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GENERIC COMPUTABILITY, TURING DEGREES, AND

ASYMPTOTIC DENSITY

CARL G. JOCKUSCH, JR. AND PAUL SCHUPP

Abstract. Generic decidability has been extensively studied in group
theory, and we now study it in the context of classical computability
theory. A set A of natural numbers is called generically computable if
there is a partial computable function which agrees with the characteris-
tic function of A on its domain D, and furthermore D has density 1, i.e.
limn→∞ |{k < n : k ∈ D}|/n = 1. A set A is called coarsely computable

if there is a computable set R such that the symmetric difference of A
and R has density 0. We prove that there is a c.e. set which is generi-
cally computable but not coarsely computable and vice versa. We show
that every nonzero Turing degree contains a set which is not generically
computable and also a set which is not coarsely computable. We prove
that there is a c.e. set of density 1 which has no computable subset of
density 1. Finally, we define and study generic reducibility.

1. Introduction

In recent years there has been a general realization that worst-case com-
plexity measures such as P, NP, exponential time, and just being computable
often do not give a good overall picture of the difficulty of a problem. The
most famous example of this is the Simplex Algorithm for linear program-
ming, which runs hundreds of times every day, always very quickly. Klee
and Minty [5] constructed examples for which the simplex algorithm takes
exponential time, but these examples do not occur in practice.

Gurevich [4] and Levin[9] independently introduced the idea of average-
case complexity. Here one has a probability measure on the instances of
a problem and one averages the time complexity over all instances. An
important result is the result of Blass and Gurevich [1] that the Bounded
Product Problem for the modular group, PSL(2,Z), is NP -complete but has
polynomial time average-case complexity. Average-case complexity is, how-
ever, difficult to work with because it is highly sensitive to the probability
distribution used and one must still consider all cases.

Generic-case complexity was introduced by Kapovich, Miasnikov, Schupp
and Shpilrain [6] as a complexity measure which is much easier to work
with. The basic idea is that one considers partial algorithms which give no
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incorrect answers and fail to converge only on a “negligible” set of inputs as
defined below.

Definition 1.1 (Asymptotic density). Let Σ be a nonempty finite alphabet
and let Σ∗ denote the set of all finite words on Σ. The length, |w|, of a word
w is the number of letters in w. Let S be a subset of Σ∗. For every n ≥ 0
let S⌈n denote the set of all words in S of length at most n. Let

ρn(S) =
|S⌈n|

|Σ∗⌈n|

We define the upper density ρ(S) of S in Σ∗ as

ρ(S) := lim sup
n→∞

ρn(S)

Similarly, we define the lower density ρ(S) of S in Σ∗ as

ρ(S) := lim inf
n→∞

ρn(S)

If the actual limit

ρ(S) = limn→∞ρn(S) exists, then ρ(S) is the (asymptotic) density of S in Σ∗.

Definition 1.2. A subset S of Σ∗ is generic if ρ(S) = 1 and S is negligible
if ρ(S) = 0.

It is clear that S is generic if and only if its complement S is negligible.
Also, the union and intersection of a finite number of generic (negligible)
sets is generic (negligible).

Definition 1.3. In the case where the limit

limn→∞ ρn(S) = ρ(S) = 1

we are sometimes interested in estimating the speed of convergence of the
sequence {ρn(S)}. To this end, we say that the convergence is exponentially
fast if there are 0 < σ < 1 and C > 0 such that for every n ≥ 1 we have
1− ρn(S) ≤ Cσn. In this case we say that S is strongly generic.

Definition 1.4. Let S be a subset of Σ∗ with characteristic function χS . A
partial function Φ from Σ∗ to {0, 1} is called a generic description of S if
Φ(x) = χS(x) whenever Φ(x) is defined (written Φ(x) ↓) and the domain of
Φ is generic in Σ∗. A set S is called generically computable if there exists a
partial computable function Φ which is a generic description of S. We stress
that all answers given by Φ must be correct even though Φ need not be
everywhere defined, and, indeed, we do not require the domain of Φ to be
computable.

It turns out that one can prove sharp results about generic-case complex-
ity without even knowing the worst-case complexity of a problem. Magnus
[10, 11] proved that one-relator groups have solvable word problem in the
1930’s. We do not know any precise bound on complexity over the entire
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class of one-relator groups. But for any one-relator group with at least
three generators, the word problem is strongly generically linear time [6].
Also, we do not know whether or not the isomorphism problem restricted to
one-relator presentations is solvable but the problem is strongly generically
linear time [7, 8]. A very clear discussion of Boone’s group with unsolvable
word problem is given in Rotman [16]. The proof shows that one can model
a universal Turing machine inside the group and words coding the Turing
machine are called “special” words. Such words are indeed very special and
the word problem for Boone’s group is strongly generically linear time [6].
Indeed, it is not known whether there is a finitely generated group whose
word problem is not generically computable.

In many ways, generic computability is orthogonal to the idea of Tur-
ing degrees since generic computability depends on how information is dis-
tributed in a given set.

Observation 1.5. Every Turing degree contains a set which is strongly
generically computable in linear time. Let A be an arbitrary subset of ω and
let S ⊆ {0, 1}∗ be the set {0n : n ∈ A}. Now S is Turing equivalent to A and
is strongly generically computable in linear time by the algorithm Φ which,
on input w, answers “No” if w contains a 1 and does not answer otherwise.
Here all computational difficulty is concentrated in a negligible set, namely
the set of words containing only 0’s. Note that since the algorithm given
is independent of the set A, the observation shows that one algorithm can
generically decide uncountably many sets.

The next observation is a general abstract version of Miasnikov’s and Ry-
balov’s proof ([12], Theorem 6.5) that there is a finitely presented semigroup
whose word problem is not generically computable.

Observation 1.6. Every nonzero Turing degree contains a set which is not
generically computable. Let A be any noncomputable subset of ω and let
T ⊆ {0, 1}∗ be the set {0n1w : n ∈ A,w ∈ {0, 1}∗}. Clearly A and T are

Turing equivalent. For a fixed n0, ρ({0
n01w : w ∈ {0, 1}∗}) = 2−(n0+1) > 0.

A generic algorithm for a set must give an answer on some members of any
set of positive density. Thus T cannot be generically computable since if
Φ were a generic algorithm for T we could just run bounded simulation of
Φ on the set {0n1w : w ∈ {0, 1}∗} until Φ gave an answer, thus deciding
whether or not n ∈ A. Here the idea is that the single bit of information
χA(n) is “spread out” to a set of positive density in the definition of T . Also
note that if A is c.e. then T is also c.e. and thus every nonzero c.e. Turing
degree contains a c.e. set which is not generically computable.

