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SECONDARY TERMS IN ASYMPTOTICS FOR THE NUMBER OF

ZEROS OF QUADRATIC FORMS OVER NUMBER FIELDS

JAYCE R. GETZ

Abstract. Let Q be a nondegenerate quadratic form on a vector space V of even dimension

n over a number field F . Via the circle method or automorphic methods one can give

good estimates for smoothed sums over the number of zeros of the quadratic form whose

coordinates are of size at most X (properly interpreted). For example, when F = Q and

dimV > 4 Heath-Brown has given an asymptotic of the form

c1X
n−2 +OQ,ε,f (X

n/2+ε)(0.0.1)

for any ε > 0. Here c1 ∈ C and f ∈ S(V (R)) is a smoothing function. We refine Heath-

Brown’s work to give an asymptotic of the form

c1X
n−2 + c2X

n/2 +OQ,ε,f (X
n/2+ε−1)

over any number field. Here c2 ∈ C. Interestingly the secondary term c2 is the sum of a

rapidly decreasing function on V (R) over the zeros of Q∨, the form whose matrix is inverse

to the matrix of Q. We also prove analogous results in the boundary case n = 4, generalizing

and refining Heath-Brown’s work in the case F = Q.
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1. Introduction

1.1. The circle method applied to quadratic forms. Let V = Gn
a , thus V (Q) is a

vector space of dimension n over Q. Let Q be a quadratic form on V (Q). Let

∆ : R>0 −→ V (R)

be the diagonal embedding and let f∞ ∈ S(V (R)) (the usual Schwartz space). A classical

problem in analytic number theory is the asymptotic evaluation of

N(X) := N(X,Q, f∞) :=
∑

ξ∈V (Z)
Q(ξ)=0

f∞

(
ξ

∆(X)

)
.(1.1.1)

This is a smoothed version of the number of zeros of the quadratic form of height at most

X .

Suppose n > 4. The circle method (or Kloosterman’s refinement of it) allows one to

establish an asymptotic of the form

N(X) = c1X
n−2 + oQ,f∞(X

n−2)(1.1.2)

where c1 ∈ C is essentially the so-called singular series. In the beautiful paper [HB96] Heath-

Brown refined the error term in (1.1.2) and extended the range in which one could obtain

similar asymptotics to n > 2. For example, in the range n > 4 he proved that for any ε > 0

one has

c1X
n−2 +OQ,f∞,ε(X

(n−1+β)/2+ε)(1.1.3)

where β ∈ {0, 1} is 0 if n is odd and 1 if n is even (see [HB96, Theorem 5]). Heath-Brown’s

primary tool was an idea of Duke, Friedlander, and Iwaniec [DFI93] that will be mentioned

again later.

In this paper we refine this asymptotic still further. For even n > 4 we obtain an asymp-

totic of the form

N(X) = c1X
n−2 + c2X

n/2 +Oε(X
n/2−1+ε)(1.1.4)
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for some c2 ∈ C. The complex number c2 can be nonzero (see [Get14]) so this asymptotic

implies in particular that Heath-Brown’s estimate (1.1.3) is essentially sharp (at least for

n even). For n = 4 we also obtain an asymptotic, which is a refinement of Heath-Brown’s

estimate in this case. In fact refining Heath-Brown’s work on the boundary case of n = 4 is

the key to our argument. We will explain this in more detail in §1.4.

1.2. Statement of results over the rationals. The main theorem of this paper, The-

orem 3.3, is valid over any number field. We work adelically because working classically

unnecessarily complicates matters (especially over number fields). It also allows one to treat

congruence conditions on the zeros of the quadratic form with no additional effort. To ease

the path for readers unfamiliar with this language, we will only state our results over Q in

the introduction. We could work entirely classically in this context, but we feel that work-

ing adelically and translating the work explicitly back to classical language will help the

reader tackle the rest of the paper. In the introduction we will also only use an unramified

test function at the finite places; this corresponds to having no supplementary congruence

conditions on the zeros of Q over which we are summing.

To state our result, let Φ0∞ ∈ S(R × R), the Schwartz space of R × R. We assume that

Φ0∞(t, 0) = 0 for all t and that
∫
R Φ(0, t)dt = 1. Let AQ denote the adeles of Q, and let

ψ : Q\AQ → C× be a nontrivial character. For ease of exposition, in the introduction we

will take the character

ψ = ψ∞

∏

p

ψp(1.2.1)

where ψ∞(x) = e(−x) and ψp(x) = e(prp(x)). Here e(x) := e2πix and prp(x) ∈ Z[p−1] is

chosen so that x− prp(x) ∈ Zp.

Let | · | : A×
Q → R>0 denote the adelic norm. Thus | · | is the product of the usual

archimedian norm | · |∞ and all the p-adic norms | · |p. Let Φ0 = Φ0∞1Ẑ2 (regarded as a

function on A2
Q), and let f = f∞1V (Ẑ). Here Ẑ :=

∏
p Zp. Let

Φ(x, y, w) := Φ0(x, y)f(w),

regarded as a function on A2
Q × V (AQ), and set

Φsw(x, y, w) := Φ(y, x, w).

Let

〈 , 〉 : V (Q)× V (Q) −→ Q

(x, y) 7−→ xty
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be the standard inner product. For ξ ∈ V (Q) and (unitary) characters χ : Q×\A×
Q → C× let

χs := χ| · |s. In particular 1s := | · |s. Let

I(Φ, χs)(ξ) =

∫

A×

Q
×V (AQ)

Φ

(
Q(w)

t
, t, w

)
ψ

(
〈ξ, w〉

t

)
χs(t)dt

×dw

=

∫

R××V (R)
Φ∞

(
Q(w)

t
, t, w

)
e

(
〈ξ, w〉

t

)
χs∞(t)dt×dw

×
∏

p

∫

V (Zp)

∫

Zp

1tẐp
(Q(w))ψp

(
〈ξ, w〉

t

)
χs p(t)dt

×dw.

It is not hard to see that this function converges absolutely for Re(s) > 1 and vanishes

unless ξ ∈ N−1V (Z) for a sufficiently large integer N . To make the classical analogue of this

integral clearer, if the determinant of the matrix J associated to the quadratic form Q is in

GLn(Zp) for some prime p 6= 2, then

∫

V (Zp)

∫

Zp

1tẐp
(Q(w))ψp

(
〈ξ, w〉

t

)
|t|spdt

×dw = 1V (Zp)(ξ)
∞∑

k=0

p−kn−ks
∑

w∈V (Z/pkZ)
Q(w)≡0 (mod pk)

e

(
〈ξ, w〉

pk

)
.

When ξ = 0 this is equal to

∞∑

k=0

p−kn−ks−k
∑

w∈V (Z/pkZ)
Q(w)≡0 (mod pk)

∑

a∈Z/pk

e

(
aQ(w)

pk

)

=
∞∑

k=0

k∑

i=0

p−(k−i)n−ks−k
∑

w∈V (Z/pk−iZ)

∑

a∈(Z/pk−i)×

e

(
aQ(w)

pk−i

)

=

∞∑

i=0

p−i(s+1)

∞∑

k=0

p−kn−ks−k
∑

w∈V (Z/pkZ)

∑

a∈(Z/pk)×

e

(
aQ(w)

pk

)
.

This makes the relationship with the usual singular series clear (see below [HB96, Lemma

31], for example).

Let Q∨ be the quadratic form with matrix J−1. The following is our main theorem over

the rationals:

Theorem 1.1. Assume that n ≥ 4 is even and that ε > 0. If (−1)n/2 det J is not a square

of a rational number then

N(X) = Xn−2Ress=−1 (I(Φ, 1s)(0)− I(Φsw, 1s)(0)) +Oε(X
n/2+ε−1).

If n > 4 and (−1)n/2 det J is the square of a rational number then

N(X) = Xn−2Ress=−1 (I(Φ, 1s)(0)− I(Φsw, 1s)(0))
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+
∑

ξ∈V (Q)
Q∨(ξ)=0

Xn/2Ress=1−n/2 (I(Φ, 1s)(ξ)− I(Φsw, 1s)(ξ)) +Oε(X
n/2+ε−1).

If n = 4 and det J is the square of a rational number, then

N(X) = X2 logX lim
s→−1

(
I(Φ, 1s)(0)− I(Φsw, 1s)(0)

Λ(s+ 2)2

)

+X2Ress=−1 (I(Φ, 1s)(0)− I(Φsw, 1s)(0))

+
∑

06=ξ∈V (Q)
Q∨(ξ)=0

X2Ress=−1 (I(Φ, 1s)(ξ)− I(Φsw, 1s)(ξ)) +O(X1+ε).

Here 1s := | · |s. The generalization of this theorem to number fields is Theorem 3.3 below.

We note that there are additional terms in the general formula involving integrals I(Φ,Gs)

for a certain character G. The fact that in the introduction we are working over Q and letting

Φ∞ = 1Ẑ2×V (Ẑ) is responsible for the simplification of the formula above. The author thanks

Heath-Brown for comments related to this fact. We will explain how to derive the simplified

expression above after stating Theorem 3.3 below. We also note that under the assumptions

of this introduction the functions Φ and Φsw only differ at the archimedian place, therefore

I(Φ, χs)− I(Φsw, χs) = (I∞(Φ, χs)− I∞(Φsw, χs))
∏

p

I(1Z2
p×V (Zp), χs)

This observation makes it easier to see how our expression relates to that of Heath-Brown.

The difference of archimedian functions occurring here is a hallmark of the δ-symbol method.

The assumption that n is even is necessary in order for this theorem to be true as stated.

The point is that the local integrals I(Φ, χs) are slightly more complicated when n is odd.

We still think that there is a formula for lower order terms in N(X) when n is odd however,

and feel that it is an interesting problem to describe it.

We will outline the proof of the theorem after giving some remarks on related literature.

1.3. Remarks on related literature. There are other results in the literature where sec-

ondary terms are obtained via the circle method. We mention a few with no claims to

completeness. First we point out [Lin17], which treats the F = Q and n = 4 case of the

paper [HB96] mentioned above, but with congruence conditions. Theorem 3.3 in the special

case F = Q and n = 4 recovers her result, with a better error term, but with less explicit

analysis of the contribution of ramified places (including ∞). Vaughn and Wooley [VW] and

Schindler [Sch17] have investigated secondary and higher order terms in Waring’s problem.

