shall construct a sequence of N-quasi-isomorphisms v, : L,—1 — L, in Cy(A) for
n < ng such that

Lie M (i>n), Z('T)(L,,)Eﬂ/l\ (i>n, 0<r<N) and v =id (i >n)

Then we get an N-quasi-isomorphism L = lim L,, — X with L € C(M). Suppose
«—
n < ng and let Ly, satisfy the conditions above. The exact sequence 0 — H¢}) (L) —

Cly_1)(Ln) — B?l*)'l(Ln) — 0 implies C{'y_1y(Lx) € M. Applying Lemma BT8|(2)

to the canonical epimorphism p : Ly — Ciy_1)(Ln), we get a morphism v : M —
L with M € M such that pv is an epimorphism. Set L,—1 = V,,(L,,v) and
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Un—1 = pn(v)-
(N-1)
L=y M= Ly
lv:;*NH (E) iv
Ly~ Ly Cln—1)(Ln)

{N-1} n P
dy.

b and pv is an epimorphism, (v dﬂ:’fl}) Ly @

Lr—N+1 5 [" is an epimorphism, which shows (E) is an exact square. Thus
Up—1 = pn(v) is an N-quasi-isomorphism by Definition-Proposition B.15]
Now we show that Bfr)(Lnfl) e Mforanyi >n—1and 0 <r < N. If
i > n, then HéN_T) (Lp—1) = HzN_T)(Ln) € M holds. Moreover ZéN_T) (Lp—q) =
2N7T)(Ln) belongsl to M since/()\—> Zfor)(Ln) — Lt — BE}FVJ/X\;)T(LH) — 0 is
exact. Therefore B{,y(Ln—1) € M holds. To see B{,(L,—1) € M, it suffices to
show C{y(Ln-1) € M since L, € M. But this is clear since B?]‘\';]_VT_)T(Ln,l) =
By (Ly) € M and Hiy_,(Ly—1) € M.
(2) For given X € Ky \((A), there is an N-quasi-isomorphism s : L — X with L €
Ky (M) by (1). We get the first inclusion since C(s) € K (A). If X € Ky (A),
the construction shows C(s) € Ky*(A). If X € Kz_v’,a/l (A), then obviously we have

LeKy®(M). 0

Since p is the cokernel of dﬂ:’*l

Theorem 3.26. If M is a Serre subcategory satisfying the condition (Vi ), then
Dy (M) 2 DYy (A) for § =b,—.

Proof. Since M is a Serre subcategory, it satisfies the condition (V3) and we have
Ky (M) C K;,hM(A) By Proposition B.25(2), we have K;,hM(A) = Ky (M) «
Ky*(A). Applying Lemma[L8to U = Ky (M) and V = K *(A), we have triangle

—.f —.h
equivalences D?V(M) ~ Egdiﬁ; =4~ UV = }:%f;(%) ~ ng,M(A) as desired.
(]

3.4. Homotopy categories of injective objects. In this subsection, we shall
show that Ky (Inj.A) is compactly generated if A satisfies some conditions.

An Ab5-category is an Ab3-category that has exact filtered colimits. A Grothendieck
category is an Abb-category with a generator. A Grothendieck category A is called
locally noetherian if A has a generating set of noetherian objects. In this case,
Inj A is closed under arbitrary coproducts [39, Theorem 8.7], and therefore the
triangulated category Ky (Inj.A) has arbitrary coproducts.

For an additive category B with arbitrary coproducts, an object C is called
compact in B if the canonical morphism [[, Homg(C, X;) = Homg(C,[]; X;) is
an isomorphism for any coproduct [[, X; in B. We denote by B¢ the category
of compact objects in B. A triangulated category D with arbitrary coproducts is
called compactly generated by a set S of compact objects if any non-zero object of
D has a non-zero morphism from a shift of some object of S.