In the current paper we study generic computability for sets of natural
numbers using the concepts and techniques of computability theory and the
classic notion of asymptotic density for sets of natural numbers. An easy
result, analogous to Observation 1.6 above, is that every nonzero Turing
degree contains a set of natural numbers which is not generically computable.
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We define the notion of being densely approximable by a class C of sets
and observe that a set A is generically computable if and only if it is densely
approximable by c.e. (computably enumerable) sets. We prove that there
is a c.e. set of density 1 which has no computable subset of density 1. It
follows as a corollary that there is a generically computable set A such that
no generic algorithm for A has a computable domain.

We call a set A of natural numbers coarsely computable if there is a
computable set B such that the symmetric difference of A and B has density
0. We show that there are c.e. sets which are coarsely computable but not
generically computable and c.e. sets which are generically computable but
not coarsely computable. We also prove that every nonzero Turing degree
contains a set which is not coarsely computable.

We consider a relativized notion of generic computability and also intro-
duce a notion of generic reducibility which which gives a degree structure
and which is related to enumeration reducibility. Almost all of our proofs use
the collection of sets {Rn} defined below which form a partition of N− {0}
into subsets of positive density. We use this collection to define a natural
embedding of the Turing degrees into the generic degrees and show that this
embedding is proper. We close by describing some related ongoing work
with Rod Downey and stating some open questions.

2. Generic computability of subsets of ω

We identify the set N = {0, 1, . . . } of natural numbers with the set ω
of finite ordinals and from now on we will focus on generic computability
properties of subsets of ω and how these interact with some classic concepts
of computability theory. Thus, we are using the 1-element alphabet Σ = {1}
and identifying n ∈ ω with its unary representation 1n ∈ {1}∗, so that we
also identify ω with {1}∗. In this context, of course, our definition of (upper
and lower) density for subsets of {1}∗ agrees with the corresponding classical
definitions for subsets of ω. In particular, the density of A, denoted ρ(A)

is given by limn
|A⌈n|
n+1 , provided this limit exists, where A⌈n = A ∩ [0, n].

Further, for A ⊆ B, the density of A in B is limn
|A⌈n|
|B⌈n| , provided B is

nonempty and this limit exists. Corresponding definitions hold for upper
and lower density. It is clear that if A has positive upper density in B, and
B has positive density, then A has positive upper density.

Our notation for computability is mostly standard, except that we use Φe

for the unary partial function computed by the e-th Turing machine, and
we let Φe,s be the part of Φe computed in at most s steps. Let We be the
domain of Φe. We identify a set A ⊆ ω with its characteristic function χA.

Definition 2.1. Let C be a family of subsets of ω. A set A ⊆ ω is densely
C-approximable if there exist sets

C0, C1 ∈ C such that C0 ⊆ A, C1 ⊆ A and C0 ∪ C1 has density 1.
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The following proposition corresponds to the basic fact that a set A is
computable if and only if both A and its complement A are computably
enumerable.

Proposition 2.2. A set A is generically computable if and only if A is
densely approximable by c.e. sets.

Proof. If A is densely approximable by c.e. sets then there exist c.e. sets
C0 ⊆ A and C1 ⊆ A such that C0 ∪ C1 has density 1. For a given x, start
enumerating both C0 and C1 and if x appears, answer accordingly.

If A is generically computable by a partial computable function Φ, then
the sets C0 and C1 on which Φ respectively answers “No” and “Yes” are the
desired c.e. sets. �

Corollary 2.3. Every c.e. set of density 1 is generically computable.

Recall that a set A is immune if A is infinite and A does not contain any
infinite c.e. set and A is bi-immune if both A and its complement A are
immune. If the union C0 ∪ C1 of two c.e. sets has density 1, certainly at
least one of them is infinite. Thus we have the following corollary.

Corollary 2.4. No bi-immune set is generically computable

Now the class of bi-immune sets is both comeager and of measure 1.
(This is clear by countable additivity since the family of sets containing a
given infinite set is of measure 0 and nowhere dense.) Thus the family of
generically computable sets is both meager and of measure 0. See Cooper
[2] for the definition of 1-generic in computability theory and see Nies [14]
for the definition of 1-random. (This use of the word “generic” in the term
“1-generic” has no relation to our general use of “generic” throughout this
paper.) We cite here only the facts that 1-generic sets and and 1-random
sets are bi-immune, and it thus follows that no generically computable set
is 1-generic or 1-random.

The following sets Rk play a crucial role in almost all of our proofs.

Definition 2.5.

Rk = {m : 2k|m, 2(k+1) ∤ m}

For example, R0 is the set of odd nonnegative integers. Note that ρ(Rk) =

2−(k+1). The collection of sets {Rk} forms a partition of unity for ω − {0}
since these sets are pairwise disjoint and

⋃∞
k=0Rk = ω − {0}.

From the definition of asymptotic density it is clear that we have finite
additivity for densities: If S1, . . . , St are pairwise disjoint sets whose densities
exist, then

ρ(

t⋃

i=1

Si) =

t∑

i=1

ρ(Si).
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Of course, we do not have general countable additivity for densities, since
ω is a countable union of singletons. However, we do have countable additiv-
ity in certain restricted situations, where the “tails” of a sequence contribute
vanishingly small density to the union of a sequence of sets.

Lemma 2.6 (Restricted countable additivity). If {Si}, i = 0, 1, . . . is a
countable collection of pairwise disjoint subsets of ω such that each ρ(Si)
exists and ρ(

⋃∞
i=N Si) → 0 as N → ∞, then

ρ(

∞⋃

i=0

Si) =

∞∑

i=0

ρ(Si).

Proof. The sequence of partial sums
∑t

i=0 ρ(Si) is a monotone nondecreasing
sequence bounded above by 1, and so converges. Let its limit be r. Now

|(
⋃∞

i=0 Si)⌈n|

n+ 1
=

|(
⋃N

i=0 Si)⌈n|

n+ 1
+

|(
⋃∞

i=N+1 Si)⌈n|

n+ 1
We need to show that the term on the left approaches r as n → ∞. For any
N , as n → ∞ the first term on the right approaches

∑N
i=0 ρ(Si) by finite

additivity and thus approaches r as N → ∞. We are done because, by
hypothesis, the second term on the right can be made arbitrarily close to 0
by choosing N sufficiently large and then n sufficiently large. In more detail,
let ǫ > 0 be given. Choose N0 so that for all N ≥ N0, ρ(

⋃∞
i=N Si) < ǫ/3.

