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Abstract

We show that any finite set S in a characteristic zero integral domain can be mapped to
Z/pZ, for infinitely many primes p, preserving all algebraic incidences in S. This can be seen as
a generalization of the well-known Freiman isomorphism lemma, which asserts that any finite
subset of a torsion-free group can be mapped into Z/pZ, preserving all linear incidences.

As applications, we derive several combinatorial results (such as sum-product estimates)
for a finite set in a characteristic zero integral domain. As C is a characteristic zero integral
domain, this allows us to obtain new proofs for some recent results concerning finite sets of
complex numbers, without relying on the topology of the plane.

1 Introduction

Many problems and results in arithmetic combinatorics deal with algebraic incidences in a finite
set S. Classical examples are the Szemerédi-Trotter theorem, and sum-product estimates.

A well-studied situation is when S is a subset of Z/pZ, the finite field with p elements where
p is a large prime. In this case, the special structure of the field and powerful techniques such
as discrete Fourier analysis provide many tools to attack these problems. These features are not
available in other settings and it seems one needs to invent new tricks. For example, when S is a
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subset of the complex numbers, most studies previous to this paper relied on some very clever use
of properties of the plane. Thus, it seems desirable to have a tool that reduces a problem from a
general setting to the special case of Z/pZ.

Such a tool exists, if one only cares about the linear relations among the elements of S. In this
case, the famous Freiman isomorphism lemma (see, for example, [33, Lemma 5.25]) asserts that any
finite subset of an arbitrary torsion-free group can be mapped into Z/pZ, given that p is sufficiently
large, preserving all additive (linear) relations in S. Thanks to this result, it has now become a
common practice in additive combinatorics to translate additive problems in general torsion-free
groups to corresponding problems in Z/pZ.

The goal of this paper is to show that the desired reduction is possible in general. Technically
speaking, we prove that any finite set S in a characteristic zero integral domain can be mapped to
Z/pZ, for infinitely many primes p, preserving all algebraic incidences in S.

Some notable characteristic zero integral domains include the integers, the complex numbers,
and the field of rational functions C(t1, t2, . . .) in any number of formal variables ti. As applications,
we obtain some new results and short proofs of some known results. In particular, it is shown that
sum-product estimates and bounds for incidence geometry problems over Z/pZ imply the same
bounds for the analogous problems over any characteristic zero integral domain (including the real
and complex numbers).

Throughout this paper, we assume that all rings are commutative with identity 1 and that
all ring homomorphisms take 1 to 1. Let D be a characteristic zero integral domain (so D is
a commutative ring with identity that has no zero divisors). We will identify the subring of D
generated by the identity with the integers Z (since the two are isomorphic). For a subset S of D,
we will use Z[S] to denote the smallest subring of D containing S.

Theorem 1.1. Let S be a finite subset of a characteristic zero integral domain D, and let L be
a finite set of non-zero elements in the subring Z[S] of D. There exists an infinite sequence of
primes with positive relative density such that for each prime p in the sequence, there is a ring
homomorphism φp : Z[S] → Z/pZ satisfying 0 /∈ φp(L).

By positive relative density, we mean that the sequence has positive density in the sequence of
all primes. It is important to note that Theorem 1.1 is not true for all primes. For example, if
S = {i} ⊂ C and L is arbitrary, then the desired map does not exist for p = −1 (mod 4), since the
equation x2 = −1 is not solvable in Z/pZ for these p. Note that for the applications of Theorem 1.1
in this paper, we only need that there exist infinitely many primes such that a map φp exists, which
follows from those primes having positive relative density.

The role of L in Theorem 1.1 is to guarantee that the homomorphism φp is injective on certain
subsets of Z[S]. Such injectivity is often necessary when applying Theorem 1.1; for example, if
one were interested in the cardinality of S, one could guarantee that φp is injective on S (and thus
preserves the cardinality of S) by setting L := {s1 − s2 : s1, s2 ∈ S}.

Theorem 1.1 does not give upper bounds on the sizes of the smallest primes p in the infinite
sequence it produces. It would be an interesting question to study whether a version of Theorem 1.1
can be proven that includes, for example, an upper bound for at least one prime in the infinite
sequence, where the bound would depend on both S and L (see Remark 7.2). Another interesting
question is the following: Given a set A ⊂ Z/pZ, are there conditions on A and p (say, that A is
very small with respect to p) that allow one to construct a map that preserves algebraic incidences
and that sends A into some characteristic zero integral domain (for example, Z)?
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Readers interested in the methods of the current paper may also be interested in the lecture
by Serre [22] (posted on the Math ArXiv) titled “How to use finite fields for problems concerning
infinite fields,” which focuses on problems in algebraic geometry. An excellent discussion of Serre’s
lecture from a general mathematical viewpoint may be found on Terence Tao’s blog [29], and Tao
also mentions some relations between Serre’s lecture and the current paper.