However, these terms appear for an entirely different reason, namely that in these works they

estimate the number of zeros in a suitable box instead of a smoothed box using a Schwartz

function f as above. Using a Schwartz function eliminates these terms and thus they do

not appear in our analysis. Another case where one can (conditionally) obtain information

about a secondary term in the circle method is treated in [HB98].



6 JAYCE R. GETZ

The point counting problems we study can also be examined from the point of view of

height zeta functions. It is likely that Theorem 3.3 implies the meromorphic continuation of

a suitable height zeta function to a larger half plane than was previously known. We refer

to [FMT89] and [CL10] for details on height zeta functions.

The work in [FMT89] is based on estimating N(X) via Eisenstein series. It can also

be studied via theta functions or by realizing the zero locus of the quadratic form as a

homogeneous space (see [DRS93], for example). From this perspective it is probably possible

to obtain a secondary term as we have, but the description obtained in this manner is spectral

in nature.

In contrast, the description of the secondary term we give is manifestly geometric. It only

involves quadratic forms and Hecke Größencharaktere as opposed to residues of automorphic

L-functions on nonabelian groups. The proof and its statement make no use of analytic prop-

erties of automorphic representations apart from Hecke Größencharaktere. This is important

because the author hopes that results of this type can be used to prove expected analytic

properties of automorphic L-functions that are currently unknown. This is discussed in more

detail in [Get14], and is intimately related to Langlands’ beyond endoscopy idea [Lan04] and

Braverman and Kazhdan’s ideas on nonabelian Fourier transforms [BK00] (see also work of

L. Lafforgue [Laf14] and Ngô [Ngô14], as well as the other work cited in [Get14]).

We also point out that if one were able to obtain secondary and higher order asymptotics

for the number of solutions of higher degree forms (or systems of forms) there would be

profound consequences in automorphic representation theory. The point is roughly that

the main term in these problems usually corresponds to the trivial representation when

there is an automorphic (spectral) interpretation of the situation. Terms and estimates that

are sufficiently small in magnitude compared to the main term, in contrast, are intimately

connected to the cuspidal spectrum, which is really the focus of interest from the point of

view of automorphic representation theory.

Some automorphic applications can already be obtained from this work on quadratic forms.

As observed in a special case in [Get14], Theorem 1.1 can be viewed as giving a summation

formula for the subscheme of V defined by the vanishing of the quadratic form Q. Assume

for simplicity that n > 4 and (−1)n/2 det J ∈ (Q×)2 (i.e. it is a square). Then Theorem 1.1

implies that
∑

ξ∈V (Q)
Q∨(ξ)=0

Ress=1−n/2I(Φ, 1s)(ξ)

= lim
X→∞

N(X)−Xn−2 (I(Φ, 10)(0)− I(Φsw, 10)(0))

Xn/2
+

∑

ξ∈V (Q)
Q∨(ξ)=0

Ress=1−n/2I(Φ
sw, 1s)(ξ).

The analogous assertion remains true over general number fields but we will not mention it

later after stating Theorem 3.3. Interestingly, the limit in this expression can be computed
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spectrally in some cases; this was the motivation for [Get14]. One immediate application

of Theorem 3.3, the general version of Theorem 1.1, is that the results of loc. cit. can be

generalized from submonoid of gl2×gl2 consisting of pairs of matrices with equal determinant

to the case where gl2 is replaced by an arbitrary division algebra and det is replaced by the

reduced norm. We will not go into the details in this paper.

1.4. Sketch of the proof. We now discuss the idea of the proof of Theorem 1.1. The

formal proof (for arbitrary number fields) is given in §3.2 below. In the notation of §1.2 one

has

N(X) : =
∑

ξ∈V (Z)
Q(ξ)=0

f∞

(
ξ

∆(X)

)
=
∑

ξ∈V (Q)
Q(ξ)=0

f

(
ξ

∆(X)

)
=
∑

ξ∈V (Q)

δQ(ξ)f

(
ξ

∆(X)

)
.(1.4.1)

Here ∆(X) is viewed as an idele by identifying R× with its image under the natural embed-

ding

R× −→ R× × (A∞
Q )× = A×

Q

x 7−→ (x, 1)

and ξ is viewed as an element of V (AQ) via the diagonal embedding V (Q) →֒ V (AQ).

Moreover

δx =




1 if x = 0

0 otherwise.
(1.4.2)

As in [HB96], our main tool in analyzing (1.4.1) is an expansion of this δ-symbol due

essentially to Duke, Friedlander, and Iwaniec [DFI93]. This has been generalized to number

fields by Browning and Vishe [BV14]. Unfortunately their generalization is not adelic, and

hence is not optimal from the point of view of possible applications to automorphic forms. In

[Get14, Proposition 2.1] we gave an adelic expansion of the δ-symbol and it is this expansion

that is used in the current paper. The two expressions are more or less equivalent. In any

case, applying [Get14, Proposition 2.1] see that N(X) is equal to

∑

ξ∈V (Q)

cX,Φ0

X

∑

d∈Q×

(
Φ0

(
Q(ξ)

d∆(X)
,

d

∆(X)

)
− Φ0

(
d

∆(X)
,
Q(ξ)

d∆(X)

))
f

(
ξ

∆(X)

)
.

Here we take X sufficiently large (in a sense depending on Φ0) and for any N > 0 one has

cX,Φ0 = 1 +OΦ0,N(X
−N).(1.4.3)

Note that since Φ∞
0 = 1Ẑ2 the sum on d is really over d ∈ Z− 0 that divide Q(ξ).

We now apply Poisson summation in ξ and a Mellin transform in d to write the above as

Xn−1cX,Φ0

2πi

∑

ξ∈V (Q)

∑

χ

∫

Re(s)=σ

Xs (I(Φ, χs)(ξ)− I(Φsw, χs)(ξ))ds.
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Here the sum on χ is over all characters of Q×\A×
Q trivial on R>1 (viewed as a subgroup of

the R× factor of A×
Q) and σ ∈ R>1. Up to this point everything we have done is the same as

in [HB96], apart from the expansion of the δ-symbol, which is slightly different here than in

loc. cit. in that we do not write it in terms of Ramanujan sums. The integrals I(Φ, χs)(ξ)

are visibly Euler products. Heath-Brown computes the finite Euler factors up to degree p2s

and bounds the rest of the terms. This is enough to obtain the asymptotic proven in loc. cit,

and it is roughly equivalent to giving a meromorphic continuation of each I(Φ, χs)(ξ) to the

range Re(s) > 1− n/2− β for some β > 0.

However, this is not enough to give the asymptotic of Theorem 1.1. In addition to general-

izing everything above to arbitrary number fields (and congruence conditions), our primary

contribution in this paper is to realize that the functions I(Φ, χs)(ξ) admit meromorphic

continuations to Re(s) > −n/2. In fact, we prove that if S is a set of places of Q including

∞, 2, and all the places where det J is not a unit, then

IS(Φ, χs)(ξ),

the factor of I(Φ, χs)(ξ) outside of S, is holomorphic in the plane if Q∨(ξ) 6= 0. If Q∨(ξ) = 0

it is equal to

LS(s+ n/2, χG)

LS(s+ 1 + n/2, χG)

∑

d|ξV (ZS )

χS(d)

|d|s+1
S

.

where G is the quadratic character of Lemma 3.1. This is striking because in the secondary

term we again arrive at a sum over zeros, this time of Q∨. Moreover, for each fixed χ and ξ

the factor IS(Φ, χs)(ξ) admits a meromorphic continuation to the entire plane.

As for the places in S, the stationary phase method (either over R or Qp) allows us to

control IS(Φ, χs)(ξ) uniformly in ξ and χs. Combining this with the observations above and

a contour shift we deduce Theorem 1.1.

1.5. Outline of the paper. We begin with a section on notation which also reviews the

statement of Poisson summation in our context and our normalization of Haar measures.

After this, in §3, we state and prove our main theorem, the generalization of Theorem 1.1 to

arbitrary number fields. In this section we assume the local work of the remaining sections;

we feel that this organization makes the overall structure of the argument clearer.

The local work is completed in §4-6. The archimedian computations are in §4. This is

the most technical portion of the paper because we require uniformity of our bounds on the

archimedian factors of I(Φ, χs)(ξ) both in terms of ξ and the analytic conductor of χs.

The work in the nonarchimedian case is simpler, mostly because the Fourier transform of

a compactly supported smooth function is again compactly supported and smooth in this

context. We provide bounds in the ramified case in §5, and then finish in §6 with the easiest

and prettiest arguments in the paper, which deal with the computation of the local factors

of I(Φ, χs)(ξ) where all the data are unramified.
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2. Notation

2.1. Quadratic forms. Let F be a number field with ring of integers O and adele ring AF .

Let V = Gn
a for some integer n. For F -algebras R we equip V (R) with the “standard” inner

product

〈, 〉 : V (R)× V (R) −→ R(2.1.1)

(x, y) 7−→ xty.

Let 〈 , 〉Q : V (F )× V (F ) → F be a nondegenerate symmetric bilinear form and let

Q(x) = 1
2
〈x, x〉Q

be the associated quadratic form. Let J ∈ GLn(F ) be the symmetric matrix such that

〈x, Jy〉 := 〈x, y〉Q.(2.1.2)

We write

Q∨(x) := 〈x, J−1x〉 = Q(J−1x).(2.1.3)

2.2. Adelic notation. The usual absolute value on AF or Fv will be denoted | · | or | · |v if

the place v is not clear from the context. For complex numbers c we let

|c|st := (cc)1/2.

Thus if v is a complex place of F and c ∈ Fv
∼= C one has |c|2st = |c|v (the st is for “standard”).

If S is a finite set of places of F we let OS ⊂ F be the subring of elements integral outside

the finite places of S. Its profinite completion is

ÔS :=
∏

v 6∈S
v finite

Ov.

We use the notation FS :=
∏

v∈S Fv, and AS
F :=

∏′
v 6∈S Fv (the restricted direct product with

respect to the Ov for v 6∈ S). Similar notation involving the subscript and the superscript S

will be in use throughout.
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2.3. Poisson summation and Haar measures. Let S(V (AF )) := S(V (F∞))⊗C∞
c (V (A∞

F )),

where S(V (F∞)) is the usual Schwartz space. Let ψ : F\AF → C× be a nontrivial character.

We note that for f ∈ S(V (AF )) one has

∑

ξ∈V (F )

f(ξ) =
∑

ξ∈V (F )

f̂(ξ)(2.3.1)

where

f̂(x) =

∫

V (AF )

f(x)ψ(〈x, y〉)dy.

