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A COBORDISM MODEL FOR WALDHAUSEN K-THEORY

GEORGE RAPTIS AND WOLFGANG STEIMLE

Abstract. We study a categorical construction called the cobordism category,
which associates to each Waldhausen category a simplicial category of cospans.
We prove that this construction is homotopy equivalent to Waldhausen’s S•-
construction and therefore it defines a model for Waldhausen K-theory. As an
example, we discuss this model for A-theory and show that the cobordism cat-
egory of homotopy finite spaces has the homotopy type of Waldhausen’s A(∗).
We also review the canonical map from the cobordism category of manifolds
to A-theory from this viewpoint.

1. Introduction

Many of the definitions of higher algebraic K-theory are fundamentally based on
categorical constructions. Some of the main categorical constructions are Quillen’s
original Q-construction for exact categories [6], the closely related s•-construction,
Waldhausen’s more general S•-construction for Waldhausen categories [12], and
Thomason’s T•-construction. To this incomplete list, we may also add the Gillet-
GraysonG-construction and Quillen’s S−1S-construction. Moreover,∞-categorical
versions of such constructions have also been developed in recent years (see, for
example, [1]). Where it applies, each of these constructions leads to the same (=
homotopy equivalent) definition of higher algebraic K-theory.

In this paper we introduce a new such construction for Waldhausen categories.
The construction applies, in fact, more generally to unpointed Waldhausen cate-
gories where neither an initial nor a terminal object is required. This construction
is obtained from categories of cospans where one of the arrows is a cofibration. We
call this construction the cobordism category partly because our inspiration for this
construction came from previous work [7, 8] on the relation between the cobordism
category of manifolds [4, 5] with the algebraic K-theory of spaces (A-theory) [12].
Moreover, specifically in this context, the idea to regard a cospan of homotopy
finite spaces as a kind of formal cobordism seems particularly illuminating. Con-
versely, this connection also inspired in [11] the use of K-theoretic methods in the
study of cobordism categories of manifolds. The main result of the present paper
compares this cobordism category construction with the S•-construction and shows
that the loop space of the classifying space of this cobordism category is homotopy
equivalent to Waldhausen K-theory.

The cobordism category construction is reminiscent of the Q-construction [6, 1].
Each one is related to the S•-construction via Segal’s edgewise subdivision [10],
but in “opposite” ways. The cobordism category can be compared with the Q-
construction directly by taking (homotopy) pullbacks/pushouts in order to ex-
change a sequence of cospans with a sequence of spans. However, our proof that
the cobordism category models Waldhausen K-theory does not require a biWald-
hausen category structure and it applies to all Waldhausen categories. Thus, one
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could consider our results as a proof that a variation of the Q-construction yields
the correct homotopy type even in cases which are not stable or additive. In future
work, we plan to use the cobordism category model in the comparison between
cobordism categories of manifolds and the algebraic K-theory of spaces, following
the work initiated in [9].

In this direction, we also discuss in the present paper models for A-theory based
on the cobordism category construction. More specifically, we prove in Theorem 4.4
that the algebraicK-theory A(X) of a space X can be obtained from the classifying
space of a category of formal cobordisms between homotopy finite spaces with a
structure map to X . Using this cobordism model for A(X), we can describe the
map from the standard cobordism category of manifolds to Waldhausen’s A-theory
essentially as an inclusion of cobordism categories.

The paper is organized as follows. In Section 2, we define the cobordism cate-
gory of an unpointed Waldhausen category and discuss some of its properties. As
the construction uses Segal’s edgewise subdivision, we begin with a short review
of this subdivision. In a final subsection, we discuss a variant of the cobordism
category where each cospan consists of “disjoint” cofibrations. In Section 3, we
define a comparison map from the cobordism category to the S•-construction. Our
main result (Theorem 3.1) shows that this induces a homotopy equivalence after
geometric realization. We also explain that the cobordism category construction
can be iterated so that it can also be used to obtain the deloopings of Waldhausen
K-theory. In Section 4, we discuss cobordism category models for A-theory and
give a definition of the map from the standard cobordism category of manifolds to
Waldhausen’s A-theory using this model.

Acknowledgements. We warmly acknowledge the support and the hospitality of the
Hausdorff Institute for Mathematics in Bonn where a preliminary outline of this
work was completed. The first named author was partially supported by SFB 1085
— Higher Invariants (University of Regensburg) funded by the DFG. The second
named author was partially supported by the DFG priority programme SPP 2026
— Geometry at infinity.

2. The cobordism category of a Waldhausen category

2.1. Edgewise subdivision. We recall Segal’s edgewise sudivision Sd(X) of a
simplicial setX (see also [10, Appendix 1]). Let ∆ denote the usual category of finite
ordinals [n] = {0 < 1 < · · · < n} and order-preserving maps. Let (−)op : ∆ → ∆
be the standard involutive functor with [n]op = [n] and

αop(k) = n− α(m− k)

for each α : [m]→ [n] in ∆. Then we define a functor

µ : ∆
(−)op×id
−−−−−−→ ∆×∆

−∗−
−−−→ ∆

where ∗ denotes the ordinal sum. It will be convenient to represent the well-ordered
finite set µ[n] = [n]op ∗ [n] = [2n+ 1] as follows:

{n < n− 1 < · · · < 0 < 0 < · · · < n}.

Given a simplicial set X : ∆op → Set, the edgewise subdivision is defined by

Sd(X) : ∆op µop

−−→ ∆op X
−→ Set.
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More specifically, we have that (SdX)n = X2n+1 and the simplicial operators of
Sd(X) are determined by X using the presentation of [2n+1] shown above. Clearly
this defines an endofunctor on the category of simplicial sets,

Sd : SSet→ SSet,

which is induced by the endofunctor µ.
When X is the nerve of a small category C, then Sd(X) is also the nerve of a

category, namely, the twisted arrow category tw C of C. Its objects are the arrows
c→ d in C, and a morphism from c→ d to c′ → d′ is a commutative square in C

c // d

��

c′

OO

// d′.

The composition in tw C is given by concatenating such squares vertically, then
composing vertical arrows and forgetting the intermediate horizontal arrow.

There is a canonical homeomorphism |X | ∼= | Sd(X)| which, however, does not
arise from a simplicial map, and will not be used in this paper. We will instead use
a natural comparison map between simplicial sets called the last-vertex map

L : Sd(X)→ X

which is induced by the canonical inclusions [n] ⊂ [n]op ∗ [n] for each [n] ∈ ∆. In
the case of (nerves of) categories, the last-vertex map corresponds to the functor
tw C → C which sends (c→ d) to d and (c→ d)→ (c′ → d′) to d→ d′.