This paper is organized as follows. In the next few sections, we present a few sample applications
of Theorem 1.1. Combining arguments from [2] with Theorem 1.1, we prove a Szemerédi-Trotter-
type result in Section 2. In Section 3, we use Theorem 1.1 to demonstrate a sum-product estimate
for characteristic zero integral domains, based on well-known sum-product estimates in Z/pZ.
Section 4 is focused on combining a product result for SL2(Z/pZ) from [16] with Theorem 1.1
to get an analogous product result for SL2(D), where D is a characteristic zero integral domain.
In Section 5, we show that a random matrix taking finitely many values in a characteristic zero
integral domain is singular with exponentially small probability. This extends earlier results on
integer matrices to the complex setting. Finally, the proof of Theorem 1.1 is given in Section 7.

2 A Szemerédi-Trotter-type result for characteristic zero integral

domains

In this section, we apply Theorem 1.1 to the problem of bounding the maximum number of inci-
dences between a finite set of lines and a finite set of points. The well-known Szemerédi-Trotter
Theorem [28] solves this problem in the case of points and lines in R × R. Recently, in [2], an
analogous result was proven for Z/qZ× Z/qZ where q is a prime.

Theorem 2.1 ((Theorem 6.2 in [2])). Let q be a prime, and let P and L be sets of points and lines,
respectively, in Z/qZ×Z/qZ such that the cardinalities |P| , |L| ≤ N ≤ q. Then there exist positive
absolute constants c and δ such that∣∣∣{(p, ℓ) ∈ P × L : p ∈ ℓ}

∣∣∣ ≤ cN3/2−δ . (1)

Remark 2.2. The original version of Theorem 2.1 proven in [2] relied on the best known sum-product
result at the time (also found in [2]), which worked only for subsets of Z/qZ with cardinality between
qα and q1−α for a constant α. In particular, the proof in [2] assumed that Inequality (1) was false
and used this assumption to construct a subset A of Z/qZ with cardinality N1/2−Cδ, for some
constant C, such that max{|A+A| , |AA|} was small, a contradiction of the sum-product estimate
proven in [2]. Thus, the version of Theorem 2.1 in [2] required the additional assumption that
N = qα for a constant α.

To prove Theorem 2.1 as stated above, one can simply replace the sum-product results in [2]
by more recent estimates that apply for all subsets of Z/qZ (for example, [3, 15, 19]).

In a general ring R, we define a line to be the set of solutions (x, y) in R × R to an equation
y = mx+ b, where m and b are fixed elements of R. Using Theorem 1.1, we prove that the same
bound as in Theorem 2.1 holds for an arbitrary characteristic zero integral domain:

Theorem 2.3. Let D be a characteristic zero integral domain, and let P and L be sets of points
and lines (respectively) in D×D with cardinalities |P| , |L| ≤ N . Then there exist positive absolute
constants c and δ such that ∣∣∣{(p, ℓ) ∈ P × L : p ∈ ℓ}

∣∣∣ ≤ cN3/2−δ .
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The constants c and δ are the same as those in Theorem 2.1. Any improvement to Theorem 2.1, for
example, better constants or giving a good bound when P and L have very different cardinalities,
would also immediately translate to Theorem 2.3 above. In the case of R×R, this theorem is true
with δ being replaced with the optimal constant 1/6 (by the Szemerédi-Trotter Theorem [28]).

Restricting to the case of complex numbers, Solymosi [24, Lemma 1] has proven a Szemerédi-
Trotter-type result over C with δ = 1/6, under the additional assumption that the set of points form
a Cartesian product in C2. Our result has a small δ but does not require this additional assumption.
One would expect that δ = 1/6 holds without any additional assumptions, and indeed, a tight result
appears in a paper on the Math ArXiv by Csaba D. Tóth [35].

We conjecture that one can set δ = 1/6 in Z/pZ given that N is sufficiently small compared to
p. (This implies δ = 1/6 for the complex case.)