Let noeth A be the subcategory of A consisting of noetherian objects. For a
locally noetherian Grothendieck category A, it is easy to see noeth A is a skeletally
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small Serre subcategory satisfying (V1) and (V2). By Theorem [3:26] we can identify
DY (noeth A) with DY oetn 4 (A).
We aim to prove the N-complex version of a result of Krause [29].

Theorem 3.27. Let A be a locally noetherian Grothendieck category. Then Ky (Inj.A)
is a compactly generated triangulated category such that the canonical functor Ky (Inj A) —
D (A) induces an equivalence between Ky (Inj A)¢ and D% (noeth A).

In the rest, A is a locally noetherian Grothendieck category. Recall that Ix €
Ky (Inj A) stands for the injective N-resolution of an object X in Ky (A).

Lemma 3.28. (cf. [29, Lemma 2.1]) The object I, ar) is compact in Ky (Inj.A)
for any M € noeth A, s€Z and 0 <r < N.
Proof. For any Y € Ky (Inj.A), we have the following isomorphisms for sufficiently
small ¢:
Homg () (Luz (ar), Y) = Homg  a) (Lus (n), 722Y) = Homy a) (17 (M), 724Y)
~ Homg  (a) (1n(M),Y).

The first and third isomorphisms come from I,s (ary, py.(M) € K% (A) and the sec-
ond one from Lemma[3.6l Also we have Homy , 4y (13 (M),Y) =~ H?T_)T-i-l (Hom4(M,Y))
by B7). This completes the proof since M € noeth A is compact in A. O

Let S stand for a set of representatives of isomorphism classes of objects {1 s (M) |
M € noeth A, s € Z,0 <r <N —1} in Ky(Inj A).

Lemma 3.29. (¢f. [29, Lemma 2.2]) Ky (Inj.A) is compactly generated by S.

Proof. By Lemmal[3.28 any object of S is compact in Ky (InjA). Let X € Ky (Inj.A)
be a non-zero object. Assume that H{, (X) # 0 for some i € Z and 0 <7 < N.
Since A is locally noetherian, there is a non-zero morphism M — Zg (X) —
H{,(X) with M € noeth A. Using the commutative diagram in Lemma B.8(1), we
have HOHlKN(A) (/Li+T—1(M), X) #0.

Assume that X is N-acyclic. Since X # 0 in Ky(Inj.A), there are i € Z and
0 < r < N with Z{,y(X) & InjA by Lemma B9(3). Baer criterion [28, Lemma
A10] gives an object M of noeth A with Extl (M, Zir) (X)) # 0, which implies

Homy  (4) (i N1 (M), X) # 0 by Lemma B8(3). O
Now we are ready to prove Theorem

of Theorem [3.27 Lemma implies Kn(InjA) = LocS (see [37, 1.6]). Hence
by [37, Lemma 2.2], Ky (InjA)® coincides with thickS. On the other hand, the
equivalence Kiy(Inj A) ~ Dy (A) in Theorem B.10(2) yields thickys (inj.4)S =~

thickp, (4)(noeth A) ~ DY (noeth A). O

3.5. Derived functor. In this subsection, we study the derived functor of a tri-
angle functor Ky (A) — Ky/(A’) for abelian categories A, A’.

Definition 3.30. Let 7 be a triangulated category, U a full triangulated sub-
category of 7 and @ : T — T /U the canonical functor. For a triangle functor
F:T — T, the right derived functor (resp., left derived functor) of F with respect
to U is a triangle functor

RyF :T/U—T (resp., LyF : T/U—T")



22 OSAMU IYAMA, KIRIKO KATO AND JUN-ICHI MIYACHI

together with a functorial morphism of triangle functors
§:F— (RyF)Q (resp., &: (LyF)Q — F)

with the following property:

For a triangle functor G : T /U — T’ and a functorial morphism of triangle functors
¢: F — GQ (resp., ¢ : GQ — F), there exists a unique functorial morphism
n: RyF — G (resp., n : G — LyF) of triangle functors such that ¢ = (nQ)&
(resp., ¢ = £(nQ)).