The last-vertex map L : Sd(X)→ X is known to be a natural weak equivalence
of simplicial sets. (A proof of this claim can be given using the following standard
method. Let E denote the class of simplicial sets X such that L : Sd(X) → X

is a weak equivalence. We first note that ∆n, n ≥ 0, is in E , for Sd(∆n) is the
nerve of the category tw[n] and this has a terminal object. Moreover, the functor
Sd commutes with colimits and it preserves monomorphisms. It follows that E
is closed under pushouts along a monomorphism and under directed colimits of
simplicial sets. Lastly, using the skeletal filtration of a simplicial set, we conclude
that the class E contains all simplicial sets.)

2.2. Definition of the cobordism category. For the definition and the basic
properties of the cobordism category construction, it will suffice to work with an
unpointed version of the notion of a Waldhausen category [12]. By an unpointed
Waldhausen category we mean a small category C equipped with subcategories of
cofibrations coC ⊆ C and of weak equivalences wC ⊆ C that satisfy the following
axioms (compare [12]):

(1) Both coC and wC contain the isomorphisms in C.
(2) For any morphism C → X and any cofibration C ֌ D, the pushoutX∪CD

exists in C, and the induced map X → X ∪C D is again a cofibration.
(3) The weak equivalences satisfy the glueing lemma [12, p. 326].

This list contains exactly those of the axioms for a Waldhausen category that do not
involve a zero object. An exact functor between unpointed Waldhausen categories
F : C → C′ is a functor which preserves cofibrations, weak equivalences, and those
pushout squares of the form described in axiom (2) above.
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Clearly every Waldhausen category is an unpoined Waldhausen category. On the
other hand, the categories of (unpointed) finite sets, and of (unbased) homotopy
finite spaces are not pointed and hence do not underlie a Waldhausen category, but
do admit the structure of an unpointed Waldhausen category. The latter example,
and generalizations thereof, will be discussed in Section 4.1.

Let C be an unpointed Waldhausen category and let Cat denote the category of
small categories. We define a simplicial category Cob(C)• : ∆

op → Cat as follows.
The category Cob(C)n is the category of functors

F : tw[n]→ C, (i ≤ j) 7→ Fij

such that

(i) for each i ≤ j ≤ k, the map Fij → Fik is a cofibration, and
(ii) for each i ≤ j ≤ k ≤ l, the diagram in C

Fil

Fik

==

==④④④④④④④④

Fjl

aa❈❈❈❈❈❈❈❈

Fjk

==

==⑤⑤⑤⑤⑤⑤⑤⑤

aa❈❈❈❈❈❈❈❈

is a pushout square.

The morphisms in Cob(C)n are the natural transformations between such functors.
We denote wCob(C)n ⊂ Cob(C)n the subcategory of objectwise weak equivalences.

Thus, Cob(C)0 = C and wCob(C)0 = wC. The category Cob(C)1 (resp., w Cob(C)1)
consists of diagrams in C of the form

F01

F00

==

==③③③③③③③③

F11

aa❉❉❉❉❉❉❉❉

and natural transformations (resp., natural weak equivalences) between them. We
find it useful to think of such a diagram as some kind of (formal) cobordism from
F00 to F11. In the next simplicial degree an object in Cob(C)2 can be depicted as
follows:

F02

F01

==

==③③③③③③③③

F12

aa❉❉❉❉❉❉❉❉

F00

==

==③③③③③③③③

F11

==

==③③③③③③③③

aa❉❉❉❉❉❉❉❉

F22

aa❉❉❉❉❉❉❉❉

where the middle square is a pushout, and similarly for the higher simplicial de-
grees. In the language of cobordisms, the last diagram corresponds to the datum
of two composable cobordisms together with a choice of a composition. Continuing
this analogy, an object in Cob(C)n corresponds to a string of n many composable
cobordisms, together with choices of compositions for all connected substrings.
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Both Cob(C)n and wCob(C)n are natural in [n] and define simplicial objects in
the category of small categories Cat. Moreover, Cob(C)• also defines a simplicial
object in the category of unpointed Waldhausen categories and exact functors. (We
will return to this point in Subsection 3.3.) The simplicial category Cob(C)• (resp.
wCob(C)•) is a type of cospan category with restrictions, as imposed by condition
(i).

Definition 2.1. The cobordism category of the unpointed Waldhausen category C
is the simplicial space

Cob(C, wC) : [n] 7→
∣∣N•wCob(C)n

∣∣.
The geometric realization of this simplicial space is called the classifying space of
the cobordism category and will be denoted by BCob(C, wC).

The definition of the cobordism category is clearly functorial with respect to
exact functors between (unpointed) Waldhausen categories.

Remark 2.2. It is easy to see that w Cob(C) defines a Segal object in Cat, in the
sense that the canonical restriction along the spine inclusion

w Cob(C)n
≃
−→ w Cob(C)1 ×w Cob(C)0 · · · ×w Cob(C)0 wCob(C)1︸ ︷︷ ︸

n

is an equivalence of categories for each n ≥ 1. Since geometric realization commutes
with pullbacks, the cobordism category is also a Segal object in (a convenient model
for) the category of spaces. This provides some justification of the term cobordism
category. However, we do not know at this level of generality whether Cob(C, wC)
is a Segal space in the usual sense – that is, if additionally the iterated pullbacks

|wCob(C)1| ×|w Cob(C)0| · · · ×|w Cob(C)0| |wCob(C)1|

are also homotopy pullbacks. (This is true, for instance, if wC is the class of
isomorphisms in C.)

2.3. Relative isomorphisms. Our main goal is to establish an equivalence be-
tween the cobordism category construction and Waldhausen’s S•-construction in
the case of a standard Waldhausen category. This will be done in Section 3. The
main ingredient in the proof of this equivalence is the following useful method for
showing that certain functors between cobordism categories induce homotopic maps
between the classifying spaces.

Let C be an unpointedWaldhausen category. We denote by Cob
po(C)• ⊂ Cob(C)

[1]
•

the simplicial subcategory which is given in degree n ≥ 0 by the full subcategory

of Cob(C)
[1]
n that is spanned by the functors

F : tw[n]× [1]→ C, (i ≤ j, a) 7→ F a
ij

such that, for each i ≤ j ≤ k, the diagram in C

F 0
ij
// //

��

F 0
ik

��

F 1
ij
// // F 1

ik
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is a pushout square. We also denote by w Cob
po(C)• ⊂ Cob

po(C)• the subcate-
gory of objectwise weak equivalences. Note that there are morphisms of simplicial
categories,

Cob(C)•
δ•

// Cob
po(C)•

s•
//

t•

// Cob(C)•

which are induced by the obvious maps [0] ⇒ [1] → [0]. These morphisms also
restrict to the simplicial subcategories of weak equivalences.