Proof of Theorem 2.3. Without loss of generality, assume that |P| = |L| = N , adding “dummy”
points and lines if necessary. Say that P = {(xi, yi) : i = 1, . . . , N}, and, uniquely parameterizing
a line y = mx + b by the ordered pair (m, b), say that L = {(mi, bi) : i = 1, . . . , N}. Let
S :=

⋃N
i=1{xi, yi,mi, bi}, set

L0 := {xi − xj : 1 ≤ i < j ≤ N} ∪ {yi − yj : 1 ≤ i < j ≤ N}∪
∪ {mi −mj : 1 ≤ i < j ≤ N} ∪ {bi − bj : 1 ≤ i < j ≤ N},

and let L := L0 \ {0}. By Theorem 1.1, there exists a prime q > N and a ring homomorphism
φq : Z[S] → Z/qZ such that 0 /∈ φq(L). Define a map Φq : Z[S] × Z[S] → Z/qZ × Z/qZ by
Φq(a, b) = (φq(a), φq(b)). Because 0 /∈ φq(L), we know that |Φq(P)| = |Φq(L)| = N . Thus, by
Theorem 2.1, there exist absolute constants c and δ such that

∣∣∣{(p′, ℓ′) ∈ Φq(P) × Φq(L) : p′ ∈ ℓ′}
∣∣∣ ≤ cN3/2−δ .

Since φq is a ring homomorphism, the equation y = mx + b implies that φq(y) = φq(mx + b) =
φq(m)φq(x) + φq(b); and thus,

|{(p, ℓ) ∈ P × L : p ∈ ℓ}| ≤
∣∣{(p′, ℓ′) ∈ Φq(P)× Φq(L) : p′ ∈ ℓ′}

∣∣ ≤ cN3/2−δ ,

completing the proof.

3 A sum-product result for characteristic zero integral domains

Given a subset A of a ring, we define A+A := {a1+a2 : a1, a2 ∈ A} and AA := {a1a2 : a1, a2 ∈ A}.
Heuristically, sum-product estimates state that one cannot find a subset A such that both A+A and
AA have small cardinality, unless A is close to a subring. The first sum-product result was proven
in 1983 by Erdős and Szemerédi [11] for the integers, and there have been numerous improvements
and generalizations, see for example [20], [12], [10], and [5]. Proving sum-product estimates in
Z/pZ, where p is a prime, has been the focus of some recent work (see, for example, [2], [1], and
[3]), with the best known bound due to Katz and Shen [19], slightly improving a result of Garaev
[15]:

Theorem 3.1 (([19])). Let p be a prime and let A be a subset of Z/pZ such that |A| < p1/2. Then,
there exist absolute constants C and α such that

C |A|14/13 (log |A|)α ≤ max{|A+A| , |AA|}.
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Theorem 3.2 demonstrates the same lower bound on max{|A+A| , |AA|} for any finite subset
A of a characteristic zero integral domain.

Theorem 3.2. There are positive absolute constants C and α such that, for every finite subset A
of a characteristic zero integral domain,

C |A|14/13 (log |A|)α ≤ max{|A+A| , |AA|}.

The constants C and α in this result is the same as those in Theorem 3.1.
Theorem 3.2 applies to a very general class of rings; however, our mapping approach re-

quires that the rings be commutative and have characteristic zero. For some results in the non-
commutative case, see [5]; and for some results in Z/mZ where m is a composite, see [6].

Proof of Theorem 3.2. Because we are interested in a lower bound on |A+A| and |AA|, all we need
in order to apply Theorem 3.1 is a ring homomorphism φ from the given characteristic zero integral
domain to Z/pZ satisfying |φ(A)| = |A| (since any ring homomorphism automatically satisfies
|φ(A) + φ(A)| = |φ(A+A)| ≤ |A+A| and |φ(A)φ(A)| ≤ |AA|). However, Theorem 1.1 also makes
it easy to find a ring homomorphism that preserves the cardinalities of A+A and AA, as we will
show below (such a map would be useful for proving upper bounds on |A+A| and |AA|).

Let

L0 := {a1 − a2 : a1, a2 ∈ A} ∪ {a1 + a2 − (a3 + a4) : ai ∈ A} ∪ {a1a2 − a3a4 : ai ∈ A}

and let L := L0 \ {0}.
By Theorem 1.1, there exists a prime p > |A|2 and a ring homomorphism φp : Z[A] → Z/pZ

such that

(i) |φp(A)| = |A|,

(ii) |φp(A) + φp(A)| = |A+A|, and

(iii) |φp(A)φp(A)| = |AA|.

All three facts above follow from the definition of a ring homomorphism, along with the definition
of L and the fact that 0 /∈ φp(L). We can now apply Theorem 3.1 to get that there exist positive
constants C and α such that

C |φp(A)|14/13 (log |A|)α ≤ max{|φp(A) + φp(A)| , |φp(A)φp(A)|}.

Finally, substituting (i), (ii), and (iii) into this inequality gives the desired result.