F

T T’
Ql RyF
i\

G

We recover a classical Existence Theorem of derived functors as follows:

Theorem 3.31 (Existence Theorem). Let T be a triangulated category, U its full
triangulated subcategory, and Q : T — T /U the canonical functor. For a triangle
functor F : T — T, assume that there exists a full triangulated subcategory V of
T such that T =UxV and F(UNV) = {0}. Then there exists the right derived
functor (Ry F,&) of F with respect to U such that {x @ FX — (RyF)QX is an
isomorphism for X € V.

Proof. Let Q1 : T — T/UNV) and Q2 : T/(UNV) — T /U be the canonical
functors. Then Q = Q2Q; holds. Since F(U NV) = 0, the functor F : T — T’
factors as T 2% T/UNY) KNy by universality. By Lemma [[.6 the functor
Q2 :T/UNV) — T /U has a right adjoint R: T /U — T/UNV).

We shall show that Ry F = F’R satisfies the condition. We have only to give
a functorial isomorphism Homa (F, GQ) ~ Homa (F'R, G) for any triangle functor
G :T/U — T, where Homp is the class of morphisms between triangle functors.
Indeed, we have Homa (F, GQ) ~ Homa (F’', GQ2) by [I8 Proposition 3.4], and
Homa (F', GQ2) ~ Homa (F'R, G) by a triangle functor version of [31, Proposition
X.7.3]. O

We apply these to the setting of N-complexes.

Definition 3.32 (Derived Functor). Let A and A’ be abelian categories, and F :
KE\,(A) — Kn/(A') a triangle functor where § =nothing, —, +,b. We define the
right (resp., left) derived functor of F as

RF = Ry(Q'F) : Dy (A) —» Dn(A') (vesp., L*F = Ly(Q'F) : D, (A) — Dn(A)),
where Q" : Ky(A') — Dn(A") is the canonical functor, 7 = K?v(A) and U =
KR (A).

According to Theorems B.16] B2T] and 331l we have the following N-complex
version of classical results [18] [7] [41].

Corollary 3.33. Let A and A’ be abelian categories, and F : Ky(A) — Ky/(A)
a triangle functor. Then the following hold.

(1) If A has enough injectives, then RTF : D};(A) — D/ (A) ewists.

(2) If A has enough projectives, then L™ F : Dy(A) — D/ (A') exists.
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(3) If A is an Abd*-category with enough injectives, then RF : Dy(A) —
Dn/(A") exists.

(4) If A is an Ab4-category with enough projectives, then LF : Dy(A) —
Dn/(A') exists.

We end this subsection with considering Ext and Tor groups. As we will see in
Proposition [3.35] these homology groups are related to classical Tor and Ext.

Definition 3.34. Let A be a ring, X a right A-module and Y a left A-module.
We have triangle functors Hom4 (X, —) : Ky(Mod A) = Ky(ModZ) and —®,4 Y :
Kn(Mod A) — Kn(Mod Z). By Corollary B33l we have derived functors

RHomy (X, —): Dy(Mod A) — Dy(ModZ) and —®%Y : Dy(Mod A) — Dy (Mod Z).
For a right A-module Z, n € Z and 0 < r < N, set

- Ext (X, Z) = H{,)(RHom (X, Z)) and , Tor,(Z,Y) = H [ (Z&ZY).
Proposition 3.35. We have the following isomorphisms for i >0 and 0 < r < N.
(1) , Tor (X,Y) = Tory (X,Y) and , ExtYN (X, Z) = Ext¥ (X, Z).

