
ar
X

iv
:1

30
9.

60
39

v5
  [

m
at

h.
C

T
] 

 2
 O

ct
 2

01
7

DERIVED CATEGORIES OF N-COMPLEXES

OSAMU IYAMA, KIRIKO KATO AND JUN-ICHI MIYACHI

Abstract. We study the homotopy category KN (B) of N-complexes of an
additive category B and the derived category DN (A) of an abelian category
A. First we show that both KN (B) and DN (A) have natural structures of tri-
angulated categories. Then we establish a theory of projective (resp., injective)
resolutions and derived functors. Finally, under some conditions of an abelian
category A, we show that DN (A) is triangle equivalent to the ordinary derived
category D(MorN−2(A)) where MorN−2(A) is the category of sequential N−2
morphisms of A.

0. Introduction

The notion of N -complexes, that is, graded objects with N -differentials d (dN =
0), was introduced by Mayer [32] in his study of simplicial complexes. Recently
Kapranov and Dubois-Violette gave abstract framework of homological theory of
N -complexes [22, 10]. Since then the N -complexes attracted many authors, for
example [4, 5, 9, 11, 12, 13, 20, 22, 33, 34]. The aim of this paper is to give a solid
foundation of homological algebra ofN -complexes by generalizing classical theory of
derived categories due to Grothendieck-Verdier. In particular we study homological
algebra of N -complexes of an abelian category A based on the modern point of view
of Frobenius categories (see [17] for the definition) and their corresponding algebraic
triangulated categories.

In section 2, we study the category CN (B) of N -complexes over an additive
category B and the homotopy category KN (B). Precisely speaking, we introduce
an exact structure on CN (B) to prove the following results.

Theorem 0.1 (Theorems 2.1 and 2.6). (1) The category CN (B) has a struc-
ture of a Frobenius category.

(2) The category KN (B) has a structure of a triangulated category.

We give an explicit description of the suspension functor Σ and triangles in
KN (B). Unlike the classical case N = 2, the suspension functor Σ does not coincide
with the shift functor Θ. However we have the following connection between Σ and
Θ in KN (B).

Theorem 0.2 (Theorem 2.7). There is a functorial isomorphism Σ2 ≃ ΘN on
KN (B).

In Section 3, we introduce the derived category DN (A) of N -complexes for an
abelian category A. We generalize the theory of projective resolutions of com-
plexes initiated by Verdier [42] and extended to unbounded complexes by Spal-
tenstein and Böckstedt-Neeman [41, 7]. Our main result is the following, where
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PrjA (resp., InjA) is the subcategory of projective (resp., injective) objects in A

and Ka
N (A) (resp., Kp

N (A), Ki
N (A)) is the homotopy category of N -acyclic (resp.,

K-projective, K-injective) N -complexes (see Definitions 3.3, 3.20). We denote by

K−N (PrjA) (resp., K−,bN (PrjA), K−,aN (PrjA)) the subcategory of KN (PrjA) consisting
of N -complexes bounded above (resp., bounded above with bounded homologies,
bounded above and N -acyclic). For other unexplained notations, we refer to the
paragraph before Theorem 3.16.

Theorem 0.3 (Theorems 3.16 and 3.21). The following hold for ♮ =nothing, b.

(1) Assume that A has enough projectives.

(a) (K−,♮N (PrjA),K−,aN (A)) is a stable t-structure in K
−,♮
N (A) and we have

triangle equivalences K−N (PrjA) ≃ D−N (A) and K
−,b
N (PrjA) ≃ Db

N (A).
(b) If A is an Ab4-category, then (Kp

N (A),Ka
N (A)) is a stable t-structure

in KN (A) and we have a triangle equivalence K
p
N (A) ≃ DN (A).

(2) Assume that A has enough injectives.

(a) (K+,a
N (A),K+,♮

N (InjA)) is a stable t-structure in K
+,♮
N (A) and we have

triangle equivalences K+
N (InjA) ≃ D+

N (A) and K
+,b
N (InjA) ≃ Db

N (A).

(b) If A is an Ab4∗-category, then (Ka
N (A),Ki

N (A)) is a stable t-structure

in KN (A) and we have a triangle equivalence Ki
N (A) ≃ DN (A).

Moreover, we generalize a result of Krause [29] characterizing the compact ob-
jects in classical homotopy categories. We deal with a locally noetherian Grothendieck
category, that is, a Grothendieck category with a set of generators of noetherian
objects. We give the following result, where Cc denotes the subcategory of compact
objects in an additive category C.

Theorem 0.4 (Theorem 3.27). Let A be a locally noetherian Grothendieck category
with the subcategory noethA of noetherian objects in A.

(1) KN (InjA) is compactly generated.
(2) The canonical functor KN (InjA) → DN (A) induces an equivalence between

KN (InjA)c and Db
N (noethA).

We generalize the classical existence theorem of derived functors to our setting
by showing that any triangle functor KN (A) → KN ′(A′) has a left/right derived
functor DN (A) → DN ′(A′) (see Definition 3.30) under certain mild conditions on
A. Our result is the following.

Theorem 0.5 (Theorem 3.33). Let A, A′ be abelian categories, F : KN (A) →
KN ′(A′) a triangle functor. Then the following hold.

(1) If A is an Ab4-category with enough projectives, then the left derived functor
LF : DN (A) → DN ′(A′) exists.

(2) If A is an Ab4∗-category with enough injectives, then the right derived func-
tor RF : DN (A) → DN ′(A′) exists.

In section 4, we give our main result in this paper. We show that the derived cat-
egory DN (A) is triangle equivalent to the ordinary derived category D(MorN−2(A))
of MorN−2(A), where MorN−2(A) is the category of sequences of N − 2 morphisms
of A (see Definition 4.1).

Theorem 0.6 (Theorems 4.2 and 4.10). Let A be an Ab3-category with a small full
subcategory of compact projective generators. Then we have a triangle equivalence
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for ♮ =nothing,+,−, b.

D
♮
N (A) ≃ D♮(MorN−2(A)).

As applications, we have the following triangle equivalences. Here B is an addi-
tive category,MorsmN−2(B) is the category of sequences ofN−2 split monomorphisms
of B (see Definition 4.1) and TN−1(R) is the upper triangular matrix ring of size
N − 1 over a ring R. For a full subcategory C of an additive category B with
arbitrary coproducts, AddB C is the category of direct summands of coproducts of
objects of C in B. For a ring R, modR (resp., prjR) is the category of finitely
presented (resp., finitely generated projective) R-modules.

Corollary 0.7 (Corollary 4.12, Proposition 4.15). (1) Let B be an additive cat-
egory with arbitrary coproducts. If the subcategory Bc of compact objects
of B is skeletally small and satisfies B = Add(Bc), then we have triangle

equivalences K−N (B) ≃ K−(MorsmN−2(B)) and Kb
N (B) ≃ Kb(MorsmN−2(B)).

(2) For a ring R, we have a triangle equivalence K
♮
N (prjR) ≃ K♮(prjTN−1(R))

for ♮ = −, b, (−, b). For a right coherent ring R, we have a triangle equiv-

alence D
♮
N (modR) ≃ D♮(modTN−1(R)) for ♮ =nothing,−, b.

In [16], we will study more precise relations between the homotopy categories.

1. Preliminaries

In this section, we collect preliminary results on additive and triangulated cate-
gories. We will omit proofs of elementary facts.

Lemma 1.1. In an abelian category, consider a pull-back (resp., push-out) diagram

X
f ��

g // X ′

f ′��
Y

g′ // Y ′

and morphisms ( g′ f ′ ) : X ′ ⊕ Y → Y ′,
( g
f

)
: X → X ′ ⊕ Y . Then the following

hold.

(1) If f ′ (resp., f) is epic (resp., monic), then the above diagram is also push-
out (resp., pull-back), and f (resp., f ′) is also epic (resp., monic).

(2) The induced morphism Ker f → Ker f ′ is an isomorphism (resp., an epi-
morphism).

(3) The induced morphism Cok f → Cok f ′ is a monomorphism (resp., an
isomorphism).

(4) We have an exact sequence 0 → Cok f → Cok f ′ → Cok ( g′ f ′ ) → 0 (resp.,
0 → Ker

( g
f

)
→ Ker f → Ker f ′ → 0.

A commutative square is called exact if it is pullback and push-out [39].

Lemma 1.2. In an abelian category, consider two pull-back squares (X) and (Y)

A
(X)a ��

// B
(Y )b��

// C
c��

D // E // F.

Then the square (X+Y) is exact if and only if the squares (X) and (Y) are exact.
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Lemma 1.3. In an abelian category, consider an exact square with a split epimor-
phism d.

A⊕B

ι=( ι1 ι2 )
��

( 0 1 ) // B

( 10 )��
D

d=
(
d1
d2

)

// B ⊕ C

Then there exists an isomorphism a : A ⊕ B ⊕ C → D such that ι = a
(

1 0
0 1
0 0

)
and

da = ( 0 1 0
0 0 1 ).

Proof. Since d is a split epimorphism, there exists ι3 : C → D such that d1ι3 = 0
and d2ι3 = 1. Then a = (ι1 ι2 ι3) satisfies the desired conditions. �

For a triangulated category T and a full subcategory C of T , we denote by
tri C = triT C the smallest triangulated subcategory of T containing C, and by
thick C = thickT C the smallest triangulated subcategory of T containing C and
closed under direct summands, and by Loc C = LocT C the smallest triangulated
subcategory of T containing C and closed under coproducts.

Definition 1.4 (Triangle Functor). Let T and T ′ be triangulated categories with
suspensions ΣT and ΣT ′ respectively. A triangle functor is a pair (F, α), where

F : T → T ′ is an additive functor and α : FΣT
∼
→ ΣT ′F is a functorial isomor-

phism such that (FX,FY, FZ, F (u), F (v), αXF (w)) is a triangle in T ′ whenever
(X,Y, Z, u, v, w) is a triangle in T . If a triangle functor F is an equivalence, then
we say that T is triangle equivalent to T ′.

Let (F, α), (G, β) : T → T ′ be triangle functors. A functorial morphism of
triangle functors is a functorial morphism φ : F → G satisfying (ΣT ′φ)α = βφΣT .

Let T be a triangulated category and U , V be full subcategories. The category
of extensions U ∗ V is the full subcategory of T consisting of objects X such that
there exists a triangle U → X → V → ΣU with U ∈ U and V ∈ V .

Note that (U ∗ V) ∗W = U ∗ (V ∗W) holds by octahedral axiom.

Definition 1.5 ([36]). Let T be a triangulated category. A pair (U ,V) of full trian-
gulated subcategories of T is called a stable t-structure (also known as semiorthog-
onal decomposition, torsion pair, Bousfield localization) in T provided that

HomT (U ,V) = 0 and T = U ∗ V .

In this case, the canonical quotient T → T /U (resp., T → T /V) has a right
(resp., left) adjoint, and we have a triangle equivalence T /U ≃ V (resp., T /V ≃ U).

Lemma 1.6. [21] Let T be a triangulated category and U , V be full triangulated
subcategories. Then the following conditions are equivalent.

(1) V ∗ U ⊂ U ∗ V.
(2) U ∗ V is a triangulated subcategory of T .
(3) Any morphism f : U → V with U ∈ U and V ∈ V factors through an object

in U ∩ V.