Lemma 2.3. Let C be an unpointed Waldhausen category.

(a) The inclusion of simplicial sets

δ• : ob(Cob(C)•)→ ob(Cobpo(C)•)

is a weak equivalence (i.e., it induces a weak homotopy equivalence after
geometric realization).

(b) The inclusion of simplicial sets

δ• : NnwCob(C)• → Nnw Cob
po(C)•

is a weak equivalence for each n ≥ 0. As a consequence, there is a homotopy
equivalence

δ : BCob(C, wC)
≃
−→
∣∣N•wCob

po(C)•
∣∣.

(c) The source and target projections s• and t• induce homotopic maps

s ≃ t :
∣∣N•wCob

po(C)•
∣∣→ BCob(C, wC).

Proof. Note that s• ◦ δ• = id = t• ◦ δ•. Thus, for (a), it is enough to specify a
simplicial homotopy

H : ob(Cobpo(C)•)×∆1 → ob(Cobpo(C)•)

between δ• ◦ s• and the identity map. This homotopy sends (F, α : [n]→ [1]) to the
composite

tw[n]× [1]
(id,q)×id
−−−−−−→ tw[n]× [n]op × [1]

id×αop
×id

−−−−−−−−→ tw[n]× [1]op × [1]
id×h
−−−−→ tw[n]× [1]

F
−→ C

where the first map is induced by the first-vertex map q : tw[n] → [n]op, given by
(i ≤ j) 7→ i, and the map h : [1]op × [1] → [1] is the standard (reverse) homotopy
between id and the constant map at 0, i.e., h(1, i) = 0 and h(0, i) = i.

It follows from the definition that this is a simplicial map but we need to check
that it really lands in Cob

po(C)•. Let G denote the image of (F, α) under H .
Then for fixed α, we have that G0

ij = F 0
ij and G1

ij is either F 1
ij or F 0

ij , depending
on whether α(i) is 0 or 1, respectively. From this it follows easily that for each
i ≤ j ≤ k and any a = 0, 1, the map

Ga
ij ֌ Ga

ik

is a cofibration. Moreover, using our assumptions on F , it follows that for each
i ≤ j ≤ k ≤ l and any a = 0, 1, the diagram

Ga
jk

// //

��

Ga
jl

��

Ga
ik

// // Ga
il



A COBORDISM MODEL FOR WALDHAUSEN K-THEORY 7

is a pushout square. Similarly, for each i ≤ j ≤ k, the diagram

G0
ij
// //

��

G0
ik

��

G1
ij
// // G1

ik

is also a pushout square. Therefore the simplicial homotopy is well-defined and (a)
follows.

(b) We apply (a) to the unpointedWaldhausen categorywnC whose objects are n-
strings of weak equivalences in C, and whose morphisms are natural transformations
of diagrams. This is a full subcategory of C[n] and is regarded as an unpointed
Waldhausen category with the objectwise structure. Then the claim follows since

ob(Cob(wnC)•) ∼= NnwCob(C)•, ob(Cobpo(wnC)•) ∼= NnwCob
po(C)•.

(c) is an immediate consequence of (the second part of) (b). �

Remark 2.4. It is also possible to establish an additivity theorem for the cobor-
dism category, analogous to Waldhausen’s Additivity Theorem, by using similar
arguments and following Waldhausen’s proof in [12].

Definition 2.5. Let F,G : C → D be exact functors between unpointed Wald-
hausen categories. A natural transformation φ : F → G is called a relative isomor-
phism if for each cofibration f : c֌ c′ in C, the diagram in D

F (c) //
F (f)

//

φc

��

F (c′)

φc′

��

G(c) //
G(f)

// G(c′)

is a pushout square.

As an immediate consequence of Lemma 2.3, we have the following proposition.

Proposition 2.6. Let F,G : C → D be exact functors between unpointed Wald-
hausen categories and let φ : F → G be a relative isomorphism. Then the induced
maps

BCob(F,wF ) ≃ BCob(G,wG) : BCob(C, wC)→ BCob(D, wD)

are homotopic.

Proof. The natural transformation φ : C → D[1] defines an exact functor of un-
pointed Waldhausen categories, where D[1] is equipped with the objectwise struc-
ture. Then we obtain a simplicial functor

Φ• : = Cob(φ)• : Cob(C)• → Cob(D[1])• = Cob(D)
[1]
• ,

which by assumption lands in the simplicial subcategory Cob
po(D)•. Moreover,

Φ• : Cob(C)• → Cob
po(D)• is such that s• ◦ Φ• and t• ◦ Φ• correspond to the

simplicial functors induced by F and G respectively. Then the result follows from
Lemma 2.3(c). �
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Example 2.7. Let C be an unpointed Waldhausen category which has an initial
object ∅ such that the unique morphism ∅ → X is a cofibration for every object
X in C (see also Section 2.4). Then for any object X in C, there is an exact “shift”
functor − ∐ X : C → C. The canonical natural transformation from the identity
functor to this shift functor (−∐X) is a relative isomorphism. By Proposition 2.6,
it follows that the map induced on the cobordism category by the shift functor is
homotopic to the identity.

2.4. A symmetric version. The definition of the cobordism category construc-
tion is not symmetric under passing to the opposite category, because of the cofibra-
tion condition. In this subsection we present a symmetric variant of the cobordism
category and show that it agrees with the original one in most cases of interest.

Let C be an unpointed Waldhausen category which has an initial object ∅ such
that the unique morphism ∅→ X is a cofibration for each object X ∈ C (so that, in
particular, C has finite coproducts). We will refer to such an unpointed Waldhausen
category as an unpointed Waldhausen category with initial object.

For each n ≥ 0, we consider the full subcategory

Cob
sym(C)n ⊂ Cob(C)n

which is spanned by the functors F : tw[n]→ C in Cob(C)n such that in addition

(iii) for each 0 ≤ i < n, the canonical map

Fii ⊔ Fi+1,i+1 → Fi,i+1

is a cofibration.

Under this extra assumption, for each 0 ≤ i ≤ j ≤ k ≤ n, the map Fjk → Fik is
a cofibration, too. Then Cob

sym(C)• : [n] 7→ Cob
sym(C)n defines a semi-simplicial

object in Cat, i.e., a functor on the subcategory ∆
op

< ⊂ ∆
op

which consists of
the injective maps. (In the category–theoretic interpretation of Cobsym(C)•, the
absence of degeneracies can be interpreted as the absence of identity morphisms.)
We also have the corresponding semi-simplicial subcategory of weak equivalences
wCob

sym(C)• ⊂ Cob
sym(C)•.