A —
(2) rTOFfN+S(X, Y) = { OTor2i+1(X7 Y) r=s.

r#s
N Ext3™(X,Z) r=N —s.
(3) »Exty 7*(X, Z) =

0 r#N —s

. d—? d! d°
Proof. We give a proof only for Tor. Let --- — P~ —— PY =Y — 0 be a
projective 2-resolution of Y € Mod A°P. We have a projective N-resolution of Y by
Example [3.24]

degree N2, -N-1,35 —N o N+l 1 ot ar O
S ap3sp3iap2l spion St l L pY

Applying X ® 4 —, we can justify the assertions. O
Our Definition B.34] is slightly different from Ext and Tor groups introduced by

Kassel and Wambst [23]. As we discussed in Example B.24] their definitions are
interpreted as

» Ext (X, 2)W = H{,) (Homa(Pse-1x, Z)) and , Tory (X, V)"V = H ' (Pye-1x®aY).

4. TRIANGLE EQUIVALENCE BETWEEN DERIVED CATEGORIES

In this section, we show that the derived category Dy (A) of N-complexes is tri-
angle equivalent to the ordinary derived category D(Mory_2(.A)) where Mory _2(A)
is the category of sequences of N — 2 morphisms in A.

Definition 4.1. Let B be an additive category. The category Mory_o(B) (resp.,
Mory 5 (B), Mory_5(B)) is defined as follows.

(1) An object is a sequence of N — 2 morphisms (resp., split monomorphisms,
1 2 N -2
split epimorphisms) X : X =%, x2 2X, ... X, xN-1iy B.
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(2) A morphism from X to Y is an (N — 1)-tuple f = (f%,---,fN"1) of
morphisms f%: X* — Y which makes the following diagram commutative.

x1 ax X2 ok O‘gstN—z ax”? X N-1

5 e V- Vv

Yl - Y2 - L. — YN72 > YNfl
Qs ay ay " ay

We can identify Mory_2(B) with a full subcategory of Cn(B) (and Ky (B)) con-
sisting of N-complexes concentrated in degrees 1,...,N — 1. Indeed, we have
isomorphisms

HomMorS]\‘,’L2(B) (X, Y) = HOch(B) (X, Y) = HOHlKN(B) (X, Y)

for any X,Y € Mory"5(B). As usual, a set S of objects in an abelian category A is
a set of generators if any object X € A admits an epimorphism from a coproduct
of objects in S to X.

Theorem 4.2. Let A be an Ab3-category with a small full subcategory C of compact
projective generators. Then we have a triangle equivalence

DN(A) ~ D(MOFNfz(A))
which restricts to the identity functor on Moryo(C).
We start with the following basic observations.

Lemma 4.3. Let B be an additive category.

(1) Assume that B is idempotent complete, that is, for any X € B and any
idempotent e € Endp(X), there are an object Y € B, and morphisms p :
X —-Y and q : Y — X such that e = qp and pq = ly. Then for every
object P of Mory o(B), there are objects Cy,--- ,Cn_1 of B such that P ~
[T (G,

(2) For any P,Q € Mory 5(B), we have Homg , (5)(P,%7Q) = 0 (j # 0).

(3) KR(B) = tri Mory 5 (B).

(4) Assume that B has arbitrary coproducts. Then every object in Mory~o(B°)
is compact in Cy(B) (resp., Kn(B)).

Proof. (1) This is clear.

(2) Let B be the idempotent completion of B (e.g. [ Definition 1.2]). Since
Ky (B) is a full triangulated subcategory of Ky (B), we can assume that B is idem-
potent complete. By (1), we have only to consider the case P = plY~1(C) and
Q = ,ui\,[*l(C’) for C,C" € B and 0 < r,7’ < N. For the case j = 1, we have
SuhHen) = ,u%:::(C’) by Lemma [29(1), and it is easy to check that any mor-
phism from 2 =1(C) to u%::: (C”") is null-homotopic. Now we consider the case j #
0,1. Since ¥2 = OV, there is no degree in which both pN~=1(C) and 75 ~1(C")
have non-zero terms. Thus we have Homc 5y (12 ~1(C), 27 ~1(C")) = 0.