In this case, (U/(U ∩V),V/(U ∩V)) is a stable t-structure in (U ∗V)/(U ∩V). Hence
we have triangle equivalences U/(U ∩ V) ≃ (U ∗ V)/V and V/(U ∩ V) ≃ (U ∗ V)/U .
Thus the canonical functors U/(U ∩ V) → T /V and V/(U ∩ V) → T /U are fully
faithful.
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2. Homotopy category of N-complexes

In this section, we study the homotopy category of N -complexes. We fix a
positive integer N ≥ 2. Throughout this section B is an additive category. An
N -complex X = (X i, diX) is a diagram

· · ·
di−1
X−−−→ X i diX−−→ X i+1 di+1

X−−−→ · · ·

with X i ∈ B and diX ∈ HomB(X
i, X i+1) satisfying

di+N−1X · · · di+1
X diX = 0

for any i ∈ Z. We often denote the r-th power of dX by

d
{r}
X = di+rX · · · di+1

X diX

without mentioning grades, where d
{0}
X = 1. A morphism f : X → Y between

N -complexes is a commutative diagram

· · ·
di−1
X // X i

diX //

fi

��

X i+1
di+1
X //

fi+1

��

· · ·

· · ·
di−1
Y // Y i

diY // Y i+1
di+1
Y // · · ·

with f i ∈ HomB(X
i, Y i) for any i ∈ Z. We denote by CN (B) the category of

N -complexes.
We call an N -complex X bounded above (resp., bounded below) if X i = 0 for all

i ≫ 0 (resp., i ≪ 0), and bounded if X is both bounded above and bounded below.

We denote by C−N (B) (resp., C+
N (B), Cb

N (B)) the full subcategory of bounded above
(resp., bounded below, bounded) N -complexes.

Our approach to the category CN (B) of N -complexes is based on the theory of
exact categories [40] (see [24] for modern account). Let SN (B) be the collection of

sequences 0 → X
f
−→ Y

g
−→ Z → 0 of morphisms in CN (B) such that 0 → X i fi

−→

Y i gi

−→ Zi → 0 is split exact in B for any integer i. Then we have the following
basic observation.

Theorem 2.1. The category (CN (B),SN (B)) of N -complexes is a Frobenius cate-
gory.

For an object M of B and integers s and 1 ≤ r ≤ N , let

µsr(M) : · · · → 0 → M s−r+1 ds−r+1

−−−−→ · · ·
ds−2

−−−→ M s−1 ds−1

−−−→ M s → 0 → · · ·

be anN -complex given byM s−i = M (0 ≤ i ≤ r−1) and ds−i = 1M (0 < i ≤ r−1).
One can easily check the functorial isomorphisms
(2.2)

HomCN (B)(X,µ
s
N (M)) ≃ HomB(X

s
,M) and HomCN (B)(µ

s
N (M), X) ≃ HomB(M,X

s−N+1)
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where f ∈ HomB(X
s,M) and g ∈ HomB(M,Xs−N+1) are mapped to ρsf and λsg

respectively by the following commutative diagrams.

µsN (M) :

ρsf��

· · · // 0 //

��

M
1 //

f��

· · ·
1 // M

d{N−1}f��

// 0 //

��

· · ·

X :

λs
g��

· · ·
d // Xs−N d //

��

Xs−N+1 d //

gd{N−1}

��

· · ·
d // Xs d //

g
��

Xs+1 d //

��

· · ·

µsN (M) : · · · // 0 // M 1 // · · · 1 // M // 0 // · · ·

Lemma 2.3. The object µsN (M) is projective-injective in (CN (B),SN (B)) for any
object M ∈ B and any integer s.

Proof. For any exact sequence 0 → X → Y → Z → 0 in SN (B), the isomorphism
(2.2) gives a commutative diagram of exact sequences

0 // HomCN (B)(Z, µ
s
N (M)) //

≀
��

HomCN (B)(Y, µ
s
N (M)) //

≀
��

HomCN (B)(X,µsN (M))

≀
��

0 // HomB(Z
s,M) // HomB(Y

s,M) // HomB(X
s,M) // 0,

where the lower sequence is exact since 0 → Xs → Y s → Zs → 0 is split exact.
This means that µsN (M) is injective. Dually one can show that µsN (M) is projective.

�

Let X ∈ CN (B) be given. We have morphisms ρn1
Xn−N+1

: µnN (Xn−N+1) → X

and λn1Xn : X → µnN (Xn), using (2.2). Set ρX = (ρn1
Xn−N+1

)n :
⊕

n∈Z µnN (Xn−N+1) →

X and λX = (λn1Xn )n : X →
⊕

n∈Z µnN (Xn). Then we have the following exact
sequences in SN (B).
(2.4)

0 → Ker ρX
ǫX
−−→

⊕

n∈Z

µ
n
N (Xn−N+1)

ρX
−−→ X → 0, 0 → X

λX
−−→

⊕

n∈Z

µ
n
N (Xn)

ηX
−−→ Cok λX → 0.

of Theorem 2.1. The exact sequences (2.4) with Lemma 2.3 show that (CN (B),SN (B))
has enough projectives and enough injectives. Let X be an arbitrary projective
(resp., injective) object. Then, on the first (resp., second) sequence of (2.4), X
is a direct summand of the middle term. By Lemma 2.3, X is injective (resp.,
projective). �

The stable category F of a Frobenius category (F ,S) has the same objects as F
and the homomorphism set between X,Y ∈ F is given by

HomF (X,Y ) = HomF (X,Y )/I(X,Y )

where I(X,Y ) is the subgroup of HomF (X,Y ) consisting of morphisms which factor
through some projective-injective object of (F ,S). By [17], F has a structure of a
triangulated category, which is nowadays called an algebraic triangulated category.

Now we shall describe the stable category of our Frobenius category (CN (B),SN (B))
more explicitly. Indeed, as in the classical case, it coincides with the homotopy cat-
egory of N -complexes. Recall that a morphism f : X → Y of N -complexes is called
null-homotopic if there exists si ∈ HomB(X

i, Y i−N+1) such that

(2.5) f i =

N−1∑

j=1

di−1Y · · · di−N+j
Y si+j−1di+j−2X · · · diX
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for any i ∈ Z. For morphisms f, g : X → Y in CN(B), we denote f ∼ g if f − g is
null-homotopic. We denote by KN (B) the homotopy category, that is, the category
consisting of N -complexes such that the homomorphism set between X,Y ∈ KN (B)
is given by

HomKN (B)(X,Y ) = HomCN (B)(X,Y )/ ∼ .

Theorem 2.6. The stable category of the Frobenius category (CN (B),SN (B)) is the
homotopy category KN (B) of B. In particular, KN (B) is an algebraic triangulated
category.

Proof. It suffices to show that a morphism f : X → Y is null-homotopic if and only
if f factors through the morphism λX : X →

⊕
n∈Z µnN (Xn) given in (2.4). This

can be easily checked by (2.2). �

Now we define functors Σ,Σ−1 : CN (B) → CN (B) by

Σ−1X = Ker ρX and ΣX = CokλX

in the exact sequences (2.4). Then Σ and Σ−1 induce the suspension functor and
its quasi-inverse of the triangulated category KN (B).

On the other hand, we define the shift functor Θ : CN (B) → CN (B) by

Θ(X)i = X i+1 and diΘ(X) = di+1
X

for X = (X i, diX) ∈ CN (B). This induces the shift functor Θ : KN (B) → KN (B)
which is a triangle functor. Unlike classical case, Σ does not coincide with Θ.
However we have the following observation.

Theorem 2.7. There is a functorial isomorphism Σ2 ≃ ΘN on KN (B).

To prove this, we give a more explicit description of Σ and Σ−1. Let X = (X i, di)
be an object of CN (B). In (2.4), the first sequence is given by

(Σ−1X)m =

m−1
⊕

i=m−N+1

Xi, dm
Σ−1X

=





















−d 1 0 · · · 0 0

−d{2} 0 1 · · · 0 0
...

...
...

. . .
...

...

−d{N−3} 0 0 · · · 1 0

−d{N−2} 0 0 · · · 0 1

−d{N−1} 0 0 · · · 0 0





















(ǫX)m =





















1 0 0 · · · 0
−d 1 0 · · · 0
0 −d 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · −d 1
0 0 · · · 0 −d





















and (ρX )m =
(

d{N−1} d{N−2} · · · d 1
)

.

while the second sequence by

(ΣX)m =

m+N−1
⊕

i=m+1

Xi, dmΣX =





















0 1 0 · · · 0 0
0 0 1 · · · 0 0
.
..

.

..
.
..

. . .
.
..

.

..
0 0 0 · · · 1 0
0 0 0 · · · 0 1

−d{N−1} −d{N−2} −d{N−3} · · · −d{2} −d





















,
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(λX )m =

















1
d

.

..

d{N−2}

d{N−1}

















and (ηX )m =

















−d 1 0 · · · 0 0
0 −d 1 · · · 0 0
0 0 −d · · · 0 0
..
.

..

.
..
.

. . .
. . .

..

.
0 0 0 . . . −d 1

















.

of Theorem 2.7. We shall construct a functorial isomorphism Σ → ΘNΣ−1. Given

an object X = (X i, di) ∈ CN (B), we have (ΣX)m =
⊕m+N−1

i=m+1 X i = (Σ−1X)m+N

for each m by (2.4). Let φmX : (ΣX)m → (Σ−1X)m+N be a morphism given as

φmX =

















1 0 0 · · · 0
d 1 0 · · · 0

d{2} d 1 · · · 0
...

...
. . .

. . .
...

d{N−2} d{N−3} · · · d 1

















.

Then it is easy to check that φX makes the following diagram commutative

(ΣX)m

φm
X��

dmΣX // (ΣX)m+1

φm+1
X��

(Σ−1X)m+N
dm+N

Σ−1X // (Σ−1X)m+N+1.

Thus φX : ΣX → ΘNΣ−1X is an isomorphism in CN (B).
Next let f be a morphism fromX to Y in CN (B). It is routine to show (ΘNΣ−1f)φX =
φY Σf holds. Thus φ gives a functorial isomorphism Σ ≃ ΘNΣ−1. �

We denote by K−N (B) (resp., K+
N (B), Kb

N (B)) the full subcategory of KN (B)

corresponding to C−N (B) (resp., C+
N (B), Cb

N (B)). Then they are full triangulated
subcategories of KN (B) by the above descriptions of Σ and Σ−1.

Definition 2.8 (Hard truncations). For an N -complex X = (X i, di), set

τ≤nX : · · · → Xn−2 → Xn−1 → Xn → 0 → · · · ,

τ≥nX : · · · → 0 → Xn → Xn+1 → Xn+2 → · · · .

Then we have a triangle τ≥nX → X → τ≤n−1X → Σ(τ≥nX) in KN (B).

Later we will use the following observation.

Lemma 2.9. We have the following.

(1) For any C ∈ B, i, s ∈ Z and 0 < r < N , we have Σ2i+kµsr(C) ≃{
µ−iN+s
r (C) (k = 0)

µ−iN+s−r
N−r (C) (k = 1).

(2) Kb
N (B) = tri{µs1(C) | C ∈ B, 0 < s < N}.

Proof. (1) For each C ∈ B and r, i ∈ Z with 1 ≤ r ≤ N − 1, we have a term-wise

split exact sequence 0 → µ−iN+s
r (C) → µ−iN+s

N (C) → µ−iN+s−r
N−r (C) → 0 in C(B).

Since µ−iN+s
N (C) is a projective-injective object in CN (B), we have the desired

isomorphisms in KN (B).

(2) Using triangles in Definition 2.8, we can show Kb
N (B) = tri{µs1(C) | C ∈ B, s ∈

Z} by an induction on the number of non-zero terms. Moreover, we can replace
the condition s ∈ Z by 0 ≤ s < N since Σ2 ≃ ΘN holds by Theorem 2.7. We can
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further replace it by 0 < s < N since µ0
1(C) = ΣµN−1N−1(C) belongs to tri{µs1(C) |

C ∈ B, 0 < s < N}. �

We end this section with an explicit description of the mapping cone. For a
morphism f : Y = (Y i, ei) → X = (X i, di) in CN (B), the mapping cone C(f) is
given by the diagram

0 // Y
λY //

f
��

I(Y )

ψf
��

ηY // ΣY // 0

0 // X
g // C(f)

h // ΣY // 0,

where C(f)m = Xm⊕(

m+N−1
⊕

i=m+1

Y i), dmC(f) =





















d f 0 0 · · · 0

0 0 1 0 · · · 0
..
.

..

.
..
.

. . .
. . .

..

.
0 0 0 · · · 1 0
0 0 0 · · · 0 1

0 −e{N−1} −e{N−2} · · · −e{2} −e





















gm =











1
0
...
0











, hm =















0 1 0 · · · 0

0 0 1
. . .