Here and below we always normalize the Haar measure on V (AF ) so that it is self-dual with

respect to the pairing (x, y) 7→ ψ (〈x, y〉). We note that ψ =
∏

v ψv where the product is

over all places v of F . We always normalize the local Haar measures on V (Fv) so they

are self-dual with respect to the local pairing (x, y) 7→ ψv(〈x, y〉). Similarly, we normalize

the Haar measures on AF and Fv so that they are self dual with respect to the pairings

(x, y) 7→ ψ(xy) and (x, y) 7→ ψv(xy), respectively, and finally let dt× be the measure on A×
F

that is the product of the local measures ζv(1)
dt
|t|
.

2.4. Local notation. In §4, §5 and §6 we fix a place v of F (archimedian or nonarchimedian,

depending on the section) and let F := Fv, O := Ov. We also do this now to explain notation

common to these sections. We let S(V (F )) be the usual Schwartz space of rapidly decreasing

functions when F is archimedian and we let S(V (F )) = C∞
c (V (F )) (compactly supported

locally constant functions) when F is nonarchimedian. For quasi-characters χ : F× → C×

and Φ ∈ S(V (F )) we define an integral

I(Φ, χ)(ξ) :=

∫

F××V (F )

Φ

(
Q(w)

t
, t, w

)
ψ

(
〈ξ, w〉

t

)
dwχ(t)dt×.(2.4.1)

For w = (w1, . . . , wn) ∈ V (F ) let

|w| = max
1≤i≤n

{|wi|}.(2.4.2)

We also define

Φsw(x, y, w) := Φ(y, x, w).

3. The asymptotic formula

In this section we state and prove our main theorem, Theorem 3.3, assuming the local work

completed in §4, §5, and §6. There is no circularity, as these latter sections are independent

of the rest of the paper. Placing the global manipulations first motivates the local arguments

that follow.
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3.1. Adelic integrals. Let

[Gm] := AGmF
×\A×

F

where AGm is R×
>0 is embedded diagonally into F×

∞. We let [̂Gm] denote the set of characters

of [Gm]. Let χ ∈ [̂Gm] and let s ∈ C. To ease notation set

χs := χ| · |s,

where | · | is the idelic norm on A×
F . For Φ ∈ S(A2

F × V (AF )) and ξ ∈ V (AF ) we define

I(Φ, χs)(ξ) :=

∫

A×

F×V (AF )

Φ

(
Q(w)

t
, t, w

)
ψ

(
〈ξ, w〉

t

)
dwχs(t)dt

×.(3.1.1)

This is the adelic analogue of the local integral (2.4.1). By trivial bounds it converges

absolutely for Re(s) > 1. It is Eulerian, so if Φ = ΦSΦ
S for a finite set of places S it make

sense to write

I(Φ, χs) = IS(Φ, χs)I
S(Φ, χs)

where IS denotes the factor at S and IS denotes the factor away from S.

Let S be a finite set of places of F including the infinite places, the dyadic places and the

places where ψ is ramified. We can and do assume that S is large enough that J ∈ GLn(O
S)

and

Φ = Φ0S1ÔS2 ⊗ Φ1S1V (ÔS)

where Φ1S ∈ S(V (FS)) and Φ0S ∈ S(F 2
S).

For a place v of F and t ∈ F×
v let

γv(t
−1Q) = γ(ψv(t

−1Q))

be the number attached by Weil to the map

V (Fv) −→ C×

w 7−→ ψv(t
−1Q(w)),

viewed as a character of second degree [Wei64]. This is the sign of a certain Gauss sum

attached to Q.

Lemma 3.1. There is a unique character G ∈ ̂[Gm] such that for every place v 6∈ S and

every t ∈ F×
v one has

Gv(t) = γv(t
−1Q).

Proof. This is clear from Lemma 6.2. �

For a vector space W and w ∈ W let δw be the δ-symbol defined as in (1.4.2). If χ is a

character let

δχ :=




1 if χ is trivial, and

0 otherwise.
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For quasi-characters χ : F×\A×
F → C× let

C(χ) := |O/fχ|
∏

v|∞

C(χv)

be the analytic conductor of χ, where fχ ⊂ O is the usual conductor of χ and C(χv) is the

archimedian conductor at the infinite place v defined as in (4.1.1).

The following is the main theorem of this subsection, which amounts to collecting the

work of §4, §5 and §6:

Theorem 3.2. Let χ ∈ ̂[Gm] and let s ∈ C. For ξ ∈ V (F ) the integral I(Φ, χs)(ξ) admits a

meromorphic continuation to Re(s) > −n/2. For any N > 0 and σ1 > σ2 > −n/2 one has

I(Φ, χs)(ξ)

sδξδχ(s+ 1)δξδχ(s+ n/2− 1)δQ(ξ)δGχ
≪σ1,σ2,N C(χs)

−N max(|ξ|, 1)−N

for σ1 > Re(s) > σ2. There is an element β ∈ O ∩ F× and an ideal f ⊂ O such that

I(Φ, χs)(ξ) vanishes unless ξ ∈ β−1V (O) and the conductor of χ divides f.

Proof. Assume first that ξ 6= 0. Let A > 0 be as in Theorem 4.1 and let N > 0. By Theorem

4.1, Theorem 5.2 and Theorem 6.4 we see that

I(Φ, χs)(ξ)

L(s+ n/2, χG∞)δQ(ξ)

≪Φ,σ1,σ2,N C(χs)
−N


∏

v|∞

max(|ξ|v, 1)
−N min(|ξ|v, 1)

−A




∏

v∤∞

max(1, |ξ|1−n/2
v )


 .

Moreover, I(Φ, χs)(ξ) vanishes unless ξ ∈ β−1V (O) and the conductor of χ divides f for

some β ∈ O ∩ F× and ideal f ⊆ O by Lemma 5.1. For the remainder of the ξ 6= 0 case of

the proof we assume the conductor of χ divides f.

Using [Get14, Lemma 3.4] to handle the factor involving A and absorbing the factor

corresponding to v ∤ ∞ we deduce that for any N > 0 one has

I(Φ, χs)(ξ)

L∞(s+ n/2, χG)
≪Φ,σ1,σ2,N C(χs)

−N
∏

v|∞

max(|ξ|v, 1)
−N .

Recall that for sufficiently large A > 0 and −1
2
≤ Re(s) ≤ 3

2
one has a preconvex bound

(s− 1)δχGL∞(s, χG) ≪f C(χGs)
A ≪Q C(χs)

A

for any character χ ∈ [̂Gm] of conductor dividing f [Mor05, §III.6, Theorem 14A]. Thus we

deduce the theorem provided that ξ 6= 0.

Assume now that ξ = 0. By our choice of S and Theorem 6.4 one has

I(Φ, χs)(0) =
IS(Φ, χs)(0)L

S(s+ 1, χ)LS(s+ n/2, χG)

LS(s+ n/2 + 1, χG)
.
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The factor LS(s+ n/2 + 1, χG) converges absolutely in plane Re(s) > −n/2 and is bounded

independently of χ in that region, so for the purposes of this proof we can ignore this factor.

We also note that by Lemma 5.1 there is an ideal f ⊆ O depending on Φ such that I(Φ, χs)(0)

vanishes unless the conductor of χ divides f. We assume for the remainder of the proof that

the conductor of χ divides f.

For 3
2
≥ Re(s) > 1

4
and sufficiently large A > 0 one has a preconvex bound

(s− 1)δχLS(s, χ) ≪ C(χs)
A(3.1.2)

[Mor05, §III.6, Theorem 14A]. Combining this with Theorem 4.2 to handle the I∞(Φ, χs)

factor and Theorem 5.2 to handle the IS\∞(Φ, χs) factor we deduce the theorem in the range

Re(s) > −3
4
.

We now use the functional equation of LS(s, χ) to proceed. Let

γ(s, χS, ψS) :=
∏

v∈S

γ(s, χv, ψv)

where

γ(s, χv, ψv) =
L(1− s, χv)ε(s, χv, ψv)

L(s, χv)

is the usual γ-factor.

One then has the functional equation

LS(s, χ) = γ(s, χS, ψS)L
S(1− s, χ).(3.1.3)

Assume for the remainder of the proof that −1
2
≥ Re(s) > σ2.

We then use (3.1.3) to write

I(Φ, χs)(0) =
γ(s+ 1, χS, ψS)IS(Φ, χs)(0)L

S(−s, χ)LS(s+ n/2, χ)

LS(s+ n/2 + 1, χ)
.(3.1.4)

For −1
2
≥ Re(s) > σ2 the denominator here is bounded independently of χ and one has a

bound of

γ(s+ 1, χ∞, ψ∞)I∞(Φ, χs)(0) ≪Φ,N,σ2 C(χs)
−N

by Theorem 4.2. The corresponding factor at the places in S\∞ is γ(s+1, χ∞
S , ψ

∞
S )IS\∞(Φ, χs)(0),

which is bounded by a constant depending on f and σ2 by trivial bounds on the γ-factor and

Theorem 5.2. Finally, for sufficiently large A > 0 one has

(s+ n/2− 1)δχGLS(s+ n/2, χG) ≪f,σ2 C(χs)
A

(s + 1)δχLS(−s, χ) ≪f,σ2 C(χs)
A

by the preconvex bound (3.1.2) together with trivial bounds at the places in S\∞. Combining

these bounds we deduce the requisite bound on (3.1.4) (in the range −1
2
≥ Re(s) > σ2). �
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3.2. The main theorem. Let

∆ : R>0 −→ F×
∞(3.2.1)

be the map that sends X to X [F :Q]−1
embedded diagonally. Embedding F×

∞ diagonally into

V (F∞) we obtain

∆ : R>0 −→ V (F∞).(3.2.2)

Let f ∈ S(V (AF )). Our goal is to estimate

N(X) =
∑

ξ∈V (F ):Q(ξ)=0

f

(
ξ

∆(X)

)
.(3.2.3)

Let ΓF∞(s) :=
∏

v|∞ ΓFv(s), where

ΓFv(s) =




π−s/2Γ(s/2) if Fv is real, and

2(2π)−sΓ(s) if Fv is complex.
(3.2.4)

Let Φ0 ∈ S(A2
F ) be such that Φ0(t, 0) = 0 for all t ∈ AF and F2(Φ0)(0, 0) = ΓF∞(1), where

F2(Φ0)(x, y) :=

∫

AF

Φ0(x, t)ψ(yt)dt

is the Fourier transform in the second variable. For Φ ∈ S(A2
F × V (AF )) we define

Φsw(x, y, w) = Φ(y, x, w).