(3) For any C' € B and 0 < r < N, we have a triangle p}(C) — pN"1(C) —
pN=L L (C) = 2 (C) in KR (B). Thus p5(C) € triMory™,(B) holds. By Lemma
239(2), the assertion follows.

(4) Taking idempotent completion of B, it suffices to show that uN ~1(C) is compact

in Cn(B) (resp. Ky (B)) for C' € B¢. This follows from (B.7). O
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Definition 4.4. Let 7 be a triangulated category with arbitrary coproducts. A
small full subcategory S of T°¢ is called a tilting subcategory if the following condi-
tions are satisfied.

(1) Hom7(S,%!S) = 0 for any i # 0.

(2) If X € T satisfies Hom7(S, %' X) = 0 for any i € Z, then X = 0.

The following general result by Keller is basic, where we always regard S as a
full subcategory of Mod S and D(Mod S) by Yoneda embedding.

Proposition 4.5. Let T be an algebraic triangulated category with arbitrary co-
products and S a tilting subcategory. Then we have a triangle equivalence F : T =~
D(Mod S), which restricts to the identity functor on S.

Proof. Although this is well-known, we include a proof for convenience of the reader,
because of the lack of proper reference in this setting (cf. [26, Theorem 8.3.3] for
the one-object version). Replacing objects in 7 with their complete resolutions
in the Frobenius category (cf. [25, Theorem 4.3], [30, Theorem 7.5]), we obtain
a DG category R and a triangle functor G : T — D(R) satisfying the following
conditions.

e H(R) =S and H'(R) = 0 for any i # 0.

e (G commutes with arbitrary coproducts and induces an equivalence S — 7€,
where R is the full subcategory of D(R) consisting of representable DG
functors.

Then G induces a triangle equivalence LocS — LocR. Since LocS = T and
LocR = D(R) hold by Brown representability, G : 7 — D(R) is a triangle equiva-
lence.

On the other hand, DG functors 0<o(R) — R and 0<g(R) — H°(R) = S are
quasi-equivalences [27] where 0<o(R) is the DG category with the same objects as
R and the morphism spaces given as Hom,_, ()(X,Y) = o< Homz (X,Y). Hence
we have triangle equivalences D(R) =~ D(0<¢(R)) ~ D(Mod S) by [25, 9.1] (cf. 2T,
Lemma 3.10]). Thus the assertion follows. (]

We need the following general observation.

Proposition 4.6. Let A be an Ab3-category with a small full subcategory C of
compact projective generators. Then we have an equivalence A ~ ModC given by
X = Homu(—, X)|c. In particular, A is a Grothendieck category which satisfies
the condition Ab4*.

Proof. See [35, Chapter IV, Theorem 5.3] and [39, 3.4]. O

Now we give the following crucial results.

Proposition 4.7. Let A be an Ab3-category with a small full subcategory C of
compact projective generators.
(1) Dn(A) has a tilting subcategory Mory™o(C).
(2) We have a triangle equivalence Dy (A) ~ D(Mod(Mory™ 5(C))), which re-
stricts to the identity functor on Mory—_(C).

Proof. (1) Set & = Mory" 5(C). Lemma E3(4) gives S C K} (PrjA)¢ ~ Dy (A)°.
Also, S satisfies (1) of Definition 4l by Lemmal3)2). To show (2) of Definition [£.4]
let X be a non-zero object in Dy (A). It suffices to find some C € C and 7, s € Z with
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0 <7 < N such that Homp4)(p;(C), X) # 0. Indeed, there exist i € Z and 0 <
r < N such that Hér)(X) # 0. Since C generates A, we have Hom 4(C, Hér)(X)) #0
for some C € C. So Hompa)(pit"~1(C), X) = Homg  (a) (i1 (C), X) # 0 by
Lemma B.§|(2).