Remark 2.8. The construction C 7→ Cob
sym(C)• works also under the weaker as-

sumption on C, namely, that a pushout of D ← C → X exists in C when both maps
C → D and C → X are cofibrations.

Definition 2.9. Let C be an unpointed Waldhausen category with initial object.
The symmetric cobordism category of C is the semi-simplicial space

Cob
sym(C, wC) : [n] 7→

∣∣N•wCob
sym(C)n

∣∣.
The geometric realization of this semi-simplicial space is called the classifying space
of the symmetric cobordism category and will be denoted by BCob

sym(C, wC).

We compare this symmetric construction with the previous cobordism category
construction in the case where C has functorial factorizations. We recall that C
is said to have functorial factorizations if every morphism in C can be written
functorially in the arrow category C[1] as the composition of a cofibration followed by
a weak equivalence. For Waldhausen categories, this is equivalent to the existence
of a cylinder functor satisfying the cylinder axiom in the sense of [12, 1.6].

The inclusion (of semi-simplicial categories) wCob
sym(C)• ⊂ wCob(C)• induces a

map between the geometric realizations of the corresponding semi-simplicial spaces.
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This can be composed with the canonical homotopy equivalence to the classifying
space of Cob(C, wC)•, so we obtain a canonical map

BCob
sym(C, wC)→ BCob(C, wC).

Proposition 2.10. Let C be an unpointed Waldhausen category with initial object.
Suppose that C has functorial factorizations. Then the inclusion map

BCob
sym(C, wC)→ BCob(C, wC)

is a weak homotopy equivalence.

Proof. It suffices to prove that the inclusion of semi-simplicial categories induces a
homotopy equivalence in each simplicial degree of the cobordism direction. Using
the functorial factorizations, we can functorially replace each cospan

F01

F00

==

==③③③③③③③③

F11

aa❉❉❉❉❉❉❉❉

by a weakly equivalent cospan

F 01

F00

==

==④④④④④④④④

F11

aa

aa❈❈❈❈❈❈❈❈

where F00 ⊔ F11 ֌ F 01
∼
−→ F01 is the functorial factorization. Repeating this

process and making choices of pushouts, we obtain a functor

r : w Cob(C)n → w Cob
sym(C)n

such that both composites

w Cob(C)n
r
−→ w Cob

sym(C)n
incl
→֒ w Cob(C)n

w Cob
sym(C)n

incl
→֒ w Cob(C)n

r
−→ w Cob

sym(C)n

are naturally weakly equivalent to the respective identity functors. Thus, the in-
clusion map is a homotopy equivalence for each n ≥ 0, and the result follows. �

Remark 2.11. There is an intermediate object between Cob
sym(C)• and Cob(C)•

where instead of (iii) above, we require only that the maps Fi+1,i+1 → Fi,i+1 are
cofibrations. This defines a simplicial subobject of Cob(C)• and the associated
classifying space has again the same homotopy type when C has functorial factor-
izations.

3. Comparison with the S•-construction

3.1. Recollections. We recall Waldhausen’s S•-construction from [12]. Let C be
a (pointed) Waldhausen category and let Ar[n] : = [n][1] denote the arrow category
of [n]. The notation for an object (i ≤ j) of Ar[n] will be often abbreviated to (ij).
The category SnC ⊂ C

Ar[n] is the full subcategory spanned by the functors

F : Ar[n]→ C, (i ≤ j) 7→ Fij

such that
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(i) for each i, Fii = ∗,
(ii) for each i ≤ j ≤ k, the map Fij → Fik is a cofibration,
(iii) for each i ≤ j ≤ k ≤ l, the diagram in C

Fik
// //

��

Fil

��

Fjk
// // Fjl

is a pushout square.

The morphisms in SnC are given by natural transformations. The category SnC car-
ries a natural Waldhausen category structure (see [12]) where the weak equivalences
are the objectwise weak equivalences between functors. We denote by wSnC ⊂ SnC
the subcategory of weak equivalences in SnC. Both SnC and wSnC are natural in [n]
and they define simplicial objects in Cat. Moreover, S•C is a simplicial object in the
category of Waldhausen categories and exact functors of Waldhausen categories.

By definition, we have S0C = {∗} and S1C = C. S2C is the category of cofiber
sequences in C. In the next simplicial degree, an object in S3C can be depicted as
a triangular staircase diagram of the form

∗ // // F01
// //

��

F02
// //

��

F03

��

∗ // // F12
// //

��

F13

��

∗ // // F23

��

∗

where each embedded square is a pushout. Following [12], we denote by FnC ⊂ C
[n]

the full subcategory spanned by filtered objects, i.e., the functors

F : [n]→ C, i 7→ Fi

such that Fi → Fj is a cofibration for each i ≤ j. Then the restriction functor

SnC → Fn−1C, (Fij)0≤i≤j≤n 7→ (F0j+1)0≤j≤n−1

is an equivalence of categories because SnC is obtained from Fn−1C simply by
making choices of pushouts for each filtered object - however, F•−1C do not define
a simplicial object.

The algebraic K-theory K(C) of C [12] is defined to be the loop space (based
at the point represented by the zero object) of the geometric realization of the
simplicial space [n] 7→

∣∣N•wSnC
∣∣, i.e.,

K(C) : = Ω
∣∣N•wS•C

∣∣.

3.2. The comparison map. Let C be a Waldhausen category. We will compare
the cobordism category of C with the S•-construction of C. The comparison map
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is essentially defined by functors

Cob(C)n → Fn−1(C), F 7→

(
F01

F00
֌ · · ·֌

F0n

F00

)
.

In order to promote this collection of functors to a simplicial functor mapping into
the S•-construction, we must first modify our model for Cob(C)• so that it includes
choices of pushouts. For that purpose, we consider the full subcategory

Ãr[n] ⊂ Ar[n]

spanned by objects (i ≤ j) where ī ≤ j; here (−) denotes the order-reversing self-
isomorphism of [n] given by i 7→ n − i. Thus, for example, the object (1 ≤ 2) of

Ar[3] is an object of Ãr[3] because 1̄ = 2 ≤ 2. In more detail, the subposet Ãr[3] is
exactly the lower right half of the depicted Ar[3]

(00) // (01) //

��

(02) //

��

(03)

��

⑤
⑤

⑤
⑤

(11) // (12) //

③
③

③
③

③
③
③
③
③

��

(13)

��

(22) // (23)

��

(33)

with respect to the indicated line that passes through (03). Similarly, Ãr[n] ⊂ Ar[n]
corresponds to its “lower right half” with respect to the dichotomizing line that
passes through (0 ≤ n).

