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DIAGRAMS FOR CONTACT 5-MANIFOLDS

FAN DING, HANSJÖRG GEIGES, AND OTTO VAN KOERT

Abstract. According to Giroux, contact manifolds can be described as open
books whose pages are Stein manifolds. For 5-dimensional contact manifolds
the pages are Stein surfaces, which permit a description via Kirby diagrams.
We introduce handle moves on such diagrams that do not change the corre-
sponding contact manifold. As an application, we derive classification results
for subcritically Stein fillable contact 5-manifolds and characterise the standard
contact structure on the 5-sphere in terms of such fillings. This characterisa-
tion is discussed in the context of the Andrews–Curtis conjecture concerning
presentations of the trivial group. We further illustrate the use of such dia-
grams by a covering theorem for simply connected spin 5-manifolds and a new
existence proof for contact structures on simply connected 5-manifolds.

1. Introduction

The aim of this paper is to develop a diagrammatic language for 5-dimensional
contact manifolds. This is motivated by (but does not depend on) the deep result
of Giroux [18], which says that any closed contact manifold (in any odd dimension)
admits an open book decomposition adapted to the contact structure, where the
pages are Stein manifolds and the monodromy is a symplectic diffeomorphism. In
the case of a 5-dimensional contact manifold, the pages are Stein surfaces. These
permit a description via Kirby diagrams, where the attaching circles for the 2-
handles are Legendrian knots in the standard contact structure on the boundary
#kS

1 × S2 of the 1-handlebody. Provided the monodromy is given as a product of
Dehn twists along Lagrangian spheres corresponding to the 2-handles, this too can
be encoded in the Kirby diagram.

Since Legendrian knots are faithfully represented by their front projection in the
2-plane, we obtain a description of 5-manifolds in terms of 2-dimensional diagrams.

The combination of stabilisations of the open book with handle slides in the Stein
page leads to a couple of moves on such diagrams that do not change the contact
5-manifold. These moves are introduced in Section 4.1, after a brief discussion
of open books and their monodromy in Sections 2 and 3. We then present two
simple applications of these moves to diagrams without 1-handles. In Section 4.2
we describe an integer family of contact structures on S2×S3 and S2 ×̃S3, the non-
trivial S3-bundle over S2. We also give a diagrammatic proof of the diffeomorphism

S2 ×̃S3 #S2 ×̃S3 ∼= S2 × S3 #S2 ×̃S3

and its contact analogue. In Section 4.3 we classify contact 5-manifolds that admit
Stein fillings made up of a single 0-handle and 2-handles only.

In Section 5 we turn our attention to general subcritically Stein fillable contact
5-manifolds. These can be described by open books with trivial monodromy, whose
diagrammatic representations are particularly tractable. We show how to imple-
ment the Tietze moves on presentations of the fundamental group as diagrammatic
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moves. As an application, we prove that subcritically fillable contact 5-manifolds
are classified by their fundamental group, up to connected sums with S2 × S3 and
S2 ×̃S3 (with their standard contact structures), see Theorem 5.3. There is a
corresponding classification of the subcritical Stein fillings (Corollary 5.4).

Roughly speaking, these results can be phrased as saying that 6-dimensional
compact subcritical Stein manifolds are determined by topological data. This con-
trasts sharply with the general situation for Stein manifolds. In any even dimension
≥ 8 there are countably many pairwise distinct Stein manifolds of finite type, all
diffeomorphic to Euclidean space; this was proved by McLean [30], building on
earlier work of Seidel and Smith [34].

In Section 6 we specialise to subcritical Stein fillings of the 5-sphere and give a
characterisation of the standard contact structure on S5 in terms of such fillings. We
discuss the relevance of this result in the context of the Andrews–Curtis conjecture
concerning presentations of the trivial group.

Finally, in Section 7 we exhibit diagrams for some special simply connected 5-
manifolds. These diagrams are then used to show that every 5-dimensional simply
connected spin manifold is a double branched cover of the 5-sphere. A further
application is a new proof that every simply connected 5-manifold admits a contact
structure in each homotopy class of almost contact structures.

2. Open book decompositions

In this section we review the basic aspects of the Giroux correspondence between
contact structures and open books. We describe three essential operations on open
books: Dehn–Seidel twist, stabilisation, and open book connected sum. In the last
part of this section we recall how to compute the homology of open books.

2.1. Open books. Recall that a compact Stein manifold is a compact complex
manifold Σ admitting a strictly plurisubharmonic function f : Σ → R that is con-
stant on the boundary ∂Σ and has no critical points there. Then the exact 2-form
i∂∂f defines a symplectic structure on Σ compatible with the complex structure.
Notice that compact Stein manifolds are in particular of finite type, i.e. they have
finite handlebody decompositions.

According to a fundamental theorem of Giroux [18], any cooriented contact
structure on a closed manifold is supported by an open book decomposition of
that manifold, where the pages are compact Stein manifolds and the monodromy
is symplectic. For the purposes of the present article it suffices to understand how
one finds a contact structure adapted to a given open book decomposition. Here
we briefly recall this construction.

Let (Σ, ω = dλ) be a compact Stein manifold, and let ψ be a symplectomorphism
of (Σ, ω) equal to the identity near ∂Σ. By a lemma of Giroux, cf. [16, Lemma 7.3.4],
we may assume without loss of generality that the symplectomorphism is exact, that
is, ψ∗λ = λ+ dh for some smooth function h : Σ → R+.

The mapping torus

A := Σ× R/(x, ϕ) ∼ (ψ(x), ϕ − h(x))

carries the contact form λ + dϕ. Since ψ equals the identity near ∂Σ, we can glue
A to B := ∂Σ × D2 along their common boundary ∂Σ × S1. In terms of polar
coordinates (r, ϕ) on D2, one can define a contact form on B by the ansatz

h1(r)λ|∂Σ + h2(r) dϕ.
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With the functions h1 and h2 chosen as in Figure 1, this will indeed be a con-
tact form that glues smoothly with λ + dϕ on A, resulting in a contact form α
on M := A ∪∂ B. This description of the manifold M is called an open book

decomposition. The codimension 2 submanifold ∂Σ×{0} ⊂ B ⊂M is called the
binding of the open book. Up to diffeomorphism, A can be identified with

Σ× [0, 2π]/(x, 2π) ∼ (ψ(x), 0).

In terms of this description, the pages of the open book are the codimension 1
submanifolds

Σ× {ϕ} ∪ ∂Σ× {reiϕ ∈ D2 : r ∈ [0, 1]},

which are diffeomorphic copies of Σ. The map ψ is called the monodromy of the
open book. For more details see [16, Sections 4.4.2 and 7.3].

1/2 1/2

h1 h2

r r

Figure 1. The functions h1 and h2.

It is not too difficult to see that the resulting contact manifold (M, kerα) is
determined, up to contactomorphism, by Σ and ψ. In fact, it is enough to know
the symplectomorphism type of the completion of Σ in the sense of [13], see [18,
Proposition 9]. For a compact Stein manifold, the completion is simply the corre-
sponding open Stein manifold. We are therefore justified in denoting this contact
manifold (M, kerα) by Open(Σ, ψ) and call it a contact open book. When M
is 5-dimensional, the pages Σ of the open book are Stein surfaces, which allow a
description in terms of Kirby diagrams. This description of contact 5-manifolds
will form the basis of our discussion.