4 A matrix product result for SL2(D)

In this section, we will consider finite subsets of the special linear group SL2(D) of 2 by 2 matrices
with determinant 1 and entries in a characteristic zero integral domain D. For A a finite subset
of SL2(D), let 〈A〉 denote the smallest subgroup of SL2(D) (under inclusion) that contains A. We
will refer to 〈A〉 as the group generated by A. In general, the goal of this section will be to give
conditions on 〈A〉 so that cardinality of the triple product AAA := {a1a2a3 : ai ∈ A} is large.

Helfgott proved the following theorem in [16]:
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Theorem 4.1 (([16])). Let p be a prime. Let A be a subset of SL2(Z/pZ) not contained in any
proper subgroup, and assume that |A| < p3−ǫ for some fixed ǫ > 0. Then

|AAA| > c |A|1+δ ,

where c > 0 and δ > 0 depend only on ǫ.

In this section, we will prove the following related result by combining Theorem 4.1 with Theo-
rem 1.1. A group G is metabelian if G has an abelian normal subgroup N such that the quotient
group G/N is also abelian.

Theorem 4.2. Let A be a finite subset of SL2(D), where D is a characteristic zero integral domain,
and let 〈A〉 be the subgroup generated by A. If 〈A〉 has infinite cardinality and 〈A〉 is not metabelian,
then

|AAA| > c |A|1+δ ,

where c > 0 and δ > 0 are absolute constants.

One should note that Chang [7] has already proven a very similar product result for SL2(C), in
which “metabelian” is replaced by “virtually abelian”. A group G is virtually abelian if G has a
finite index subgroup H such that H is abelian.

Theorem 4.3 (([7])). Let A be a finite subset of SL2(C), and let 〈A〉 be the subgroup generated by
A. If 〈A〉 is not virtually abelian (which implies that 〈A〉 has infinite cardinality), then

|AAA| > c |A|1+δ ,

where c > 0 and δ > 0 are absolute constants.

There are many groups that are both metabelian and virtually abelian, for example all abelian
groups satisfy both properties. However, neither property implies the other. For example, the group
G :=

∏
∞

i=1 S3 (the product of infinitely many copies of the symmetric group on three elements) is
metabelian (since N :=

∏
∞

i=1 〈(123)〉 is an abelian, normal subgroup of G such that G/N is also
abelian), but G is not virtually abelian. On the other hand, G := S4 ×Z is virtually abelian (since
H := 〈(1)〉 × Z is a finite-index abelian subgroup of G), but G is not metabelian (since S4 is not
metabelian).

One major difference between Theorem 4.2 and Theorem 4.3 is in how the two results are
proved. Below, we will prove Theorem 4.2 using Helfgott’s Theorem 4.1 as a black box along with
some group theory and an easy application of Theorem 1.1. On the other hand, Theorem 4.3 is
proven in [7] by adapting Helfgott’s methods in [16] from the case of SL2(Z/pZ) to SL(C) and using
tools from additive combinatorics.

The constants δ > 0 in Theorems 4.2 and 4.3 are not the best possible if one restricts to
a subgroup. For example, SL2(Z) contains a subgroup isomorphic to F2, the free group on 2
generators, and the following product result has recently been shown by Razborov [21]:

Theorem 4.4 (([21])). Let A be a finite subset of a free group Fm (on m generators) with at least
two non-commuting elements. Then,

|AAA| ≥ |A|2
(log |A|)O(1)

.
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One should note that neither Theorem 4.2 nor Theorem 4.3 fully characterizes finite subsets
of SL2(C) that have expanding triple product. For example, neither theorem applies when A is
contained in an abelian subgroup, but letting

A :=

{(
1 2j

0 1

)
: 1 ≤ j ≤ n

}
,

we have that |AAA| ≥ |AA| =
(n+1

2

)
> n2/2 = |A|2 /2. One should also note that a sum-product

theorem similar to Theorem 3.2 does not hold in general for matrices. As pointed out in [8, Remark
0.2], the subset

A :=

{(
1 j
0 1

)
: 1 ≤ j ≤ n

}

has the property that both the sumset and product set are small: |A+A| = |AA| = 2n − 1.
However, it is also shown by Chang [8] that by adding the assumption that the matrices in A are
symmetric, one can prove a sum-product result similar to Theorem 3.2.

We now turn our attention to the proof of Theorem 4.2.

Proof of Theorem 4.2. Say that A is a finite subset of SL2(D), where D is a characteristic zero
integral domain. Let G := 〈A〉, the subgroup generated by A, and assume that G has infinite
cardinality and is not metabelian. Let T be the set of all normal subgroups N of G such that G/N
is abelian (note that we include G in the set T ), and define

N0 :=
⋂

N∈T

N.