More specifically, we will consider the category Ãr[2n+1] = Ãr([n]op∗ [n]) (using

the canonical identification of [2n+ 1] with [n]op ∗ [n]). An object of Ãr[2n+ 1] is
either of the form (i ≤ j), for any n < i ≤ j ≤ 2n+1, or of the form (n−i ≤ j) where
0 ≤ i ≤ n < j ≤ n. The first collection of objects defines a subposet isomorphic to
Ar[n], while the second collection defines a subposet isomorphic to tw[n]. Thus, we
have full inclusions

Ar[n] ⊂ Ãr([n]op ∗ [n]) ⊃ tw[n].

Here Ar[n] includes as objects of the first kind which form a smaller triangular
staircase at the lower right part of the staircase diagram. The second inclusion
of tw[n] includes the objects of the second kind. These subposets have empty

intersection in Ãr([n]op ∗ [n]). In the example of Ãr[3] above, the inclusion Ar[1] ⊂

Ãr[3] corresponds to the subposet

(22) // (23)

��

(33)
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while the inclusion tw[1] ⊂ Ãr[3] corresponds to the subposet

(13)

(03)

<<③③③③③③③③

(12).

bb❊❊❊❊❊❊❊❊

We define the modified cobordism category Cob
big(C)• to be the simplicial cate-

gory which in degree n ≥ 0 is the category of functors

F : Ãr([n]op ∗ [n])→ C

satisfying the conditions in the S•-construction, namely:

(i) for each i, Fii = ∗,
(ii) for each i ≤ j ≤ k, the map Fij → Fik is a cofibration,
(iii) for each i ≤ j ≤ k ≤ l, the diagram in C

Fik
// //

��

Fil

��

Fjk
// // Fjl

is a pushout square.

The morphisms in this category are given by natural transformations between such
functors. We denote by w Cob

big(C)n ⊂ Cob
big(C)n the subcategory of objectwise

weak equivalences. Note that each F ∈ Cob
big(C)n is determined up to canonical

isomorphism by its restriction along

tw[n] ⊂ Ãr([n]op ∗ [n])

since the rest of the diagram can be obtained by making choices of pushouts in C.
(Fij is the cofiber of F0̄i ֌ F0̄j .) Thus, the restriction functors

Cob
big(C)• → Cob(C)•, w Cob

big(C)• → w Cob(C)•

are degreewise equivalences of categories, and therefore they induce homotopy
equivalences between the geometric realizations. In particular, we have a canonical
homotopy equivalence

(1)
∣∣N•w Cob

big(C)•
∣∣ ≃ BCob(C, w).

Then we define a morphism between simplicial objects in Cat

τ• : w Cob
big(C)• → wS•C

induced by the restriction along the inclusion Ar[n] ⊂ Ãr([n]op ∗ [n]). Passing to
the geometric realizations, we obtain a natural (zigzag) comparison map of spaces

τ : BCob(C, wC) ≃
∣∣N•wCob

big(C)•
∣∣ −→

∣∣N•wS•C
∣∣.

Theorem 3.1. The comparison map τ is a weak homotopy equivalence.



A COBORDISM MODEL FOR WALDHAUSEN K-THEORY 13

Proof. We may apply Segal’s edgewise subdivision to the simplicial object wS•C
and obtain a new simplicial category SdwS•C with (SdwS•C)n = wS2n+1C. The

restriction along the inclusion Ãr([n]op ∗ [n]) ⊂ Ar([n]op ∗ [n]) induces a simplicial
functor

α• : SdwS•C → wCob
big(C)•

such that the composite map of simplicial sets

Nk SdwS•C
α•−−→ NkwCob

big(C)•
τ•−→ NkwS•C,

given by restriction along Ar[n] ⊂ Ar([n]op ∗ [n]), is the last-vertex map. This is
a weak equivalence for each k ≥ 0, and therefore so is also the induced composite
map of spaces ∣∣N• SdwS•C

∣∣ τ◦α
−−→

∣∣N•wS•C
∣∣.

Similarly, we may apply the edgewise subdivision to the modified cobordism cate-
gory and consider the composite simplicial functor

(2) Sdw Cob
big(C)•

Sd τ•−−−→ SdwS•(C)
α•−−→ wCob

big(C)• ≃ w Cob(C)•.

This composition is not the last-vertex map for w Cob
big(C)•. Indeed, after iden-

tifying the poset [n]op ∗ [n] with its opposite, an n-simplex in the simplicial set of

objects of Sdw Cob
big(C)• identifies with a diagram

Ãr
(
([n]op ∗ [n]) ∗ ([n]op ∗ [n])

)
→ C.

Then α• ◦ Sd τ• corresponds to the restriction along the inclusion

j34 : [n]
op ∗ [n] ⊂ ([n]op ∗ [n]) ∗ ([n]op ∗ [n])

into the third and fourth factors. On the other hand, the last-vertex functor

(3) L : SdwCob
big(C)•

L
−→ w Cob

big(C)• ≃ wCob(C)•

corresponds to the restriction along the inclusion

j14 : [n]
op ∗ [n] ⊂ ([n]op ∗ [n]) ∗ ([n]op ∗ [n])

into the first and fourth factors. However, the two inclusion functors are related
by a (unique) natural transformation j14 ⇒ j34, which induces a simplicial natural
transformation

(4) L⇒ α• ◦ Sd τ• : Sdw Cob
big(C)• → w Cob

big(C)• ≃ w Cob(C)•.

between the composite (2) and the last-vertex functor (3).
This natural transformation (4) has an extra property: given an object G in the

category Sdw Cob
big(C)n, the morphism

F 0 := L(G)→ F 1 := (α• ◦ Sd τ•)(G)

is such that the diagram

F 0
ij
// //

��

F 0
ik

��

F 1
ij
// // F 1

ik

is a pushout square for each 0 ≤ i ≤ j ≤ k ≤ n. (Indeed, we have F 0
ij = Gµ(i)ρ(j)

and F 1
ij = Gν(i)ρ(j) where µ, ν : [n]

op → [n]op ∗ [n] ∗ [n]op ∗ [n] are the two inclusions
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and ρ : [n]→ [n]op ∗ [n] ∗ [n]op ∗ [n] is the inclusion into the last factor.) This means
that the natural transformation (4) defines a simplicial functor

H• : Sdw Cob
big(C)• → w Cob

po(C)•

such that the composition with the source and target projections, gives the last-
vertex functor (3) and the simplicial functor (2), respectively. By Lemma 2.3, the
source and target projections induce homotopic maps after geometric realization,
therefore also the maps induced by (2) and (3) must be homotopic. Since (3)
induces the last-vertex map which is a weak homotopy equivalence, so is also the
map induced by (2) and the result follows. �

The classifying space BCob(C, wC) is based at the zero object of the Waldhausen
category C, denoted ∗ ∈ wC = wCob(C)0 and regarded as a 0-simplex (‘object’) of
the cobordism category Cob(C, wC). This choice of basepoint is natural with respect
to exact functors of Waldhausen categories. Moreover, the natural comparison map
τ preserves the basepoint. Thus, passing to the loop spaces, we obtain the following
corollary.