2.2. Dehn–Seidel twists. Let L ∼= Sn be a Lagrangian sphere in a compact
Stein manifold (Σ, dλ) of real dimension 2n. By the Weinstein neighbourhood
theorem [37] there is a neighbourhood of L symplectomorphic to the cotangent
bundle T ∗Sn with its canonical symplectic structure dλcan, which is defined as
follows. Using Cartesian coordinates (q,p) ∈ Rn+1 × Rn+1, we can describe the
cotangent bundle T ∗Sn ⊂ R2n+2 by the equations

q · q = 1 and q · p = 0;

the canonical 1-form is given by λcan = p dq.
For each k ∈ Z, one can define a so-called k-fold Dehn twist

τk : (T ∗Sn, dλcan) −→ (T ∗Sn, dλcan)

as follows. First consider the normalised geodesic flow σt on T
∗Sn \ Sn given by

σt(q,p) =

(

cos t |p|−1 sin t
−|p| sin t cos t

)(

q

p

)

.
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Then set

τk(q,p) = σgk(|p|)(q,p),

where r 7→ gk(r) is a smooth function that interpolates monotonically between kπ
near r = 0 and 0 for large r. For p = 0 we read this as τk(q, 0) = ((−1)kq, 0). Then
τk is an exact symplectomorphism of (T ∗Sn, dλcan), see [27], equal to the identity
for |p| large. This allows us to regard τk as a symplectomorphism of Σ. Viewed
this way, τk is called a k-fold Dehn twist along L ⊂ Σ. The map τ1 is called a
right-handed Dehn (or Dehn–Seidel) twist [32, Section 6], cf. [33]; for n = 1 this
coincides with the classical notion of a Dehn twist.

2.3. Stabilisations. Suppose we are given a contact manifold Open(Σ, ψ) and a
properly embedded Lagrangian disc L ⊂ Σ with Legendrian boundary ∂L ⊂ ∂Σ.
We can construct a Stein manifold Σ′ by attaching an n-handle to Σ along ∂L. This
new Stein (and hence symplectic) manifold contains a Lagrangian sphere L′, given
as the union of L and the core of the n-handle. Let τL′ be a right-handed Dehn
twist along L′. The contact manifold Open(Σ′, ψ ◦ τL′) is called a right-handed

stabilisation of Open(Σ, ψ) along L.
Giroux has announced the following result.

Proposition 2.1 (Giroux). A right-handed stabilisation of Open(Σ, ψ) does not
change its contactomorphism type. �

For a detailed proof see [26]; here is the main idea. The Legendrian sphere
∂L ⊂ ∂Σ in the binding of the open book is an isotropic sphere in the ambient
contact manifold Open(Σ, ψ). So the attaching of a handle to each page along
∂L may be seen as a contact surgery (in the sense of [11, 38], cf. [16]) along this
isotropic sphere, where the necessary trivialisation of the symplectic normal bundle
of ∂L in Open(Σ, ψ) is provided by the trivialisation of the normal bundle of the
binding ∂Σ in the open book. Performing a right-handed Dehn twist along the
Lagrangian sphere L′ in the new page Σ′ may be regarded as a Legendrian surgery
on L′ ⊂ Open(Σ′, ψ), see Theorem 7.2 below. This second surgery can be seen to
cancel the first, even on the level of symplectic handle attachments.

2.4. Book connected sum. A connected sum operation for open books has been
described in [28]. Let Open(Σi, ψi), i = 1, 2, be two open books of dimension
2n + 1. We write ∂Σi for the binding. One can form the connected sum of these
two open books by cutting out discs D2n+1

i embedded in such a way that the pair

(D2n+1
i , D2n+1

i ∩ ∂Σi) is diffeomorphic to the standard disc pair (D2n+1, D2n−1).
Then the connected sum

Open(Σ1, ψ1)#Open(Σ2, ψ2)

is diffeomorphic to

Open(Σ1♮Σ2, ψ1♮ψ2),

where Σ1♮Σ2 denotes the boundary connected sum of the pages, and ψ1♮ψ2 is the
obvious map on this boundary connected sum that restricts to ψi on Σi.

This construction is compatible with the contact structures on these open books
if Σ1♮Σ2 is interpreted as the boundary connected sum of Stein or symplectic mani-
folds as in [11, 38], see [24].
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2.5. Homology of open books. The homology of an open bookM = A∪∂B can
easily be computed in terms of the homology of the page Σ and the action of the
monodromy ψ on homology. This will turn out to be especially useful in the dis-
cussion of simply connected 5-manifolds, whose diffeomorphism type is determined
by homological data.

We only consider this 5-dimensional case, and we assume for simplicity that Σ
is composed of one 0-handle and only 2-handles. With Q denoting the intersection
form on H2(Σ), one finds that H1(∂Σ) ∼= cokerQ, cf. [5, pp. 427–8]. This is the
essential part of the homology of B ≃ ∂Σ.

We briefly recall the argument for this statement about H1(∂Σ), since we need
explicit information about the homological generators in the proof of Proposition 7.1
below. The homology H2(Σ) is isomorphic to Zm, with m denoting the number
of 2-handles, freely generated by the surfaces obtained by gluing a Seifert surface
of each attaching circle in S3 = ∂D4 with the core disc of the corresponding 2-
handle. The relative homology group H2(Σ, ∂Σ) is likewise isomorphic to Zm;
here the generators are meridional discs of the attaching circles whose boundary
lies on the boundary of the 2-handle. The homology H1(∂Σ) is generated by the
meridians of the attaching circles, i.e. the images of the generators of H2(Σ, ∂Σ)
under the boundary homomorphism. In terms of the described generators, the
homomorphism H2(Σ) → H2(Σ, ∂Σ) is given by the intersection form Q. The
result H1(∂Σ) ∼= cokerQ now follows from the homology exact sequence of the pair
(Σ, ∂Σ).

The homology of the Σ-bundle A over S1 can be computed using the Wang
sequence [31, Lemma 8.4]. The relevant part of this sequence looks as follows.

. . . −→ H3(A) −→ H2(Σ)
ψ∗−id
−→ H2(Σ) −→ H2(A) −→ H1(Σ) −→ . . .

This information on A and B can be combined to obtain the homology of M via
the Mayer–Vietoris sequence of the decomposition M = A ∪∂ B.

3. Monodromy

The symplectomorphism group of a given Stein manifold Σ is not known, in
general. Therefore we restrict our attention to symplectomorphisms that can be
written as compositions of Dehn twists along Lagrangian spheres L ⊂ Σ.

3.1. Action of Dehn twists on homology. Let Σ be a symplectic manifold of
dimension 2n and L ⊂ Σ a Lagrangian sphere. Write [L] ∈ Hn(Σ) for the homology
class represented by L. As before, we denote the intersection form on Hn(Σ) by Q.
With this notation, the homomorphism on homology induced by a right-handed
Dehn twist τL along L is given by

(τL)∗ : Hn(Σ) −→ Hn(Σ)

u 7−→ u+ (−1)1+n(n+1)/2Q([L], u) · [L].

This can be seen as follows. First suppose u is a homology class represented by a
closed, oriented submanifold of Σ. This submanifold can be isotoped to intersect L
transversely in a finite number of points. Think of a neighbourhood of L in Σ as
T ∗L; the submanifold representing u may then be assumed to intersect T ∗L in a
finite number of fibres. On the level of homology, a Dehn twist along L adds ±[L]
to u for each of these intersections. The dependence of the sign in ±[L] on the
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sign of the transverse intersection can be computed explicitly in the local model;
we leave this to the reader.

The same argument applies for any singular cycle u, as can be verified by us-
ing the intersection theory developed in [35, §73] for pairs of singular chains of
complementary dimensions in a given manifold.

3.2. Monodromy and Stein filling. For the most part we shall be concerned
with open books that have trivial monodromy. The following proposition tells us
that this is a reasonably interesting class of manifolds to consider. Recall that a
contact manifold (M, ξ) is said to be Stein fillable if it arises as the boundary of a
compact Stein manifold, with ξ given as the complex tangencies on the boundary.
As is well known, a Stein manifold of real dimension 2n+2 has a handle decompo-
sition with handles up to index n+1 only. The filling is called subcritical if there
are no handles of index n+ 1.