Then N0 is a normal subgroup of G and G/N0 is abelian. Since G is not metabelian by assumption,
we know that N0 is not abelian, and so there exists B1, B2 ∈ N0 such that B1B2 6= B2B1. Also, let
M1,M2,M3, . . . ,M121 be 121 distinct elements of G (note G is infinite by assumption). We may
now define a set L0 as follows:

L0 :=



bi − cj :

i, j ∈ {1, 2, 3, 4} and bi and cj are entries in ma-

trices

(
b1 b2
b3 b4

)
,

(
c1 c2
c3 c4

)
∈ A





∪



bi − cj :

i, j ∈ {1, 2, 3, 4} and bi and cj are entries in matrices(
b1 b2
b3 b4

)
∈Mk1 and

(
c1 c2
c3 c4

)
∈Mk2 for some 1 ≤ k1, k2 ≤ 121





∪
{
b1 − 1, b2, b3, b4 − 1 : where

(
b1 b2
b3 b4

)
= B1B2B

−1
1 B−1

2 6=
(
1 0
0 1

) }
.

Let L := L0 \{0}, and let S be the set of all entries that appear in matrices in A. By Theorem 1.1,
there exists p > |A| and φp : Z[S] → Z/pZ such that 0 /∈ φp(L). Let Φp : SL2(D) → SL2(Z/pZ)

be defined by

(
b1 b2
b3 b4

)
7→

(
φp(b1) φp(b2)
φp(b3) φp(b4)

)
. Let A := Φp(A) and let G := 〈A〉. Note that by

construction |A| = |A| and |AAA| ≥ |AAA|, and also note that |G| ≥ 121.
Assume for the sake of a contradiction that G is a proper subgroup of SL2(Z/pZ). In [27],

Suzuki gives the following classification of the proper subgroups of SL2(Z/pZ):
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Theorem 4.5 ((cf. Theorem 6.17 of [27], page 404)). Let G be a proper subgroup of SL2(Z/pZ)
where p ≥ 5. Then G is isomorphic to one of the following groups (or to a subgroup of one of the
following groups):

(i) a cyclic group,

(ii) the group with presentation
〈
x, y

∣∣xm = y2, y−1xy = x−1
〉
, which has order 4m,

(iii) a group H of order p(p − 1) having a Sylow-p subgroup Q such that H/Q is cyclic and
Q is elementary abelian,

(iv) the special linear group SL2(Z/3Z) on a field of three elements, which has order 24,

(v) Ŝ4, the representation group of S4 (the symmetric group on 4 letters), which has order
48, or

(vi) the special linear group SL2(Z/5Z) on a field of five elements, which has order 120.

Since |G| > 120, we may eliminate (iv), (v), and (vi) as possibilities. The remaining possibilities
(namely, (i), (ii), and (iii)) are all metabelian; and thus, G must have a normal subgroup N such
that N is abelian and G/N is also abelian.

Let N := Φ−1
p (N). Then N is a normal subgroup of G, and by the third isomorphism theorem

G/N ≃ (G/ ker(Φp))/(N/ ker(Φp)) ≃ G/N , which is abelian. Thus, N0 is a subgroup of N , and

so B1, B2 ∈ N . We know that B1B2B
−1
1 B−1

2 6=
(
1 0
0 1

)
, and by the definition of Φp, we also have

that

Φp(B1)Φp(B2)Φp(B1)
−1Φp(B2)

−1 = Φp(B1B2B
−1
1 B−1

2 ) 6=
(
1 0
0 1

)
.

But, this contradicts the fact that N is abelian. Thus, the assumption that G is a proper subgroup
of SL2(Z/pZ) is false, and we have that 〈A〉 = G = SL2(Z/pZ).

Finally, by Theorem 4.1, there exist absolute constants c > 0 and δ > 0 such that

|AAA| ≥ |AAA| ≥ c |A|1+δ = c |A|1+δ .

Another way to show that Φp(A) generates all of SL2(Z/pZ) would be to assume that 〈A〉
is not virtually solvable, which implies by Tits Alternative Theorem [34] that 〈A〉 has a non-
abelian free subgroup. Then, following [14, Section 2], it is possible to bound the girth of a certain
Cayley graph from below in terms of p, eventually showing (via an appeal to Theorem 4.5) that
〈Φp(A)〉 = SL2(Z/pZ).