..

.
...

...
...

. . . 0
0 0 0 · · · 1















and ψmf =



















f 0 0 · · · 0
−e 1 0 · · · 0

0 −e 1
. . .

...
..
.

. . .
. . .

. . . 0
0 · · · 0 −e 1



















.

Thus we have a triangle Y
f
−→ X

g
−→ C(f)

h
−→ ΣY in KN (B).

3. Derived category of N-complexes

In this section, we introduce the derived category of N -complexes as the Verdier
quotient of the homotopy category with respect to the N -quasi-isomorphisms as in
the case of 2-complexes.

3.1. Homologies of N-complexes. Let A be an abelian category, and PrjA
(resp., InjA) the subcategory of A consisting of projective (resp., injective) ob-
jects of A. Let X be an N -complex in A

· · · → X i−1 di−1
X−−−→ X i diX−−→ X i+1 → · · · .

For 0 ≤ r ≤ N and i ∈ Z, we define

Zi(r)(X) := Ker(di+r−1X · · · diX), Bi(r)(X) := Im(di−1X · · · di−rX ),

Ci(r)(X) := Cok(di−1X · · · di−rX ), Hi(r)(X) := Zi(r)(X)/Bi(N−r)(X).

For example, Zn(N)(X) = Bn(0)(X) = Xn and Zn(0)(X) = Bn(N)(X) = 0 hold. With

this in mind, using the notation dn(r) := dnX |Zn
(r)

(X), we can understand a homology

as follows
(3.1)

Hn(r)(X) = Cok

(
Zn−N+r
(N) (X)

dn−N+r
(N)

−−−−−→ · · ·
dn−2
(r+2)

−−−−→ Zn−1(r+1)(X)
dn−1
(r+1)

−−−−→ Zn(r)(X)

)
.
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Xn−N+1 Xn−N+2 · · · Xn−1 Xn
Xn+1

Z
n−N+2
(N−1)

D
n−N+2
(N−1)

Z
n−N+3
(N−1)

· · · Z
n−1
(N−1)

D
n−1
(N−1)

Zn
(N−1) D

n
(N−1) Z

n+1
(N−1)

Z
n−N+3
(N−2)

D
n−N+3
(N−2)

Z
n−N+4
(N−2)

· · · Zn
(N−2) D

n
(N−2) Z

n+1
(N−2)

Z
n−N+4
(N−3)

.
.
.

.
.

.
Z

n+1
(N−3)

.
. .

Zn
(2)

.
.
.

Zn
(1) Dn

(1) Z
n+1
(1)

0

��❄
❄❄

❄❄ <<③③③③③ ��❄
❄❄

❄❄
??⑧⑧⑧⑧⑧

??⑧⑧⑧⑧⑧ ��❄
❄❄

❄❄ ??⑧⑧⑧⑧⑧ ��❄
❄❄

❄❄ ??⑧⑧⑧⑧⑧

��❄
❄❄

❄ <<③③③③ ��❄
❄❄

❄ ??⑧⑧⑧⑧⑧
??⑧⑧⑧⑧⑧ ��❄

❄❄
❄ ??⑧⑧⑧⑧ ��❄

❄❄
❄ ??⑧⑧⑧⑧

��❄
❄❄

❄ <<③③③③ ��❄
❄❄

❄ ??⑧⑧⑧⑧ ��❄
❄❄

❄ ??⑧⑧⑧⑧

  ❇
❇❇

❇❇

��❁
❁❁

❁ ??⑧⑧⑧⑧

??⑧⑧⑧⑧

��❄
❄❄

❄ ??⑧⑧⑧⑧ ��❄
❄❄

❄ ??⑧⑧⑧⑧

��❄
❄❄

❄❄ ??⑧⑧⑧⑧⑧

Figure 1.

For 1 ≤ r ≤ N − 1, we have a pull-back diagram with the canonical inclusion ιn(r).

(3.2) 0 // Zn(1)(X) // Zn(r)(X)

(Dn
(r))

dn(r) //
� _

ιn(r)
��

Zn+1
(r−1)(X)

� _

ιn+1
(r−1)��

0 // Zn(1)(X) // Zn(r+1)(X)
dn(r+1) // Zn+1

(r) (X),

Then (Dn
(r)) forms a commutative diagram in Figure 1.

Definition 3.3. We call X ∈ CN (A) N -acyclic if Hi(r)(X) = 0 for any 0 < r < N
and i ∈ Z.

For example, the complex µiN (M) is N -acyclic for any M ∈ A and i ∈ Z. An
N -complex X is N -acyclic if and only if there exists some r with 0 < r < N such
that Hi(r)(X) = 0 for each integer i [22].

For ♮ =nothing,−,+, b, let C♮,aN (A) (resp., K♮,aN (A)) denote the full subcategory

of C♮N (A) (resp., K♮N (A)) consisting of N -acyclic N -complexes.

Proposition 3.4. We have the following.

(1) K
♮,a
N (A) is a thick subcategory of K♮N (A) for ♮ = −,+, b.

(2) Hi(r)(ΣX) = Hi+r(N−r)(X) and Hi(r)(Σ
−1X) = Hi−N+r

(N−r) (X) hold for any X ∈

CN (A).

To prove this, we recall that CN (A) forms an abelian category. A sequence

0 → X
α
−→ Y

β
−→ Z → 0 is exact if and only if 0 → X i α

−→ Y i β
−→ Zi → 0 is (not

necessarily split) exact in A for each i. In this case, for any 0 ≤ r ≤ N and i ∈ Z,
we have the following exact sequence [10].
(3.5)

· · ·
∂∗−→ Hi(r)(X)

α∗−−→ Hi(r)(Y )
β∗
−→ Hi(r)(Z)

∂∗−→ Hi+r(N−r)(X)
α∗−−→ Hi+r(N−r)(Y )

β∗
−→ Hi+r(N−r)(Z)

∂∗−→ Hi+N(r) (X)
α∗−−→ Hi+N(r) (Y )

β∗
−→ Hi+N(r) (Z)

∂∗−→ Hi+r+N(N−r) (X)
α∗−−→ · · · .
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of Proposition 3.4. (2) It is immediate by applying (3.5) to the exact sequences
(2.4).

(1) It follows from (2) that K
♮,a
N (A) is closed under Σ and Σ−1. Let X → Y →

Z → ΣX be a triangle in KN (A). This comes from a term-wise split short exact

sequence. Therefore if X and Y belong to K
♮,a
N (A), then so does Z by (3.5). �

As in the classical case, we have the following observation.

Lemma 3.6. If X ∈ Ka
N (A) and P ∈ K−N (PrjA) (resp., I ∈ K+

N (InjA)), then we
have HomKN (A)(P,X) = 0 (resp., HomKN (A)(X, I) = 0).

Proof. Let f : P → X be as follows.

P : · · ·

f
��

// Pn−2
dn−2
P //

fn−2

��

Pn−1
dn−1
P //

fn−1

��

Pn //

fn

��

0 //

��

· · ·

X : · · · // Xn−2
dn−2
X // Xn−1

dn−1
X // Xn

dnX // Xn+1 // · · · .

Since dnXfn = 0 and Hn(1)(X) = 0, there is sn : Pn → Xn−N+1 such that

fn = dn−1X · · · dn−N+1
X sn. Since dn−1X (fn−1−dn−2X · · · dn−N+1

X sndn−1P ) = dn−1X fn−1−

fndn−1P = 0, there is sn−1 : Pn−1 → Xn−N such that fn−1 = dn−2X · · · dn−N+1
X sndn−1P +

dn−2X · · · dn−NX sn−1. Repeating similar argument, we obtain si : P i → X i−N+1 for
i ≤ n satisfying (2.5). �

Now let B be an additive category, pick X ∈ CN (B) and M ∈ B. Then we have
N -complexes HomB(X,M) and HomB(M,X) of abelian groups with HomB(M,X)n :=
HomB(M,Xn) and HomB(X,M)n := HomB(X

−n,M). One can easily check the
following analogs of (2.2) for each 0 < r < n.
(3.7)
HomCN (B)(µ

s
r(M), X) ≃ Zs−r+1

(r) (HomB(M,X)), HomKN (B)(µ
s
r(M), X) ≃ Hs−r+1

(r) (HomB(M,X)),

HomCN (B)(X,µsr(M)) ≃ Z−s
(r)

(HomB(X,M)), HomKN (B)(X,µsr(M)) ≃ H−s
(r)

(HomB(X,M)).

We prepare the following observations which will be used later.

Lemma 3.8. Let X ∈ KN (A), M ∈ A, and 0 < r < N be given.

(1) We have a commutative diagram of exact sequences

HomA(M,Xs−N+1)

d{N−r}��

// HomA(M,Zs−r+1
(r)

(X)) // HomKN (A)(µ
s
r(M), X) //

��

0

0 // HomA(M,Bs−r+1
(N−r)

(X)) // HomA(M,Zs−r+1
(r)

(X)) // HomA(M,Hs−r+1
(r)

(X)) // Ext1A(M,Bs−r+1
(N−r)

(X))

(2) If M is projective in A, then HomKN (A)(µ
s
r(M), X) ≃ HomA(M,Hs−r+1

(r) (X)).

(3) If X ∈ KN (InjA) is N -acyclic, then HomKN (A)(µ
s
r(M), X) ≃ Ext1A(M,Zs−N+1

(N−r) (X)).

Proof. (1) The upper sequence is exact by (3.7) and Zs−r+1
(r) (HomA(M,X)) ≃

HomA(M,Zs−r+1
(r) (X)). The lower one is clearly exact.

(2) Immediate from (1).

(3) We have a short exact sequence 0 → Zs−N+1
(N−r) (X) → Xs−N+1 → Zs−r+1

(r) (X) →

0. Applying HomA(M,−) and using injectivity of Xs−N+1, we have an exact
sequence

HomA(M,Xs−N+1) → HomA(M,Zs−r+1
(r) (X)) → Ext1A(M,Zs−N+1

(N−r) (X)) → 0.
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Comparing with the upper exact sequence in (1), we have the desired isomorphism.
�

Lemma 3.9. For a commutative diagram (3.2), the following hold.

(1) If Hn(r)(X) = 0, then (Dn+r−1−s
(s) ) is an exact square for any r ≤ s ≤ N −1.

In particular, (Dn−1
(r) +Dn−2

(r+1) + · · ·+Dn−N+r
(N−1) ) is an exact square.

(2) X is N -acyclic if and only if dn(r+1) is an epimorphism for any 0 < r < N

and n ∈ Z.
(3) X is isomorphic to 0 in KN (A) if and only if dn(r+1) is a split epimorphism

for any 0 < r < N and n ∈ Z.

Proof. (1) (2) The assertions immediately follow from (3.1).
(3) We prove the ‘only if’ part. Clearly dn(r+1) is a split epimorphism for X =

µsN (M). Since every projective-injective object of CN (A) is in Add{µsN (M) | s ∈
Z, M ∈ A}, the assertion follows.

To show the converse, set Wn
(r)(X) :=

⊕r−1
i=0 Zn+i(1) (X) for 1 ≤ r ≤ N . Then

we have natural morphisms pn(r) := ( 0 1 ) : Wn
(r)(X) → Wn+1

(r−1)(X) and in(r) :=

( 10 ) : Wn
(r)(X) → Wn

(r+1)(X). We show the existence of an isomorphism an(r) :

Wn
(r)(X) → Zn(r)(X) such that the following diagram commute.

Wn
(r)(X) pn(r)

//
an(r)
❳❳❳❳❳

,,❳❳❳❳❳
in(r)

��

Wn+1
(r−1)(X)

i
n+1
(r−1)

��

a
n+1
(r−1)

❳❳❳

,,❳❳❳
Zn(r)(X) dn(r)

//

ιn(r)

��

Zn+1
(r−1)(X)

ι
n+1
(r−1)

��
Wn

(r+1)(X) pn(r+1)
//

an(r+1)

❳❳❳

,,❳❳❳
Wn+1

(r) (X)
a
n+1
(r)

❳❳❳❳

,,❳❳❳❳
Zn(r+1)(X) dn(r+1)

// Zn+1
(r)

(X).