Proposition 3.1. A contact structure ξ on a closed manifold M is supported by an
open book with trivial monodromy if and only if (M, ξ) is subcritically Stein fillable.

Proof. Suppose (M, ξ) = Open(Σ, id). Then

M = Σ× S1 ∪∂ ∂Σ×D2 = ∂(Σ×D2).

If J is the complex structure on Σ and f : Σ → R a strictly plurisubharmonic
function, then Σ×D2 ∋ (p, x, y) 7→ f(p)+x2+y2 defines a strictly plurisubharmonic
function on Σ×D2 with respect to the obvious complex structure (J, i), and this
function has no critical points of maximal index.

The converse is due to Cieliebak [6], who showed that any subcritical Stein
manifold is equivalent to a product Σ× C. �

According to a result of Loi–Piergallini and Giroux [18], cf. [17], the 3-dimensional
Stein fillable contact manifolds are characterised as those contact manifolds that
admit a supporting open book whose monodromy is a composition of right-handed
Dehn twists. In higher dimensions, this condition on the monodromy is still suffi-
cient for Stein fillability.

Proposition 3.2. If a contact manifold is supported by an open book whose mono-
dromy is a composition of right-handed Dehn twists along Lagrangian spheres on
the pages, then it is Stein fillable. �

This appears to be a folklore theorem; a proof can be found in [26], see also [1].
The main idea is that a Lagrangian sphere on a page can be made Legendrian with
respect to the contact structure on the open book; a right-handed Dehn twist then
corresponds to a Legendrian surgery, which preserves Stein fillability.

In [4] left-handed Dehn twists are used to construct algebraically overtwisted
contact manifolds, i.e. contact manifolds with vanishing contact homology, which
are conjecturally not strongly fillable (and hence not Stein fillable).

4. Diagrams for 5-manifolds

We now want to give diagrammatic representations of 5-dimensional contact
open books. Here the page is a Stein surface, which can be described by a Kirby
diagram. According to a result of Eliashberg [11], worked out further by Gompf [20],
any compact Stein surface can be obtained from the 4-disc in C2 by attaching a finite
number of 1- and 2-handles, where each 2-handle is attached along a Legendrian
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knot (in the standard contact structure on the relevant boundary 3-manifold), with
framing −1 relative to the contact framing of that Legendrian knot. Conversely
(this is the easier part), this recipe always produces a Stein surface.

The boundary 3-manifold obtained by attaching k 1-handles to the 4-disc is the
connected sum #k(S

1 × S2) with its unique tight contact structure; the attaching
circles for the 2-handles form a Legendrian link in this contact manifold. In other
words, the Kirby diagram of a Stein surface consists of a finite collection of pairs
of attaching balls for the 1-handles in R3 ⊂ S3 with its standard contact structure
ξst = ker(dz + x dy), and the front projection to the yz-plane of a Legendrian link.
For more information see [20] and [21].

In order to obtain a representation of the contact manifold Open(Σ, ψ), one
also needs to encode the monodromy ψ in the diagram. This is possible in special
cases. For instance, if one of the Legendrian knots in the Kirby diagram bounds
in an obvious way a Lagrangian disc in the Stein surface Σ, the union of this disc
with the core disc of the 2-handle is a Lagrangian sphere, and we can speak of a
Dehn twist along this sphere. Beware that different such Dehn twists will not, in
general, commute with each other. In cases where the order of the Dehn twists is
inessential, we simply write the relevant Dehn twist next to the Legendrian knot
representing the corresponding Lagrangian sphere. In particular, stabilisations can
be so encoded, provided one understands the monodromy of the given diagram.

By Section 2.4, the diagram for the connected sum of two contact open books is
simply given by drawing the attaching balls and Legendrian attaching circles in a
single diagram, separated by a hyperplane.

4.1. Handle moves. We illustrate the use of (de-)stabilisations in the following
two handle moves on a diagram of Open(Σ, ψ). These moves do not change the
contactomorphism type of Open(Σ, ψ).

4.1.1. Move I. Assume we are given a Kirby diagram for Σ that includes a Le-
gendrian knot K with the property that the monodromy ψ equals the identity
on the handle attached along K. Add a standard Legendrian unknot K0 with
Thurston–Bennequin invariant tb(K0) = −1 to the diagram, unlinked with the
given Legendrian link and not passing over 1-handles. This K0 bounds an obvious
Lagrangian disc, so a right-handed Dehn twist τ along the corresponding 2-sphere
(see the following remark) amounts to a stabilisation of Open(Σ, ψ).

Remark 4.1. It is not accidental that the knot K0 we use for the stabilisation is
chosen to have tb(K0) = −1. Write L′ for the Lagrangian 2-sphere obtained by
gluing the Lagrangian disc L bounded by K0 to the core disc of the handle attached
along K0. A neighbourhood of L′ looks like T ∗S2, so L′ has self-intersection −2. If
we push the core disc along its boundary in the direction of the surgery framing, we
obtain a disjoint disc. Hence, pushing L in that direction along its boundary leads to
a disc having intersection−2 with L. If L is topologically isotopic to a disc in ∂Σ (as
in the case of K0), this means that the linking number of K0 with its push-off in the
direction of the surgery framing equals −2. Since the surgery framing is obtained
from the contact framing by adding a negative twist, we conclude tb(K0) = −1.

Beware that tb(K0) may take other values, with K0 regarded as a knot in
(S3, ξst), if the Lagrangian disc bounded by K0 goes over 2-handles.

Move I is now performed in three steps, see Figure 2:
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(i) Stabilise Open(Σ, ψ) by adding (K0, τ) to the diagram as described.
(ii) Perform a handle slide of K over K0; this is possible via a Legendrian

isotopy, see [8, Proposition 1].
(iii) Destabilise by removing (K0, τ) from the picture.

id

id

id

id

stabilise

handle slide

destabilise

τ

τ

Figure 2. Move I.

Remark 4.2. A Legendrian isotopy of a Legendrian submanifold in a contact
manifold (M, ξ = kerα) extends to a contact isotopy φt of (M, ξ), cf. [16, Theo-
rem 2.6.2], and thence to an R-invariant symplectic isotopy Φt of the symplecti-
sation (R ×M,d(esα)). Write φ∗tα = ehtα with a smooth function ht : M → R

and set Φt(s, x) = (s − ht(x), φt(x)). Then Φ∗
t (e

sα) = esα, which implies that Φt
is a Hamiltonian isotopy. By cutting off the corresponding Hamiltonian function,
this isotopy may be assumed to coincide with Φt on {r} ×M and to be stationary
outside (0, R)×M for R > r > 0 sufficiently large.

Hence, if (M, ξ) has a strong symplectic filling (W,ω), this cut off symplectic
isotopy extends to an isotopy of the symplectic completion of (W,ω) in the sense
of [13]. So the time-1 map Φ1 may be regarded as a symplectomorphism of the
symplectic completion of (W,ω). Alternatively, we may view Φ1 as a symplecto-
morphism of the filling (W,ω)∪

(

[0, r]×M,d(esα)
)

of (M, ξ) onto its image, which
on the boundary induces the contactomorphism φ1.

It will be in this sense that we interpret step (ii) of move I as a symplectomor-
phism of the filling.

The effect of this move I is to replace K by its double Legendrian stabilisa-
tion S+S−K, i.e. a Legendrian knot which has two additional zigzags (one up,
one down). Notice that the contact framing of S+S−K differs from that of K
by two negative (i.e. left-handed) twists; if K is homologically trivial this means
tb(S+S−K) = tb(K) − 2. The rotation number rot does not change under this
move.