Also, the proof above uses the following implicit corollary of Theorem 4.5: if G is a proper sub-
group of SL2(Z/pZ) and |G| > 120, then G in metabelian. A very similar result for PSL2(Z/pZ) ≃
SL2(Z/pZ)/(±I) (where I is the identity matrix) appears in [9, Theorem 3.3.4, page 78].
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5 Random matrices with entries in a characteristic zero integral

domain

In [18, 30], it is shown that a random Bernoulli matrix of size n is singular with probability
exp(−Ω(n)). One may ask what happens for random matrices with complex entries. We are going
to give a quick proof of the following:

Theorem 5.1. For every positive number ρ < 1, there is a positive number δ < 1 such that the
following holds. Let ξ be a random variable with finite support in a characteristic zero integral
domain, where ξ takes each value with probability at most ρ. Let Mn be an n by n random matrix
whose entries are iid copies of ξ. Then the probability that Mn is singular is at most δn, for all n
sufficiently large with respect to ρ and the size of the support of ξ.

Remark 5.2. In the case when the characteristic zero integral domain is C, more quantitative bounds
are available (see [4, 31]).

Theorem 5.1 follows directly from the following two results.

Theorem 5.3. For every positive number ρ < 1, there is a positive number δ < 1 such that the
following holds. Let n be a large positive integer and p ≥ 2n

n

be a prime. Let ξ be a random variable
with finite support in Z/pZ, where ξ takes each value with probability at most ρ. Let Mn be an n
by n random matrix whose entries are iid copies of ξ. Then the probability that Mn is singular is
at most δn, for all n sufficiently large with respect to ρ and the size of the support of ξ.

This theorem was implicitly proved in [30]. The bound 2n
n

is not essential, we simply want
to guarantee that p is much larger than n. The reason that the proof from [30] does not extend
directly to the complex case (or characteristic zero integral domains in general) is that in [30] one
relied on the identity

Ix=0 =

∫ 1

0
exp(2πixt)dt,

where I is the indicator function. This identity holds for x an integer, but it is not true for complex
numbers in general. Theorem 1.1 provides a simple way to overcome this obstacle. (For other
methods, see [31, 32].)

Lemma 5.4. Let S be a finite subset of a characteristic zero integral domain. There exist arbitrarily
large primes p such that there is a ring homomorphism φp : Z[S] → Z/pZ satisfying the following
two properties:

(i) the map φp is injective on S, and

(ii) for any n by n matrix (sij) with entries sij ∈ S, we have

det(sij) = 0 if and only if det (φp(sij)) = 0.

Proof. Let L := {det(sij) : sij ∈ S} \ {0}. Applying Theorem 1.1 gives us a ring homomorphism
φp : Z[S] → Z/pZ (for some arbitrarily large prime p) such that 0 /∈ φp(L). Since φp is a ring
homomorphism, φp(det(sij)) = det(φp(sij)) and also φp(0) = 0; thus, we have satisfied condition
(ii).

9



In this particular case, we will show that (i) follows from (ii). If S contains more than one
element, we can find s 6= t 6= 0 both lying in S, and thus

det







s t · · · t t
t s t · · · t
... t

. . . t
...

t · · · t s t
t t · · · t t







= det







s− t 0 · · · 0 0
0 s− t 0 · · · 0
... 0

. . . 0
...

0 · · · 0 s− t 0
0 0 · · · 0 t







= (s− t)n−1t 6= 0.

Thus, by (ii), 0 6= (φp(s)− φp(t))
n−1 φp(t), and so φp(s) 6= φp(t) and we see that φp is injective on

S.

The fact that (ii) happens to imply injectivity on S is not important—in fact, for any given
finite subset A ⊂ Z[S] we can find φQ̃ satisfying (ii) above that is also injective on A by adding

{a1 − a2 : a1 6= a2 and a1, a2 ∈ A} to L̃ in the proof above. For example, we could find φ
Q̃
that is

injective on the set of all determinants of n by n matrices with entries in S.
One should note that it is easy to prove results similar to Lemma 5.4 where the determinant

is replaced by some polynomial f(x1, x2, . . . , xk) with integer coefficients and one wants a map φp
such that f evaluated at points in S is zero if and only if f evaluated at points in φp(S) is zero.
This can also easily be extended to the case where f is replaced by a list of polynomials, each of
which is evaluated on some subset of S.

6 The density theorem

The number 7 is a prime in the ring of integers Z; however, if one extends Z to Z[
√
2], the prime

7 splits: 7 = (3 −
√
2)(3 +

√
2). This fact has the same mathematical content as the following:

the polynomial x2 − 2 is irreducible in Z[x]; however, in (Z/7Z)[x], where the coefficients of the
polynomial are viewed as elements of Z/7Z, the polynomial splits: x2 − 2 = (x − 3)(x + 3). The
Frobenius Density Theorem describes how frequently such splitting occurs. In modern formulations,
the Frobenius Density Theorem quantifies the proportion of primes that split in a given Galois
extension of the rational numbers. We will use the following historical version given in [26, page
32], which is phrased in terms of polynomials splitting modulo p. Note that the relative density of
a set of primes S is defined to be

lim
x→∞

|{p ≤ x : p ∈ S}|
|{p ≤ x : p is prime}| .