(2) This is immediate from (1) and Proposition 5 O

We also need the following observation for abelian categories.

Lemma 4.8. Let A be an abelian category.
(1) Any object in Mory"_o(Prj A) is projective in Mory_s(A).
(2) If P is a subcategory of A of projective generators, then Mory’ o(P) is a
subcategory of Mory_o(A) of projective generators.
Assume that A is an Ab3-category with a small full subcategory C of compact pro-
jective generators.
(3) Morn_2(A) is an Ab3-category with a small full subcategory Mory™ 5(C) of
compact projective generators.
(4) We have an equivalence Mory_2(A) ~ Mod(Mory.5(C)) given by X
HomMorN,Q(.A)(_aX)|Mor§\,m72(C)'
Proof. (1) By Lemma E3(1), it suffices to prove that Y '(C) is projective in
Mory_2(A) for C € PriAand 1 <i < N — 1. Indeed, let an epimorphism ¥ — X
in Mory_2(A) be given. Then it induces an epimorphism Hom4(C,YN™") —
Hom (C, XN %), Since XV~ = H{"/(X) and YN % = H{{;(Y), we get an epi-
morphism Homy , (4) (1~ (C),Y) — Homg , (4) (1~ (C), X) from LemmalZ8(2).
1 N -2
(2) Let X = (X' %» ... & XN=1) be any object in Mory_o(A). For each
1 <i< N —1, we take an epimorphism P; — X? with P; € P. Then we have an
epimorphism ]_[i\;l pNTHP) — X.
(3) The assertion follows from (1), (2) and Lemma [3(4).
(4) This is immediate from (3) and Proposition 6] O

Now we are ready to prove Theorem

of Theorem [{.2 By Proposition L7 and Lemma [L8 we have triangle equivalences
Dy (A) ~ D(Mod(Mory’ 5(C))) ~ D(Mory_2(A)), which restrict to the identity
functor on MoryL,(C). O

Next, to restrict the above equivalence to the subcategories of bounded com-
plexes, we give the following preliminary result.

Lemma 4.9. Let A be an abelian category and C a full subcategory of projective
generators. Then the following conditions are equivalent for X € Dy (A).
(1) X belongs to DY (A) (resp., Dy(A), D& (A)).
(2) For every 0 < r < N, Homp,(4)(1;(C), X) = 0 holds for all but finitely
many (resp., sufficiently large, sufficiently small) s € 7.
(3) Homp, (4)(Mory 5(C),X'X) = 0 holds for all but finitely many (resp.,
sufficiently large, sufficiently small) i € Z.

Proof. (1) and (2) are equivalent by Lemma [B.§|(2).

Since %2 = OV holds and DY (A) (resp., Dy (A), D} (A)) is closed under ¥, the
condition (2) is equivalent to the following condition.
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e For any 0 <7 < N and 0 < s < N, Homp, (4)(15(C), X" X) = 0 holds for
all but finitely many (resp., sufficiently large, sufficiently small) i € Z.

This is equivalent to the condition (3) since tri{us(P) | P€C, 0 <r < N,0<s<
N} = KX (C) = triMor$ ,(C) holds by Lemmas Z0(2) and E3(3). O
Now we are able to prove the following result.

Theorem 4.10. Let A be an Ab3-category with a small full subcategory of compact
projective generators. Then the triangle equivalence in Theorem [{.4 restricts to
those for f = +,—,b

D% (A) ~ D¥(Mory _5(A)).

Proof. This is immediate from Theorem 2] and Lemma [£.9 O

In the case A = Mod R for a ring R, Mory_2(.A) is nothing but the category
of modules over the upper triangular matrix ring Ty_1(R) of size N — 1 over R.
Then we have the following precise description of homologies.

