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EQUILIBRIUM STATES BEYOND SPECIFICATION AND THE

BOWEN PROPERTY

VAUGHN CLIMENHAGA AND DANIEL J. THOMPSON

Abstract. It is well-known that for expansive maps and continuous potential
functions, the specification property (for the map) and the Bowen property (for
the potential) together imply the existence of a unique equilibrium state. We
consider symbolic spaces that may not have specification, and potentials that
may not have the Bowen property, and give conditions under which uniqueness
of the equilibrium state can still be deduced. Our approach is to ask that the
collection of cylinders which are obstructions to the specification property or
the Bowen property is small in an appropriate quantitative sense. This al-
lows us to construct an ergodic equilibrium state with a weak Gibbs property,
which we then use to prove uniqueness. We do not use inducing schemes or the
Perron–Frobenius operator, and we strengthen some previous results obtained
using these approaches. In particular, we consider β-shifts and show that the
class of potential functions with unique equilibrium states strictly contains
the set of potentials with the Bowen property. We give applications to piece-
wise monotonic interval maps, including the family of geometric potentials for
examples which have both indifferent fixed points and a non-Markov structure.

1. Introduction

An equilibrium state for a topological dynamical system (X, f) and a potential
ϕ ∈ C(X) is an invariant measure that maximises the quantity hµ(f)+

∫

ϕdµ. For
a symbolic space, every continuous function has at least one equilibrium state. We
establish uniqueness in a setting that improves previous results by simultaneously
relaxing the structural requirements on X and the regularity properties of ϕ.

It was shown in [Bow74] that uniqueness holds when (X, f) satisfies expansivity
and specification and ϕ satisfies the Bowen property (Definition 2.2); in particular,
this is true if X is a mixing shift of finite type and ϕ is Hölder continuous. Working
in the symbolic setting (where expansivity is automatic), we give weakened versions
of the specification property and the Bowen property that still suffice to prove
uniqueness, and verify these conditions for specific examples. In particular, we
obtain the following.

Theorem A. Let (X, f) be a β-shift or a shift with the classical specification prop-
erty (Definition 2.1). Then there is a class of potentials B ⊂ C(X), strictly con-
taining the potentials with the Bowen property, such that every ϕ ∈ B has a unique
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equilibrium state. Furthermore, this equilibrium state has the weak Gibbs prop-
erty (4) and is the weak* limit of the periodic orbit measures

(1)
1

∑

x∈Pern
eSnϕ(x)

∑

x∈Pern

eSnϕ(x)δx.

As an application, for any β-transformation, every Hölder continuous function has
a unique equilibrium state.

Theorem A summarises results from §3.1, §3.2, §3.3 and §4.2, and is an appli-
cation of our more general result, Theorem C, which gives explicit conditions on
the language of a shift space which guarantee the existence of a unique equilibrium
state. Before we explain these conditions, we further discuss our applications. The-
orem A generalises previously known results in two directions. On the one hand,
for β-shifts (which generically do not have specification), uniqueness of the equi-
librium state was established by Walters for Lipschitz potentials [Wal78], and by
Denker, Keller and Urbanski [DKU90] for potentials ϕ with the Bowen property,
but only when supϕ < P (ϕ). In particular, Theorem A is the first result to estab-
lish uniqueness of equilibrium states for every Hölder continuous function on the
β-shift.

On the other hand, Theorem A gives new results for potentials without the
Bowen property, even for shifts with specification. We describe a new class of
potentials with unique equilibrium states, generalising a variant of the family of
grid functions defined by Markley and Paul [MP82, IT10]. This class of potentials
includes the pioneering examples on the full shift studied by Hofbauer [Hof77].
Other results on potentials which are not Hölder continuous have appeared in [PZ06,
Hu08]. The following result is a special case of our analysis in §§3.2–3.3.