Theorem 6.1 ((Frobenius Density Theorem)). Let g(z) ∈ Z[z] be a polynomial of degree k with
k distinct roots in C, and let G be the Galois group of the polynomial g, viewed as a subgroup
of Sk (the symmetric group on k symbols). Let n1, n2, . . . , nt be positive integers summing to k.
Then, the relative density of the set of primes p for which g modulo p has a given decomposition
type n1, n2, . . . , nt exists and is equal to 1/ |G| times the number of σ ∈ G with cycle pattern
n1, n2, . . . , nt.

For example, since the identity element corresponds to the cycle pattern 1, 1, . . . , 1 and every group
has one identity, the relative density of primes p such that g decomposes into k distinct linear
factors modulo p is 1/ |G|.
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Theorem 6.1 is the version proven by Frobenius in 1880 and published in 1896 [13]. In [26],
Stevenhagen and Lenstra give numerous examples and an illuminating discussion of the original
motivation for the Frobenius Density Theorem and how it relates to the stronger Chebotarev
Density Theorem.

7 Proof of Theorem 1.1

The first step towards proving Theorem 1.1 is proving the following lemma.

Lemma 7.1. Let S be a finite subset of a characteristic zero integral domain D, and let L be a
finite set of non-zero elements in the subring Z[S] of D. Then there exists a complex number θ that
is algebraic over Q and a ring homomorphism φ : Z[S] → Z[θ] such that 0 /∈ φ(L).

By itself, this lemma allows one to extend sum-product and incidence problem results proven
in the complex numbers to any characteristic zero integral domain (in much the same way that
Theorem 1.1 allows one to extend such results proven in Z/pZ to any characteristic zero integral
domain).

Lemma 7.1 is proved using three main steps: applying the primitive element theorem, applying
Hilbert’s Nullstellensatz to pass to the case of only algebraic numbers, and applying the primitive
element again to get to a ring of the form Z[θ]. Each of these three steps requires negotiating
between the rings we are interested in and their fraction fields. Theorem 1.1 is proved by combining
Lemma 7.1 with the Frobenius Density Theorem (or the stronger Chebotarev Density Theorem)
to pass to a quotient isomorphic to Z/pZ.

Remark 7.2 (An effective version of Theorem 1.1). It would be interesting to prove a version of
Theorem 1.1 that included an upper bound on at least one (or more) of the primes p (in terms
of S and L) for which desired homomorphism φp exists. One possible program for proving such
a result would be to follow the general outline of the proof of Theorem 1.1 given in this section,
combined with effective versions of the primitive element theorem, Hilbert’s Nullstellensatz, and
the Chebotarev Density Theorem.

Proof of Lemma 7.1. Let S be a finite subset of a characteristic zero integral domain D. Recall
that we identify the subring of D generated by the identity with Z and so we use Z[S] to denote
the smallest subring of D containing S.

We can write S = {x1, x2, . . . , xj , θ1, θ2, . . . , θk}, such that {x1, x2, . . . , xj} are independent
transcendentals over Q and such thatK, the fraction field of Z[S], is algebraic over Q(x1, x2, . . . , xj).

Using the primitive element theorem, we can find θ̃ in K also algebraic over Q(x1, x2, . . . , xj) such
that

Q(x1, x2, . . . , xj, θ1, θ2, . . . , θk) = Q(x1, x2, . . . , xj , θ̃).

To get the analogous statement for Z instead of Q, we write, for each i

θi =
∑

k

fi,k
gi,k

θ̃k,

where fi,k, gi,k ∈ Z[x1, x2, . . . , xj ], and we then define θ0 to be θ̃ divided by the product of the gi,k.
Thus, we can find θ0 in K also algebraic over Q(x1, x2, . . . , xj) such that

Z[S] ⊂ Z[x1, x2, . . . , xj , θ0] ≃ Z[y1, y2, . . . , yj+1]/f0,

11



where the yi are formal variables and f0 is an irreducible element in Z[y1, y2, . . . , yj+1] that is
non-constant or zero and that gives zero when evaluated at yi = xi for i = 1, . . . , j and yj+1 = θ0.

LetQ be the algebraic closure of the rational numbers, let L′ :=
∏

ℓ∈L ℓ, and let L ∈ Z[y1, . . . , yj+1]
be the lowest degree representative of the image of L′ under the above inclusion and isomorphism.
We will use the following corollary to Hilbert’s Nullstellensatz:

Proposition 7.3 (c.f. the corollary on page 282 of [23]). If L, f0 ∈ Q[y1, . . . , yj+1] and if on points

of Q
j+1

we have that L is zero whenever f0 is zero, then there exists m ≥ 0 and k ∈ Q[y1, . . . , yj+1]
such that Lm = kf0.