Let

ℓF := Ress=1ΛF (s)(3.2.5)

where ΛF (s) = ΓF (s)ζF (s) is the completed Dedekind ζ-function of F . We are now in a

position to state the main theorem of this paper, the extension of Theorem 1.1 to arbitrary

number fields:

Theorem 3.3. Let ε > 0. Assume that n is even. If n > 4 or n = 4 and (−1)n/2 det J =

det J 6∈ (F×)2 then

N(X) =
Xn−2

ℓF
Ress=−1 (I(Φ, 1s)(0)− I(Φsw, 1s)(0))

+
∑

ξ∈V (F )
Q∨(ξ)=0

Xn/2

ℓF
Ress=1−n/2 (I(Φ,Gs)(ξ)− I(Φsw,Gs)(ξ)) +Oε(X

n/2+ε−1)

If n = 4 and det J ∈ (F×)2 then

N(X) = X2 logXℓF lim
s→−1

(
I(Φ, 1s)(0)− I(Φsw, 1s)(0)

ΛF (s+ 2)2

)

+
X2

ℓF
Ress=−1 (I(Φ, 1s)(0)− I(Φsw, 1s)(0))
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+
∑

ξ∈V (F )−0
Q∨(ξ)=0

X2

ℓF
Ress=−1 (I(Φ,Gs)(ξ)− I(Φsw,Gs)(ξ)) +Oε(X

1+ε).

Before embarking on the proof we stop to emphasize that the terms occurring in this

expression are actually quite simple, at least outside of the finite set of places S. Assume

that Q∨(ξ) = 0. Then for any χ ∈ [̂Gm] the integral IS(Φ, χs) vanishes if χ is ramified

outside of S. If it is unramified outside of S then

IS(Φ, χs)(ξ) =
LS(s+ n/2, χG)

LS(s+ n/2 + 1, χG)

∑

d

1dV (ÔS)(ξ)χs+1(d)

where the sum on d is over the ideals of OS. Here we identify d with a generator (in AS×
F )

of the ideal dÔS (see Theorem 6.4). If ξ = 0 the sum over d becomes LS(s+ 1, χ).

Thus if ξ 6= 0 (for example) then

1

ℓF
Ress=1−n/2I(Φ,Gs)(ξ) =

IS(Φ,Gs)(ξ)

ΛFS(1)LS(2,G)

∑

d

1dV (ÔS)(ξ)(|d|
S)2−n/2.

The situation when ξ = 0, G is trivial, and n = 4 is more complicated, but it is still easy to

compute the factors outside of S in this case using (3.1.4).

As promised after the statement of Theorem 1.1, we now explain why the expression above

simplifies in the setting of the introduction. Recall that in the introduction we restricted to

the case F = Q and Φ∞ = 1Ẑ2×V (Ẑ). The function

I∞(1Ẑ2×V (Ẑ), χs)

vanishes unless χ is unramified at every finite place, and AGmQ
×\A×

Q/Ẑ
× = 1. Thus

I(1Ẑ2×V (Ẑ),Gs) = 0 when G is nontrivial, which is to say (−1)n/2 det J is not a square in

Q×. However, even over Q, if we take Φ∞ to be a function that picks out ξ in a particular

residue class modulo V (Z), there is no reason to expect that the extra terms in Theorem 3.3

are nonzero. This phenomenon (when F = Q and n = 4) is the subject of the paper [Lin17].

Before proving the theorem we prove a lemma:

Lemma 3.4. One has

Ress=0X
s (I(Φ, 1s)(0)− I(Φsw, 1s)(0)) = 0.

Proof. By Theorem 6.4 one has

I(1(ÔS)2×V (ÔS), 1s)(0) =
LS(s+ n/2,G)ζSF (s+ 1)

LS(s+ n/2 + 1,G)
.

Thus it suffices to verify that

I(ΦS , 10)(0) = I(Φsw
S , 10)(0).(3.2.6)
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Taking changes of variables t 7→ Q(v)t and then t 7→ t−1 we see that

IS(Φ
sw, 10)(0) =

∫

F×

S ×V (FS)

ΦS

(
t,
Q(v)

t
, v

)
dvdt×

=

∫

F×

S ×V (FS)

ΦS(Q(v)t, t
−1, v)dvdt×

=

∫

F×

S ×V (FS)

ΦS

(
Q(v)

t
, t, v

)
dvdt×

= IS(Φ, 10)(0).

Thus (3.2.6) is valid. Here to justify the changes of variables we require the absolute con-

vergence of the integral over F×
S × V (FS). To check this we note that |ΦS| can be bounded

by a nonnegative Schwartz function so we can assume that ΦS (and hence Φsw
S ) is nonneg-

ative. Under this assumption, by the Fubini-Tonelli theorem it is enough to check that the

integral over t converges absolutely. At the archimedian places in S this is explicitly stated

in Theorem 4.2. At the nonarchimedian places it is an easy consequence of the arguments

proving Theorem 5.2. �

Proof of Theorem 3.3. Using the expansion of the δ-symbol given in [Get14, Proposition 2.1]

we write

N(X) =
∑

ξ∈V (F )

δQ(ξ)f

(
ξ

∆(X)

)

=
∑

ξ∈V (F )

cX,Φ0

X

∑

d∈F×

(
Φ0

(
Q(ξ)

d∆(X)
,

d

∆(X)

)
− Φ0

(
d

∆(X)
,
Q(ξ)

d∆(X)

))
f

(
ξ

∆(X)

)
.

Here we take X sufficiently large (in a sense depending on Φ0) and for any N > 0 one has

cX,Φ0 =
1

ΓF∞(1)
+OΦ0,N(X

−N).(3.2.7)

It is not hard to see that the double sum over ξ and d here is absolutely convergent. In

particular we can exchange the sum over d and the sum over ξ. For each d the function
(
Φ0

(
Q(ξ)

d∆(X)
,

d

∆(X)

)
− Φ0

(
d

∆(X)
,
Q(ξ)

d∆(X)

))
f

(
ξ

∆(X)

)

is Schwartz as a function of ξ ∈ V (AF ). We can therefore apply Poisson summation in

ξ ∈ V (F ) (see (2.3.1)) to arrive at

cX,Φ0

X

∑

d∈F×

∑

ξ∈V (F )

∫

V (AF )

(
Φ0

(
Q(w)

d∆(X)
,

d

∆(X)

)
− Φ0

(
d

∆(X)
,
Q(w)

d∆(X)

))
f

(
w

∆(X)

)
ψ

(
〈ξ, w〉

d

)
dw.

Here we have changed variables ξ 7→ d−1ξ in ξ. Again it is not difficult to see that the

resulting double sum over ξ and d is absolutely convergent, so we bring the sum over ξ
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outside the sum over d and apply Poisson summation in d ∈ F× to arrive at

∑

ξ∈V (F )

cX,Φ0

2πiXzF

∑

χ∈[̂Gm]

∫

Re(s)=σ

∫

V (AF )×A×

F

(
Φ0

(
Q(w)

t∆(X)
,

t

∆(X)

)
− Φ0

(
t

∆(X)
,
Q(w)

t∆(X)

))

× f

(
w

∆(X)

)
ψ

(
〈ξ, w〉

t

)
dwχs(t)dt

×ds.

where zF := Ress=1ζF (s). A reference for this application of Poisson summation is [BB11,

§2]. We still have to check that the application is justified, but we take this up in a moment.

We change variables (t, w) 7→ (∆(X)t,∆(X)w) to arrive at

∑

ξ∈V (F )

∑

χ∈[̂Gm]

∫

Re(s)=σ

cX,Φ0X
s

2πiX1−nzF

∫

V (AF )×A×

F

(
Φ0

(
Q(w)

t
, t

)
− Φ0

(
t,
Q(w)

t

))

× f (w)ψ

(
〈ξ, w〉

t

)
dwχs(t)dt

×ds

=
cX,Φ0X

n−1

2πizF

∑

ξ∈V (F )

∑

χ∈[̂Gm]

∫

Re(s)=σ

Xs (I(Φ, χs)(ξ)− I(Φsw, χs)(ξ))ds.(3.2.8)

To check that the application of Poisson summation in d is justified it suffices to check that

∑

ξ∈V (F )

∑

χ∈[̂Gm]

∫

Re(s)=σ

(|I(Φ, χs)(ξ)|+ |I(Φsw, χs)(ξ)|) ds <∞

for σ > 0. But this is an easy consequence of Theorem 3.2.

We now take ε > 0 and shift the contour to Re(s) = ε− n/2. In view of Theorem 3.2 we

then see that (3.2.8) is equal to

cX,Φ0X
n−1

zF
Ress=0 (X

s (I(Φ, 1s)(0)− I(Φsw, 1s)(0)))(3.2.9)

+
cX,Φ0X

n−1

zF
Ress=−1 (X

s (I(Φ, 1s)(0)− I(Φsw, 1s)(0)))(3.2.10)

−
cX,Φ0X

n−1

zF
Ress=−1 (X

s (I(Φ,Gs)(0)− I(Φsw,Gs)(0)))
δ4−nδG(3.2.11)

+
cX,Φ0X

n−1

zF

∑

ξ∈V (F )
Q(ξ)=0

Ress=1−n/2 (X
s (I(Φ,Gs)(ξ)− I(Φsw,Gs)(ξ)))(3.2.12)

+
cX,Φ0X

n−1

2πizF

∑

ξ∈V (F )

∑

χ∈[̂Gm]

∫

Re(s)=ε−n/2

Xs (I(Φ, χs)(ξ)− I(Φsw, χs)(ξ)) ds.(3.2.13)

The term with a negative sign (3.2.11) occurs because the sum of (3.2.10) and (3.2.12)

overcounts the residues when G is trivial and n = 4. The term (3.2.9) is zero by Lemma 3.4.

By Theorem 3.2 and (3.2.7) the term (3.2.13) is OΦ,ε(X
ε+n/2−1).
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By Theorem 3.2 if ξ 6= 0 then the pole of I(Φ,Gs)(ξ) at s = 1 − n/2 is simple. Com-

bining this fact with the asymptotic for cX,Φ0 from (3.2.7) we see that (3.2.12) is equal to

OΦ0,N(X
−N) plus

Xn/2

ℓF

∑

ξ∈V (F )
Q∨(ξ)=0

Ress=1−n/2 ((I(Φ,Gs)(ξ)− I(Φsw,Gs)(ξ)))

for any N > 0. Assume for the moment that n > 4 or (−1)n/2 det J 6∈ (F×)2. Then by

Theorem 3.2 I(Φ, χs)(0) has only simple poles for Re(s) > −n/2. Thus when n > 4 or

(−1)n/2 det J 6∈ (F×)2 the terms (3.2.9), (3.2.10), and (3.2.11) can be evaluated in exactly

the same manner as we evaluated (3.2.12), proving the theorem in this case.