Proposition 4.11. Let R be a ring. Then we have a triangle equivalence
G : Dy(Mod R) ~ D(Mod Tx_1(R))
which gives the following for X € Dy(Mod R) and i € Z:

H2%(GX) = (HE]NVJ:%)(X)—)H&*%)(X)% %HEQV)“V 1(X)),
241 -~ (i+1)N (i+1)N (+1)N
H2HH(GX) = (H(l) (X) = BN (X) = - o B (X)),

where each morphism is a canonical one between homologies.

Proof. By Theorem 2] we have a triangle equivalence G : Dy (Mod R) ~
D(Mod Ty —1(R)) which is the identity on Mory.,(prj R). We shall show the equal-

ities only for i = 0,1 since for others it follow from @~ = %2, For 0 < r < N, we
have

Hommod Ty, (r) (r N-HR),H'(GX)) ~ HomyMod Trn_1 (R ))(Miv '(R),GX)

~ Homp(modTx_1(r)) (Hr ' (R),GX) Homp , (vod r) (11r ' (R), X) ~ Hé\i) "(X).

The first isomorphism is from LemmalZ8|(1), the second from p¥ ~!(R) € K} (Prj R),
and the the third by G. The last is from Lemma [B:8(2). Thus the morphism

Hé\i +;) HX) = Hé\i ) "(X) is the canonical one since it is induced from the canonical

morphism pN~Y(R) — 2, '71'(R). Similarly we have
Homyiody  (r) (12 ' (R), HY(GX)) ~ HompmodTr_;(r)) (X~ 1r 1 (R), GX)
= HomDN(ModR)(E ! N 1(R)7X)2H0mDN(ModR)( N : 1(R)7X)NH?N—’I‘)(X)
as desired. 0

R

As an application, we have the following results for homotopy categories.

Corollary 4.12. Let B be an additive category with arbitrary coproducts. If B is
skeletally small and satisfies B = Add(B®), then we have triangle equivalences

Ky (B) ~ K™ (Mory" o(B)) and KR (B) ~ K> (Mory" ,(B)).
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Proof. Let A = ModB°. Then A (resp., Mory_3(A)) is an Ab3-category with a
subcategory B (resp., Mory™ ,(B)) of projective generators by Lemma [£.8(2). Thus
we have triangle equivalences

Ky(B) ~Dy(A) ~ D™ (Morny_2(A)) ~ K™ (Mory.,(B)).

where the first and the third equivalence by Remark [3.23] and the second by The-
orem [ T0l Since these equivalences restrict to the identity functor on Mory" o (B),
we have a triangle equivalence

Kl])V(B) = triKX,(B) Mory" 5(B) =~ triK’(Mor;‘,’L2(B)) Mory" o (B) = Kb(MO"?\rfnfz(B))
by Lemma [3((3). O

Example 4.13. Let R be a graded ring, and GrMod R the category of graded right
R-modules. Then GrMod R satisfies the condition of Theorem Hence we have
a triangle equivalence for § =nothing, —, b:

D% (GrMod R) ~ D*(Mory_2(GrMod R)).

Finally we study the bounded derived category of N-complexes in the case of
coherent rings. We prepare the following easy observation.

Lemma 4.14. Let G : Dy(A) — D(Mory_2(A)) be the triangle equivalence given
in Theorem[{.9 For any P € C and i,r € Z with 0 <r < N, we have

G T (P)) = s 0= NI (P) =5 0 - if =0,
! = 0= N (P) = pN T (P) = 0= if 0<7r <N.

which is a complex concentrated in degree 21 —1 if r =0, in 20— 1 and 2i otherwise.
Proof. Since ¥2 = &, we have only to show them for the case i = 0 by an induction
on r. If r = 0, then we have G(P) = XuX_1(P) since P = Suy1(P). Assume
0 <7 < N. Then an exact sequence 0 — pyN_+ (P) — pN"L(P) = uj(P) = 0
in Cy(A) induces a triangle uN_"1 [ (P) — uN_L(P) — uj(P) — SuN_t [ (P)
in Dy (A) by Proposition BII(1). Applying G, we have a triangle L | (P) —
uN—L(P) = Gui(P) — Suyn_L ,(P) in Dn(A). O
Proposition 4.15. Let R be a ring.