For r = 1, set an(1) = 1. Suppose r > 1 and that we have defined an(i) for any

n, i ∈ Z with 0 < i ≤ r. Applying Lemma 1.3 to the exact square

Wn
(r)(X) = Zn(1)(X)⊕Wn+1

(r−1)(X)
pn(r) //

ιn(r)a
n
(r)

��

Wn+1
(r−1)(X)

i
n+1
(r−1)��

Zn(r+1)(X)
(an+1

(r)
)−1dn(r+1) // Wn+1

(r−1)(X)⊕ Zn+r(1) (X) = Wn+1
(r) (X),

we get an isomorphism an(r+1) : W
n
(r+1)(X) → Zn(r+1)(X) as desired.

Consequently we have an isomorphism an(N) : Wn
(N)(X) =

⊕N−1
i=0 Zn+i(1) (X) →

Zn(N)(X) = Xn. Since dn = ιn+1
(N−1)d

n
(N) : Xn → Xn+1 holds, it is easy to check

X ≃
⊕

n∈Z µ
n
N (Zn(1)(X)) in CN (A). Thus X is zero in KN (A). �

Definition 3.10. A morphism f : X → Y of KN (A) is called an N -quasi-

isomorphism if Hi(r)(f) : H
i
(r)(X) → Hi(r)(Y ) is an isomorphism for any 0 < r < N

and i ∈ Z, or equivalently by (3.5), the mapping cone C(f) is N -acyclic. For
♮ =nothing,+,−, b, the derived category of N -complexes is defined as the quotient
category

D
♮
N (A) = K

♮
N (A)/K♮,aN (A).

By definition, a morphism in K
♮
N (A) is an N -quasi-isomorphism if and only if it

is an isomorphism in D
♮
N (A).
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Proposition 3.11. (1) If 0 → X
f
−→ Y

g
−→ Z → 0 is an exact sequence in the

abelian category CN (A), then it can be embedded into a triangle X
f
−→ Y

g
−→

Z
h
−→ ΣX in DN (A).

(2) For any triangle X
f
−→ Y

g
−→ Z

h
−→ ΣY in DN (A), we have a long exact

sequence

· · ·
h∗
−−→ Hi(r)(X)

f∗
−→ Hi(r)(Y )

g∗
−→ Hi(r)(Z)

h∗
−−→ Hi+r(N−r)(X)

f∗
−→ Hi+r(N−r)(Y )

g∗
−→ Hi+r(N−r)(Z)

h∗
−−→ Hi+N(r) (X)

f∗
−→ Hi+N(r) (Y )

g∗
−→ Hi+N(r) (Z)

h∗
−−→ Hi+r+N(N−r) (X)

f∗
−→ · · · .

Proof. (1)We have the following commutative diagram of exact sequences in CN (A).

0

��

0

��
0 // X //

f��

I(X) //
ψf��

ΣX // 0

0 // Y u //
g��

C(f)
v //

s��

ΣX // 0

Z

��
Z

��
0 0

Then X
f
−→ Y

u
−→ C(f)

v
−→ ΣX is a triangle in KN (A). Since I(X) is N -acyclic, s

is an N -quasi-isomorphism. Thus we have a triangle X
f
−→ Y

su=g
−−−→ Z

vs−1

−−−→ ΣX in
DN (A).

(2) We have only to verify the assertion for the triangle X
f
−→ Y −→ C(f) −→ ΣY .

Applying (3.5) to a short exact sequence 0 → X → Y ⊕ I(X) → C(f) → 0 in
CN (A), we get the desired sequence. �

Definition 3.12 (Truncations). For an N -complex X = (X i, di), set

σ≤nX : · · ·
dn−N

−−−−→ Xn−N+1
dn−N+1
(N)

−−−−−→ Zn−N+2
(N−1) (X)

dn−N+2
(N−1)

−−−−−→ · · ·
dn+1
(2)

−−−→ Zn(1)(X) → 0 → · · · .

Lemma 3.13. For an N -complex X = (X i, di) and an integer n, the following
hold.

(1) Hi(r)(σ≤n(X)) ≃ Hi(r)(X) for any 0 < r < N and i+ r ≤ n+ 1.

(2) If Hi(r)(X) = 0 holds for any 0 < r < N and i ≥ n+ 1, then the canonical
injection σ≤nX → X is an N -quasi-isomorphism.

Proof. (1) If i + r ≤ n + 1, then Zi(r)(X) is the kernel of d{r} : Zi(n−i+1)(X) →

X i+r which maps into Zi+r(n−i−r+1)(X). Hence Zi(r)(X) = Zi(r)(σ≤nX). Clearly

Bi(N−r)(σ≤nX) = Bi(N−r)(X).

(2) It remains to show Hi(r)(σ≤n(X)) ≃ Hi(r)(X) for i ≤ n and i+ r > n+ 1. Since

Zi(r)(σ≤nX) = Zi(n−i+1)(X) holds, we have a commutative diagram

Zi−N+r
(n−i+N−r+1)(X)

d{N−r}
//

� _

��

Zi(n−i+1)(X)
� _

��

// Hi(r)(σ≤nX) // 0

X i−N+r d{N−r}
// Zi(r)(X) // Hi(r)(X) // 0
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of exact sequences. The left square is exact. Indeed it follows from Lemmas 1.1
and 1.2 since (Dj

(s)) is an exact square for j + s ≥ n + 1 by Lemma 3.9(1). Thus

we have the desired isomorphism. �

Proposition 3.14. Let ♮ = +,−, b. The canonical functors Db
N (A) → D

♮
N (A) →

DN (A) are fully faithful. Therefore D
♮
N (A) is equivalent to the full subcategory of

DN (A) consisting of objects in K
♮
N (A).

Proof. We only show that D−N (A) → DN (A) is fully faithful. Let f : X → Y be

any morphism with X ∈ K−N (A) and Y ∈ Ka
N (A). For sufficiently large n, f factors

through the natural morphism σ≤n(Y ) → Y . Since σ≤n(Y ) belongs to K
−,a
N (A) by

Lemma 3.13(2), we get the conclusion from Lemma 1.6. �

3.2. Elementary morphisms. In this subsection, we introduce the N -complex
version of an elementary map of degree i in the sense of Verdier [42]. We start with
the following observation.

Definition-Proposition 3.15. For an object X : · · · → X i−1 di−1
X−−−→ X i diX−−→

X i+1 → · · · in CN (A) and a morphism u : M → X i in A, we take successive
pull-backs

Y i−r−1

(Ei−r−1)ui−r−1 ��

d′i−r−1
// Y i−r

ui−r��
X i−r−1

di−r−1
X

// X i−r

for 0 ≤ r < N − 1, where Y i = M and ui = u. Then there are a morphism
d′i−N : X i−N → Y i−N+1 in A and a morphism

Vi(X,u) :

pi(u)��

· · · // Xi−N d′i−N
// Y i−N+1

(Ei−N+1)ui−N+1
��

d′i−N+1
// · · · // Y i−1

(Ei−1)ui−1
��

d′i−1
// M

u��

diXu // Xi+1 // · · ·

X : · · · // Xi−N

d
i−N
X

// Xi−N+1

d
i−N+1
X

// · · · // Xi−1

d
i−1
X

// Xi

diX

// Xi+1 // · · ·

in CN (A). Moreover the following conditions are equivalent.

(1) pi(u) is an N -quasi-isomorphism.
(2) The commutative diagram (Ei−N+1 + · · ·+ Ei−1) is an exact square.
(3) The commutative diagrams (Ei−N+1), · · · , (Ei−1) are exact squares.
(4) (u d{N−1}) : M ⊕X i−N+1 → X i is an epimorphism.

Proof. Set Y = Vi(X,u) and ũ = pi(u).
(2) ⇔ (3)⇔ (4). These are clear from Lemmas 1.2 and 1.1.
(1) ⇒ (4). The morphism ũ induces a morphism u : Y → X of 2-complexes as
follows:

Y :

u��

d
{N−1}
Y // Y i−N dY // Y i−N+1

(E)ui−N+1
��

d
{N−1}
Y // M

dY //

u��

Y i+1
d
{N−1}
Y // Y i+N dY //

X :
d
{N−1}
X

// Xi−N

dX

// Xi−N+1

d
{N−1}
X

// Xi

dX

// Xi+1

d
{N−1}
X

// Xi+N

dX

//

The assumption forces u to be a 2-quasi-isomorphism. Then [42, III. 2.1.2(c]
implies that (u d{N−1}) : M ⊕X i−N+1 → X i is an epimorphism.
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(3) ⇒ (1). We shall show that Hi−s(r) (ũ) : H
i−s
(r) (Y ) → Hi−s(r) (X) is an isomorphism

for each s ∈ Z, 0 < r < N . Set the commutative squares (A), (B), (C), (D) as
follows:

Y i−N−s

(A)��

d
{r}
Y // Y i−N−s+r

(B)

d
{N−r}
Y //

��

Y i−s

(C)

d
{r}
Y //

��

Y i−s+r

(D)

d
{N−r}
Y //

��

Y i+N−s

��
X i−N−s

d
{r}
X

// X i−N−s+r

d
{N−r}
X

// X i−s

d
{r}
X

// X i−s+r

d
{N−r}
X

// X i+N−s

Assume that (A) and (C) are exact. Consider the diagram with exact rows

Ci−N−s+r(r) (Y )

Ci−N−s+r

(r)
(ũ)

��

// Zi−s(r) (Y )

Zi−s
(r)

(ũ)
��

// Hi−s(r) (Y )

Hi−s
(r)

(ũ)
��

// 0

Ci−N−s+r(r) (X) // Zi−s(r) (X) // Hi−s(r) (X) // 0.

Lemma 1.1 implies that Ci−N−s+r(r) (ũ) and Zi−s(r) (ũ) are isomorphisms. Hence so is

Hi−s(r) (ũ). Similarly Hi−s(r) (ũ) is an isomorphism provided that (B) and (D) are exact.

Therefore it is enough to show that either (A), (C) or (B), (D) are exact. To prove
this, notice that for any integer j other than i − N or i, the following square is
exact.

Y j
dj
Y //

uj ��

Y j+1

uj+1��
Xj

djX // Xj+1

Lemma 1.2 (1)⇒(2) implies that (B) and (D) are exact if s ∈ {0, 1, . . . , r − 1},
otherwise (A) and (C) are exact. Therefore one of the above two conditions holds.

�

3.3. Resolutions of N-complexes. The aim of this subsection is to establish
Theorems 3.16, 3.21 which are well-known for the classical case N = 2.

For a full additive subcategory B of an abelian categoryA and ♮ =nothing,−,+, b,

we denote by C
♮,a
N (B) (resp., C

♮,b
N (B), C

♮,−
N (B), C

♮,+
N (B)) the full subcategory of

C
♮
N (B) consisting of N -complexes X satisfying that Hi(r)(X) = 0 for any 0 < r < N

and for all (resp. all but finitely many, sufficiently large, sufficiently small) i ∈ Z.

The corresponding subcategory of K
♮
N (B) is denoted by K

♮,a
N (B) (resp., K

♮,b
N (B),

K
♮,−
N (B), K♮,+N (B)).

Theorem 3.16. The following hold for ♮=nothing, b.

(1) If A has enough projectives, then (K−,♮N (PrjA),K−,aN (A)) is a stable t-structure

in K
−,♮
N (A) and we have triangle equivalences K−N (PrjA) ≃ D−N (A) and

K
−,b
N (PrjA) ≃ Db

N (A).

(2) If A has enough injectives, then (K+,a
N (A),K+,♮

N (InjA)) is a stable t-structure

in K
+,♮
N (A) and we have triangle equivalences K+

N (InjA) ≃ D+
N (A) and

K
+,b
N (InjA) ≃ Db

N (A).

Our proof of Theorem 3.16 is based on Verdier’s method [42, III, Section 2.2].

Definition 3.17. Let M be an additive full subcategory of A satisfying the fol-
lowing.
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V1 For any epimorphism u : X → L with X ∈ A and L ∈ M, there is an
epimorphism v : L′ → L with L′ ∈ M which factors through u.