Choose N1 so that for all N ≥ N1, |r −
∑N

i=0 ρ(Si)| < ǫ/3. Fix N =
max{N0, N1}. Rewrite the displayed equation above as an = bn,N + cn,N ,
so that we are trying to prove that an → r as n → ∞. Choose n0 so
large so that for all n ≥ n0, cn,N < ǫ/3. Choose n1 so large that for all

n ≥ n1, |
∑N

i=0 ρ(Si) − bn,N | < ǫ/3. Standard calculations show that if
n ≥ max{n0, n1}, then |an − r| < ǫ. �

Definition 2.7. If A ⊆ ω then R(A) =
⋃

n∈ARn

Our sequence {Rn} clearly satisfies the hypotheses of Lemma 2.6, so we
have the following corollary.

Corollary 2.8. ρ(R(A)) =
∑

n∈A 2−(n+1)

This gives an explicit construction of sets with a pre-assigned densities.

Corollary 2.9. Every real number r ∈ [0, 1] is a density.

If r = .b0b1b2 · · ·i . . . is the binary expansion of r, let A = {i : bi = 1} and
then ρ(R(A)) = r. Recall that a real number r is computable if and only if
there is a computable function f : N → Q such that |r− f(n)| ≤ 2−n for all
n ≥ 0.

Observation 2.10. The density rA of R(A), i.e.
∑

n∈A ρ(Rn), is a com-
putable real if and only if A is computable.
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Proof. If A is computable, to compute the first t bits of rA, check if 0, . . . , t
are in A, and take the resulting fraction .b0 . . . bt. If rA is computable then
there exists an algorithm Φ which, when given t, computes the first t digits
of the binary expansion of rA. To see if n ∈ A, compute the first (n + 1)
bits of rA. �

We shall later characterize those reals which are densities of computable
sets.

It is obvious that every Turing degree contains a generically computable
subset of ω. Namely, given a set A, let B = {2n : n ∈ A}. Then B is gener-
ically computable via the algorithm which answers “no” on all arguments
which are not powers of 2 and gives no answer otherwise. Now A and B are
Turing equivalent, and in fact they are many-one equivalent if A 6= ω.

Observation 2.11. The set R(A) is Turing equivalent to A and is gener-
ically computable if and only if A is computable. Hence, every nonzero
Turing degree contains a subset of ω which is not generically computable.

This is the same argument as in Observation 1.7, namely any generic
algorithm for R(A) must converge on an element of each Rn. Note also that
A and R(A) are many-one equivalent for A 6= ω, so that every many-one
degree which contains a noncomputable set also contains a set which is not
generically computable.

Definition 2.12. Two sets A andB are generically similar, which we denote
by A ∼g B, if their symmetric difference A△B = (A�B) ∪ (B�A) has
density 0.

It is easy to check that ∼g is an equivalence relation. Any set of density
1 is generically similar to ω, and any set of density 0 is generically similar
to ∅.

Definition 2.13. A set A is coarsely computable if A is generically similar
to a computable set.

From the remarks above, all sets of density 1 or of density 0 are coarsely
computable. One can think of coarse computability in the following way:
The set A is coarsely computable if there exists a total algorithm Φ which
may make mistakes on membership in A but the mistakes occur only on a
negligible set. While being coarsely computable is not of practical value in
providing algorithms we shall see that it is an interesting measure of how
computable a set is.

Observation 2.14. The word problem of any finitely generated group G =
〈X : R〉 is coarsely computable.

Proof. If G is finite then the word problem is computable. Indeed, since
computability is independent of the particular presentation as long as it is
finitely generated, we can use the finite multiplication table presentation,
which shows that the word problem is even a regular language. Now if G
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is an infinite group, the set of words on (X ∪X−1)∗ which are not equal to
the identity in G has density 1 and hence is coarsely computable. (See, for
example, [19].) �

Proposition 2.15. There is a c.e. set which is coarsely computable but not
generically computable.

Proof. Recall that a c.e. set A is simple if A is immune. It suffices to con-
struct a simple set A of density 0, since any such set is coarsely computable
but not generically computable by Proposition 2.2. This is done by a slight
modification of Post’s simple set construction. Namely, for each e, enumer-
ate We until, if ever, a number > e2 appears, and put the first such number
into A. Then A is simple, and A has density 0 because for each e, it has at
most e elements less than e2. �

It is easily seen that the family of coarsely computable sets is meager
and of measure 0. In fact, if A is coarsely computable, then A is neither
1-generic nor 1-random. To see this, note first that if A is 1-random and C
is computable, then the symmetric difference A△C is also 1-random, and
the analogous fact also holds for 1-genericity. The result follows because
1-random sets have density 1/2 ([14], Proposition 3.2.13) and 1-generic sets
have upper density 1.

Theorem 2.16. There exists a c.e. set which is not generically similar
to any co-c.e. set and hence is neither coarsely computable nor generically
computable.

Proof. Let {We} be a standard enumeration of all c.e. sets. Let

A =
⋃

e∈ω

(We ∩Re)

Clearly, A is c.e. We first claim that A is not generically similar to any
co-c.e. set and hence is not coarsely computable. Note that

Re ⊆ A△We

since if n ∈ Re and n ∈ A , then n ∈ (A�We), while if n ∈ Re and n /∈ A,
then n ∈ (We�A). So, for all e, (A△We) has positive lower density, and
hence A is not generically similar to We. It follows that A is not coarsely
computable. Of course, this construction is simply a diagonal argument,
but instead of using a single witness for each requirement, we use a set of
witnesses of positive density.

Suppose now for a contradiction that A were generically computable. By
Proposition 2.2, let Wa, Wb be c.e. sets such that Wa ⊆ A, Wb ⊆ A, and
Wa ∪Wb has density 1. Then A would be generically similar to Wb since

A△Wb ⊆ Wa ∪Wb

andWa ∪Wb has density 0. This shows that A is not generically computable.
�
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Definition 2.17. If A ⊆ ω and {As} is a sequence of finite sets we write
limsAs = A, if for every n we have, for all sufficiently large s, n ∈ A if and
only if n ∈ As.

The Limit Lemma, due to J. Shoenfield, characterizes the sets A com-
putable from the halting problem 0′ as the limits of uniformly computable
sequences of finite sets.

Lemma 2.18 (The Limit Lemma). Let A ⊆ ω Then A ≤T 0′ if and only
if there is a uniformly computable sequence of finite sets {As} such that
limsAs = A.

We note that by Post’s Theorem, the sets Turing reducible to 0′ are
precisely the sets which are ∆0

2 in the arithmetical hierarchy.

Theorem 2.19. The set R(A) =
⋃

n∈ARn is coarsely computable if and
only if A ≤T 0′ .