Theorem B. Let X be a β-shift or a shift with the specification property, and
suppose that X contains the fixed point 0 = 000 · · · . Let k(x) be the number of
initial 0s in the sequence x ∈ X, and let ϕ(x) = ϕr(x) + ϕ0(x), where ϕr has the
Bowen property, ϕ0(0) = 0, and for x 6= 0, ϕ0(x) = ak(x) for some sequence an
satisfying limn→∞ an = 0. If |

∑

n≥1 an| = ∞, then ϕ does not have the Bowen
property. Nevertheless, if

(2) ϕ(0) < P (X,ϕ)

then there exists a unique equilibrium state µϕ for ϕ. Furthermore, µϕ has the weak
Gibbs property (4) and is the weak* limit of the periodic orbit measures (1).

When X has specification, we also obtain results (Theorem 3.4) where ϕ0 de-
pends in a precise way on the structure of an arbitrary subshift Y ⊂ X . Thus,
the class B mentioned in Theorem A contains many potentials besides those in
Theorem B.

We apply our results to certain piecewise expanding maps of the interval. The
following example, which is studied via an application of Theorem B, is a generali-
sation of the Manneville–Pomeau map. This example is developed rigorously in §4,
and demonstrates the efficacy of Theorem B.

Example 1.1. Fix γ > 0 and 0 < ε < 1. Define a piecewise monotonic map of
the interval [0, 1] by f(x) = x + γx1+ε (mod 1). Consider the geometric potential
ϕ(x) = − log |f ′(x)|, which does not have the Bowen property. This system can be
modeled by a β-shift and the potential tϕ can be modeled by a function satisfying
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the hypotheses of Theorem B whenever t < 1. As a consequence of Theorem B, the
potential tϕ has a unique equilibrium state for t < 1 and hence the map t 7→ P (tϕ)
is C1 in this domain.

When γ = 1, we obtain the Manneville–Pomeau map, where the thermody-
namics have been thoroughly studied [PS92, Urb96, PW99, Sar01], often using
the technique of inducing. For γ 6= 1, although a proof using inducing schemes
[You99, PS08, BT09] is likely to be possible, a number of technical hypotheses
must be verified and to the best of our knowledge, the details have never been
worked out. This example demonstrates that our techniques can be a very useful
alternative to inducing.

We now discuss the ideas behind our more general main result, Theorem C,
which provides abstract conditions implying uniqueness of the equilibrium state for
a potential ϕ on a shift space (X, σ). We develop the approach that we introduced
in [CT12]. The idea is that while specification and the Bowen property may not
hold on the entire language of the shift space, we can still ask for them to hold on
a collection of ‘good’ words; then we can require that the set of words that fail to
be good is small in an appropriate sense.

The good words can be chosen to deal with either the failure of the specification
property (e.g. for β-shifts), or the failure of the function to satisfy the Bowen
property everywhere on the space (e.g. the potentials described in Theorem B on
the full shift), or both simultaneously (e.g. those same potentials on the β-shifts).
The ability to deal with both of these non-uniformities concurrently is an important
advantage of our approach.

We use a standard argument to construct an equilibrium measure as the limit of
δ-measures supported on a set of orbits corresponding to words of length n, with
each orbit given a weight proportional to eSnϕ(x). A crucial step in our argument
is to show that this measure satisfies a Gibbs property on the collection of ‘good
words’. This ensures that there is no room for any mutually singular equilibrium
measure, and combined with an ergodicity argument, this proves uniqueness.

We apply our results to expanding piecewise monotonic maps, including the β-
transformation, and also consider cases where the map is non-uniformly expanding,
as in Example 1.1.

Our techniques are well adapted to the operation of taking factors. We use results
from [CT12] to establish uniqueness of equilibrium states for symbolic spaces (X, σ)
which are factors of β-shifts. In this case, we prove uniqueness of equilibrium states
for potentials ϕ which satisfy the Bowen property and the additional hypothesis
supϕ− inf ϕ < htop(X).

In §2, we formulate necessary definitions and state Theorem C, which is our
main result. In §3, we apply Theorem C in the symbolic setting, and state various
results that prove Theorem B. In §4, we apply our results to certain interval maps
and develop Example 1.1 in more detail. In §5, we prove Theorem C, and in §6, we
prove lemmas and propositions from §§3–4.