V2 For any exact sequence 0 → X → Ln → · · · → L0 → 0 with L0, · · · , Ln ∈
M, there is an epimorphism L′ → X with L′ ∈ M.

Let M̂ be the full subcategory of A consisting of objects X satisfying the following
conditions.

(1) X has an ∞-M-presentation, that is, an exact sequence · · · → Ln → · · · →
L1 → L0 → X → 0 with Li ∈ M for any i ≥ 0.

(2) For any exact sequence 0 → X ′ → Ln → · · · → L0 → X → 0 with
L0, · · · , Ln ∈ M, X ′ has an ∞-M-presentation.

Obviously we have M ⊂ M̂.

For example, M = PrjA satisfies (V1) and (V2). If A has enough projectives,

then M̂ = A.

Lemma 3.18. Let M be an additive full subcategory of A satisfying (V1) and (V2).

(1) [42, III 2.2.4] For an exact sequence 0 → X → Y → Z → 0, if two out of

three terms belong to M̂, then so does the other.

(2) For an epimorphism ρ : X → L with L ∈ M̂, there exists a morphism
µ : M → X with M ∈ M such that ρµ is an epimorphism.

Proof. (2) Take an epimorphism π : M0 → L with M0 ∈ M and a pull-back
diagram

K
ρ′ //

π′ ��

M0

π��
X

ρ // L.

Then ρ′ and π′ are epimorphisms. The condition (V1) gives a morphism k : M → K
with M ∈ M such that ρ′k is an epimorphism. Set µ = π′k, then ρµ = πρ′k is an
epimorphism. �

Proposition 3.19. Under the conditions (V1) and (V2), we have the following.

(1) Given X ∈ C−N (M̂), there exists an N -quasi-isomorphism s : L → X with

L ∈ C−N (M).

(2) We have K
−,♮
N (M̂) = K

−,♮
N (M) ∗ K−,aN (M̂) for ♮ =nothing, b.

(3) We have a stable t-structure
(

K
−,♮
N (M)

K
−,a
N

(M)
,
K

−,a
N (M̂)

K
−,a
N

(M)

)
in

K
−,♮
N (M̂)

K
−,a
N

(M)
and a triangle

equivalence
K

−,♮
N

(M)

K
−,a
N (M)

≃
K

−,♮
N

(M̂)

K
−,a
N

(M̂)
for ♮ =nothing, b.

Proof. (1) We shall construct a series of N -quasi-isomorphisms vn+1 : Ln → Ln+1

satisfying Ln ∈ C−N (M̂), Lin ∈ M (i > n) and vin+1 = id (i > n+1) by an induction
on n.
We set Lm = X and vm = idX for m large enough. Suppose we get Ln and vn+1.

Since Lnn ∈ M̂, there exists an epimorphism f : M → Lnn with M ∈ M. Then
Ln−1 = Vn(Ln, f) and vn = pn(f) satisfy the conditions above. Indeed, vn is an N -
quasi-isomorphism by Definition-Proposition 3.15(4)⇒(1), Lin−1 ∈ M (i > n − 1)

and vin = id (i > n) by the construction, and Lin−1 ∈ M̂ (i ≤ n − 1) by Lemma
3.18(1).
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Since vin+1 : Lin → Lin+1 (i > n + 1) is an identity, the canonical morphism L :=
lim
←

Ln → X gives a desired N -quasi-isomorphism.

(2) It suffices to prove ”⊂”. Given an object X ∈ K−N (M̂), there exists an N -quasi-

isomorphism L
s
→ X with L ∈ K−N (M) by (1). Then C(s) ∈ K−N (M̂) is N -acyclic,

and we have K−N (M̂) ⊂ K−N (M) ∗ K−,aN (M̂). If X ∈ K
−,b
N (M̂), then L ∈ K

−,b
N (M)

holds, and hence K
−,b
N (M̂) ⊂ K

−,b
N (M) ∗ K−,aN (M̂).

(3) Set U = K
−,♮
N (M) and V = K

−,a
N (M̂). Then U ∗V = K

−,♮
N (M̂) holds by (2). Ap-

plying Lemma 1.6, we have a stable t-structure ( UU∩V ,
V
U∩V ) =

(
K

−,♮
N

(M)

K
−,a
N

(M)
,
K

−,a
N

(M̂)

K
−,a
N

(M)

)

in U∗VU∩V =
K

−,♮
N (M̂)

K
−,a
N

(M)
and triangle equivalences

K
−,♮
N (M)

K
−,a
N

(M)
≃ U
U∩V ≃ U∗V

V =
K

−,♮
N (M̂)

K
−,a
N

(M̂)
. �

of Theorem 3.16. We only prove (1) since (2) is the dual. Set M = PrjA, then

M̂ = A. By Lemma 3.6, we have K
−,a
N (M) = 0. By Proposition 3.19(3), we

have a stable t-structure (K−,♮N (PrjA),K−,aN (A)) in K
−,♮
N (A) and a triangle equiva-

lence K
−,♮
N (PrjA) ≃

K
−,♮
N

(A)

K
−,a
N (A)

. This is D−N (A) if ♮=nothing, and Db
N(A) if ♮ = b by

Proposition 3.14. �

Recall that an abelian category A is an Ab3-category (resp., Ab3∗-category)
provided that it has an arbitrary coproduct (resp., product) of objects. It is clear
that coproducts (resp., products) preserve cokernels (resp., kernels). Moreover A is
an Ab4-category (resp., Ab4∗-category) provided that it is an Ab3-category (resp.,
Ab3∗-category), and that the coproduct (resp., product) of monomorphisms (resp.,
epimorphisms) is monic (resp., epic) (see e.g. [39]).

Definition 3.20 (cf. [7, 41]). We say thatX ∈ KN (A) is K-projective if HomKN (A)(X,
Ka
N (A)) = 0. We say that X ∈ KN (A) is K-injective if HomKN (A)(K

a
N (A), X) =

0. We denote by K
p
N (A) (resp., Ki

N(A)) the full triangulated subcategory of
KN (A) consisting of K-projective (resp., K-injective) N -complexes. A projective N -
resolution (resp., injective N -resolution) of X ∈ KN (A) is an N -quasi-isomorphism

PX → X (resp., X → IX) with PX ∈ K
p
N (A) ∩ KN (PrjA) (resp., IX ∈ Ki

N (A) ∩
KN (InjA)).

Clearly Kp
N (A) (resp., Ki

N (A)) is a triangulated subcategory closed under coprod-
ucts (resp., products) in KN (A). The canonical functor KN (A) → DN (A) restricts

to fully faithful functors K
p
N (A) → DN (A) and Ki

N (A) → DN (A) by Lemma 1.6.

By Lemma 3.6, K−N (PrjA) (resp., K+
N (InjA)) is contained in K

p
N (A) (resp., Ki

N (A)).
We have the following result which generalizes a classical result for the case

N = 2 [7, 41].

Theorem 3.21. The following hold.

(1) Assume that A is an Ab4-category with enough projectives. Then (Kp
N(A),Ka

N (A))
is a stable t-structure in KN (A) and we have a triangle equivalence Kp

N (A) ≃
DN (A). Moreover, any object in K

p
N(A) is isomorphic to an object in

K
p
N (A) ∩ KN (PrjA), hence every object in KN (A) admits a projective N -

resolution.
(2) Assume that A is an Ab4∗-category with enough injectives. Then (Ka

N (A),Ki
N (A))

is a stable t-structure in KN (A) and we have a triangle equivalence Ki
N (A) ≃

DN (A). Moreover, any object in Ki
N(A) is isomorphic to an object in
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Ki
N (A) ∩ KN (InjA), hence every object in KN (A) admits an injective N -

resolution.

To prove Theorem 3.21, we need the following easy observation.

Lemma 3.22. Let A be an Ab3-category, and fi : Xi → Xi+1 (i = 0, 1, · · · ) a
sequence of morphisms in CN (A). Assume that each j ∈ Z admits some n ∈ N

such that f ji : Xj
i → Xj

i+1 is a split monomorphism for i ≥ n. Then we have an

exact sequence 0 →
∐
i≥0Xi

1−
∐

i fi−−−−−→
∐
i≥0Xi → lim

−→
Xi → 0 in (CN (A),SN (A))

for the inductive limit lim
−→

Xi in CN (A). Therefore lim
−→

Xi is isomorphic to the

homotopy colimit hlim
−→

Xi in KN (A).

Proof. We have a split exact sequence 0 →
∐
i≥0X

j
i

1−
∐

i f
j
i−−−−−→
∐
i≥0X

j
i → lim

−→
Xj
i →

0 in A for any j by our assumption. Thus the assertions follow. �

of Theorem 3.21. We only prove (1) since (2) is the dual. By Lemma 1.6, it is
enough to show KN (A) = K

p
N (A) ∗ Ka

N (A) to prove the first statement.
For a complex X ∈ KN (A), we shall construct an N -quasi-isomorphism s : P → X
with P ∈ K

p
N (A) ∩ KN (PrjA). Applying Lemma 3.22 to a sequence ιi : σ≤iX →

σ≤i+1X of morphisms, we haveX = lim
−→

Xi ≃ hlim
−→

Xi in KN (A). By Theorem 3.16,

there is an N -quasi-isomorphism si : Pi → σ≤iX with Pi ∈ K−N (PrjA). Since the
mapping cone C(si+1) is N -acyclic, by Lemma 3.6 we have a commutative diagram
in KN (A)

Pi
si //

fi��

σ≤iX
ιi��

Pi+1 si+1

// σ≤i+1X // C(si+1).

Therefore we have a morphism between triangles in KN (A)

∐
iPi

1−
∐

i fi //
∐

isi��

∐
iPi

u //
∐

isi��

P
v //

s
��

Σ
∐
iPi

Σ
∐

isi��∐
iσ≤iX 1−

∐
i ιi

// ∐
iσ≤iX

// X // Σ
∐
iσ≤iX.

Since A is Ab4,
∐
isi is an N -quasi-isomorphism, hence so is s. The upper triangle

shows P ∈ K
p
N (A) ∩ KN (PrjA).

Now we prove the second statement. For anyX ∈ K
p
N (A), the above construction

gives a triangle P
s
−→ X → Y → P [1] in KN (A) with P ∈ K

p
N (A) ∩ KN (PrjA)

and Y ∈ Ka
N (A). Since K

p
N (A) is a triangulated subcategory of KN (A), we have

Y ∈ Ka
N (A) ∩ K

p
N (A). Thus Y ≃ 0 and hence s is an isomorphism in KN (A). �

Remark 3.23. Later we need a slightly more general version of Theorem 3.21 as
follows.
Let A be an Ab4-category with enough projectives and P an additive subcategory
of PrjA closed under coproducts such that any object in PrjA is an epimorphic
image from some object of P . Then the proof of Proposition 3.19 gives triangle
equivalences

KN (P) ∩ K
p
N (A) ≃ DN (A) and K−N (P) ≃ D−N (A).
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For example, the category FreeR of free modules over a ring R satisfies this condi-
tion.

Example 3.24. Take a projective 2-resolution · · ·
d−2

−−→ P−1
d−1

−−→ P 0 of X ∈ A.
Then a projective N -resolution of X is given by the following.

degree : −N−1 −N −N+1 −N+2 −1 0 1 2

PX : · · ·
1 // P−3

d−3
// P−2

d−2
// P−1

1 // P−1
1 // · · ·

1 // P−1
d−1

// P 0 // 0 // 0 // · · · .

Although the 2-complex · · ·
d−2

−−→ P−1
d−1

−−→ P 0 d0
−→ X → 0 is 2-acyclic for some d0 :

P 0 → X , the N -complex Y below is not N -acyclic for N > 2 since H1
(1)(Y ) ≃ X .