Proof. First suppose that A ≤T 0′. Then by the Limit Lemma there is a
uniformly computable sequence {As} of finite sets such that limsAs = A.
To construct a computable set C generically similar to R(A) we do the
following. Any n is in a unique set Rk. Compute this k, so n ∈ R(A) if and
only if k ∈ A. We put n into C if and only if k is in the approximating set
An. This condition is computable. Now note that if n is sufficiently large
then k ∈ A if and only if k ∈ An. Hence

(C△R(A)) ∩Rk

is finite for all k. Let D = (C△R(A)). Then D ∩Rk has density 0 for all k
and thus D has density 0 by Lemma 2.6 on restricted countable additivity.
It follows that R(A) is coarsely computable.

Now suppose that R(A) is coarsely computable, that is, it is generically
similar to a computable set C. We need to show that A ≤T 0′ by finding a
uniformly computable sequence of finite sets {As} with limsAs = A.

Note that ρ(C) = ρ(R(A)) which exists, and ρ(C ∩Rn) = ρ(R(A) ∩Rn).
So if n ∈ A, then ρ(R(A) ∩ Rn) = ρ(Rn) = 2−(n+1) while if n /∈ A, then
ρ(Rn ∩R(A)) = 0. Thus, we can use our ability to approximate ρ(C ∩Rn)
to approximate A.

At stage s, for every n ≤ s, calculate

ρs(C ∩Rn) =
|(C ∩Rn)⌈s|

s+ 1
.

Put n into As if and only if this fraction is ≥ 1
2(2

−(n+1)). The sequence
{As} is uniformly computable. It converges to A since ρs(C ∩Rn) converges
to ρ(C ∩Rn) as s → ∞. �

In particular, if A is any set Turing reducible to 0′ but not computable
then R(A) is coarsely computable but not generically computable. We can
now prove the following theorem.
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Theorem 2.20. Every nonzero Turing degree contains a set which is not
coarsely computable.

Proof. If A is not Turing reducible to 0′, then R(A), which is Turing equiva-
lent to A, is not coarsely computable by the previous theorem. Now assume
that A is noncomputable and A ≤T 0′. We now apply Theorem 1.2 of [13]
which implies that every nonzero Turing degree a ≤ 0′ computes a function
f which is not majorized by any computable function. The argument is
now essentially a diagonalization argument using such an f ≤T A as a time
bound.

We now construct a set B ≤T f which is not coarsely computable. This
suffices since then

A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}

is a set Turing equivalent to A which is not coarsely computable.
For every pair 〈e, k〉 the requirement Pe,k is that if Φe is a total {0, 1}-

valued function, then there exists a j ≥ k such that Φe and the characteristic
function of B disagree on all points in the interval [2j , 2(j+1)). If all the Pe,k

are met, then the upper density of B△Φ−1(1) is at least 1
2 for each e with Φe

total and {0, 1}-valued. Hence B is not generically similar to the set whose
characteristic function is Φe.

For definiteness, set 0 /∈ B. We now determine B on each interval
[2j , 2j+1) in the natural order. Initially, no requirements are met. Sup-
pose that B has been defined on each interval [2i, 2i+1) for i < j. Say that
a requirement Pe,k requires attention if it is not yet met, j ≥ k, and

Φe,f(j)(x) ↓ for all x ∈ [2j , 2(j+1))

If there is no requirement Pe,k with 〈e, k〉 ≤ j which requires attention,

let B be empty on the interval [2k, 2k+1). Otherwise, let 〈e, k〉 be minimal
such that Pe,k requires attention. Make B(x) and Φe(x) disagree on all

x ∈ [2j , 2(j+1)), and declare Pe,k met (forever). In this case we say that Pe,k

receives attention.
We claim that all the requirements Pe,k are satisfied. Note that each such

requirement receives attention at most once. Suppose for a contradiction
that Pe,k is not met, so that Φe is total and {0, 1}-valued and Pe,k never
receives attention. Since there are only finitely many stages at which re-
quirements Pa for a < 〈e, k〉 receive attention, there are only finitely many
j such that Φe,f(j) is defined on all points in the interval [2j , 2j+1). Let g(j)

be the first stage such that Φe,g(j) is defined for all points in [2j , 2(j+1)).
Now g is a computable function, but g(j) ≥ f(j) for all sufficiently large j,
contradicting that f is not majorized by any computable function. �

The above proof is less uniform than the proof of the corresponding result
(Observation 2.11) for generic computability. More precisely, the proof of
Observation 2.11 shows that there is a fixed oracle Turing machine M such
that MA is a generically noncomputable set of the same Turing degree as A
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for every noncomputable set A, namely MA = R(A). However, we do not
know whether there is a fixed such M with the corresponding property for
coarse computability.

A real number r which is computable relative to 0′ is called a ∆0
2 real,

and it is well known that these are the reals whose binary expansion is
computable from 0′. It then follows from the Limit Lemma that a real
number r ∈ [0, 1] is ∆0

2 if and only if r = limnqn for some computable
sequence of rational numbers in the interval (0, 1).

Theorem 2.21. A real number r ∈ [0, 1] is the density of some computable
set if and only if r is a ∆0

2 real.

Proof. If A is computable then we can compute

qn = ρn(A) =
|{k : k ≤ n, k ∈ A}|

n+ 1

for all n. Thus, if ρ(A) = limn→∞ρn(A) exists, its value r is a ∆0
2 real.

We must now show that if r = limnqn is the limit of a computable se-
quence of rationals in the interval (0, 1), there is a computable set A with
ρ(A) = r. We define a computable increasing sequence {sn} of positive
integers such that

∣∣∣∣
|A⌈sn|

sn + 1
− qn

∣∣∣∣ ≤
1

n
and limn→∞

|A⌈sn|

sn + 1
= r.

Take s1 = 1 and put 0 in A. If A⌈sn is already defined there are two cases.

If |A⌈sn|
sn+1 < qn+1 find the least k such that

|A⌈sn|+ k

sn + k + 1
≥ qn+1.

(Such a k exists because qn+1 < 1.) Let sn+1 = sn + k and let A⌈sn+1 =
A⌈sn ∪ {sn + 1, . . . , sn + k}.

If |A⌈sn|
sn+1 ≥ qn+1 find the least k such that

|A⌈sn|

sn + k + 1
< qn+1.

Let sn+1 = sn + k and let A⌈sn+1 = A⌈sn. (We add no new elements to A.)
Since sn ≥ n we have |ρsn(A) − qn| ≤

1
n
for all n. It follows that ρsn(A)

approaches limn qn = r as n → ∞. Furthermore, by construction, ρk(A) is
monotone increasing or decreasing on each interval (sn, sn+1], so that ρk(A)
is between ρsn(A) and ρsn+1

(A) whenever sn < k < sn+1. Hence ρk(A) → r
as k → ∞, so ρ(A) = r.