We now handle the case where (−1)n/2 det J ∈ (F×)2 and n = 4. In this case G is trivial,

and hence the sum of (3.2.9), (3.2.10), and (3.2.11) is

X3

ℓF
Ress=−1 (X

s (I(Φ, 1s)(0)− I(Φsw, 1s)(0))) +OΦ0,N(X
−N)

for any N > 0. Here we have used (3.2.7) to replace cX,Φ0 by its asymptotic value ΓF∞(1)−1.

Since n = 4, the pole of I(Φ, 1s)(0) at s = −1 is of order 2. Thus the above equal to

X2

ℓF

(
logX lim

s→−1

(
(s+ 1)2 (I(Φ, 1s)(0)− I(Φsw, 1s)(0))

)

+ Ress=−1 (I(Φ, 1s)(0)− I(Φ, 1s)(0))

)
+OΦ0,N(X

−N).

To complete the proof we now note that

lim
s→−1

(
(s+ 1)2I(Φ, 1s)(0)

)
= lim

s→−1

(
(s+ 1)2ΛF (s+ 2)2

I(Φ, 1s)(0)

ΛF (s+ 2)2

)

= ℓ2F lim
s→−1

I(Φ, 1s)(0)

ΛF (s+ 2)2

and similarly for Φ replaced by Φsw. �

4. Archimedian bounds

4.1. Main result. For this section we fix an archimedian place v of F and omit it from

notation, writing F := Fv. For each quasi-character χ : F× → C there is a complex number

µχ such that

L(s, χ) = ΓF (s+ µχ)

with ΓF defined as in (3.2.4). The analytic conductor of χ is then

C(χ) := 1 + |µχ|st.(4.1.1)

The main result of this section is the following theorem:
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Theorem 4.1. Let σ1 > σ2 > −n/2 and N ∈ Z>0. Assume ξ 6= 0. For σ1 > Re(s) > σ2 the

integral over t in the definition of I(Φ, χs)(ξ) converges absolutely. There is an A > 0 such

that for σ1 > Re(s) > σ2 one has

I(Φ, χs)(ξ) ≪N,σ1,σ2 max(|ξ|, 1)−N min(|ξ|, 1)−AC(χs)
−N .

We also require the following companion statement when ξ = 0:

Theorem 4.2. Let N ∈ Z>0, σ1 > −3
4
> σ2 > −n/2. For s ∈ C with σ1 > Re(s) > −3

4
the

integral over t in the definition of I(Φ, χs)(0) converges absolutely and one has

I(Φ, χs)(0) ≪N,σ1 C(χs)
−N .

The function I(Φ, χs)(0) can be meromorphically continued to Re(s) > −n/2 and for −1
4
≥

Re(s) > σ2 one has an estimate

γ(χs+1, ψ)I(Φ, χs)(0) ≪N,σ2 C(χs)
−N(4.1.2)

where γ(χs, ψ) is the usual γ-factor (see (4.1.6)).

The argument is essentially the same as that proving [Get14, Theorem 5.1 and Proposition

5.4], but the current setting is a broad generalization of that of loc. cit., so we give a complete

proof.

We observe that it suffices to prove the theorem under the following simplifying assump-

tion:

(A) One has ψ(x) = e−2πitrF/R(x).

Indeed, every additive character ψ : F → C× is of the form x 7→ e−2πitrF/R(cx) for some

c ∈ F×. Thus if we prove theorems 4.1 and 4.2 under this assumption we can deduce them

in general upon taking a change of variables in ξ. We assume (A) for the remainder of the

section.

Proposition 4.3. Let x ∈ F×. The Fourier transform of the distribution

V (F ) −→ C

w 7−→ ψ(xQ(w))

is

γ(xQ)| det(xJ)|−1/2ψ(x−1Q∨(w))

where γ(xQ) = 1 if F is complex and γ(ψ(xQ)) = (e−πi/4)a−b if F is real and the signature

of xJ is (a, b).

Proof. By assumption (A) the self-dual Haar measure on V (F ) = F n is the product of the

Lebesgue measure on F if F = R and it is the product of twice the Lebesgue measure if

F = C.

Note that w 7→ ψ(xQ(w)) is a character of the second degree in the sense of [Wei64]. Thus

the proposition follows upon combining [Wei64, §14, Theorem 2 and §26]. �
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Proposition 4.4. Assume that J is a diagonal matrix whose eigenvalues are all ±1. For

any N > 0 if |ξ| ≥ 1 or |t| ≥ 1 then
∫

V (F )

Φ

(
Q(w)

t
, t, w

)
ψ

(
〈ξ, w〉

t

)
dw ≪ max(|ξ|, 1)−N min(|t|n/2, |t|−N).

Let

a := (3 + dimR V (F )/2)[F : R].(4.1.3)

If ξ 6= 0 and |t| < |ξ|a < 1 the integral is bounded by a constant times

|t|n/2

|ξ|n/2+1/[F :R]
.

Assuming this proposition (which will be proved in §4.2) we now prove Theorem 4.1:

Proof of Theorem 4.1. Taking an appropriate change of variables we can and do assume that

J is a diagonal matrix with ±1 as eigenvalues.

Let D = t ∂
∂t

(and, if F is complex, D = t ∂
∂t
) viewed as a differential operator on F×. By

Proposition 4.4 for all i ∈ Z≥0 (and j ∈ Z≥0 when F is complex) the integral
∫

V (F )

DiD
j
Φ

(
Q(w)

t
, t, w

)
ψ

(
〈ξ, w〉

t

)
dw(4.1.4)

is bounded by a constant depending on i, j, N times max(|ξ|, 1)−N min(|t|n/2, |t|−N) if |ξ| ≥ 1

or |t| ≥ 1 and bounded by a constant times |t|n/2

|ξ|n/2+1/[F :R] if |t| < |ξ|a < 1. Here σ1 > Re(s) > σ2.

Thus applying integration by parts in t (and t if F is complex) if |ξ| ≥ 1 we obtain a

bound of

I(Φ, χs)(ξ) ≪N,σi
C(χs)

−N |ξ|−N

(∫

|t|<1

|t|n/2+σ2dt× + 1

)

≪σ2 C(χs)
−N |ξ|−N .

If |ξ| < 1 we similarly obtain a bound

I(Φ, χs) ≪N,σi
C(χs)

−N |ξ|−n/2−1/[F :R]

(∫

|t|<|ξ|a
|t|n/2+σ2dt× +

∫

|ξ|a≤|t|<1

|t|σ2dt× + 1

)

≪N,σi
C(χs)

−N |ξ|−A

for A > 0 sufficiently large. �

If Φ ∈ S(V (F )) we set notation for the inverse Fourier transform of ψ(xQ(w))Φ̂(w):

ψ(xQ(D))Φ(ξ) :=

∫

V (F )

ψ(〈ξ, w〉 − xQ(w))Φ̂(w)dw.(4.1.5)

Here the D is present to indicate that ψ(xQ(D)) can be viewed as a certain formal sum of

differential operators, see [Hör03, Theorem 7.6.2], for example.
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We denote by

γ(χs, ψ) =
L(1− s, χ)ε(s, χ, ψ)

L(s, χ)
(4.1.6)

the usual γ-factor (not to be confused with Weil’s numbers occurring in Proposition 4.3).

The function is meromorphic as a function of s, holomorphic for Re(s) < 1. For Φ ∈ S(F )

the functional equation for local zeta function established in Tate’s thesis is

γ(χs, ψ)

∫

F×

Φ(t)χs(t)dt
× =

∫

F×

Φ̂(t)χ1−s(t)dt
×.(4.1.7)

With this notation out of the way we can now prove Theorem 4.2:

Proof of Theorem 4.2. As in the proof of Theorem 4.1 we see that to prove the estimates

for I(Φ, χs)(0) in the range Re(s) ≥ −3
4
it is enough to show that I(Φ, χs)(0) converges

absolutely in that range. This is our first goal.

Write Φ1(x, t, w) =
∫
F
Φ(y, t, w)ψ(xy)dy. By Fourier inversion we have

I(Φ, χs)(0) =

∫

F×F××V (F )

Φ1(x, t, w)ψ

(
xQ(w)

t

)
χs(t)dt

×dxdw.

This converges absolutely for Re(s) > 0. Change variables x 7→ tx to arrive at
∫

F×F×

(∫

V (F )

Φ1(tx, t, w)ψ(xQ(w))dw

)
χs+1(t)dt

×dx.(4.1.8)

The integral over |x| ≤ 1 converges absolutely for Re(s) > −1. We now treat the integral over

|x| > 1. Following [Hör03, Lemma 7.7.3] one applies the Plancherel formula and Proposition

4.3 to see that this contribution can be written as∫

(|x|>1)×F×

γ(xQ)

| detxJ |1/2
ψ
(
x−1Q∨(D)

)
Φ1(tx, t, w)|w=0χs+1(t)dt

×dx(4.1.9)

with notation as in (4.1.5). One has an estimate

|ψ(x−1Q∨(D))Φ1(tx, t, w)|w=0 − Φ1(tx, t, 0)| ≪Φ,J
1

|x|1/[F :R]

∑

D

|DΦ1(tx, t, ·)|2

from [Hör03, Lemma 7.7.3, (7.6.7)], where | · |2 := | · |L2(V (F )) and the sum over D is over an

R-vector space basis of the space of invariant differential forms on V (F ) of degree less than

or equal to a[F : R]−1 with a defined as in (4.1.3). Thus the double integral over x and t in

(4.1.9) is absolutely convergent for Re(s) > −1.

We now return to (4.1.8). We apply (4.1.7) for each fixed x to see that the product of

γ(χs+1, ψ) and (4.1.8) is equal to
∫

F

(∫

F××V (F )

(∫

F

Φ1(αx, α, w)ψ(tα)dα

)
ψ(xQ(w))dwχ−s(t)dt

×

)
dx.(4.1.10)

The inner integral is now absolutely convergent for Re(s) < 0. We henceforth assume that

−n/2 < Re(s) < 0.
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The integral over |x| ≤ 1 in (4.1.10) converges absolutely. Applying integration by parts as

in the proof of Theorem 4.1 one deduces that this contribution is bounded by ON,σ2(C(χs)
−N)

for any N > 0 as desired.