(1) We have triangle equivalences for j = —,b,(—,b):

Kiv (prj R) = K*(pj Ty 1 (R)).
(2) If R is right coherent, then we have triangle equivalences for f = — b:
D% (mod R) ~ D*(mod T _1(R)).

Proof. (1) According to Theorem[B.16] we regard Ky (Prj R) (resp., K~ (Prj Tn_1(R))
as a full subcategory of Dy (Mod R) (resp., D(Mod Tx—1(R))). We shall show that
the triangle equivalence G : Dy(Mod R) ~ D(Mod Ty _1(R)) in Theorem 2] re-
stricts to the desired equivalence. Indeed, GG induces a triangle equivalence

KR (prj R) = trip  (Mod r) Mory_s(prj R) = tripModTx_,(r)) P Tv—1(R)
= K" (prj Ty_1(R)).

To get the triangle equivalence for f = —, we shall show GP € K™ (prj Ty_1(R))
for each P € Ky(prjR). We may assume P € Cy(prjR) and 751 P = 0. Set
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P, = 7>_,P for each n > 0. Then we have a term-wise split exact sequence
0— P, 1 — P, = 0"P~" —0in C}(prjR), and a triangle in Dy (Mod R)

P,1— P, »O"P " NP, .
Applying G, we have a triangle in D(Mod Tx_1(R))

GP, 1 — GP, — GO"P" % vGp, ;.
There exists a term-wise split exact sequence
0= Qn1—>Qn —>GO"P™ =0

in Cb(prj Tn—_1(R)) such that GPy - GP, — GP, — --- is isomorphic to Qg —
Q1 — Q2 — ---. Then Lemma LT gives a triangle GP,_; — GP, - GO"P™" —
YGP,_1 such that GO™P~" has only non-zero terms at degrees 2|n/N| and
2|n/N| — 1, where |n/N]| is the largest integer m satisfying m < n/N. Therefore
T>2|n/N|Qn-1 = T>2(n/N|@n hence lim @, € K™ (prj Ty -1(R)). Since P = hlim P,
in Dy(Mod R) by Lemma 322 GP ~ hl'in GP, ~ hj} Q@ in D(Mod Tx_1(R)).

Thus GP € K™ (prj Ty—1(R)) holds.
By a similar argument, a quasi-inverse functor G~ : D(Mod T _1(R)) =~ Dx(Mod R)
induces a functor K™ (prj Ty_1(R)) ~ Ky (prj R). Hence G restricts to a triangle
equivalence Ky (prj R) ~ K™ (prj Ty—1(R)). By Lemma [£.9] this restricts to a tri-
angle equivalence Kx,’b(prj R) ~ K~ (prj Ty_1(R)).
(2) When R is right coherent, Ty _1(R) is also right coherent. In fact, let A be
Ty_1(R) and e¢; (1 < i < N — 1) the idempotent of A whose (4,4)-entry is 1 and
others are zero. Let 0 - Z — Y — X be an exact sequence of A-modules such
that X and Y are finitely presented. Since e;Ae; = R, we have an exact sequence
0 — Ze; — Ye; — Xe; of R-modules. The R-modules Xe; and Ye; are finitely
presented and R is coherent, hence so is the R-module Ze; for any 1 <i¢ < N — 1.
Therefore the A-module Z is finitely generated.

We have the desired triangle equivalences

Dy(mod R) ~ Ky (prjR) ~ K™ (prj Tny—1(R)) ~ D™ (mod Tn_1(R)),
D% (mod R) ~ K" (prj R) ~ K™"(prj Ty _1(R)) ~ D (mod T _1(R))
from (1) for the middles, Theorem BI6 for the others. O
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