On the other hand, the following N -complex Z is N -acyclic. The truncation τ≤0Z
is not a projective N -resolution of X , but that of ΣΘ−1(X) = µ0

N−1(X) since we

have a triangle Θ−1X → Z → τ≤0Z → ΣΘ−1X .

degree : −N−1 −N −N+1 −N+2 −1 0 1 2

Y : · · ·
1 // P−3

d−3
// P−2

d−2
// P−1

1 // P−1
1 // · · ·

1 // P−1
d−1

// P 0 d0 // X // 0 // · · ·

Z : · · ·
1 // P−2

1 // P−2
d−2

// P−1
d−1

// P 0 1 // · · ·
1 // P 0 1 // P 0 d0 // X // 0 // · · ·

Let M be a full subcategory of A. We denote by CN,M(A) the full subcategory

of CN (A) consisting of X such that Hi(r)(X) ∈ M for any 0 < r < N and i ∈

Z. Then KN,M(A) and DN,M(A) denote the corresponding full subcategories of
KN (A) and DN (A) respectively. In the case that M is a Serre subcategory, that
is, closed under subobjects, quotient objects and extensions, then KN,M(A) (resp.,
DN,M(A)) is a thick subcategory of KN (A) (resp., DN (A)). We use the notations

C
♯,♮
N,M(A) = C

♯,♮
N (A) ∩ CN,M(A), K♯,♮N,M(A) = K

♯,♮
N (A) ∩ KN,M(A) and D

♯,♮
N,M(A) =

D
♯,♮
N (A)∩DN,M(A) for ♯ =nothing,−,+, b and ♮ =nothing,−,+, b. By Proposition

3.14, we have D
♯,b
N,M(A) ≃ Db

N,M(A) etc.

Proposition 3.25. Let M be an additive full subcategory of A satisfying (V1) and
(V2).

(1) For any X ∈ C−N,M(A), there is an N -quasi-isomorphism L → X with

L ∈ C−N (M).

(2) K
−,♮
N,M(A) ⊂ K

−,♮
N (M) ∗ K−,aN (A) for ♮ =nothing, b.

Proof. (1) There exists n0 such that X i = 0 for any i > n0. Set Ln0 = X . We
shall construct a sequence of N -quasi-isomorphisms vn : Ln−1 → Ln in CN (A) for
n ≤ n0 such that

Lin ∈ M (i > n), Bi(r)(Ln) ∈ M̂ (i > n, 0 < r < N) and vin = id (i > n)

Then we get an N -quasi-isomorphism L = lim
←−

Ln → X with L ∈ C−N (M). Suppose

n < n0 and let Ln satisfy the conditions above. The exact sequence 0 → Hn(1)(Ln) →

Cn(N−1)(Ln) → Bn+1
(1) (Ln) → 0 implies Cn(N−1)(Ln) ∈ M̂. Applying Lemma 3.18(2)

to the canonical epimorphism ρ : Lnn → Cn(N−1)(Ln), we get a morphism v : M →

Lnn with M ∈ M such that ρv is an epimorphism. Set Ln−1 = Vn(Ln, v) and
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vn−1 = pn(v).

Ln−N+1
n−1

(E)

d
{N−1}
Ln−1 //

vn−N+1
n��

M = Lnn−1

v
��

Ln−N+1
n

d
{N−1}
Ln

// Lnn ρ
// Cn(N−1)(Ln)

Since ρ is the cokernel of d
{N−1}
Ln

and ρv is an epimorphism, (v d
{N−1}
Ln

) : Lnn−1 ⊕

Ln−N+1
n → Lnn is an epimorphism, which shows (E) is an exact square. Thus

vn−1 = pn(v) is an N -quasi-isomorphism by Definition-Proposition 3.15.

Now we show that Bi(r)(Ln−1) ∈ M̂ for any i > n − 1 and 0 < r < N . If

i > n, then Hi(N−r)(Ln−1) = Hi(N−r)(Ln) ∈ M holds. Moreover Zi(N−r)(Ln−1) =

Zi(N−r)(Ln) belongs to M̂ since 0 → Zi(N−r)(Ln) → Lin → Bi+N−r(N−r) (Ln) → 0 is

exact. Therefore Bi(r)(Ln−1) ∈ M̂ holds. To see Bn(r)(Ln−1) ∈ M̂, it suffices to

show Cn(r)(Ln−1) ∈ M̂ since Lnn−1 ∈ M. But this is clear since Bn+N−r(N−r) (Ln−1) =

Bn+N−r(N−r) (Ln) ∈ M̂ and Hn(N−r)(Ln−1) ∈ M.

(2) For given X ∈ K−N,M(A), there is an N -quasi-isomorphism s : L → X with L ∈

K−N (M) by (1). We get the first inclusion since C(s) ∈ Ka
N (A). If X ∈ K−N,M(A),

the construction shows C(s) ∈ K
−,a
N (A). If X ∈ K

−,b
N,M(A), then obviously we have

L ∈ K
−,b
N (M). �

Theorem 3.26. If M is a Serre subcategory satisfying the condition (V1), then

D
♮
N (M) ≃ D

♮
N,M(A) for ♮ = b,−.

Proof. Since M is a Serre subcategory, it satisfies the condition (V2) and we have

K
−,♮
N (M) ⊂ K

−,♮
N,M(A). By Proposition 3.25(2), we have K

−,♮
N,M(A) = K

−,♮
N (M) ∗

K
−,a
N (A). Applying Lemma 1.6 to U = K

−,♮
N (M) and V = K

−,a
N (A), we have triangle

equivalences D♮N (M) ≃
K

−,♮
N

(M)

K
−,a
N (M)

= U
U∩V ≃ U∗V

V =
K

−,♮
N,M(A)

K
−,a
N (A)

≃ D
♮
N,M(A) as desired.

�

3.4. Homotopy categories of injective objects. In this subsection, we shall
show that KN (InjA) is compactly generated if A satisfies some conditions.

An Ab5-category is anAb3-category that has exact filtered colimits. AGrothendieck
category is an Ab5-category with a generator. A Grothendieck category A is called
locally noetherian if A has a generating set of noetherian objects. In this case,
InjA is closed under arbitrary coproducts [39, Theorem 8.7], and therefore the
triangulated category KN (InjA) has arbitrary coproducts.

For an additive category B with arbitrary coproducts, an object C is called
compact in B if the canonical morphism

∐
iHomB(C,Xi)

∼
→ HomB(C,

∐
iXi) is

an isomorphism for any coproduct
∐
iXi in B. We denote by Bc the category

of compact objects in B. A triangulated category D with arbitrary coproducts is
called compactly generated by a set S of compact objects if any non-zero object of
D has a non-zero morphism from a shift of some object of S.

Let noethA be the subcategory of A consisting of noetherian objects. For a
locally noetherian Grothendieck category A, it is easy to see noethA is a skeletally
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small Serre subcategory satisfying (V1) and (V2). By Theorem 3.26, we can identify

Db
N (noethA) with Db

N,noethA(A).
We aim to prove the N -complex version of a result of Krause [29].

Theorem 3.27. Let A be a locally noetherian Grothendieck category. Then KN (InjA)
is a compactly generated triangulated category such that the canonical functor KN (InjA) →

DN (A) induces an equivalence between KN (InjA)c and Db
N (noethA).

In the rest, A is a locally noetherian Grothendieck category. Recall that IX ∈
Ki
N (InjA) stands for the injective N -resolution of an object X in KN (A).

Lemma 3.28. (cf. [29, Lemma 2.1]) The object Iµs
r(M) is compact in KN (InjA)

for any M ∈ noethA, s ∈ Z and 0 < r < N .

Proof. For any Y ∈ KN (InjA), we have the following isomorphisms for sufficiently
small t:

HomKN (A)(Iµs
r(M), Y ) ≃ HomKN (A)(Iµs

r(M), τ≥tY ) ≃ HomKN (A)(µ
s
r(M), τ≥tY )

≃ HomKN (A)(µ
s
r(M), Y ).

The first and third isomorphisms come from Iµs
r(M), µ

s
r(M) ∈ K+

N (A) and the sec-

ond one from Lemma 3.6. Also we have HomKN (A)(µ
s
r(M), Y ) ≃ Hs−r+1

(r) (HomA(M,Y ))

by (3.7). This completes the proof since M ∈ noethA is compact in A. �

Let S stand for a set of representatives of isomorphism classes of objects {Iµs
r(M) |

M ∈ noethA, s ∈ Z, 0 < r < N − 1} in KN (InjA).

Lemma 3.29. (cf. [29, Lemma 2.2]) KN (InjA) is compactly generated by S.

Proof. By Lemma 3.28, any object of S is compact in KN (InjA). Let X ∈ KN (InjA)

be a non-zero object. Assume that Hi(r)(X) 6= 0 for some i ∈ Z and 0 < r < N .

Since A is locally noetherian, there is a non-zero morphism M → Zi(r)(X) →

Hi(r)(X) with M ∈ noethA. Using the commutative diagram in Lemma 3.8(1), we

have HomKN (A)(µ
i+r−1
r (M), X) 6= 0.

Assume that X is N -acyclic. Since X 6= 0 in KN (InjA), there are i ∈ Z and
0 < r < N with Zi(r)(X) 6∈ InjA by Lemma 3.9(3). Baer criterion [28, Lemma

A10] gives an object M of noethA with Ext1A(M,Zi(r)(X)) 6= 0, which implies

HomKN (A)(µ
i+N−1
N−r (M), X) 6= 0 by Lemma 3.8(3). �

Now we are ready to prove Theorem 3.27.

of Theorem 3.27. Lemma 3.29 implies KN (InjA) = Loc S (see [37, 1.6]). Hence
by [37, Lemma 2.2], KN (InjA)c coincides with thick S. On the other hand, the

equivalence Ki
N (InjA) ≃ DN (A) in Theorem 3.16(2) yields thickKi

N (InjA) S ≃

thickDN (A)(noethA) ≃ Db
N (noethA). �

3.5. Derived functor. In this subsection, we study the derived functor of a tri-
angle functor KN (A) → KN ′(A′) for abelian categories A, A′.

Definition 3.30. Let T be a triangulated category, U a full triangulated sub-
category of T and Q : T → T /U the canonical functor. For a triangle functor
F : T → T ′, the right derived functor (resp., left derived functor) of F with respect
to U is a triangle functor

RUF : T /U → T ′ (resp., LUF : T /U → T ′ )
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together with a functorial morphism of triangle functors

ξ : F → (RUF )Q (resp., ξ : (LUF )Q → F )

with the following property:
For a triangle functor G : T /U → T ′ and a functorial morphism of triangle functors
ζ : F → GQ (resp., ζ : GQ → F ), there exists a unique functorial morphism
η : RUF → G (resp., η : G → LUF ) of triangle functors such that ζ = (ηQ)ξ
(resp., ζ = ξ(ηQ)).

T

T /U

T ′

Q

��

F //

RUF

66♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

G

II

��
✴✴
✴✴

✴✴
✴✴

We recover a classical Existence Theorem of derived functors as follows:

Theorem 3.31 (Existence Theorem). Let T be a triangulated category, U its full
triangulated subcategory, and Q : T → T /U the canonical functor. For a triangle
functor F : T → T ′, assume that there exists a full triangulated subcategory V of
T such that T = U ∗ V and F (U ∩ V) = {0}. Then there exists the right derived
functor (RUF, ξ) of F with respect to U such that ξX : FX → (RUF )QX is an
isomorphism for X ∈ V.

Proof. Let Q1 : T −→ T /(U ∩ V) and Q2 : T /(U ∩ V) → T /U be the canonical
functors. Then Q = Q2Q1 holds. Since F (U ∩ V) = 0, the functor F : T → T ′

factors as T
Q1
−−→ T /(U ∩ V)

F ′

−→ T ′ by universality. By Lemma 1.6, the functor
Q2 : T /(U ∩ V) → T /U has a right adjoint R : T /U → T /(U ∩ V).

We shall show that RUF = F ′R satisfies the condition. We have only to give
a functorial isomorphism Hom△(F,GQ) ≃ Hom△(F

′R,G) for any triangle functor
G : T /U → T ′, where Hom△ is the class of morphisms between triangle functors.
Indeed, we have Hom△(F,GQ) ≃ Hom△(F

′, GQ2) by [18, Proposition 3.4], and
Hom△(F

′, GQ2) ≃ Hom△(F
′R,G) by a triangle functor version of [31, Proposition

X.7.3]. �

We apply these to the setting of N -complexes.