Consider the contribution of |x| > 1. We take a change of variables α 7→ x−1α and then

t 7→ xt to see that this contribution is
∫

|x|>1

(∫

F××V (F )

(∫

F

Φ1(α, x
−1α,w)ψ(tα)dα

)
ψ(xQ(w))dwχ−s(xt)dt

×

)
dx

|x|
.

We claim the integrals over t and x converge absolutely for 0 > Re(s) > σ2. Since Φ was an

arbitrary Schwartz function, the claim allows us to apply integration by parts as before and

obtain an estimate of ON,σ2(C(χs)
−N) on this integral.

We now prove the absolute convergence claim and thereby complete the proof of the

theorem. We proceed as before, using the Plancherel theorem to write the above as

∫

|x|>1

(∫

(F×)2

γ(xQ)

|xJ |n/2
ψ(x−1Q∨(D))

∫

F

Φ1(α, x
−1α,w)ψ(tα)dα|w=0χ−s(xt)dt

×

)
dx

|x|
.

(4.1.11)

Just as before
∣∣∣∣ψ(x−1Q∨(D))

∫

F

Φ1(α, x
−1α,w)ψ(tα)dα|w=0 −

∫

F

Φ1(α, x
−1α, 0)ψ(tα)dα

∣∣∣∣

≪Φ,J
1

|x|1/[F :R]

∑

D

∣∣∣∣D
(∫

F

Φ1(α, x
−1α, ·)

)∣∣∣∣
2

where the sum over D is as before. In view of this estimate, it is not hard to see that (4.1.11)

is absolutely convergent for −n/2 < Re(s) < 0. �

4.2. Proof of Proposition 4.4. In this section we estimate the oscillatory integral
∫

V (F )

Φ

(
Q(w)

t
, t, w

)
ψ

(
〈ξ, w〉

t

)
dw(4.2.1)

as a function of t and ξ under the assumption that ξ 6= 0. Our goal is to bound this integral

by a constant depending on N0 > 0 and Φ times

max(|ξ|, 1)−N min(|t|n/2, |t|−N0)(4.2.2)

for any N0 > 0 provided |ξ| ≥ 1 or |t| ≥ 1. If ξ 6= 0 and |t| < |ξ|a < 1 we only require the

weaker bound

|t|n/2

|ξ|n/2+1/[F :R]
.

Here a is defined as in (4.1.3). The content of Proposition 4.4 is that these estimates are

valid.
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The basic idea is quite simple. Let

Φ1(x, y, w) :=

∫

F

Φ(t, y, w)ψ(xt)dt(4.2.3)

be the inverse Fourier transform of Φ in the first variable. Then by Fourier inversion the

integral (4.2.1) is

∫

F××V (F )

Φ1 (x, t, w)ψ

(
xQ(w) + 〈ξ, w〉

t

)
dwdx(4.2.4)

Here we have used the fact that F× ⊂ F is of full measure with respect to dx. We apply the

stationary phase method to the integral over w. Provided x 6= 0 it has a single nondegenerate

critical point at v = −x−1J−1ξ and the norm of the Hessian is |det xJ |
|t|n

everywhere. At this

point we would be done (at least modulo uniformity in ξ) if we knew x was bounded away

from zero. In our setting this is not the case, so we have to do a little more work.

We now begin the formal argument. We first deal with some trivial cases. Suppose |t| ≥

max(|ξ|, 1)1/2. In this case we obtain a bound on (4.2.1) of OΦ(|t|
−N) ≤ OΦ(max(|ξ|, 1)−N/2)

since Φ is rapidly decreasing as a function of t. This bound is better than (4.2.2) for

sufficiently large N (under the assumption |t| ≥ max(|ξ|, 1)1/2). Thus we can assume that

|t| < max(|ξ|, 1)1/2.(4.2.5)

Now assume that |t| ≥ 1 (so |ξ| ≥ 1). Applying integration by parts in w we see that for

any N > 0 the integral (4.2.1) is bounded by ON,Φ

(
max

(
|t|
|ξ|
, 1
|ξ|

)N)
. For sufficiently large

N this is stronger than the bound (4.2.2) under the assumption that |t| ≥ 1. Thus we can

assume

|t| < 1.(4.2.6)

Finally, assume that |ξ| ≥ |t|−ε for some 1 > ε > 0, which implies by (4.2.6) that |ξ| ≥ 1.

Applying integration by parts in w we obtain a bound of OΦ,N(|ξ|
−N), which is a better

bound than (4.2.2) if |ξ| ≥ |t|−ε if N is sufficiently large. Thus we can assume that

|ξ| < |t|−ε(4.2.7)

for a fixed 1 > ε > 0.

We now begin our application of stationary phase to the integral (4.2.4). We first break

the integral into two ranges, one where the phase is close to stationary and one where it

is not. To accomplish this, choose nonnegative functions W1,W2 ∈ C∞(V (F )) such that

W1 +W2 = 1, W1 is identically 1 in a neighborhood of 0 and is zero outside of

{w ∈ V (F ) : |w| < 1
2
}(4.2.8)
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and W2 vanishes in a neighborhood of zero. Then (4.2.4) is equal to the sum over i ∈ {1, 2}

of ∫

F××V (F )

Wi

(
xw + J−1(ξ)

|t|1/a

)
Φ1(x, t, w)ψ

(
xQ(w) + 〈ξ, w〉

t

)
dxdw.(4.2.9)

The power of |t| in the denominator of the argument ofWi will play a role in the estimation

of the i = 1 term. The i = 2 term, where the phase is not stationary, can be bounded by

a constant depending on Φ and N times |t|N for any N > 0 by repeated application of

integration by parts in w. In view of the fact that |t| < 1 and |ξ| < |t|−ε by (4.2.6) and

(4.2.7) we see that the bound (4.2.2) is valid for the i = 2 term.

Thus we are reduced to bounding the i = 1 term. Taking a change of variables w 7→

w − x−1J−1(ξ) we see that the i = 1 case of (4.2.9) is equal to
∫

F××V (F )

W1

(
xw

|t|1/a

)
Φ1

(
x, t, w −

J−1(ξ)

x

)
ψ

(
xQ(w)

t

)
dwψ

(
Q∨(ξ)

xt

)
dx.

Apply Plancherel’s theorem to the w integral. Using Proposition 4.3 and the notation of

(4.1.5) this implies that the above is equal to

∫

F×

|t|n/2γ(xQ)

| detxJ |1/2
ψ

(
−
tQ∨(D)

x

)
W1

(
xw

|t|1/a

)
Φ1

(
x, t, w −

J−1(ξ)

x

)
|w=0ψ

(
Q∨(ξ)

xt

)
dx.

(4.2.10)

We now employ the estimate
∣∣∣∣ψ
(
−
tQ∨(D)

x

)
W1

(
xw

|t|1/a

)
Φ1

(
x, t, w −

J−1(ξ)

x

)
|w=0 − Φ1

(
x, t,−

J(ξ)

x

)∣∣∣∣

≪

(
|t|

|x|

)1/[F :R]∑

D

∣∣∣∣D
(
W1

(
x(·)

|t|1/a

)
Φ1

(
x, t, (·)−

J−1(ξ)

x

))∣∣∣∣
2

from [Hör03, (7.6.7)], where | · |2 = | · |L2(V (F ) and the sum on D is over an R-vector space

basis of the space of invariant differential operators on V (F ) of degree less than or equal to

a[F : R]−1. Thus (4.2.10) is bounded by a constant times the sum of
∫

F×

(
|t|

|x|

)n/2 ∣∣∣∣Φ1

(
x, t,−

J−1(ξ)

x

)∣∣∣∣ dx≪N |t|n/2min(|ξ|, 1)−n/2max(|ξ|, 1)−N(4.2.11)

(where N ∈ Z>0 is arbitrary) and
∫

F×

(
|t|

|x|

)n/2+1/[F :R]∑

D

∣∣∣∣D
(
W1

(
x(·)

|t|1/a

)
Φ1

(
x, t, (·)−

J−1(ξ)

x

))∣∣∣∣
2

dx.(4.2.12)

The bound (4.2.11) is sufficient, so we are left with bounding (4.2.12). Since the differential

operators occurring in the sum here are of degree less than or equal to a[F : R]−1 the above

is equal to
∫

F×

(
|t|

|x|

)n/2+1/[F :R]∑

D

∣∣∣∣D
(
W1

(
x(·) + J−1(ξ)

|t|1/a

)
Φ1(t, x, ·)

)∣∣∣∣
2

dx
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≪

∫

F×

|t|n/2

|x|n/2+1/[F :R]

∣∣∣∣W3

(
x(·) + J−1(ξ)

|t|1/a

)
Φ2(t, x, ·)

∣∣∣∣
2

dx

for some W3 ∈ C∞
c (V (F )) supported in (4.2.8) and Φ2 ∈ S(F × F × V (F )).

This integrand is supported in the set of w such that

|xw + J−1(ξ)| <
|t|1/a

2
.(4.2.13)

Suppose that |ξ| ≥ 1. Then by (4.2.13) we have

|xwj| ≍ |ξ|

for some j. Here we have used our assumption that J is diagonal with eigenvalues ±1.

Using the Schwartz function Φ2 we obtain an estimate on (4.2.12) of ON(|t|
n/2|ξ|−N) for

N > 0. Now assume that |ξ| < 1 and |t| < |ξ|a < 1, which, by the assumptions of the

proposition, is the last case we must treat. Since |x + 1| ≤ 1
2
implies |x| ≍ 1 the bound

(4.2.13) implies |xwj| ≍ |ξj| for some j and we have a bound on (4.2.12) of

|t|n/2

|ξ|n/2+1/[F :R]
.(4.2.14)

�

5. Nonarchimedian case

In this section and the following we assume that v is a nonarchimedian place of F which

is omitted from notation: F := Fv. We let q = O/̟ where ̟ is a uniformizer of O. For the

remainder of the paper | · | denotes the norm on F such that |̟| = q−1.

Lemma 5.1. Assume that χ : F× → C× is a unitary character. The integrals defining

I(Φ, χs)(ξ) converge absolutely if Re(s) > 0. There is an element β ∈ F× and an ideal f of

O depending only on Φ such that I(Φ, χs)(ξ) = 0 unless ξ ∈ β−1V (O) and the conductor of

χ divides f.