�

It is easily seen that every c.e. set of upper density 1 has a computable
subset of upper density 1, and this makes it tempting to conjecture that
every c.e. set of density 1 has a computable subset of density 1. Our next
result is a refutation of this conjecture. This result has several important
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corollaries, and the technique of its proof will be used to show in Theorem
2.26 that there is a set which is generically computable but not coarsely
computable.

Theorem 2.22. There exists a c.e. set A of density 1 which has no com-
putable subset of density 1.

Proof. We will construct A so that it does not contain any co-c.e. subset of
density 1. We will heavily use our partition of unity {Rn}. To ensure that
A has density 1, we impose the following infinitary positive requirements:

Pn : Rn ⊆∗ A

where B ⊆∗ A means that B�A is finite. These requirements ensure that
A has density 1 because (if 0 ∈ A)

A = A ∩
⋃

n∈ω

Rn =
⋃

n∈ω

(A ∩Rn)

and the last union has density 0 by restricted countable additivity (Theorem
2.6).

Let {We} be a standard enumeration of all c.e. sets. We must ensure that
if We ⊆ A (i.e. We∪A = ω), then We does not have density 1, (i.e. We does
not have density 0). Since Re has positive density, it suffices to meet the
following negative requirement Ne: If We ∪ A = ω then We does not have
upper density 0 on Re.

The usefulness of the sets Re here is that the positive requirement Pe

puts only elements of Re into A and the negative requirement Ne keeps only
elements of Re out of A. Since the Re’s are pairwise disjoint, this eliminates
the need for the usual combinatorics of infinite injury constructions and
indeed allows the construction of A to proceed independently on each Re.
The idea of the proof is that we can make the density of A low on an interval
within Re by restraining A on that interval, and at the same time starting to
put the rest of Re into A. If eventually the interval is contained in We ∪A,
we have found an interval where We has high density and can start over
with a new interval, Otherwise, We ∪ A 6= ω, and we meet the requirement
vacuously with a finite restraint.

We construct each subset Ae = A ∩ Re, the e-th part of A, in stages.
Initially, each Ae,0 is empty and the constraint r(e, 0) is the least element of
Re.

At stage s, check whether or not We,s+1 ∪ Ae,s fills up Re below r(e, s),
that is, whether or not Ae,s∪We,s+1 ⊇ Re⌈r(e, s). If not, then Ae,s+1 is Ae,s

together with the first element of Re which is greater than r(e, s) and which
is not already in Ae,s. Set r(e, s + 1) = r(e, s) in this case.

If Ae,s∪We,s+1 ⊇ Re⌈r(e, s), then Ae,s+1 is Ae,s∪(Re⌈r(e, s)). Now choose
r(e, s + 1) large enough so that r(e, s + 1) > r(e, s) and Ae,s+1 has density
less than or equal to 1/2 on Re⌈r(e, s+ 1).

For each e there are two possibilities. The first is that limsr(e.s) = αe ∈
ω. In this case note that all elements of Re which are greater than αe are put
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into Ae = A∩Re. Thus we indeed have Re ⊆
∗ A. The negative requirement

Ne is met vacuously because We ∪A 6= ω.
The second possibility is that limsr(e, s) = ∞. In this case We ∪Ae fills

up arbitrary large initial intervals of Re. So Re ⊆ A by construction and
We has positive upper density on Re since it must supply at least 1/2 of
the elements of arbitrarily large initial intervals of Re. Namely, when r(e, s)
takes on a new value, at most half of the elements of Re less than or equal to
r(e, s) are in A, and no elements of Re less than or equal to r(e, s) enter A
until every number in Re less than or equal to r(e, s) has been enumerated
in We ∪ A, so at least half of these numbers have been enumerated in We.
This process occurs for infinitely many values of r(e, s). �

This theorem has two immediate corollaries. The first follows from the
fact that any c.e. set of density 1 is generically computable.

Corollary 2.23. Generically computable sets need not be densely approx-
imable by computable sets.

Corollary 2.24. There exists a generically computable set A of density 1
such that no generic algorithm for A has computable domain.

Proof. Let A be the c.e. set of the Theorem above. If Φ were a generic
algorithm for A with computable domain then {x|Φ(X) ↓= 1} would be a
computable subset of A with density 1, a contradiction. �

Observation 2.25. A set A is generically computable by a partial algo-
rithm with computable domain if and only if A is densely approximable by
computable sets.

Theorem 2.26. There is a generically computable c.e. set A which is not
coarsely computable.

Proof. The proof is similar to that of the previous theorem. We will con-
struct disjoint c.e. sets A0, A1 such that

A0 ∪A1 has density 1 and A1 is not coarsely computable.

Note that both A0 and A1 are generically computable since they are
disjoint c.e. sets and their union has density 1. So it will follow that A1 is
generically computable but not coarsely computable. We now have positive
requirements

Pe : Re ⊆
∗ (A0 ∪A1)

and negative requirements

Ne : If Φe is total then Φ−1
e (1)△A1 is not of density 0.

Satisfaction of the positive requirement suffices to ensure that A0 ∪ A1

has density 1 as in the proof of Theorem 2.26. It is clear that satisfaction of
all of the negative requirements implies that A1 is not coarsely computable.
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We again have a restraint function r(e, s). Initially, each Ae,0 is empty
and the restraint r(e, 0) is the least element of Re. At stage s, for each e ≤ s,
check whether

Domain (Φe,s+1) ⊇ Re⌈r(e, s)

If so, let F be the set of elements of Re⌈r(e, s) which are not already in
A0 ∪ A1. Put all elements of F ∩ Φ−1

e (1) into A0 and all other elements of
F into A1. Since by construction at least half of the elements of Re⌈r(e, s)
are in F , and F ⊆ Φ−1

e (1)△A1, this action ensures that at least half of
the elements of Re⌈r(e, s) are in Φ−1

e (1)△A. Set r(e, s + 1) to be the least
element of Re such that at most half of the elements of Re⌈r(e, s+1) are in
A0,s+1 ∪A1,s+1.

If

Domain (Φe,s+1) + Re⌈r(e, s)

then put into A1 the least element of Re which is greater than r(e, s) and
which is not already in A1. Set r(e, s+ 1) = r(e, s).

The proof that the positive requirements Pe are met is exactly as in the
proof of Theorem 2.26. Hence A0 ∪A1 has density 1.