Corollary 3.2. The map Ω(τ) : Ω BCob(C, wC) −→ K(C) is a weak homotopy
equivalence.

Combined with Proposition 2.10, this also yields the following corollary.

Corollary 3.3. Let C be a Waldhausen category with functorial factorizations.
Then there is a natural (zigzag) weak homotopy equivalence

Ω BCob
sym(C, wC) ≃ K(C).

3.3. Deloopings. Let C be a Waldhausen category. The application of the S•-
construction can be iterated since S•C defines a simplicial object in the category
of Waldhausen categories and exact functors. It is well known that the iteration of
the S•-construction produces canonical deloopings of K(C), see [12, 1.5].

The same is true for the cobordism construction C 7→ Cob(C)• applied to a
Waldhausen category C. First, in order to see that the cobordism category con-
struction can be iterated, it suffices to promote the simplicial category Cob(C)• to
a simplicial object in the category of Waldhausen categories. As subcategory of
cofibrations coCob(C)n ⊂ Cob(C)n, we consider the subcategory of those natural
transformations φ : (F••) → (F ′

••) such that for each 0 ≤ i ≤ n, the morphism of
filtered objects in Fn−i+1C

Fii
// //

φii

��

Fi,i+1
// //

φi,i+1

��

· · · // // Fin

φin

��

F ′
ii
// // F ′

i,i+1
// // · · · // // F ′

in

is a cofibration in Fn−i+1C (see [12, 1.1]). This subcategory of cofibrations together
with wCob(C)n makes Cob(C)n into a Waldhausen category which is natural in
[n] ∈ ∆

op

. Thus, the cobordism category construction can be iterated so that we
obtain an n-fold simplicial category, for n ≥ 1,

C 7→ Cob
(n)(C)•···•.

We write B
(n)

Cob(C, w) for the classifying space of this multisimplicial category
(i.e., the geometric realization of the associated n-fold simplicial space).
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Let Cob(C)1,∗ ⊂ Cob(C)1 denote the full subcategory which consists of those
diagrams (Fij) such that F00 = F11 = ∗. Then we have Cob(C)1,∗ = C. Each point
in w Cob(C)1,∗ defines a loop in B Cob(C, w) and therefore we have a natural map

(5)
∣∣wC

∣∣→ Ω BCob(C, wC).

Using the identification τ , this agrees with the usual “group completion” map∣∣wC
∣∣ → K(C). Moreover, using the naturality of this map (5), we also obtain

natural maps

(6) B
(n−1)

Cob(C, wC)→ Ω B
(n)

Cob(C, w)

which make the sequence of spaces {B(n)
Cob(C, w)}n≥1 into a spectrum. As a

consequence of Theorem 3.1 and the naturality of τ , we obtain natural (zigzag)
weak homotopy equivalences

(7) Ωn
B
(n)

Cob(C, w) ≃ Ωn
∣∣N•wS

(n)
• C

∣∣.
These maps are also natural in n ≥ 1, so they define a (zigzag) map of spectra.
Using the fact that iterating the S•-construction defines canonical deloopings [12,
1.5], it follows that the maps (6) are also weak homotopy equivalences. As a con-
sequence, the spectrum {B(n)

Cob(C, wC)}n≥1 is an Ω-spectrum.

4. Example: Cobordism categories and A-theory

4.1. Models for A-theory. Let X be a topological space andR(h)f (X) the Wald-
hausen category of relative (homotopy) finite retractive space overX (see [12, 2.1]).
It is well known that R(h)f (X) has functorial factorizations given by a mapping
cylinder construction.

We now consider the (symmetric) cobordism categories associated to these two
Waldhausen categories. Explicitly, in the case ofRhf (X), the symmetric cobordism
category Cob

sym(Rhf (X), w) is a semi-simplicial space such that:

(i) the space of 0-simplices is the moduli space of relative homotopy finite re-
tractive spaces overX (with respect to the class of homotopy equivalences),

(ii) the space of 1-simplices is the moduli space of diagrams in Rhf (X) as
follows:

Y01

Y0
>>

>>⑤⑤⑤⑤⑤⑤⑤⑤

Y1
aa

aa❇❇❇❇❇❇❇❇

such that Y0 ∪X Y1 → Y01 is a cofibration (with respect to the objectwise
homotopy equivalences between such diagrams of spaces). Such a diagram
may be regarded as a formal cobordism between the retractive spaces Y0
and Y1.

(iii) the space of n-simplices is the space of n-composable strings of 1-simplices.

Theorems 3.1 and 3.3 imply that there are natural (zigzag) homotopy equivalences
in X

Ω BCob
sym(Rhf (X), w) ≃ Ω BCob(Rhf (X), w) ≃ A(X) = K(Rhf (X)).

There are similar homotopy equivalences in the case of Rf (X).
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More generally, for a fibration p : E → B, we may consider the cobordism cat-
egory Cob

sym(Rhf (p), w) associated with the Waldhausen category of Rhf (p) (see
[7]). Then we obtain similarly natural (zigzag) homotopy equivalences in p,

(8) Ω BCob
sym(Rhf (p), w) ≃ Ω BCob(Rhf (p), w) ≃ A(p) = K(Rhf (p)),

where A(p) denotes the bivariant A-theory of p.

Interestingly, the additional flexibility of working with unpointed Waldhausen
categories furnishes yet another model for A-theory. Given a space X , let C(h)f (X)
denote the category whose objects are pairs (Y, u : Y → X) where Y is (homotopy
equivalent to) a finite CW complex. A morphism f : (Y, u)→ (Y ′, u′) in Chf(X) is
a map f : Y → Y ′ such that u = u′f . We say that this is a cofibration (resp. weak
equivalence) if the underlying map f is a Hurewicz cofibration (resp. homotopy
equivalence). In the case of Cf (X), the cofibrations are the inclusions of CW
complexes. Note that the category C(h)f(X) has an initial object given by the pair
(∅,∅ → X). With this structure, C(h)f (X) becomes an unpointed Waldhausen
category with initial object and functorial factorizations.