Proof. The absolute convergence statement is clear. For the remainder of the proof we assume

Re(s) > 0. It suffices to prove the vanishing statement under this additional assumption.

For k > 0 let O×(̟k) = 1 + ̟kO. Since Φ ∈ C∞
c (F 2 × V (F )) we can and do choose k

large enough that

Φ(u1x1, u2x2, u3w) = Φ(x1, x2, w).

for u1, u2, u3 ∈ O×(̟k) and (x1, x2, w) ∈ F 2 × V (F ). For u ∈ O×(̟k) consider
∫

V (F )

Φ

(
Q(w)

ut
, ut, w

)
ψ

(
〈ξ, w〉

ut

)
dw.

Taking a change of variables w 7→ uw we see that this integral is equal to
∫

V (F )

Φ

(
Q(w)

t
, t, w

)
ψ

(
〈ξ, w〉

t

)
dw.
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Taking f = ̟kO the claim that I(Φ, χs) vanishes unless the conductor of χ divides f follows.

Let Y ∈ V (O). For k sufficiently large we have
∫

F××V (F )

Φ

(
Q(w)

t
, t, w

)
ψ

(
〈ξ, w〉

t

)
dwχs(t)dt

×

=

∫

F××V (F )

Φ

(
Q(w)

t
−̟2ktQ(Y )−̟k〈Y, Jw〉, t, w − t̟kY

)
ψ

(
〈ξ, w〉

t

)
dwχs(t)dt

×.

Taking a change of variable w 7→ w + t̟kY we see that this is equal to
∫

F××V (F )

Φ

(
Q(w)

t
, t, w

)
ψ

(
〈ξ, w〉

t
+̟k〈ξ, Y 〉

)
dwχs(t)dt

×.

The claim that I(Φ, χs) is supported in β−1V (O) for some β depending only on Φ follows.

�

The following is the main theorem of this section:

Theorem 5.2. The quotient
I(Φ, χs)(ξ)

L(s + 1, χ)δξ

admits a holomorphic continuation to Re(s) > −n/2. For

σ1 > Re(s) > σ2 > −n/2

it is bounded by a constant depending on σ1, σ2,Φ times

max(1, (1− δξ)|ξ|
1−n/2).

Here if ξ = 0 we interpret (1− δξ)|ξ|
1−n/2 as meaning 0.

We begin with a preliminary proposition:

Proposition 5.3. Assume ψ is unramified and that J is a diagonal matrix in gln(O). As-

sume moreover that c, k ∈ Z>0, c > k, Ψ ∈ C∞(V (O)) and that β = 0 or β ∈ O×. As a

function of s

L(s+ 1, χ)−δξ

∫

|t|<q−c

∫

F××V (F )

1̟kO(x− β1)Ψ(w)ψ

(
xQ(w) + 〈ξ, w〉

t

)
dwdxχs(t)dt

×

admits a holomorphic continuation to Re(s) > −n/2 that is bounded by a constant depending

on σ1, σ2, c, β, k times

max(1, (1− δξ)|ξ|
1−n/2)

provided that σ1 > Re(s) > σ2 > −n/2.

Proof. Throughout the proof we assume that

σ1 > Re(s) > σ2 > −n/2.(5.0.1)
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We start with the integral
∫

|t|<q−c

∫

F××V (F )

Ψ(w)1̟kO(x− β)ψ

(
xQ(w) + 〈ξ, w〉

t

)
dwdxχs(t)dt

×.(5.0.2)

We will often use the fact that for t ∈ O ∩ F× the Fourier transform of the distribution

w 7→ ψ
(

Q(w)
t

)
on V (F ) is

γ(t−1Q)
|t|n/2

|det J |1/2
ψ (tQ∨(w))(5.0.3)

where |γ(t−1Q)| = 1 [Wei64, §14].

Assume β ∈ O×. Then by the Fourier transform computation just mentioned we have

that (5.0.2) is equal to

| detJ |−1/2

∫

|t|<q−c

∫

F××V (F )

Ψ̂

(
ξ

t
− w

)
1̟kO(x− β)γ(xt−1Q)ψ

(
tQ(w)

x

)
dwdxχs+n/2(t)dt

×

≪Ψ ζ(Re(s) + n/2) ≪σ1,σ2 1.

Assume now that β = 0. We then write (5.0.2) as qk times
∫

|t|<q−c

∫

F××V (F )

Ψ(w)ψ

(
̟kxQ(w) + 〈ξ, w〉

t

)
dwdxχs(t)dt

×

= χs(̟
k)

∫

|t|<q−c+k

∫

F××V (F )

Ψ(w)ψ

(
xQ(w) + 〈̟−kξ, w〉

t

)
dwdxχs(t)dt

×

= χs(̟
k)

∫

|t|<q−c+k

∫

V (F )

Ψ(w)

v(t)∑

i=0

∑

x∈(O/t̟−i)×

ψ

(
̟ixQ(w) + 〈̟−kξ, w〉

t

)
dwχs+1(t)dt

×

= χs(̟
k)

∞∑

i=0

χs+1(̟
i)

∫

|t|<q−c+k

∫

V (F )

Ψ(w)
∑

x∈(O/t)×

ψ

(
xQ(w) + 〈̟−i−kξ, w〉

t

)
dwχs+1(t)dt

×.

The i summand here vanishes unless ξ ∈ ̟i+aV (O) for some a ∈ Z depending only on k

and Ψ.

We now use the Fourier transformation computation (5.0.3) to write this as

χs(̟
k)

∞∑

i=0

χs+1(̟
i)

∫

|t|<q−c+k

∑

x∈(O/t)×

γ(xt−1Q)

| det J |1/2
(5.0.4)

×

∫

V (F )

Ψ̂

(
ξ

̟i+kt
− w

)
ψ

(
tQ∨(w)

x

)
dwχs+1+n/2(t)dt

×.

We note that
∫

|t|<q−c+k

∑

x∈(O/t)×

γ(xt−1Q)

| detJ |1/2

∫

V (F )

Ψ̂

(
ξ

̟i+kt
− w

)
ψ

(
tQ∨(w)

x

)
dwχs+1+n/2(t)dt

×(5.0.5)

≪J,Ψ,c,k ζ(Re(s) + n/2) ≪σ1,σ2 1.
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Since the ith summand in (5.0.4) vanishes unless ξ ∈ ̟i+aV (O) we deduce that if ξ 6= 0

then (5.0.4) is bounded by a constant depending on c, k, σ1, σ2, Ψ times

max(1, |ξ|1−n/2)

if (5.0.1) is valid. This yields the theorem in this case.

Now assume that ξ = 0. Then (5.0.4) is equal to

χs(̟
k)L(s+ 1, χ)

∫

|t|<q−c+k

∑

x∈(O/t)×

γ(xt−1Q)

| detJ |1/2

∫

V (F )

Ψ̂ (−w)ψ

(
tQ∨(w)

x

)
dwχs+1+n/2(t)dt

×.

This divided by L(s + 1, χ) is bounded by a constant depending on Ψ, σ1, σ2 provided that

(5.0.1) is valid. �

Proof of Theorem 5.2. Temporarily write I(ψ)(ξ) for I(Φ, χs)(ξ) defined with respect to ψ,

and write ψc(x) := ψ(cx) for c ∈ F×. One has

I(ψc)(ξ) = I(ψ)(cξ).

It therefore suffices to prove the theorem in the special case where ψ is unramified, which

we henceforth assume.

Upon taking a change of variables in w we can assume that J is diagonal [Sch85, Theorem

3.5]. This also entails replacing ξ by Aξ for some A ∈ GLn(F ), but this is harmless.

Absorbing powers of ̟ into Φ we can also assume that J ∈ gln(O).

Let Φ1(x, y, w) :=
∫
F
Φ(t, y, w)ψ(xt)dt be the inverse Fourier transform of Φ in the first

variable. By Fourier inversion we then have

I(Φ, χs)(ξ) =

∫

F×F××V (F )

Φ1(x, t, w)ψ

(
xQ(w) + 〈ξ, w〉

t

)
χs(t)dt

×dxdw.

We can and do assume that Φ1 is equal to

1(β1,β2,µ)̟−a+̟k(O2×V (O))

with a ∈ Z≥0, β1, β2 ∈ O, µ ∈ V (O), and k ≥ 0 since every element of C∞
c (F 2 × V (F )) is a

finite sum of functions of this form. If β2̟
−a 6∈ ̟kO then the integral over t in I(Φ, χs)(ξ)

is compactly supported. In this case the bound asserted by Theorem 5.2 is trivial to obtain.

We therefore can and do assume that β2 = 0.

We then have

I(Φ, χs)(ξ) =

∫

̟kO

∫

F××V (F )

1O×V (O)

(
x− β1̟

−a

̟k
,
w − µ̟−a

̟k

)

× ψ

(
xQ(w) + 〈ξ, w〉

t

)
dwdxχs(t)dt

×.
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Taking a change of variables (x, t, w) 7→ (̟−ax,̟kt, ̟−aw) we see that this is equal to

χs(̟
k)qan+a times
∫

O

∫

F××V (F )

1O×V (O)

(
x− β1
̟k+a

,
w − µ

̟k+a

)
ψ

(
xQ(w) + 〈̟2a+kξ, w〉

̟3a+kt

)
dwdxχs(t)dt

×.

The contribution of |t| > q−c is bounded by a constant depending on c, k, a, and σ1, σ2.

Thus it suffices to bound, for any Ψ ∈ C∞
c (V (O)), the integral

∫

|t|<q−c

∫

F××V (F )

1̟kO(x− β1)Ψ(w)ψ

(
xQ(w) + 〈ξ, w〉

t

)
dwdxχs(t)dt

×

for arbitrary k > 0 for any fixed c (which is allowed to depend on k and σ1, σ2).

Finally we check that it is enough to consider the case where β ∈ O× or β = 0. Assume

that β ∈ ̟iO with 1 ≤ i < k. We can and do assume that i < c. Then taking a change of

variables x 7→ ̟ix and t 7→ ̟it we see that the integral above is equal to χs(̟
i)qi times

∫

|t|<q−c+i

∫

F××V (F )

Ψ(w)1̟k−iO(x− β1̟
−i)ψ

(
xQ(w) + 〈̟−iξ, w〉

t

)
dwdxχs(t)dt

×.