It remains to show that each negative requirement Ne is met. Suppose
that Φe is total. Then by construction, there are infinitely many s with
r(e, s + 1) > r(e, s), and so lims r(e, s) = ∞. For each such s, the con-
struction guarantees that at least half of the elements of Re⌈r(e, s) are in
Φ−1
e (1)△A1. Thus the latter set has lower density at least 1

2 on Re and
hence has positive lower density on ω.

�

3. Relative Generic Computability

As almost always in computability theory, the previous results relativize
to generic computability using an arbitrary oracle.

Definition 3.1. A set B is generically A-computable if there exists a generic
description Φ of B which is a partial computable function relative to A. Also,
B is coarsely A-computable if it is generically similar to a set computable
from A.

Using Post’s Theorem, we see that a set A is generically 0(n)-computable
if and only if it is densely approximable by Σ0

n+1 sets and A is coarsely 0(n)-

computable if and only if it is generically similar to a ∆0
n+1 set. Thus the

previous results show that for every n ≥ 0 there is a Σ0
n+1 set of density 1

which is not densely approximable by ∆0
n+1 sets. Also, there are generically

0(n)-computable sets which are not coarsely 0(n)-computable and coarsely
0(n)-computable sets which are not generically 0(n)-computable.

Definition 3.2. Given a set A the generic class Ĝ(A) of A is the family
of all subsets of ω which are generically A-computable, that is, generically
computable by oracle Turing machines with an oracle for A.
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Observation 3.3. A ≤T B if and only if Ĝ(A) ⊆ Ĝ(B).

Proof. It is clear that if A ≤T B then Ĝ(A) ⊆ Ĝ(B). On the other hand,

if Ĝ(A) ⊆ Ĝ(B) then R(A) is generically computable from B but a generic
computation of R(A) allows one to compute A. Hence A ≤T B. �

So A ≡T B if and only if Ĝ(A) = Ĝ(B) and if a is a Turing degree then

Ĝ(a) is a well-defined generic class. If A <T B then Observation 1.7 shows

that Ĝ(A) is strictly contained in Ĝ(B).

Observation 3.4. Let (D,≤T ) be the set of all Turing degrees partially
ordered by Turing reducibility and let (G,⊆) be the family of all generic
classes partially ordered by set inclusion. Then the function A from D to

G defined by a 7→ Ĝ(a) is an order isomorphism.

Proof. The remarks above show that A is well-defined, 1 − 1, and order-
preserving and it is onto by definition. �

Recall that a Turing degree a is minimal if a > 0 and there is no Turing
degree b with 0 < b < a. A theorem of Spector [2] shows that there exist
uncountably many minimal Turing degrees. We can analogously define a

generic class Ĝ(A) to be minimal if Ĝ(A) ' Ĝ(∅) and there is no generic

class Ĝ(B) with Ĝ(∅) & Ĝ(B) & Ĝ(A). It would seem to be difficult to
directly construct minimal generic classes but the order isomorphism A gives
the following corollary of Spector’s theorem.

Corollary 3.5. There are uncountably many minimal generic classes.

It is important to note that relative generic computability does not give
a notion of reducibility because it is not transitive. It is generally false that

if A ∈ Ĝ(B) and B ∈ Ĝ(C) then A ∈ Ĝ(C). For example, let A and B
be Turing equivalent sets such that B is generically computable and A is
not generically computable. (We have observed that every nonzero Turing

degree contains such sets A and B.) Then A ∈ Ĝ(B) and B ∈ Ĝ(∅), but

A /∈ Ĝ(∅). We introduce a related notion which is transitive in the next
section.

4. Generic Reducibility

The failure of transitivity just noted for relativized generic computability

is not surprising because the definition of A ∈ Ĝ(B) involves using a total
oracle for B to produce only a generic computation of A. This is analogous
to the failure of transitivity for the relation “c.e. in”, where an oracle for B
is used to produce only an enumeration of A. The natural way to achieve
transitivity is to have the oracle and the output be of a similar nature. The
notion of enumeration reducibility (≤e) has been well studied. The intuitive
concept of enumeration reducibility is that A ≤e B if there is a fixed oracle
Turing machine M which, given a listing of B in any order on its oracle tape,
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produces a listing of A. From this point of view, when the machine lists a
number n in A, it has used the membership of k in B only for a finite set D
of values of k, and we can effectively list the set of pairs (n,D) for which this
occurs. This leads to a more convenient formal definition of enumeration
reducibility where we replace oracle Turing machines by c.e. sets of codes of
such pairs.

Definition 4.1. An enumeration operator is a c.e. set. If W is an enu-
meration operator, the elements of W are viewed as coding pairs 〈n,D〉,
where n ∈ ω and D is a finite subset of ω identified with its canonical index∑

k∈D 2k. We view W as the mapping from sets to sets

X → W (X) := {n : (∃D)[〈n,D〉 ∈ W & D ⊆ X]}

We can now use enumeration operators to formally define enumeration
reducibility.

Definition 4.2. Y is enumeration reducible to X (written Y ≤e X) if
Y = W (X) for some enumeration operator W .

It is well known that the enumeration operators are closed under com-
position and hence that enumeration reducibility is transitive. Also, each
enumeration operator W is obviously ⊆-monotone in the sense that if U ⊆ V
then W (U) ⊆ W (V ).

We are now ready to define generic reducibility. Recall that a generic
description of a set A is a partial function Ψ which agrees with the charac-
teristic function of A on its domain and which has a domain of density 1.
If Ψ is a partial function, let γ(Ψ) = {〈a, b〉 : Ψ(a) = b}, so that γ(Ψ) is a
set of natural numbers coding the graph of Ψ. A listing of the graph of a
generic description of a set A is called a generic listing for A. Intuitively,
the idea is that A is generically reducible to B if there is a fixed oracle
Turing machine M which, given any generic listing for B on its oracle tape,
generically computes A. It is again convenient to use enumeration operators
in the formal definition.

Definition 4.3. A is generically reducible to B (written A ≤g B) if there
is an enumeration operator W such that, for every generic description Ψ of
B, W (γ(Ψ)) = γ(Θ) for some generic description Θ of A.

Note that ≤g is transitive because enumeration operators are closed un-
der composition. (It is also easy to check transitivity from the intuitive
definition.) Thus generic reducibility leads to a degree structure as usual.

Definition 4.4. The sets A and B are generically interreducible, written
A ≡g B, if A ≤g B and B ≤g A. The generic degree of A, written degg(A),
is {C : C ≡g A}. Of course, the generic degrees are partially ordered by the
ordering induced by ≤g.