The correspondence X 7→ C(h)f (X) defines a functor from spaces to the category
of unpointed Waldhausen categories which sends a map f : X → X ′ to the exact
functor

C(h)f(X)→ C(h)f(X ′), (Z,Z → X) 7→ (Z,Z → X → X ′).

The associated symmetric cobordism category Cobsym(Chf (X))• may be regarded as
the category of formal cobordisms between homotopy finite spaces with a structure
map to X . By Proposition 2.10, we also have natural homotopy equivalences in X

(9) BCob
sym(C(h)f(X), w) ≃ BCob(C(h)f (X), w).

There are exact functors of unpointed Waldhausen categories relating Chf (X)
and Rhf (X). First, there is an exact functor that adds a disjoint copy of X ,

JX : Chf (X)→ Rhf (X)

(Y, u : Y → X) 7→ (Y ⊔X,X ⊆ Y ⊔X
u+idX−−−−→ X).

Secondly, when X is homotopy finite, there is an exact functor that forgets the
section,

UX : Rhf (X)→ Chf (X)

(Z,X ֌ Z
r
−→ X) 7→ (Z, r : Z → X).

Note that the last functor does not preserve the initial object – but it preserves
pushouts. These functors restrict also to exact functors on Cf (X) and Rf (X)
respectively when X is a finite CW complex.

Proposition 4.1. Let X be a homotopy finite space. Then the exact functors UX

and JX induce inverse homotopy equivalences:

ΩBCob(JX , wJX) : ΩBCob(Chf (X), wChf (X))→ ΩBCob(Rhf (X), wRhf (X))

ΩBCob(UX , wUX) : ΩBCob(Rhf (X), wRhf (X))→ ΩBCob(Chf(X), wChf (X)).

Moreover, the same is true for the restrictions of these functors to Cf (X) and
Rf (X) respectively, when X is a finite CW complex.
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Proof. By Proposition 2.6, it suffices to show that both composite functors UX ◦JX
and JX ◦ UX are connected to the respective identity functors by relative isomor-
phisms. For the composite UX ◦ JX : Chf (X)→ Chf(X),

(Y, u : Y → X) 7→ (Y ⊔X,Y ⊔X
u+idX−−−−→ X),

there is a relative isomorphism φ : Id→ UX ◦ JX where

φ(Y,u) : Y → Y ⊔X

is the canonical inclusion. For the composite JX ◦UX : Rhf (X)→ Rhf (X), given
by

(Y,X ֌ Y
r
−→ X) 7→ (Y ⊔X,X ⊆ Y ⊔X

r+idX−−−−→ X),

there is a relative isomorphism ψ : JX ◦UX → Id where

ψ
(Y,X

i
֌Y

r
−→X)

: Y ⊔X
idY +i
−−−−→ Y.

The same argument applies for the comparison of Cf (X) and Rf (X). �

Remark 4.2. Similarly we can define an unpointed Waldhausen category Chf (p) for
a fibration p : E → B. The classifying space of its cobordism category is a model
for A(p) when p has homotopy finite fibers. The proof is exactly the same.

Proposition 4.3. The exact inclusion functor Cf(X) → Chf (X) (of unpointed
Waldhausen categories) induces a homotopy equivalence

BCob(Cf (X), wCf (X))
≃
−→ BCob(Chf(X), wChf (X)).

Proof. It is well known that the inclusion functor Rf (X) → Rhf (X) induces a
K-equivalence as a consequence of Waldhausen’s Approximation Theorem (see [12,
Proposition 2.1.1]). (Therefore the statement of the proposition for a finite CW
complex X follows directly from Proposition 4.1.) The argument for the inclusion
functor Cf(X) → Chf (X) is similar so we only sketch the proof. For each n ≥ 0,
the functor (of unpointed Waldhausen categories)

Cob
sym(Cf (X))n → Cob

sym(Chf (X))n

satisfies the conditions of the Approximation Theorem in [12, pp. 35-37]. For n = 0,
the argument is similar to [12, Proposition 2.1.1], and for n > 0, the proof of [12,
Lemma 1.6.6] is easily adapted to this purpose. Then, following the proof of the
Approximation Theorem in [12], or applying [3, Lemma 7.6.7], we conclude that
the functor

wCob
sym(Cf (X))n → w Cob

sym(Chf (X))n

induces a homotopy equivalence after passing to the classifying spaces – as shown
in the proof of [3, Lemma 7.6.7], only the existence of an initial object, rather than
a zero object, is required. The result then follows. �

While UX is well defined only when X is homotopy finite and it is not natural
in X , the functor JX is a natural transformation defined for any X . Then we have
the following result which generalizes Proposition 4.1 to an arbitrary X .

Theorem 4.4. The natural map

Ω BCob(Chf(X), wChf (X))
Ω BCob(JX ,wJX)
−−−−−−−−−−−→ Ω BCob(Rhf (X), wRhf (X)) ≃ A(X)

is a weak homotopy equivalence for any space X.
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Proof. The functor X 7→ |wCob(Chf(X))n| preserves homotopy equivalences be-
cause it sends the endpoint inclusions i0, i1 : X → X × I to homotopic maps - each
of these is homotopic to the map induced by the functor

(Z, u : Z → X) 7→ (Z × I, u× id : Z × I → X × I).

As a consequence, the functor

(10) X 7→ BCob(Chf(X), wChf (X))

preserves homotopy equivalences, too. We claim that the functor (10) also preserves

weak homotopy equivalences. Fix a functorial CW-approximation gX : Xc ∼
−→ X .

Then there is a functor

Φn : w Cob(Chf (X))n → w Cob(Chf (Xc))n

which is given by applying the functorial CW-approximation and replacing the maps
in the cospans functorially by cofibrations as necessary. The composite functor

w Cob(Chf (X))n
Φn−−→ w Cob(Chf (Xc))n

gX∗

−−→ wCob(Chf (X))n

is weakly equivalent to the identity functor. The other composite functor

(11) w Cob(Chf (Xc))n
gX∗

−−→ wCob(Chf(X))n
Φn−−→ wCob(Chf (Xc))n

is described as follows: (i) first, it applies the CW-approximation functor (again),
then (ii) it replaces the maps in the cospans by cofibrations as necessary, and lastly,
(iii) it composes the induced structure map to (Xc)c with the map gcX : (Xc)c → Xc.
This last map is homotopic to gXc : (Xc)c → Xc and therefore after applying
|wCob(Chf(−))n|, these two maps gcX and gXc induce the same map up to homo-
topy. Thus, using in (iii) the map gXc instead, we obtain a composite functor which
is weakly equivalent to the identity functor and it induces a map homotopic to the
one induced by (11). It follows that (10) sends gX to a homotopy equivalence. As
a consequence, the functor (10) preserves weak homotopy equivalences. It is well
known that the A-theory functor has this property too (see [12, Proposition 2.1.7]).