We rename variables c 7→ c− i, k 7→ k+ i and ξ 7→ ̟−iξ and apply Proposition 5.3 to deduce

the theorem. �

6. The unramified computation

We work locally in this section at a nonarchimedian, non-dyadic place v which is omitted

from notation. We assume that F is absolutely unramified at v, that ψ is unramified, and

that J ∈ GLn(O), where J is the matrix of Q. We assume that the Haar measure on V (F ) is

normalized so that V (O) has measure 1. This is the self-dual Haar measure with respect to

the pairing (w1, w2) 7→ ψ(〈w1, w2〉) since ψ is unramified. The main theorem of this section,

Theorem 6.4, computes I(1O2×V (O), χs). To prove it we first prove a series of lemmas.

Lemma 6.1. Let u ∈ O×, t ∈ O and ξ0 ∈ F . One has
∫

O

ψ

(
uy2 + ξ0y

t

)
dy = 1O(ξ0)ψ

(
−ξ20
4ut

)∫

O

ψ

(
uy2

t

)
dy.(6.0.1)

The integral
∫
O
ψ
(

uy2

t

)
dy has complex norm |t|1/2 and satisfies

∫

O

ψ

(
uy2

t

)
dy =

( u
̟

)v(t) ∫

O

ψ

(
y2

t

)
dy

where
(

·
̟

)
is the Legendre character.

Proof. One has
∫

O

ψ

(
uy2 + ξ0y

t

)
dy = ψ

(
−ξ20
4ut

)∫

O

ψ

(
uy2

t

)
dy(6.0.2)
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by a change of variables y 7→ y− ξ0
2u
. To compute the latter integral assume first that v(t) = 1.

Then
∫

O

ψ

(
uy2

t

)
dy =

∫

O×

ψ

(
uy2

t

)
dy + q−1(6.0.3)

= q−1 +

∫

O×

(( y
̟

)
+ 1
)
ψ
(uy
t

)
dy

=

∫

O×

( y
̟

)
ψ
(uy
t

)
dy.

From this formula (and a change of variables y 7→ u−1y) it is evident that

∫

O

ψ

(
uy2

t

)
dy =

( u
̟

)∫

O

ψ

(
y2

t

)
dy.

It is well-known that |
∫
O
ψ
(

y2

t

)
dy|st = |t|1/2 (see [IR90, p. 147], for example) so the lemma

is proven in the v(t) = 1 case.

For v(t) > 1 one has

∫

O

ψ

(
uy2

t

)
dy =

∫

O×

ψ

(
uy2

t

)
dy +

∫

̟O

ψ

(
uy2

t

)
dy

= |t|
∑

α∈(O/t̟−1)×

∑

x∈O/̟

ψ

(
u(α2 + 2αt̟−1x)

t

)
+ q−1

∫

O

ψ

(
uy2

t̟−2

)
dy

= q−1

∫

O

ψ

(
uy2

t̟−2

)
dy.

Thus by induction

∫

O

ψ

(
uy2

t

)
dy =




|t|1/2 if 2|v(t)

(|t|q)1/2
∫
O
ψ
(

uy2

t̟−(v(t)−1)

)
dy if 2 ∤ v(t).

(6.0.4)

Given what we have already proven the lemma follows for v(t) > 1 as well. �

For the remainder of this section we make the following important simplifying assumption:

(A) The dimension n is even.

Viewing w 7→ ψ(t−1Q(w)) as a character of second degree on V (F ) in the sense of [Wei64],

we can define (as in loc. cit.) the factor

γ(t−1Q) := γ(ψ(t−1Q(w))).

Lemma 6.2. For t ∈ O ∩ F× one has
∫

V (O)

ψ

(
Q(w)

t

)
dw = |t|n/2γ(t−1Q).
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The factor γ(t−1Q) depends only on the valuation of t, and hence can be viewed as an

unramified character of F×. More precisely

γ(t−1Q) =

(
(−1)n/2 detQ

̟

)v(t)

where
(

·
̟

)
is the Legendre symbol.

Proof. The first assertion of the lemma is a consequence of [Wei64, §14, Théorème 2]. Indeed,

loc. cit. is the statement that the Fourier transform of the distribution w 7→ ψ
(

Q(w)
t

)
is

|t|n/2γ(t−1Q)ψ (tQ∨(w)). Here |t|n| det J−1| = |t|n = |ρ|−1 in the notation of loc. cit. since dv

is the self-dual Haar measure. Thus using the fact that the Fourier transform sends products

to convolutions and 1̂V (OF ) = 1V (OF ) we have
∫

V (F )

1V (O)(w)ψ

(
Q(w)

t

)
dw = |t|n/2γ(t−1Q)

∫

V (F )

1V (OF )(0− w)ψ (tQ∨(w)) dw

= |t|n/2γ(t−1Q).

We now use this identity to prove that γ(t−1Q) depends only on the valuation of t.

For any g ∈ GLn(O) one has
∫

V (O)

ψ

(
Q(w)

t

)
dw =

∫

V (O)

ψ

(
〈gw, gw〉Q

t

)
dw.(6.0.5)

Unimodular quadratic forms over non-dyadic discrete valuation rings can be diagonalized

[O’M00, §92]. Thus we can choose g ∈ GLn(O) such that (6.0.5) is equal to

n∏

i=1

∫

O

ψ

(
aix

2

t

)
dx

for some a1, . . . , an ∈ O×. By Lemma 6.1 replacing t by u−1t for u ∈ O× has the effect of

replacing this by

n∏

i=1

∫

O

ψ

(
uaix

2

t

)
dx =

n∏

i=1

( u
̟

)v(t) ∫

O

ψ

(
aix

2

t

)
dx =

n∏

i=1

∫

O

ψ

(
aix

2

t

)
dx.(6.0.6)

Here we have used the fact that n is even. The assertion that γ(t−1Q) depends only on the

valuation of t follows.

Our last task is to compute γ(t−1Q). Let p be the residual characteristic of F and let

ψQp(x) = e2πipr(x)

where pr(x) ∈ Z[p−1] is chosen so that pr(x) − x ∈ Zp. Let ψF := ψQp ◦ trF/Qp. There is

a c ∈ F× such that ψ(x) = ψF (cx) for all x ∈ F . Since F is absolutely unramified and

ψ is unramified c ∈ O×. Since γ(t−1Q) only depends on the valuation of t, it follows that

replacing ψ by ψF will not change the value of γ(t−1Q). Thus to compute γ(t−1Q) we can

and do assume ψ = ψF .
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Since (6.0.5) is equal to (6.0.6) we can apply Lemma 6.1 to see that

γ(t−1Q) = |t|−n/2

(
detQ

̟

)v(t) (∫

O

ψF

(
y2

t

)
dy

)n

.

Applying (6.0.4), if v(t) is even this is 1. If v(t) is odd it is equal to
(
det J

̟

)
q− dimV/2

(∫

O

ψF

(
y2

t̟−(v(t)−1)

)
dy

)n

.

We now use [Sze02, Theorem 5.2] to deduce that

qdimV

(∫

O

ψF

(
y2

t̟−(v(t)−1)

)
dy

)n

=


 ∑

x∈Z/pZ

ψQp

(
x2

p

)


[F :Qp]n

=

(
p

(
−1

p

))[F :Qp]n/2

=

(
q

(
−1

̟

))n/2

.

Here in the penultimate equality we have used Gauss’ theorem on the sign of quadratic Gauss

sums (see, e.g. [IR90, §6.4]). The lemma follows.

�

Lemma 6.3. Suppose that x ∈ O×, t ∈ O ∩ F×, and ξ ∈ V (F ). One has
∫

V (OF )

ψ

(
xQ(w) + 〈ξ, w〉

t

)
dw = 1V (O)(ξ)ψ

(
Q∨(ξ)

xt

)
|t|n/2γ(t−1Q).

Proof. Since J ∈ GLn(O) it is not hard to see that the integral vanishes identically unless

ξ ∈ V (O). We henceforth assume that ξ ∈ V (O).

Taking a change of variables w 7→ w − J−1ξ
x

we see that
∫

V (OF )

ψ

(
xQ(w) + 〈ξ, w〉

t

)
dw = ψ

(
Q(J−1ξ)

xt

)∫

V (OF )

ψ

(
xQ(w)

t

)
dw.

Invoking Lemma 6.2 we deduce the current lemma.

�

To ease notation let

G : F× −→ C×(6.0.7)

be the unique unramified character that agrees with t 7→ γ(t−1Q) when restricted to O∩F×.

Theorem 6.4. Let χ : F× → C× be a character and let Re(s) > 0. If χ is ramified then

I(1O2×V (O), χs) = 0.

If χ is unramified then

I(1O2×V (O), χs)(ξ)L(s+ n/2 + 1, χG)
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=
∞∑

j=0

χs+1(̟
j)1V (O)(̟

−jξ)

∫

O

1tO(Q
∨(ξ))χGs+n/2(t)dt

×.

Proof. One has

I(1O2×V (O), χs)(ξ) :=

∫

F××V (F )

1O2×V (OF )

(
Q(w)

t
, t, w

)
ψ

(
〈ξ, w〉

t

)
dwχs(t)dt

×.

Via an easy analogue of the argument of Lemma 5.1 one sees that this integral vanishes

identically unless χ is unramified. We therefore assume for the rest of the proof that χ is

unramified.

The integral above is equal to
∫

O

∫

V (O)

∑

x∈O/t

ψ

(
xQ(w) + 〈ξ, w〉

t

)
dwχs+1(t)dt

×

=

∫

O×V (O)

v(t)∑

j=0

∑

x∈(O/̟−jt)×

ψ

(
x̟jQ(v) + 〈ξ, v〉

t

)
dwχs+1(t)dt

=

∞∑

j=0

χs+1(̟
j)

∫

O×V (O)

∑

x∈(O/t)×

ψ

(
xQ(w) + 〈̟−jξ, w〉

t

)
dwχs+1(t)dt

×.

We now employ Lemma 6.3 to write this as

∞∑

j=0

χs+1(̟
j)1V (O)(̟

−jξ)

∫

O

∑

x∈(O/t)×

ψ

(
Q∨(ξ)

xt

)
χs+1+n/2(t)G(t)dt

×

=

∞∑

j=0

χs+1(̟
j)1V (O)(̟

−jξ)

∫

O

(
1tO(Q

∨(ξ))− q−1
1̟O(t)1t̟−1(Q∨(ξ))

)
χGs+n/2(t)dt

×

=
∞∑

j=0

χs+1(̟
j)1V (O)(̟

−jξ)(1− χGs+n/2+1(̟))

∫

O

1tO(Q
∨(ξ))χGs+n/2(t)dt

×.

�
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