One of the potential uses of move I is the following. As shown by Fuchs and
Tabachnikov [14, Theorem 4.4], cf. [10], any topological isotopy of Legendrian knots
can be turned into a Legendrian isotopy of suitable Legendrian stabilisations. Thus,
after a repeated application of move I, two topologically isotopic Legendrian knots
with the same rotation number will become Legendrian isotopic.
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4.1.2. Move II. Our second move gives us even greater flexibility, for it allows us to
change crossings of Legendrian knots K,K ′ (or a self-crossing of K) in the Kirby
diagram for Σ, at the cost of replacing K by its fourfold Legendrian stabilisation
S2
+S

2
−K. The move is a combination of move I with a further (de-)stabilisation and

handle slide; a pictorial description is given in Figure 3.

id

id

id

id

move I and stabilise

destabilise

handle slide

τ

τ

Figure 3. Move II.

The first two steps in Figure 3 can be performed even if the monodromy along
K is not the identity, but the destabilisation may not be possible. Move II without
the final destabilisation still allows us to change a given Kirby diagram into one
where the Legendrian link is topologically a link of unknots.

4.2. Diagrams for S2 × S3 and S2 ×̃S3. We now use moves I and II from the
preceding section to give a characterisation of the contact manifolds Open(Σ, id)
where Σ has a Kirby diagram consisting of a single knot K.

Since π1(SO(4)) = Z2, there are exactly two S3-bundles over S2 up to bun-
dle isomorphism, the trivial and the non-trivial one. Their total spaces are non-
diffeomorphic and are denoted by S2 × S3 and S2 ×̃S3, respectively.

If M is a closed simply connected 5-manifold with H2(M ;Z) ∼= Z, then by
Barden’s classification [3] one has

M ∼=

{

S2 × S3 if w2(M) = 0,
S2 ×̃S3 if w2(M) 6= 0.

Proposition 4.3. Let K be an oriented Legendrian knot in (S3, ξst). Then the
contact manifold (M, ξ) = Open(Σ, id), with Σ the Stein surface given by the Kirby
diagram consisting of K only, is one of the following:

• (S2 × S3, ξ|rot(K)|) if rot(K) is even,

• (S2 ×̃S3, ξ|rot(K)|) if rot(K) is odd.

As the notation suggests, the contact structure ξ|rot(K)| depends, up to diffeomor-
phism, only on |rot(K)|.
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Proof. Using move II we can untie any Legendrian knot without changing its rota-
tion number, so we may assume that K is an unknot. Then Σ is a 2-disc bundle
over S2. The zero section S2 of this bundle, oriented in such a way that the disc
D2 ⊂ S2 bounded byK in S3 is oriented consistently withK, represents the positive
generator of H2(Σ). Since the monodromy is the identity, we haveM ∼= ∂(Σ×D2).
This means that M is the boundary of a 4-disc bundle over S2, i.e. an S3-bundle.

Next we determine the first Chern class of ξ. The cohomology exact sequence for
the pair (Σ×D2, ∂(Σ×D2)) shows that the inclusion i : ∂(Σ×D2) → Σ×D2 induces
an isomorphism i∗ : H2(Σ×D2) → H2(∂(Σ×D2)). The contact structure ξ is given
by the complex tangencies of ∂(Σ×D2) (after the smoothing of corners), and the
complementary complex line bundle in T (Σ × D2)|∂(Σ×D2) is trivial, so we have

c1(ξ) = i∗c1(Σ×D2). The class c1(Σ×D2) can be naturally identified with c1(Σ),
which by [20, Proposition 2.3] equals rot(K)h, where h is the positive generator
of H2(Σ). Thus, under the mentioned identifications we have c1(ξ) = rot(K)h.

The second Stiefel–Whitney class w2(M) equals the mod 2 reduction of c1(ξ).
So the diffeomorphism type of M is as claimed.

It remains to show that the contact structure is determined by the absolute value
of its first Chern class. Thus, let K1 and K2 be two oriented Legendrian unknots
with rot(K1) = ± rot(K2). The orientation of these knots has no bearing on the
resulting contact manifold, only on the designation of one of the generators of H2

as the positive one. So we may orient K1 and K2 such that rot(K1) = rot(K2).
The parity condition tb(Ki) + rot(Ki) ≡ 1 mod 2, cf. [16], allows us to achieve
in addition that tb(K1) = tb(K2) after a repeated application of move I to one
of the two knots. From the classification of Legendrian unknots by Eliashberg
and Fraser [12] it follows that K1 and K2 are then Legendrian isotopic, so the
corresponding 5-dimensional contact manifolds are contactomorphic. �

Remark 4.4. Both S2 × S3 and S2 ×̃S3 admit orientation-preserving diffeomor-
phisms that act as minus the identity on H2 [3, Theorem 2.2], and orientation-
reversing diffeomorphisms that act as the identity on H2 [16, p. 399]. This explains
why the orientation ofM and the sign of the rotation number are irrelevant for the
diffeomorphism classification.

From Barden’s classification it follows that S2 ×̃S3#S2 ×̃S3 is diffeomorphic to
S2 × S3#S2 ×̃S3. This can also be seen by diagram moves, which proves a little
more.

Proposition 4.5. With the notation from the preceding proposition, we have a
contactomorphism

(S2 ×̃S3, ξ2m+1)#(S2 ×̃S3, ξ1) ∼= (S2 × S3, ξ2n)#(S2 ×̃S3, ξ1)

for any m,n ∈ N0.

Proof. The proof consists of sliding the 2-handle corresponding to ξ2m+1 over the
one corresponding to ξ1; Figure 4 shows this for m = 0, n = 1. From (i) to (ii)
one performs a handle slide; from (ii) one gets to (iii) by using move II to change
crossings and the reverse of move I to perform double Legendrian destabilisations.
Observe that the rotation numbers add under a handle slide. If we perform a handle
subtraction instead of a handle addition (i.e. a handle slide with the orientation of
the shark on the right-hand side reversed), we obtain n = 0. �
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(i) (ii) (iii)

Figure 4. The connected sum S2 ×̃S3#S2 ×̃S3.

4.3. Subcritical fillings without 1-handles. We are now in a position to classify
5-dimensional contact manifolds that admit subcritical Stein fillings without 1-
handles. The first Chern class c1(ξ) of a contact structure on a simply connected 5-
manifold determines the homotopy class of the underlying reduction of the structure
group to U(2)×1. When there exists a subcritical Stein filling, it actually determines
the contact structure.

Theorem 4.6. Let (Mi, ξi), i = 1, 2, be two simply connected contact 5-manifolds
that admit subcritical Stein fillings without 1-handles. If there is an isomorphism
φ : H2(M1) → H2(M2) such that φ(c1(ξ1)) = c1(ξ2), then (M1, ξ1) and (M2, ξ2)
are contactomorphic.

Proof. The assumption on the existence of subcritical Stein fillings implies that the
(Mi, ξi) can be realised as contact open books whose monodromy is the identity.
With the help of moves I and II, the corresponding diagrams (which, by assump-
tion, contain no 1-handles) can be turned into a collection of unlinked Legendrian
unknots. If one so wishes, one can arrange the rotation number of at most one of
the knots to be odd by the argument in the preceding proposition. In particular, we
see that the Mi are diffeomorphic to a connected sum of copies of S2×S3, possibly
with one additional summand S2 ×̃S3.

Fixing an ordering of the unknots in the respective diagram, and an orientation
for each unknot, amounts to fixing an identification of H2(Mi) with Zk, where
k ∈ N is the number of unknots in either diagram. Then φ may be regarded as an
element of GL(k,Z). By elementary row and column operations (over the integers),
this matrix can be converted to the identity matrix. So it suffices to show that these
elementary operations can be effected by a change in the respective diagram. The
condition φ(c1(ξ1)) = c1(ξ2) implies (by Proposition 4.3 and its proof) that between
the two new diagrams there is a bijective pairing of Legendrian unknots with the
same rotation number, which amounts to the claimed contactomorphism.