Then it suffices to prove that ΩBCob(JX , wJX) is a weak equivalence when X
is a CW complex. We may write X as the (homotopy) filtered colimit of its finite
subcomplexes. We note that the composite functor Cob(Cf (−), wCf (−)), defined
on objects by

X 7→ Cf(X) 7→ w Cob(Cf (X))• 7→ BCob(Cf (X), wCf (X)),

preserves this filtered colimit and therefore, after applying Proposition 4.3, it fol-
lows that the functor (10) preserves this (homotopy) filtered colimit up to weak
equivalence. Using the Waldhausen category Rf (X) for the definition of A-theory,
the analogous argument shows that the same is true for the A-theory functor. Then
the result follows by naturality and Proposition 4.1. �

4.2. The map from the cobordism category of manifolds. Using the cobor-
dism model for A-theory, we give a new description of the map from the cobordism
category of [4, 5] to A-theory, which was defined in [2] and studied further in [7, 8].
Here we will focus on the description of the map presented in [8].

Let C∂(θ) denote the cobordism (non-unital) category of θ-structured manifolds
with boundary as defined in [8, Section 2], where θ : X → BO(d) is the fibration
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which determines the tangential structure. For fixed θ : X → BO(d), there is a
semi-simplicial map

N•C
∂(θ)→ ObCobsym(Chf(X))•

JX−−→ ObCobsym(Rhf (X))•

which sends an embedded θ-structured cobordism (W ;M0,M1) to the cospan

W ⊔X

M0 ⊔X
99

99rrrrrrrrrr

M1 ⊔X
ee

ee▲▲▲▲▲▲▲▲▲▲

of retractive spaces overX (cf. [7, Section 5.1], [8, Section 5.1]). Thus, this map cor-
responds essentially to an inclusion of cobordisms of compact smooth manifolds into
(formal) cobordisms of homotopy finite spaces. We note that this semi-simplicial
map preserves the basepoint that is defined by the initial object. After geometric
realization, we obtain a map of spaces

τ(θ) : ΩBC∂(θ)→ ΩBCob
sym(Chf(X), wChf (X))

∼
−→ ΩBCob

sym(Rhf (X), wRhf (X)).

In this map, the topology on the cobordism category is not yet encoded. This
can be rectified, just as in [8], by introducing an additional simplicial direction to
obtain the simplicial thickening C∂(θ)•, a simplicial object with values in (non-
unital) categories (see [8, Section 2]). Then the definition of the map above applies
similarly in each simplicial degree and produces, as in [8, Section 5.1], a simplicial
morphism τ(θ)• to the simplicial thickening (or thick model) of the symmetric
cobordism category associated to Rhf (X),

[n] 7→ ΩBCob
sym


Rhf



X ×∆n

↓
∆n


 , wRhf



X ×∆n

↓
∆n




 .

The passage to the (geometric realization of the) simplicial thickening does not
change the homotopy type of this cobordism category of retractive spaces. This
can be seen either by following the arguments of [8], or by using the equivalence
with bivariant A-theory and the analogous statement in this setup from [2], [7,
Section 3.3].

Using the identification of Theorem 3.1, the (simplicial thickening of the) map
τ(θ) is precisely the map to A-theory as defined in [8, Section 5.1].

Note that the summand X in the cospan above can be omitted by working instead
with the simplicial unpointed Waldhausen category Chf(X) in order to model A(X)
(Theorem 4.4).

References

[1] C. Barwick, On the Q-construction for exact ∞-categories. Preprint, arXiv:1301.4725.
[2] M. Bökstedt, I. Madsen, The cobordism category and Waldhausen’s K-theory. An alpine

expedition through algebraic topology, pp. 39–80, Contemp. Math., 617, Amer. Math. Soc.,
Providence, RI, 2014.

[3] D.-C. Cisinski, Higher categories and homotopical algebra. Preprint,

www.mathematik.uni-regensburg.de/cisinski/CatLR.pdf. To appear in the series Cam-
bridge studies in advanced mathematics, Cambridge University Press.

[4] S. Galatius, I. Madsen, U. Tillmann and M. Weiss, The homotopy type of the cobordism

category. Acta Math. 202 (2009), no. 2, 195–239.

http://arxiv.org/abs/1301.4725


20 GEORGE RAPTIS AND WOLFGANG STEIMLE

[5] J. Genauer, Cobordism categories of manifolds with corners. Trans. Amer. Math. Soc. 364
(2012), no. 1, 519–550.

[6] D. Quillen, Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories (Proc.
Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85-147, Lecture Notes in Math.
341, Springer, Berlin 1973.

[7] G. Raptis and W. Steimle, On the map of Bökstedt-Madsen from the cobordism category to

A-theory. Algebr. Geom. Topol. 14 (2014), no. 1, 299-347.
[8] G. Raptis and W. Steimle, Parametrized cobordism categories and the Dwyer-Weiss-Williams

index theorem. J. Topol. 10 (2017), no. 3, 700–719.
[9] G. Raptis and W. Steimle, On the h-cobordism category. I Preprint, arXiv:1805.04395

[10] G. Segal, Configuration-spaces and Iterated Loop-Spaces. Inventiones Math. 21 (1973), 213–
221.

[11] W. Steimle, An additivity theorem for cobordism categories. Preprint, arXiv:1805.04100.
[12] F. Waldhausen, Algebraic K-theory of spaces. Algebraic and geometric topology (New

Brunswick, N.J., 1983), pp. 318-419, Lecture Notes in Math. 1126, Springer, Berlin, 1985.

G. Raptis

Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg, Germany

E-mail address: georgios.raptis@ur.de

W. Steimle

Institut für Mathematik, Universität Augburg, D-86135 Augsburg, Germany

E-mail address: wolfgang.steimle@math.uni-augsburg.de

http://arxiv.org/abs/1805.04395
http://arxiv.org/abs/1805.04100

	1. Introduction
	2. The cobordism category of a Waldhausen category
	2.1. Edgewise subdivision
	2.2. Definition of the cobordism category
	2.3. Relative isomorphisms
	2.4. A symmetric version

	3. Comparison with the S-construction
	3.1. Recollections
	3.2. The comparison map
	3.3. Deloopings

	4. Example: Cobordism categories and A-theory
	4.1. Models for A-theory
	4.2. The map from the cobordism category of manifolds.

	References