The generic degrees have a least element 0g, and the elements of 0g are
exactly the generically computable sets. The generic degrees form an upper



GENERIC COMPUTABILITY, TURING DEGREES AND ASYMPTOTIC DENSITY 17

semi-lattice, with join operation induced by ⊕ where A ⊕ B = {2n : n ∈
A}∪{2n+1 : n ∈ B}. The following easy result gives another way in which
the generic degrees resemble the Turing degrees.

Proposition 4.5. Every countable set of generic degrees has an upper bound.

Proof. Let sets A0, A1, . . . be given. We must produce a set B with An ≤g B
for all n. Let the function fn : ω → Rn enumerate Rn in increasing order
and define B = ∪nfn(An). Note that since fn is 1 − 1 and the Rn are
disjoint, we have B(fn(x)) = An(x). To see that An ≤g B, let W be
an enumeration operator such that W (γ(Ψ)) = γ(Ψ ◦ fn) for every partial
function Ψ. We must show that if Ψ is a generic description of B then
Ψ ◦ fn is a generic description of An, First, note that if Ψ(fn(x)) ↓, then
Ψ(fn(x)) = B(fn(x)) = A(x), and hence Ψ◦fn agrees with the characteristic
function of An on its domain D. It remains to show that D has density 1.

Since Ψ is a generic description, its domain D̂ has density 1. The increasing

bijection fn from ω to Rn is also an increasing bijection from D to D̂ ∩Rn.

To show that D has density 1, it thus suffices to show that D̂ ∩ Rn has
density 1 in Rn. This follows from the general fact that if C is any generic
set and E is any set of positive density, then C ∩ E is generic in E. (Just
check that E \ C is negligible in E.) �

We do not know however, whether every generic degree bounds only
countably many generic degrees.

The Turing degrees can be embedded into the enumeration degrees by the
mapping which takes the Turing degree of a set A to the enumeration degree
of γ(χA). We now give an analogous embedding of the Turing degrees into
the generic degrees.

Lemma 4.6. A ≤T B if and only if R(A) ≤g R(B).

Proof. IfR(A) ≤g R(B) then R(A) is generically computable from a generic
listing of R(B) and thus computable from B. But a generic computation
of R(A) allows one to compute A. Hence A ≤T B. A generic listing of
R(B) allows one to compute B uniformly. Hence if A ≤T B then R(A) is
uniformly computable from any generic listing ofR(B) and we haveR(A) ≤g

R(B). �

So A ≡T B if and only if R(A) ≡g R(B), and if a is a Turing degree then
degg(R(a)), defined as degg(R(A)) for A ∈ a, is well-defined.

Theorem 4.7. Let (D,≤T ) be the set of all Turing degrees partially ordered
by Turing reducibility and let (I,≤g) be the set of all generic degrees partially
ordered by generic reducibility. Then the function B from D to I defined by
a 7→ degg(R(a)) is an order embedding.

Proof. The remarks above show that B is well-defined, 1 − 1, and order-
preserving. �
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It follows at once from the above observation and the existence of an
antichain of Turing degrees of the size of the continuum ([17], Chapter 2)
that there is an antichain of generic degrees of the size of the continuum.

Theorem 4.8. The order embedding B from the Turing degrees to the
generic degrees defined above is not surjective.

We must show that there is a set A such that there is no set B with
A ≡g R(B). Our first task is to give conditions on A (without mentioning
any other sets) which imply that there is no set B with A ≡g R(B). These
conditions involve enumeration reducibility, for which we follow Cooper ([2],
Sections 11.1 and 11.3). An enumeration degree a is called total if there is a
total function f such that its graph γ(f) has degree a. An enumeration de-
gree a is called quasi-minimal if a is nonzero and every nonzero enumeration
degree b ≤e a is not total. Thus, a set A has quasi-minimal enumeration
degree if and only if A is not c.e. and every total function f with γ(f) ≤e A
is computable. The next lemma gives the desired conditions on A.

Lemma 4.9. Suppose that A is a set of density 1 such that A is not gener-
ically computable and the enumeration degree of A is quasi-minimal. Then
there is no set B such that A ≡g R(B).

Proof. Suppose for a contradiction that A satisfies the above hypotheses
and A ≡g R(B). Let SA be the semicharacteristic function of A, that is,
SA(n) = 1 if n ∈ G and SA(n) is undefined otherwise. Note that A ≡e γ(SA),
and SA is a generic description of A since A has density 1. SinceR(B) ≤g A,
by the definition of generic reducibility, there is a generic description Θ of
R(B) such that γ(Θ) ≤e SA. However, as we have noted, B is computable
by a fixed oracle machine from any generic description of R(B). Hence, if
χB is the characteristic function of B, we have

γ(χB) ≤e γ(Θ) ≤e SA ≤e A.

Therefore, γ(χB) ≤e A. Since the enumeration degree of A is quasi-minimal
and χB is total, it follows that χB and hence B and R(B) are computable.
As A ≤g R(B), we conclude that A is generically computable, which is the
desired contradiction. �

Proof. To prove the theorem must now construct a set A satisfying the
hypotheses of the above lemma. We use a modified version of Cooper’s
elegant exposition of Medvedev’s proof of the existence of quasi-minimal e-
degrees. ([2], Theorem 11.4.2). In order to ensure that A has density 1 we
meet the following positive requirements ensuring that A has density 1:

Pn : Rn ⊆∗ A

In order to ensure that A is not generically computable, we satisfy the
following requirements:

Sn : Φn does not generically compute A
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Note that meeting all the requirements Pn and Sn ensures that A is not
c.e. since any c.e. set of density 1 is generically computable.

Hence, in order to ensure that the e-degree of A is quasi-minimal, it
suffices to ensure that every total function f with γ(f) ≤e A is computable.
Our standard listing {We} gives us a listing of enumeration operators. We
will meet the following requirements:

Un : If Wn(A) = γ(f) where f is a total function, then f is computable

We identify partial functions with their graphs. For example, if θ and
µ are partial functions, then θ ⊇ µ means that the graph of θ contains
the graph of µ. We say that θ and µ are compatible if they agree on the
intersection of their domains, or, equivalently, θ ∪ µ is a partial function.
A string is a {0, 1}-valued partial function σ whose domain is equal to
{0, 1, . . . , k − 1} for some k called the length of σ.

At each stage s in the construction of A, we will have a partial computable
function θs (taking values in {0, 1}) which represents the part of the charac-
teristic function of A constructed by the beginning of stage s. We will have
θs+1 ⊇ θs for all s, and the characteristic function of A will be ∪sθs. The
domain of θs will be a computable set having at most finitely elements not
in ∪i<sRi. Further, there will be only finitely many x with θs(x) = 0. Let
θ0 be the empty partial function.