Definition 3.32 (Derived Functor). Let A and A′ be abelian categories, and F :

K
♮
N (A) → KN ′(A′) a triangle functor where ♮ =nothing,−,+, b. We define the

right (resp., left) derived functor of F as

R
♮F = RU(Q

′F ) : D♮N (A) → DN (A′) (resp., L♮F = LU (Q
′F ) : D♮N (A) → DN (A′)),

where Q′ : KN (A′) → DN (A′) is the canonical functor, T = K
♮
N (A) and U =

K
♮,a
N (A).

According to Theorems 3.16, 3.21 and 3.31, we have the following N -complex
version of classical results [18, 7, 41].

Corollary 3.33. Let A and A′ be abelian categories, and F : KN (A) → KN ′(A′)
a triangle functor. Then the following hold.

(1) If A has enough injectives, then R
+F : D+

N (A) → DN ′(A′) exists.

(2) If A has enough projectives, then L
−F : D−N (A) → DN ′(A′) exists.
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(3) If A is an Ab4∗-category with enough injectives, then RF : DN (A) →
DN ′(A′) exists.

(4) If A is an Ab4-category with enough projectives, then LF : DN (A) →
DN ′(A′) exists.

We end this subsection with considering Ext and Tor groups. As we will see in
Proposition 3.35, these homology groups are related to classical Tor and Ext.

Definition 3.34. Let A be a ring, X a right A-module and Y a left A-module.
We have triangle functors HomA(X,−) : KN (ModA) → KN (ModZ) and −⊗A Y :
KN (ModA) → KN (ModZ). By Corollary 3.33, we have derived functors

RHomA(X,−) : DN (ModA) → DN (ModZ) and −⊗L

AY : DN (ModA) → DN (ModZ).

For a right A-module Z, n ∈ Z and 0 < r < N , set

r Ext
n
A(X,Z) = Hn(r)(RHomA(X,Z)) and r Tor

A
n (Z, Y ) = H−n(r) (Z⊗L

AY ).

Proposition 3.35. We have the following isomorphisms for i ≥ 0 and 0 < r < N .

(1) r Tor
A
iN (X,Y ) = TorA2i(X,Y ) and r Ext

iN
A (X,Z) = Ext2iA (X,Z).

(2) r Tor
A
iN+s(X,Y ) =

{
TorA2i+1(X,Y ) r = s.
0 r 6= s

(3) r Ext
iN+s
A (X,Z) =

{
Ext2i+1

A (X,Z) r = N − s.
0 r 6= N − s

Proof. We give a proof only for Tor. Let · · ·
d−2

−−→ P−1
d−1

−−→ P 0 d0
−→ Y → 0 be a

projective 2-resolution of Y ∈ ModAop. We have a projective N -resolution of Y by
Example 3.24:

degree
· · · →

−N−2

P−3
1
−→
−N−1

P−3
d−3

−−→
−N

P−2
d−2

−−→
−N+1

P−1
1
−→ · · ·

1
−→
−1

P−1
d−1

−−→
0

P 0 .

Applying X ⊗A −, we can justify the assertions. �

Our Definition 3.34 is slightly different from Ext and Tor groups introduced by
Kassel and Wambst [23]. As we discussed in Example 3.24, their definitions are
interpreted as

r Ext
n
A(X,Z)KW = Hn(r)(HomA(PΣΘ−1X , Z)) and r Tor

A
n (X,Y )KW = H−n(r) (PΣΘ−1X⊗AY ).

4. Triangle equivalence between derived categories

In this section, we show that the derived category DN (A) of N -complexes is tri-
angle equivalent to the ordinary derived category D(MorN−2(A)) whereMorN−2(A)
is the category of sequences of N − 2 morphisms in A.

Definition 4.1. Let B be an additive category. The category MorN−2(B) (resp.,
MorsmN−2(B), MorseN−2(B)) is defined as follows.

(1) An object is a sequence of N − 2 morphisms (resp., split monomorphisms,

split epimorphisms) X : X1 α1
X−−→ X2 α2

X−−→ · · ·
αN−2

X−−−−→ XN−1 in B.
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(2) A morphism from X to Y is an (N − 1)-tuple f = (f1, · · · , fN−1) of
morphisms f i : X i → Y i which makes the following diagram commutative.

X1
α1

X //

f1��

X2
α2

X //

f2��

· · ·
αN−3

X // XN−2
αN−2

X //

fN−2��

XN−1

fN−1��
Y 1

α1
Y

// Y 2

α2
Y

// · · ·
αN−3

Y

// Y N−2

αN−2
Y

// Y N−1

We can identify MorN−2(B) with a full subcategory of CN (B) (and KN (B)) con-
sisting of N -complexes concentrated in degrees 1, . . . , N − 1. Indeed, we have
isomorphisms

HomMorsmN−2(B)
(X,Y ) = HomCN (B)(X,Y ) = HomKN (B)(X,Y )

for any X,Y ∈ MorsmN−2(B). As usual, a set S of objects in an abelian category A is
a set of generators if any object X ∈ A admits an epimorphism from a coproduct
of objects in S to X .

Theorem 4.2. Let A be an Ab3-category with a small full subcategory C of compact
projective generators. Then we have a triangle equivalence

DN (A) ≃ D(MorN−2(A))

which restricts to the identity functor on MorsmN−2(C).

We start with the following basic observations.

Lemma 4.3. Let B be an additive category.

(1) Assume that B is idempotent complete, that is, for any X ∈ B and any
idempotent e ∈ EndB(X), there are an object Y ∈ B, and morphisms p :
X → Y and q : Y → X such that e = qp and pq = 1Y . Then for every
object P of MorsmN−2(B), there are objects C1, · · · , CN−1 of B such that P ≃∐N−1
i=1 µN−1i (Ci).

(2) For any P,Q ∈ MorsmN−2(B), we have HomKN (B)(P,Σ
jQ) = 0 (j 6= 0).

(3) Kb
N (B) = triMorsmN−2(B).

(4) Assume that B has arbitrary coproducts. Then every object in MorsmN−2(B
c)

is compact in CN (B) (resp., KN (B)).

Proof. (1) This is clear.

(2) Let B̃ be the idempotent completion of B (e.g. [2, Definition 1.2]). Since

KN (B) is a full triangulated subcategory of KN (B̃), we can assume that B is idem-
potent complete. By (1), we have only to consider the case P = µN−1r (C) and

Q = µN−1r′ (C′) for C,C′ ∈ B and 0 < r, r′ < N . For the case j = 1, we have

ΣµN−1r′ (C′) = µN−r
′

N−r′(C
′) by Lemma 2.9(1), and it is easy to check that any mor-

phism from µN−1r (C) to µN−r
′

N−r′(C
′) is null-homotopic. Now we consider the case j 6=

0, 1. Since Σ2 = ΘN , there is no degree in which both µN−1r (C) and ΣjµN−1r′ (C′)

have non-zero terms. Thus we have HomCN (B)(µ
N−1
r (C),ΣjµN−1r′ (C′)) = 0.

(3) For any C ∈ B and 0 < r < N , we have a triangle µr1(C) → µN−1N−r(C) →

µN−1N−r−1(C) → Σµr1(C) in Kb
N (B). Thus µr1(C) ∈ triMorsmN−2(B) holds. By Lemma

2.9(2), the assertion follows.
(4) Taking idempotent completion of B, it suffices to show that µN−1r (C) is compact
in CN(B) (resp. KN (B)) for C ∈ Bc. This follows from (3.7). �
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Definition 4.4. Let T be a triangulated category with arbitrary coproducts. A
small full subcategory S of T c is called a tilting subcategory if the following condi-
tions are satisfied.

(1) HomT (S,Σ
iS) = 0 for any i 6= 0.

(2) If X ∈ T satisfies HomT (S,Σ
iX) = 0 for any i ∈ Z, then X = 0.

The following general result by Keller is basic, where we always regard S as a
full subcategory of ModS and D(ModS) by Yoneda embedding.

Proposition 4.5. Let T be an algebraic triangulated category with arbitrary co-
products and S a tilting subcategory. Then we have a triangle equivalence F : T ≃
D(ModS), which restricts to the identity functor on S.

Proof. Although this is well-known, we include a proof for convenience of the reader,
because of the lack of proper reference in this setting (cf. [26, Theorem 8.3.3] for
the one-object version). Replacing objects in T with their complete resolutions
in the Frobenius category (cf. [25, Theorem 4.3], [30, Theorem 7.5]), we obtain
a DG category R and a triangle functor G : T → D(R) satisfying the following
conditions.

• H0(R) = S and Hi(R) = 0 for any i 6= 0.

• G commutes with arbitrary coproducts and induces an equivalence S → R̂,

where R̂ is the full subcategory of D(R) consisting of representable DG
functors.

Then G induces a triangle equivalence LocS → Loc R̂. Since LocS = T and

Loc R̂ = D(R) hold by Brown representability, G : T → D(R) is a triangle equiva-
lence.
On the other hand, DG functors σ≤0(R) → R and σ≤0(R) → H0(R) = S are
quasi-equivalences [27] where σ≤0(R) is the DG category with the same objects as
R and the morphism spaces given as Homσ≤0(R)(X,Y ) = σ≤0 HomR(X,Y ). Hence

we have triangle equivalences D(R) ≃ D(σ≤0(R)) ≃ D(ModS) by [25, 9.1] (cf. [27,
Lemma 3.10]). Thus the assertion follows. �

We need the following general observation.

Proposition 4.6. Let A be an Ab3-category with a small full subcategory C of
compact projective generators. Then we have an equivalence A ≃ Mod C given by
X 7→ HomA(−, X)|C. In particular, A is a Grothendieck category which satisfies
the condition Ab4∗.

Proof. See [35, Chapter IV, Theorem 5.3] and [39, 3.4]. �

Now we give the following crucial results.

Proposition 4.7. Let A be an Ab3-category with a small full subcategory C of
compact projective generators.

(1) DN (A) has a tilting subcategory MorsmN−2(C).
(2) We have a triangle equivalence DN (A) ≃ D(Mod(MorsmN−2(C))), which re-

stricts to the identity functor on MorsmN−2(C).

Proof. (1) Set S = MorsmN−2(C). Lemma 4.3(4) gives S ⊂ K
p
N (PrjA)c ≃ DN (A)c.

Also, S satisfies (1) of Definition 4.4 by Lemma 4.3(2). To show (2) of Definition 4.4,
letX be a non-zero object in DN (A). It suffices to find some C ∈ C and r, s ∈ Z with
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0 < r < N such that HomD(A)(µ
s
r(C), X) 6= 0. Indeed, there exist i ∈ Z and 0 <

r < N such that Hi(r)(X) 6= 0. Since C generatesA, we have HomA(C,H
i
(r)(X)) 6= 0

for some C ∈ C. So HomD(A)(µ
i+r−1
r (C), X) = HomKN (A)(µ

i+r−1
r (C), X) 6= 0 by

Lemma 3.8(2).
(2) This is immediate from (1) and Proposition 4.5. �

We also need the following observation for abelian categories.

Lemma 4.8. Let A be an abelian category.

(1) Any object in MorsmN−2(PrjA) is projective in MorN−2(A).
(2) If P is a subcategory of A of projective generators, then MorsmN−2(P) is a

subcategory of MorN−2(A) of projective generators.

Assume that A is an Ab3-category with a small full subcategory C of compact pro-
jective generators.

(3) MorN−2(A) is an Ab3-category with a small full subcategory MorsmN−2(C) of
compact projective generators.

(4) We have an equivalence MorN−2(A) ≃ Mod(MorsmN−2(C)) given by X 7→
HomMorN−2(A)(−, X)|Morsm

N−2(C)
.