Here are the diagrammatic realisations of the elementary row and column oper-
ations, the former being changes in the diagram for M2, the latter in that of M1.

1. Add a row/column to another one: this amounts to a handle slide, see Fig-
ure 5.

2. Multiply a row/column by −1: a change of sign of one of the generators of
Zk simply amounts to changing the orientation on the corresponding unknot. This
reverses the sign of the rotation number of that unknot. �

Remark 4.7. M.-L. Yau [39] has shown that the contact homology of a subcritically
Stein fillable contact manifold (M, ξ) is determined by the homology of the manifold,
provided c1(ξ) evaluates to zero on π2(M) (i.e. homology classes represented by
maps S2 → M). In particular, if we write the subcritical Stein filling of a 5-
dimensional contact manifold as Σ ×D2, then HC2(M, ξ) ∼= H2(Σ) ∼= H2(M). In
view of this result, the theorem above says that contact homology is a complete
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ei

ei

ei + ej

ej

ej

ej

Figure 5. Sliding the handles to get the desired map on cohomology.

invariant for 5-dimensional contact manifolds (M, ξ) that admit a subcritical Stein
filling without 1-handles and with c1(ξ) = 0.

5. Diagrams for subcritically fillable contact 5-manifolds

In this section we prove a result that goes some way towards classifying subcrit-
ically fillable contact 5-manifolds and their Stein fillings. By realising Tietze moves
on group presentations via handle moves in Kirby diagrams, we show that sub-
critically fillable contact 5-manifolds are determined, up to a connected sum with
copies of S2×S3 and S2 ×̃S3, by their fundamental group; see Theorem 5.3 for the
precise formulation. The corresponding classification of 6-dimensional subcritical
Stein manifolds up to symplectomorphism is formulated in Corollary 5.4.

5.1. Tietze moves and Legendrian isotopies. Let 〈g1, . . . , gk|r1, . . . , rl〉 be a
finite presentation of a group G. We can then realise this group G as the fundamen-
tal group of a Stein surface by associating a 1-handle with each of the generators
g1, . . . , gk, and an oriented Legendrian attaching circle with each of the relations
r1, . . . , rl. Our conventions for the translation from a group presentation to a Kirby
diagram in standard form as in [20] are as follows.

(i) The 1-handles are represented by horizontal pairs of attaching balls.
(ii) A Legendrian curve going over the 1-handle corresponding to a generator g

in the way shown in Figure 6 is read as the letter g in the word represented
by that curve.

(iii) The relations, which are words in the generators, are translated into a curve
by reading the word from left to right.

5.1.1. Equivalent diagrams. Since we are dealing with subcritical Stein fillings, we
may restrict our attention to open books having trivial monodromy. So we are
free to use the moves introduced in Section 4.1; these do not change the contact
manifold or its filling.
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Figure 6. Attaching circle going over a 1-handle.

(i) Move I: replace a Legendrian attaching knot K by its double Legendrian
stabilisation S+S−K.

(ii) Move II: change crossings of the Legendrian attaching circles at the price
of adding Legendrian stabilisations.

In particular, the crossings of the Legendrian attaching circles are ultimately of
no importance.

In order to realise all Tietze moves on group presentations — these moves will
be described presently — we need to allow one further change in the diagram:

(iii) Add an unlinked standard Legendrian unknot K0 with tb(K0) = −1 to the
diagram.

On the level of contact 5-manifolds, this third move corresponds to taking the
connected sum with (S2 × S3, ξ0), see Proposition 4.3.

We remark that the particular points where the attaching circles go over the
1-handles are irrelevant. This is illustrated in Figure 7 (without loss of generality,
strand 2 is assumed to be Legendrian stabilised).

1

1

1

2

2

2

Figure 7. Changing the order of attaching points.

5.1.2. Tietze moves. According to the Tietze theorem [7, pp. 43–4], any two finite
presentations of a given group are related by a sequence of the following two moves.

T 1. Add or remove a relation s that is a so-called consequence of the other
relations:

〈g1, . . . , gk|r1, . . . , rl〉! 〈g1, . . . , gk|r1, . . . , rl, s〉
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For the relation s to be a consequence of the relations r1, . . . , rl means that s
(which is an element of the free group generated by g1, . . . , gk) is contained in every
normal subgroup that contains r1, . . . , rl.

This move, read from left to right, can be written as a sequence of the following
submoves.

(i) Double a relation or add an inverse of a relation:

〈g1, . . . , gk|r1, . . . , rl〉 〈g1, . . . , gk|r1, r
±1
1 , . . . , rl〉

(ii) Conjugate a relation by a generator:

r  grg−1 or g−1rg

(iii) Replace one relation by its product with another relation:

r1, r2  r1, r1r2 or r1, r2r1

T 2. Add or remove a generator g and a relation g = w expressing g as a word
w in the other generators and their inverses:

〈g1, . . . , gk|r1, . . . , rl〉! 〈g1, . . . , gk, g|r1, . . . , rl, gw
−1〉

5.1.3. Realising the Tietze moves. We now want to show that these moves cor-
respond to Legendrian isotopies of the attaching circles and handle cancellations,
modulo the equivalences described in Section 5.1.1.

T 1. (i) A relation represented by a Legendrian attaching circle K can be dou-
bled by adding the Legendrian push-off of K to the diagram. Giving this push-off
the opposite orientation amounts to adding the inverse relation. By [8, Proposi-
tion 2], this Legendrian push-off is Legendrian isotopic to a meridian of K. With
the help of crossing changes we can disentangle this meridian from the rest of the
diagram. In other words, we can double a relation by first adding a standard Le-
gendrian unknot to the diagram, i.e. by taking a connected sum with (S2 ×S3, ξ0),
and then turning this into a push-off of K with the help of moves I (and its inverse)
and II.

T 1. (ii) The Legendrian knot representing grg−1 as shown in Figure 8 is
Legendrian isotopic to that representing r: first move the cusp formed by the
strands 1 and 4 over the 1-handle g, then perform a first Reidemeister move.

In Figure 8 we have indicated a base point that one needs to fix in order to set
up a one-to-one correspondence between loops at this base point and words in the
generators. For the Tietze move, however, one only needs to check that attaching
a handle along r has the same effect as attaching it along grg−1, and for that the
described Legendrian isotopy is not required to fix the base point

T 1. (iii) This corresponds to a handle slide or second Kirby move in the sense
of [8].

T 2. In Figure 9 we have indicated the relation g = w, where the word w is
supposed to be given by a curve that may go over the 1-handles corresponding to
the generators g1, . . . , gk. We need to show that the generator g and this relation
can be cancelled by diagram moves.

Slide the right-hand attaching ball of the 1-handle g along the Legendrian curve
representing the word w−1; this can be done via a contact isotopy. In the process,
we “accumulate” cusps. See Figure 10 for an example.
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g

12

3 4

r

grg−1

Figure 8. The Tietze move T 1 (ii).

g

w−1

Figure 9. The relation g = w.

Figure 10. Sliding the attaching ball of a 1-handle.
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Positive and negative Legendrian stabilisations can be removed in pairs using
the light bulb trick [8, Figure 21]. So ultimately we obtain a diagram as shown in
Figure 11, cf. [9, Section 5].

g

Figure 11. A cancelling handle pair.