If s = 3n, then define θs+1 ⊇ θs by setting θs+1(x) = 1 for all x ∈ ∪i<sRi

such that θs(x) 6= 0. These steps will ensure that ∪sθs is total and each
Ri ⊆

∗ A.
If s = 3n+1 we diagonalize against Φn. If there exists an x ∈ Rs�dom(σs)

with Φn(x) defined then let σs+1(x) have a value of 0 or 1 which is different
from Φn(x). If no such x exists let σs+1 = σs. This ensures that the
requirement Sn is met because Rs ∩ dom(θs) is finite and Rs has positive
density.

If θ is a partial function, let θ−1(1) = {x : θ(x) = 1}.
If s = 3n+ 2, there are two cases.
Case 1. There exists a string σs compatible with θs and numbers x, y1,

and y2 such that y1 6= y2 and 〈x, y1〉, 〈x, y2〉 ∈ Wn(σ
−1
s (1)).

In this case, let θs+1 = θs∪σs, ensuring that Wn(A) is not a single valued
function.

Case 2. Otherwise. Let θs+1 = θs. We must show that the require-
ment Un is met in this case. Suppose that Wn(A) = γ(f) where f is a
total function. We must show that f is computable. Note that the set of
strings compatible with θs is computable for fixed s. Given x, to compute
f(x) effectively, search effectively for a number y and a string σ which is
compatible with θs such that 〈x, y〉 ∈ Wn(σ

−1(1)). We claim that such σ, y
exist, and the only possible value for y is f(x), which suffices to show that
f is computable. First, observe that there is a string σ compatible with θs
with 〈x, f(x)〉 ∈ Wn(σ

−1(1)) since 〈x, f(x)〉 ∈ Wn(A) and A ⊇ θs. Thus,
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the desired σ and y exist, in fact with y = f(x). It remains to show that if
〈x, y〉 ∈ Wn(τ

−1(1) where τ is a string compatible with θs, then y = f(x).
Let µ be a string compatible with θs such that µ−1(1) ⊇ σ−1(1) ∪ τ−1(1).
(To obtain µ, let b be the greater of the length of σ and the length of τ , and,
for x < b, set µ(x) = θs(x) if x is in the domain of θs(x), and otherwise let
µ(x) = 1.) Then, by the monotonicity of enumeration operators, 〈x, f(x)〉
and 〈x, y〉 both belong to Wn(τ

−1(1)). Since Case 1 does not apply, we
conclude that y = f(x), which completes the proof. �

5. Further results and open questions

The authors, in ongoing joint work with Rod Downey, have obtained
further results in the area and are working on open questions. The section
is a brief update on this project. Full results and proofs will appear in a
later paper [3].

One aspect of the project is the study of the connection between com-
putability theory and asymptotic density. Recall that it was shown in The-
orem 2.22 that there is a c.e. set A of density 1 which has no computable
subset of density 1. In that proof, the positive requirements Rn ⊆∗ A had an
infinitary nature, and this makes one suspect that no such A is low. (A set
A is called low if A′ ≤T 0′ or, in other words, every A-c.e. set is computable
from the halting problem.) Indeed this is the case, and we also show that
every nonlow c.e. set computes such an A.

Theorem 5.1. [3] The following are equivalent for any c.e. degree a:

(1) The degree a is not low.
(2) There is a c.e. set A of degree a such that A has density 1 but no

computable subset of A has density 1.

Another line of results related to Theorem 2.22 involves weakening the
requirement that the subsets have density 1. The following result is easy.

Theorem 5.2. [3] If A is a c.e. set of upper density at least r, where r is
a computable real, then A has a computable subset of upper density at least
r. In particular, every c.e. set of upper density 1 has a computable subset
of upper density 1.

We know by Theorem 2.22 that this result fails for lower density even in
the case r = 1, but we show that a slightly weaker version holds for lower
density.

Theorem 5.3. [3] If A is a c.e. set and r is a real number, and the lower
density of A is at least r, then for each ǫ > 0 A has a computable subset
whose lower density at least r − ǫ. In particular, every c.e. set of density 1
has computable subsets of lower density arbitrarily close to 1.

In Theorem 2.21 we showed that the densities of computable sets are
precisely the ∆0

2 reals in [0, 1]. In [3] we consider analogous results for
upper and lower densities, and for c.e. sets. Call a real number r left-Π0

n if
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{q ∈ Q : q < r} is Π0
n, i.e. the lower cut of r in the rationals is Π0

n. An
analogous definition holds for other levels of the arithmetic hierarchy.

Theorem 5.4. [3]. Let r be a real number in the interval [0, 1].

(1) r is the lower density of a computable set if and only if r is left Σ0
2

(2) r is the upper density of a computable set if and only if r is left Π0
2

(3) r is the density of a c.e. set if and only if r is left Π0
2

(4) r is the lower density of a c.e. set if and only if r is left Σ0
3

(5) r is the upper density of a c.e. set if and only if r is left Π0
2

The other main topic of our ongoing project with Downey is the structure
of the generic degrees and the generic classes. However, here we are have
not yet been able to answer some questions which would seem to be basic.

Question 1. Do there exist noncomputable sets A,B whose generic classes
form a minimal pair in the sense that every set generically computable from

both A and B is generically computable? (That is, Ĝ(A) ∩ Ĝ(B) = Ĝ(∅).)

So far, our results on the above question have a negative character. A set
A is hyperimmune if A is infinite and for every computable sequence {Fi}i∈ω
of pairwise disjoint finite sets, A ∩ Fi = ∅ for some index i.

Theorem 5.5. [3] Let A and B be sets such that A ∪ B is hyperimmune.
Then A and B do not form a minimal pair in the sense of the above question.

This result shows that minimal pairs for relative generic computability (if
they exist at all) are far rarer than for Turing reducibility.

Corollary 5.6. [3] The set of pairs (A,B) such that Ĝ(A) ∩ Ĝ(B) = Ĝ(∅)
is meager and of measure 0 in 2ω × 2ω.

Corollary 5.7. [3] If A and B are ∆0
2 sets, then A,B do not form a minimal

pair for relative generic computability in the above sense.

Further, we do not know whether there exist minimal degrees or minimal
pairs for generic reducibility. Since there exist hyperimmune sets of minimal
Turing degree, the following result shows that our embedding B of the Tur-
ing degrees into the generic degrees need not map minimal Turing degrees
to minimal generic degrees.

Theorem 5.8. [3] If a is a Turing degree and a contains a hyperimmune
set, then R(a) is not a minimal generic degree.
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