Proof. (1) By Lemma 4.3(1), it suffices to prove that µN−1i (C) is projective in
MorN−2(A) for C ∈ PrjA and 1 ≤ i ≤ N − 1. Indeed, let an epimorphism Y → X
in MorN−2(A) be given. Then it induces an epimorphism HomA(C, Y

N−i) →

HomA(C,X
N−i). Since XN−i = HN−i(i) (X) and Y N−i = HN−i(i) (Y ), we get an epi-

morphism HomKN (A)(µ
N−1
i (C), Y ) → HomKN (A)(µ

N−1
i (C), X) from Lemma 3.8(2).

(2) Let X = (X1 α1

−→ · · ·
αN−2

−−−−→ XN−1) be any object in MorN−2(A). For each
1 ≤ i ≤ N − 1, we take an epimorphism Pi → X i with Pi ∈ P . Then we have an

epimorphism
∐N−1
i=1 µN−1N−i (Pi) → X .

(3) The assertion follows from (1), (2) and Lemma 4.3(4).
(4) This is immediate from (3) and Proposition 4.6. �

Now we are ready to prove Theorem 4.2.

of Theorem 4.2. By Proposition 4.7 and Lemma 4.8, we have triangle equivalences
DN (A) ≃ D(Mod(MorsmN−2(C))) ≃ D(MorN−2(A)), which restrict to the identity
functor on MorsmN−2(C). �

Next, to restrict the above equivalence to the subcategories of bounded com-
plexes, we give the following preliminary result.

Lemma 4.9. Let A be an abelian category and C a full subcategory of projective
generators. Then the following conditions are equivalent for X ∈ DN (A).

(1) X belongs to Db
N (A) (resp., D−N (A), D+

N (A)).
(2) For every 0 < r < N , HomDN (A)(µ

s
r(C), X) = 0 holds for all but finitely

many (resp., sufficiently large, sufficiently small) s ∈ Z.
(3) HomDN (A)(MorsmN−2(C),Σ

iX) = 0 holds for all but finitely many (resp.,
sufficiently large, sufficiently small) i ∈ Z.

Proof. (1) and (2) are equivalent by Lemma 3.8(2).

Since Σ2 = ΘN holds and Db
N (A) (resp., D−N (A), D+

N (A)) is closed under Σ, the
condition (2) is equivalent to the following condition.
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• For any 0 < r < N and 0 ≤ s < N , HomDN (A)(µ
s
r(C),Σ

iX) = 0 holds for
all but finitely many (resp., sufficiently large, sufficiently small) i ∈ Z.

This is equivalent to the condition (3) since tri{µsr(P ) | P ∈ C, 0 < r < N, 0 ≤ s <

N} = Kb
N (C) = triMorsmN−2(C) holds by Lemmas 2.9(2) and 4.3(3). �

Now we are able to prove the following result.

Theorem 4.10. Let A be an Ab3-category with a small full subcategory of compact
projective generators. Then the triangle equivalence in Theorem 4.2 restricts to
those for ♮ = +,−, b

D
♮
N (A) ≃ D♮(MorN−2(A)).

Proof. This is immediate from Theorem 4.2 and Lemma 4.9. �

In the case A = ModR for a ring R, MorN−2(A) is nothing but the category
of modules over the upper triangular matrix ring TN−1(R) of size N − 1 over R.
Then we have the following precise description of homologies.

Proposition 4.11. Let R be a ring. Then we have a triangle equivalence

G : DN (ModR) ≃ D(ModTN−1(R))

which gives the following for X ∈ DN (ModR) and i ∈ Z:

H2i(GX) =
(
HiN+1

(N−1)(X) → HiN+2
(N−2)(X) → · · · → HiN+N−1

(1) (X)
)
,

H2i+1(GX) =
(
H

(i+1)N
(1) (X) → H

(i+1)N
(2) (X) → · · · → H

(i+1)N
(N−1) (X)

)
,

where each morphism is a canonical one between homologies.

Proof. By Theorem 4.2, we have a triangle equivalence G : DN (ModR) ≃
D(ModTN−1(R)) which is the identity on MorsmN−2(prjR). We shall show the equal-

ities only for i = 0, 1 since for others it follow from ΘN = Σ2. For 0 < r < N , we
have

HomModTN−1(R)(µ
N−1
r (R),H0(GX)) ≃ HomK(ModTN−1(R))(µ

N−1
r (R), GX)

≃ HomD(ModTN−1(R))(µ
N−1
r (R), GX) ≃ HomDN (ModR)(µ

N−1
r (R), X) ≃ HN−r(r) (X).

The first isomorphism is from Lemma 4.8(1), the second from µN−1r (R) ∈ K
p
N (PrjR),

and the the third by G. The last is from Lemma 3.8(2). Thus the morphism

HN−r−1(r+1) (X) → HN−r(r) (X) is the canonical one since it is induced from the canonical

morphism µN−1r (R) → µN−1r+1 (R). Similarly we have

HomModTN−1(R)(µ
N−1
r (R),H1(GX)) ≃ HomD(ModTN−1(R))(Σ

−1µN−1r (R), GX)

≃ HomDN (ModR)(Σ
−1µN−1r (R), X) ≃ HomDN (ModR)(µ

N−r−1
N−r (R), X) ≃ H0

(N−r)(X)

as desired. �

As an application, we have the following results for homotopy categories.

Corollary 4.12. Let B be an additive category with arbitrary coproducts. If Bc is
skeletally small and satisfies B = Add(Bc), then we have triangle equivalences

K−N (B) ≃ K−(MorsmN−2(B)) and Kb
N (B) ≃ Kb(MorsmN−2(B)).
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Proof. Let A = ModBc. Then A (resp., MorN−2(A)) is an Ab3-category with a
subcategory B (resp., MorsmN−2(B)) of projective generators by Lemma 4.8(2). Thus
we have triangle equivalences

K−N (B) ≃ D−N (A) ≃ D−(MorN−2(A)) ≃ K−(MorsmN−2(B)).

where the first and the third equivalence by Remark 3.23 and the second by The-
orem 4.10. Since these equivalences restrict to the identity functor on MorsmN−2(B),
we have a triangle equivalence

Kb
N (B) = triK−

N
(B) MorsmN−2(B) ≃ triK−(Morsm

N−2(B))
MorsmN−2(B) = Kb(MorsmN−2(B))

by Lemma 4.3(3). �

Example 4.13. Let R be a graded ring, and GrModR the category of graded right
R-modules. Then GrModR satisfies the condition of Theorem 4.2. Hence we have
a triangle equivalence for ♮ =nothing,−, b:

D
♮
N (GrModR) ≃ D♮(MorN−2(GrModR)).

Finally we study the bounded derived category of N -complexes in the case of
coherent rings. We prepare the following easy observation.

Lemma 4.14. Let G : DN (A) → D(MorN−2(A)) be the triangle equivalence given
in Theorem 4.2. For any P ∈ C and i, r ∈ Z with 0 ≤ r < N , we have

G(µiN+r
1 (P )) =

{
· · · → 0 → µN−1N−1(P ) → 0 → · · · if r = 0,

· · · → 0 → µN−1N−r−1(P ) → µN−1N−r(P ) → 0 → · · · if 0 < r < N.

which is a complex concentrated in degree 2i−1 if r = 0, in 2i−1 and 2i otherwise.

Proof. Since Σ2 = ΦN , we have only to show them for the case i = 0 by an induction
on r. If r = 0, then we have G(P ) = ΣµN−1N−1(P ) since P = ΣµN−1N−1(P ). Assume

0 < r < N . Then an exact sequence 0 → µN−1N−r−1(P ) → µN−1N−r(P ) → µr1(P ) → 0

in CN (A) induces a triangle µN−1N−r−1(P ) → µN−1N−r(P ) → µr1(P ) → ΣµN−1N−r−1(P )

in DN (A) by Proposition 3.11(1). Applying G, we have a triangle µN−1N−r−1(P ) →

µN−1N−r(P ) → Gµr1(P ) → ΣµN−1N−r−1(P ) in DN (A). �

Proposition 4.15. Let R be a ring.

(1) We have triangle equivalences for ♮ = −, b, (−, b):

K
♮
N (prjR) ≃ K♮(prjTN−1(R)).

(2) If R is right coherent, then we have triangle equivalences for ♮ = −, b:

D
♮
N (modR) ≃ D♮(modTN−1(R)).

Proof. (1) According to Theorem 3.16, we regardK−N (PrjR) (resp., K−(PrjTN−1(R))
as a full subcategory of DN (ModR) (resp., D(ModTN−1(R))). We shall show that
the triangle equivalence G : DN (ModR) ≃ D(ModTN−1(R)) in Theorem 4.2 re-
stricts to the desired equivalence. Indeed, G induces a triangle equivalence

Kb
N (prjR) = triDN (ModR) MorsmN−2(prjR) ≃ triD(ModTN−1(R)) prjTN−1(R)

= Kb(prjTN−1(R)).

To get the triangle equivalence for ♮ = −, we shall show GP ∈ K−(prjTN−1(R))
for each P ∈ K−N (prjR). We may assume P ∈ C−N (prjR) and τ≥1P = 0. Set
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Pn = τ≥−nP for each n > 0. Then we have a term-wise split exact sequence

0 → Pn−1 → Pn → ΘnP−n → 0 in Cb
N (prjR), and a triangle in DN (ModR)

Pn−1 → Pn → ΘnP−n
ϕn
→ ΣPn−1.

Applying G, we have a triangle in D(ModTN−1(R))

GPn−1 → GPn → GΘnP−n
Gϕn
→ ΣGPn−1.

There exists a term-wise split exact sequence

0 → Qn−1 → Qn → GΘnP−n → 0

in Cb(prjTN−1(R)) such that GP0 → GP1 → GP2 → · · · is isomorphic to Q0 →
Q1 → Q2 → · · · . Then Lemma 4.14 gives a triangle GPn−1 → GPn → GΘnP−n →
ΣGPn−1 such that GΘnP−n has only non-zero terms at degrees 2⌊n/N⌋ and
2⌊n/N⌋ − 1, where ⌊n/N⌋ is the largest integer m satisfying m ≤ n/N . Therefore
τ>2⌊n/N⌋Qn−1 = τ>2⌊n/N⌋Qn hence lim

−→
Qn ∈ K−(prjTN−1(R)). Since P ≃ hlim

−→
Pn

in DN (ModR) by Lemma 3.22, GP ≃ hlim
−→

GPn ≃ lim
−→

Qn in D(ModTN−1(R)).

Thus GP ∈ K−(prjTN−1(R)) holds.
By a similar argument, a quasi-inverse functorG−1 : D(ModTN−1(R)) ≃ DN (ModR)
induces a functor K−(prjTN−1(R)) ≃ K−N (prjR). Hence G restricts to a triangle

equivalence K−N (prjR) ≃ K−(prjTN−1(R)). By Lemma 4.9, this restricts to a tri-

angle equivalence K
−,b
N (prjR) ≃ K−,b(prjTN−1(R)).

(2) When R is right coherent, TN−1(R) is also right coherent. In fact, let A be
TN−1(R) and ei (1 ≤ i ≤ N − 1) the idempotent of A whose (i, i)-entry is 1 and
others are zero. Let 0 → Z → Y → X be an exact sequence of A-modules such
that X and Y are finitely presented. Since eiAei = R, we have an exact sequence
0 → Zei → Y ei → Xei of R-modules. The R-modules Xei and Y ei are finitely
presented and R is coherent, hence so is the R-module Zei for any 1 ≤ i ≤ N − 1.
Therefore the A-module Z is finitely generated.

We have the desired triangle equivalences

D−N (modR) ≃ K−N (prjR) ≃ K−(prjTN−1(R)) ≃ D−(modTN−1(R)),

Db
N (modR) ≃ K

−,b
N (prjR) ≃ K−,b(prjTN−1(R)) ≃ Db(modTN−1(R))

from (1) for the middles, Theorem 3.16 for the others. �
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[26] B. Keller, ‘On the construction of triangle equivalences’, Lecture Notes in Mathematics, Vol.

1685 (1998), 155–176.
[27] B. Keller, ‘On differential graded categories’, Proceedings of the international congress of

mathematicians (ICM), Madrid, Spain, August 22–30, 2006. Zürich: European Mathematical
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