Then the 1-handle g and the 2-handle attached along the Legendrian circle going
once over the 1-handle form a cancelling pair. Topologically this follows because
the attaching circle of the 2-handle intersects the belt sphere of the 1-handle in
exactly one point, see [21, Proposition 4.2.9]. In fact, this diagram with a cancelling
handle pair also represents the standard 4-disc symplectically, see [26]. In the given
dimension, this is also a consequence of the deep result of Gromov [22, p. 311],
cf. [29, Theorem 9.4.2], that any strong symplectic filling of (S3, ξst) not containing
homologically non-trivial 2-spheres (in particular a filling known to be topologically
a disc) is symplectomorphic to the 4-disc.

5.2. Classification of subcritically fillable contact 5-manifolds. As a first
step towards showing how the fundamental group determines subcritically fillable
contact 5-manifolds, the following lemma tells us that two diagrams representing
isomorphic fundamental groups can be turned into two diagrams giving identical
group presentations.

Lemma 5.1. Let (M, ξ) and (M ′, ξ′) be two subcritically Stein fillable contact 5-
manifolds with π1(M) ∼= π1(M

′). Then there are k, k′ ∈ N0 and diagrams D,D′

for

(M, ξ)#k(S2 × S3, ξ0) and (M ′, ξ′)#k′(S2 × S3, ξ0),

respectively, such that the presentations of π1(M), π1(M
′) determined by D,D′ are

identical.

Proof. Write (M, ξ) = Open(Σ, id), so that the subcritical Stein filling is given by
Σ×D2, and similarly for M ′. The theorem of Seifert and van Kampen, applied to
the decomposition

M = Σ× S1 ∪∂ ∂Σ×D2,
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shows that π1(M) ∼= π1(Σ). So any choice of Kirby diagram for Σ and Σ′ gives rise
to two presentations of the same group.

Now invoke Tietze’s theorem and our implementation of the Tietze moves. Since
we merely want to turn both group presentations into identical ones by appropriate
changes in the diagrams, rather than converting one presentation to the other, we
need the Tietze move T 1 only going from left to right, i.e. we do not care about
accumulating redundant relations. As we saw in Section 5.1.3, the move T 1 (i)
amounts to a connected sum with (S2 ×S3, ξ0); the other moves do not change the
contact manifold. �

This lemma does not say anything about the contact framings of the Legendrian
knots in the diagrams D,D′. In particular, we cannot expect that M#k(S2 × S3)
andM ′#k′(S2×S3) are diffeomorphic, in general. The most simple example would
be M = S2 × S3 and M ′ = S2 ×̃S3, where we could take k = k′ = 0.

The following lemma is the key to showing that a summand (S2 ×̃S3, ξ1) will
give us complete control over the contactomorphism type of the resulting manifold.

Lemma 5.2. Let Σ be a Stein surface containing at least one 2-handle attached
along a Legendrian knot K. Let Σ± be the Stein surface where this one attaching
circle is replaced by its Legendrian stabilisation S±K. Then

Open(Σ, id)#(S2 ×̃S3, ξ1) ∼= Open(Σ±, id)#(S2 ×̃S3, ξ1).

Proof. The contact manifold Open(Σ, id)#(S2 ×̃S3, ξ1) is represented by a diagram
for Σ with one additional shark. After a handle slide of K over the shark (with
one or the other orientation), and by applying moves I and II, we obtain a diagram
with K replaced by S±K, see Figure 12. In (i) we have added a shark to the given
diagram, i.e. formed the connected sum with (S2 ×̃S3, ξ1). We then perform a
handle slide over the shark to obtain (ii). From there one gets to (iii) and (iv) as
in Figure 4. �

(i) (ii)

(iii) (iv)

Figure 12. Handle slide turning K into S±K.

Here is our main classification result.

Theorem 5.3. Let (M, ξ) and (M ′, ξ′) be two subcritically Stein fillable contact
5-manifolds with π1(M) ∼= π1(M

′). Then there are k, k′ ∈ N0 with k − k′ =
rankH2(M

′)− rankH2(M) such that

(M, ξ)# k(S2 × S3, ξ0)# (S2 ×̃S3, ξ1) ∼= (M ′, ξ′)# k′(S2 × S3, ξ0)# (S2 ×̃S3, ξ1).
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Proof. By Lemma 5.1 there are k0, k
′
0 ∈ N0 such that (M, ξ)#k0(S

2 × S3, ξ0) and
(M ′, ξ′)#k′0(S

2 × S3, ξ0) are represented by diagrams that give identical presenta-
tions of π1(M) ∼= π1(M

′). Notice that the two diagrams may contain Legendrian
knots that do not go over the 1-handles and hence do not contribute to the funda-
mental group or its presentation.

With move II we can change the crossings of the Legendrian attaching circles, so
we may assume that the two diagrams are topologically identical, up to a finite num-
ber of unlinked unknots. These unlinked unknots correspond to summands S2×S3

or S2 ×̃S3 with one of the standard contact structures described in Proposition 4.3.
By the theorem of Fuchs and Tabachnikov [14, Theorem 4.4], this topological

isotopy can be realised as a Legendrian isotopy of suitable stabilisations of the
Legendrian knots. As shown in the preceding lemma, a summand (S2 ×̃S3, ξ1)
enables us to perform such Legendrian stabilisations.

Finally, Proposition 4.5 allows us, up to contactomorphism, to turn all but one
summand (S2 ×̃S3, ξ1) into (S2 × S3, ξ0). �

It is possible to combine this argument with that for Theorem 4.6 in order
to formulate a more precise classification result that involves conditions on the
first Chern class, but we have opted for the more transparent formulation of the
statement.

The moves in the proof of Theorem 5.3 all extend to symplectomorphisms of
the filling, so the following corollary is immediate. Here we write (S2 × D4, ω0)
for the standard filling of (S2 × S3, ξ0), and (S2 ×̃D4, ω1) for that of (S

2 ×̃S3, ξ1).
‘Symplectomorphism’ is to be understood in the sense of Remark 4.2.

Corollary 5.4. Let W and W ′ be two compact subcritical Stein manifolds of di-
mension 6 with π1(W ) ∼= π1(W

′). Then there are k, k′ ∈ N0 with k − k′ =
rankH2(W

′)− rankH2(W ) such that the boundary connected sums

W ♮k(S2 ×D4, ω0) ♮ (S
2 ×̃D4, ω1)

and

W ′ ♮ k′(S2 ×D4, ω0) ♮ (S
2 ×̃D4, ω1)

are symplectomorphic. �

Remark 5.5. It seems feasible to prove Theorem 5.3 by working directly with the
subcritical filling. The fundamental group of the 6-dimensional subcritical Stein
manifold Σ×D2, which equals that of M , has a presentation with generators given
by the 1-handles and relations given by the attaching circles of the 2-handles. In the
6-dimensional Stein manifold we now have an h-principle for the attaching maps.

6. Subcritical fillings of S5

The purpose of the present section is to show how the so-called Andrews–Curtis
moves on balanced group presentations can be realised as moves in our diagrams
for contact 5-manifolds. As an application we prove that any subcritically Stein
fillable contact structure on the 5-sphere is the standard one, provided the filling
gives rise to an Andrews–Curtis trivial presentation of the trivial group.

Let ξ be a contact structure on S5 admitting a subcritical Stein filling W . From
the homology long exact sequence of the pair (W,S5) we deduce that W has the
homology of a point. By the result of Cieliebak [6] we can write W = Σ × D2.
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Hence π1(W ) = π1(Σ) = π1(S
5) = {1}, cf. the proof of Lemma 5.1. From the

h-cobordism theorem it follows that W is diffeomorphic to D6.
Since the homology ofW can also be computed from a cellular decomposition, it

follows that a handlebody decomposition of W with a single 0-handle must contain
an equal number of 1- and 2-handles. This gives rise to a balanced presentation

of the trivial group π1(W ), i.e. a presentation containing as many relations as
generators.