Say that Lm = kf0 for some k ∈ Q[y1, . . . , yj+1]. Since Lm, f0 ∈ Z[y1, . . . , yj+1], we have that
k is in Q(y1, . . . , yj+1) (the fraction field of Z[y1, . . . , yj+1]). Thus, k is in the ring Q[y1, . . . , yj+1],
and so there is a positive integer c such that ck ∈ Z[y1, . . . , yj+1]. We now have cLm = (ck)f0.
Since f0 is irreducible in Z[y1, y2, . . . , yj+1], we must have that f0 divides L (f0 cannot divide
the positive integer c since f0 is either non-constant or zero). But this is impossible since by
assumption, L is non-zero in the quotient ring Z[y1, . . . , yj+1]/f0. Thus, for every m ≥ 0 and
for every k ∈ Q[y1, . . . , yj+1] we must have that Lm 6= kf0. Therefore, by the contrapositive

of Proposition 7.3, there exist algebraic numbers q1, . . . , qj+1 ∈ Q such that f0

∣∣∣
yi=qi

= 0 while

L
∣∣∣
yi=qi

6= 0. Thus, we have a homomorphism

ψ0 : Z[y1, y2, . . . , yj+1]/f0 → Z[q1, . . . , qj+1],

defined by yi 7→ qi, such that ψ0(L) 6= 0.
Applying the primitive element theorem and clearing denominators as before, we have

Z[q1, . . . , qj+1] ⊂ Z[θ1],

with θ1 ∈ Q. Combining the inclusions and isomorphisms from the applications of the primitive
element theorem with ψ0 completes the proof of Lemma 7.1.

Recall the statement of Theorem 1.1:

Theorem 1.1. Let S be a finite subset of a characteristic zero integral domain D, and let L be
a finite set of non-zero elements in the subring Z[S] of D. There exists an infinite sequence of
primes with positive relative density such that for each prime p in the sequence, there is a ring
homomorphism φp : Z[S] → Z/pZ satisfying 0 /∈ φp(L).

The proof of Theorem 1.1 picks up where the proof of Lemma 7.1 left off.

Proof of Theorem 1.1. By Lemma 7.1, there exists a ring homomorphism

φ : Z[S] → Z[θ1] ≃ Z[z]/f1,

such that 0 /∈ φ(L), where z is a formal variable and f1 is an irreducible element in Z[z] that gives
zero when evaluated at z = θ1.

Let L̂ :=
∏

ℓ∈L ℓ, let L̃(z) ∈ Z[z] denote the lowest-degree representative of φ(L̂) in Z[z]/f1,

and let L1(z) denote the product of all distinct irreducible factors of L̃(z) in Z[z]. Note that a
homomorphism of integral domains will map L̃(z) to zero if and only if it maps L1(z) to zero. By
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assumption, L̃(z) is non-zero, so we must have that f1(z) does not divide L̃(z) in Z[z]; and thus
f1(z) does not divide L1(z). Therefore, L1(z) has no roots (in C, say) in common with f1(z), since
f1(z) is irreducible.

By Theorem 6.1 (the Frobenius Density Theorem) there exists a sequence of primes (p1, p2, p3, . . .)
in Z (with positive relative density) such that for any prime p in the sequence, the polynomial
f1(z)L1(z) factors completely modulo p into a product of deg (f1(z)L1(z)) distinct linear factors.

Let (z − a) be a linear factor of f1(z) modulo p, where p is any prime in the sequence
(p1, p2, p3, . . .). Since, modulo p, the linear factors of f1(z) are all distinct from those of L1(z),
we know that (z − a) does not divide L1(z) modulo p. Thus, for infinitely many primes p, we may
quotient out by p and by (z − a) to get a canonical quotient map

ψ1 : Z[z]/f1 −→ Z[z]/(p, z − a) ≃ Z/pZ

where ψ1(L1(z)) 6= 0. One can think of ψ1 as modding out by p and then sending z to the element
a in Z/pZ.

Letting φp := ψ1 ◦ φ completes the proof.
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[24] Solymosi, József. On the number of sums and products. Bull. London Math. Soc. 37 (2005),
no. 4, 491–494.

14

http://arxiv.org/abs/0903.0517
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18 (1996), no. 2, 26–37.

[27] Suzuki, Michio. Group theory I. Translated from the Japanese by the author. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 247.
Springer-Verlag, Berlin-New York, 1982.
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