If ∂Σ were the standard 3-sphere, we could conclude immediately that ξ is the
standard contact structure on S5. Unfortunately, the boundary of a contractible
4-manifold Σ (even with a finite handlebody decomposition as described) will, in
general, be some complicated homology 3-sphere, as pointed out in [19].

6.1. Andrews–Curtis moves. In the attempt to prove that ξ is the standard
contact structure on S5, one can try to show that the balanced presentation of
the trivial group π1(W ) can be converted to the empty presentation via balanced
presentations, and then to implement these moves as transformations of the han-
dlebody W . As we shall see in the next section, this topological implementation
does not pose any difficulties. The algebraic part of this strategy, however, remains
unresolved and forms the content of the Andrews–Curtis conjecture. There are var-
ious forms of this conjecture; the following is the weaker of the two versions given
in [2].

Conjecture 6.1. Any balanced presentation of the trivial group can be reduced to
the empty presentation (via balanced presentations) by the following transforma-
tions:

AC 1. Replace a relation by its inverse.
AC 2. Conjugate a relation by a generator.
AC 3. Replace one relation by its product with another relation.
AC 4. Add or remove a generator g together with the relation g.

A balanced presentation of the trivial group is called Andrews–Curtis trivial

if it can be reduced to the empty presentation using Andrews–Curtis moves. In
other words, the Andrews–Curtis conjecture can be rephrased as saying that any
balanced presentation of the trivial group is Andrews–Curtis trivial.

This conjecture is still unresolved, but potential counterexamples have been sug-
gested in [19].

6.2. Realising the Andrews–Curtis moves. The move AC 1 amounts to re-
versing the orientation of the Legendrian attaching circle representing the relation
in question; the moves AC 2 and AC 3 are the Tietze moves T 1 (ii) and T 1 (iii),
respectively; the fourth Andrews–Curtis move is a special case of the second Tietze
move. So all the Andrews–Curtis moves can be realised in our diagrams as in
Section 5.1.3.

Some versions of the Andrews–Curtis conjecture also allow a generator to be
replaced by its product with another generator, or by its inverse. These moves,
too, can be realised in our diagrams as follows.

Multiplying a generator by another one amounts to a 1-handle slide [21, Fig-
ure 5.2]. Such a 1-handle slide can also be performed in a diagram with Legendrian
attaching circles.
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In order to replace a generator g by its inverse, one needs to flip the two attach-
ing balls of the 1-handle corresponding to g. This can be done after sliding the
Legendrian curves that go over this 1-handle halfway around the attaching balls,
cf. [20, Figure 16].

6.3. A characterisation of the standard S5. With the Andrews–Curtis moves
at our disposal, we can now give a characterisation of the standard contact structure
on S5 in terms of subcritical Stein fillings.

Proposition 6.2. Let ξ be a contact structure on S5 with a subcritical Stein fill-
ing W . If W admits a plurisubharmonic Morse function that induces a handle-
body decomposition of W giving rise to an Andrews–Curtis trivial presentation of
the trivial group π1(W ), then ξ is diffeomorphic to the standard contact structure
on S5.

Proof. The subcritical Stein manifold W corresponds to a description of (S5, ξ) as
a contact open book Open(Σ, id) with a handlebody decomposition of the page
Σ giving rise to an Andrews–Curtis trivial presentation of the trivial group. By
realising the Andrews–Curtis moves that transform this presentation to the empty
one, we transform the open book to the one described by the empty diagram, which
represents the standard contact structure on S5. �

Depending on one’s predisposition, one may regard this result as evidence for the
conjecture that among the contact structures on S5 only the standard one admits a
subcritical Stein filling, or as a potential means for disproving the Andrews–Curtis
conjecture. Indeed, one way to read the proposition is that any exotic (i.e. non-
standard) contact structure on S5 with a subcritical Stein filling W gives rise to a
balanced presentation of the trivial group π1(W ) that is not Andrews–Curtis trivial.
Unfortunately, the result of M.-L. Yau cited at the end of Section 4.3 implies that
cylindrical contact homology is not sensitive enough to detect such examples.

Although the general belief appears to be that the Andrews–Curtis conjecture
is false, we should admit in all fairness that this suggested strategy for disproving
it is not the most promising one. It seems more likely that methods such as those
indicated in Remark 5.5 allow one to give a direct proof that the standard contact
structure on S5 is the only one admitting a subcritical Stein filling.

7. Diagrams for simply connected 5-manifolds

In this section we exhibit diagrams for contact structures on some simply con-
nected 5-manifolds. As a corollary, we obtain a branched covering description of
5-dimensional simply connected spin manifolds, and a new proof that every simply
connected 5-manifold admits a contact structure in each homotopy class of almost
contact structures.

7.1. Barden’s classification. Barden [3] has given a complete classification of
simply connected 5-manifolds. Here we are only interested in those manifolds that
potentially carry contact structures. If a 5-manifold M admits a contact structure,
then its structure group reduces to U(2)× 1; such a reduction is called an almost

contact structure. Necessary and sufficient for the existence of an almost contact
structure is the vanishing of the third integral Stiefel–Whitney classW3(M), see [16,
Proposition 8.1.1].
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According to Barden’s classification, any simply connected 5-manifold M with
W3(M) = 0 decomposes as the connected sum of finitely many manifolds from the
following list of examples:

(i) manifolds Mk, k ∈ N, characterised by H2(Mk) ∼= Zk ⊕ Zk,
(ii) S2 × S3,
(iii) S2 ×̃S3.

The manifold M1 is the 5-sphere; the manifolds Mk are prime if and only if k is
a prime power pj , j ≥ 1. One obtains a unique prime decomposition of a given M
if one requires that only the Mpj and at most one summand S2 ×̃S3 are used, cf.
Proposition 4.5. All the prime manifolds in this list, with the exception of S2 ×̃S3,
are spin manifolds, i.e. their second Stiefel–Whitney class vanishes.

7.2. Diagrams for the Mk. Let (Nk, ηk), k ∈ N, be the contact 5-manifold rep-
resented by the diagram depicted in Figure 13. Write Σk for the page of the open
book represented by this diagram, so that (Nk, ηk) = Open(Σk, (τK1

◦ τK2
)2).

K1

K2

k twists

(τK1
◦ τK2

)2

Figure 13. Diagram for Mk.

Proposition 7.1. For each k ∈ N the manifold Nk is diffeomorphic to Mk.

One ingredient in the argument will be the following folklore theorem, which is
proved in [26]; cf. [17] for a proof in the 3-dimensional case.

Theorem 7.2. Let L ⊂ Open(Σ, ψ) be a Legendrian sphere in a contact open
book that sits on a page of the open book as a Lagrangian submanifold. Then the
contact manifold obtained by Legendrian surgery along L is contactomorphic to
Open(Σ, ψ ◦ τL), where τL denotes the right-handed Dehn twist along L ⊂ Σ. �

Proof of Proposition 7.1. We construct a Stein filling Wk of (Nk, ηk) by starting
with the subcritical Stein manifold Σk×D

2, which is a filling for Open(Σk, id), and
attaching a 3-handle for each Dehn twist. The first two 3-handles corresponding to
τK1

and τK2
cancel the 2-handles of Σk, so we obtain a 6-dimensional disc D6.

The further two 3-handles corresponding to the iterated application of τK1
and

τK2
then yields the Stein filling Wk. This implies H3(Wk) ∼= Z2, and the skew-

symmetric intersection form QWk
on H3(Wk) has to look like
(

0 lk
−lk 0

)

for some lk ∈ Z. By the argument mentioned in Section 2.5 we conclude

H2(Nk) ∼= H2(∂Wk) ∼= cokerQWk
∼= Zlk ⊕ Zlk .
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The manifold Nk is obviously simply connected, and it satisfies W3(Nk) = 0 be-
cause it carries a contact structure. So in order to establish that Nk is diffeomorphic
to Mk it suffices to show, by Barden’s classification, that |lk| = k.

Decompose the open book Nk as Nk = Ak ∪∂ Bk as in Section 2.1, with Ak
the mapping torus of Σk, and Bk = ∂Σk ×D2 ≃ ∂Σk. We can then compute the
homology of Nk by the procedure outlined in Section 2.5. In particular, we consider
the Mayer–Vietoris sequence

H3(Nk) −→ H2(Ak ∩Bk) −→ H2(Ak)⊕H2(Bk) −→

H2(Nk) −→ H1(Ak ∩Bk) −→ H1(Ak)⊕H1(Bk).

In terms of the standard generators ofH2(Σk), the intersection form QΣk
is given

by
(

−2 k
k −2

)

.

Thus, as shown in Section 3.1, the action of the two Dehn twists on H2(Σk) is given
by

(τK1
)∗ =

(

−1 k
0 1

)

and (τK2
)∗ =

(

1 0
k −1

)

,

hence

(τK1
◦ τK2

)2∗ =

(

k4 − 3k2 + 1 2k − k3

−2k + k3 −k2 + 1

)

.

From the Wang sequence of the mapping torus Ak we then have

H2(Ak) ∼= coker

(

k4 − 3k2 2k − k3

−2k + k3 −k2

)

.

Given a homomorphism φ : Zm → Zm with detφ 6= 0, a simple algebraic consid-
eration shows that |cokerφ| = |detφ|. This allows us to conclude that

|H2(Ak)| = k2|k2 − 4| for k 6= 2.

For k = 2 we obtain H2(A2) ∼= Z⊕ Z4.
From the Künneth theorem we have

H1(Ak ∩Bk) ∼= H0(∂Σk)⊕H1(∂Σk).

From the Wang sequence one sees that H1(Ak) is generated by the class of {p}×S1,
where p is any point of ∂Σk. Combining these two pieces of information, one deduces
that the homomorphism

H1(Ak ∩Bk) −→ H1(Ak)⊕H1(Bk)

in the Mayer–Vietoris sequence is an isomorphism.
Similarly, we have

H2(Ak ∩Bk) ∼= H1(∂Σk)⊕H2(∂Σk),

and the second summand H2(∂Σk) maps isomorphically into the second summand
of H2(Ak)⊕H2(Bk) in the Mayer–Vietoris sequence.

So that sequence tells us that H2(Nk) is a quotient of H2(Ak), and hence at
most of rank 1. Combining this with the information that H2(Nk) is isomorphic to
Zlk ⊕ Zlk , we conclude lk 6= 0. Since H1(Nk) = 0, we obtain H2(Nk) = 0 from the
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universal coefficient theorem, whence H3(Nk) = 0 by Poincaré duality. Thus, the
Mayer–Vietoris sequence reduces to

0 −→ H1(∂Σk) −→ H2(Ak) −→ H2(Nk) −→ 0.

Recall that H1(∂Σk) ∼= cokerQΣk
. For k 6= 2 this is a finite group of order

|k2 − 4|. It follows that H2(Nk) is a finite group of order k2, and hence |lk| = k, as
we wanted to show.

For k = 2 the short exact sequence becomes

0 −→ Z⊕ Z2 −→ Z⊕ Z4 −→ H2(Nk) −→ 0.

Recall that H1(∂Σ2) is generated by meridional loops u1, u2 around K1,K2, re-
spectively. The homomorphism H1(∂Σ2) → H2(A2) is given by sending ui to the
class represented by the torus ui × S1 ⊂ ∂Σ2 × S1 ⊂ A2. Now cut this torus along
a meridian ui × ∗ and insert two meridional discs in Σ2 (of opposite orientation);
this gives us a 2-sphere in A2 representing the same homology class. Now flow one
of the meridional discs and the cylindrical part of that 2-sphere along a vector field
on the mapping torus that is transverse to the fibres and whose time-1 map, say,
gives the monodromy map from a fibre to itself.

The geometric intersection number of the meridional disc Di to ui with the
spherical generator Sj of H2(Σ2) corresponding to Kj (made up of a Seifert disc
for Kj and the core disc of the 2-handle) equals the Kronecker δij . The self-
intersection number of the Si is −2, and the intersection number between S1 and
S2 equals k = 2. Hence, with the observation from Section 3.1 we infer that the
monodromy (τK1

◦ τK2
)2 acts on the Di as follows:

D1 7−→ D1 7−→ D1 + S1

7−→ D1 + S1 + 2S2 7−→ D1 + 4S1 + 2S2,
D2 7−→ D2 + S2 7−→ D2 + 2S1 + S2

7−→ D2 + 2S1 + 4S2 7−→ D2 + 6S1 + 4S2.

The homology group H2(A2) ∼= Z⊕Z4 is generated by the classes of S1 and S2, sub-
ject to the relation 4(S1+S2) = 0. So the effect of the monodromy homomorphism
can also be written as

D1 7−→ D1 − 2S2,
D2 7−→ D2 + 2S1.

It follows that the 2-torus u1 × S1 (resp. u2 × S1) is homologically equivalent to
−2S2 (resp. 2S1) in A2. Thus, in terms of suitable generators, the homomorphism
Z ⊕ Z2 → Z ⊕ Z4 in the Mayer–Vietoris sequence for N2 is multiplication by 2,
hence H2(N2) ∼= Z2 ⊕ Z2, i.e. |l2| = 2. �

7.3. Spin manifolds as branched covers. Here is an amusing corollary of the
above example.

Corollary 7.3. Any closed, simply connected 5-dimensional spin manifold is a
double branched cover of the 5-sphere.

Proof. By Barden’s classification, any closed, simply connected 5-dimensional spin
manifold M can be decomposed as

M ∼= #mS
2 × S3#Mk1# · · ·#Mkn .

This classification of spin manifolds had actually been achieved earlier by Smale [36].
By the preceding section, eachMki is diffeomorphic to an open book Open(Σki , ψ

2
i ).
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The manifold S2×S3 can likewise be written as an open book with quadratic mono-
dromy. Namely, as page take the cotangent unit disc bundle DT ∗S2 of S2. With
Proposition 4.3 the manifold Open(DT ∗S2, id) can be shown to be diffeomorphic
to S2 × S3. Let τ be a right-handed Dehn twist along the zero section of DT ∗S2.
Since τ2 is isotopic, relative to the boundary, to the identity map, it follows that
S2 × S3 is diffeomorphic to Open(DT ∗S2, τ2), see [27] and [23, p. 36]. So M can
be written as

M ∼= Open(♮mDT
∗S2♮Σk1♮ · · · ♮Σkn , ♮mτ

2♮ψ2
1♮ · · · ♮ψ

2
n).

This implies that M is the double branched cover of

Open(♮mDT
∗S2♮Σk1♮ · · · ♮Σkn , ♮mτ♮ψ1♮ · · · ♮ψn),

branched along the binding of the open book. That last open book, however,
is a right-handed stabilisation of Open(D4, id), which is diffeomorphic to the 5-
sphere. �

7.4. Existence of contact structures. The following theorem was first proved
by the second author [15], using contact surgery. The second proof was given by the
third author [25], using open book decompositions. Here we give a diagrammatic
proof.

Theorem 7.4. Every closed, oriented, simply connected 5-manifold admits a con-
tact structure in each homotopy class of almost contact structures.

Proof. Homotopy classes of almost contact structures on oriented, simply connected
5-manifolds are classified by the first Chern class, cf. [16, Proposition 8.1.1]. So
each Mk in Barden’s classification admits a unique almost contact structure up to
homotopy (for either of its orientations). The result now follows from Section 7.2
and Proposition 4.3. �
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