2. Definitions and statement of result

2.1. Notation and general definitions. A topological dynamical system is a
compact metric space X together with a continuous map f : X → X . We restrict
our attention to the case where X ⊂ AN for some finite set A, called an alphabet,
and f = σ is the shift map, defined by σ(x)n = xn+1. We use the notation Σ+

b for
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the shift space {0, . . . , b − 1}N. We use the abbreviation SFT for a shift of finite
type.

Our results (like those in [CT12]) apply equally well when X ⊂ AZ but all of
the examples in this paper are one-sided, so the non-invertible case will be our
focus. We recall some basic results and establish our notation. We refer the reader
to [Wal82, Chapter 9] and [LM95] for further background information.

The language of X is the set of finite words that appear in X . We denote the
language of X by L. To each word w we associate the cylinder

[w] = {x ∈ X | w = x1x2 · · ·x|w|},

where |w| denotes the length of the word w. Thus, the language of X can be
characterised by w ∈ L ⇔ [w] 6= ∅. Given two words v = v1 · · · vm and w =
w1 · · ·wn, we write vw = v1 · · · vmw1 · · ·wn. Given collections of words A,B ⊂ L,
we write

AB = {vw ∈ L | v ∈ A, w ∈ B}.

Note that only words in L are included in AB. Unless otherwise indicated, we use
superscripts to index collections of words, and subscripts to index the entries of a
given word. That is, if we have a collection of words {w}, then wj is the jth word

in the collection and wji is the ith entry of the word wj . We write Ln for the set of
words in L with length n. Let C(X) denote the space of continuous function on X
and given ϕ ∈ C(X), define a function ϕn : Ln → R by

ϕn(w) = sup
x∈[w]

Snϕ(x),

where Snϕ(x) = ϕ(x)+ϕ(σx)+ · · ·+ϕ(σn−1x). Given a collection of words D ⊂ L,
we write Dn = D ∩ Ln, and we consider the quantities

Λn(D, ϕ) =
∑

w∈Dn

eϕn(w).

The (upper capacity) pressure of ϕ on D is given by

P (D, ϕ) = lim
n→∞

1

n
log Λn(D, ϕ).

When D = L, we recover the standard definition of topological pressure, and we
write P (ϕ) or P (X,ϕ) in place of P (L, ϕ).

Let Mσ(X) denote the space of shift-invariant Borel probability measures on X .
We write h(µ) for the measure-theoretic entropy of µ ∈ Mσ(X). The variational
principle states that

P (ϕ) = sup

{

h(µ) +

∫

ϕdµ
∣

∣

∣
µ ∈ Mσ(X)

}

.

An invariant probability measure that attains this supremum is called an equilibrium
state for ϕ. We write Pern for the collection of periodic points of period n – that is,
Pern = {x ∈ X | σn(x) = x}. Observe that this differs from the notation in [CT12],
where Pern denoted points of period at most n.

2.2. Specification properties and regularity conditions. As in [CT12], we
formulate specification properties that apply only to a subset of the language of the
space. Our definition applies to naturally defined subsets of the languages of many
examples, such as β-shifts, that do not have specification.
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Definition 2.1. Given a shift space X and its language L, consider a subset G ⊂ L.
Fix t ∈ N; any of the following conditions defines a specification property on G with
gap size t.

(W): For all m ∈ N and w1, . . . , wm ∈ G, there exist v1, . . . , vm−1 ∈ L such
that x := w1v1w2v2 · · · vm−1wm ∈ L and |vi| ≤ t for all i.

(S): Condition (W) holds, and in addition, the connecting words vi can all be
chosen to have length exactly t.

(Per): Condition (S) holds, and in addition, the cylinder [x] contains a peri-
odic point of period exactly |x|+ t.

In the case G = L, (S)-specification is the well known specification property of the
shift. In this case, (S)-specification and (Per)-specification are equivalent (this is
a folklore result, which follows from the fact that shifts with (S)-specification admit
synchronizing words [Ber88]).

We now define the regularity condition that we require, which generalises the
well known property introduced by Bowen in [Bow74].

Definition 2.2. Given n ∈ N and G ⊂ L, let

Vn(G, Snϕ) = sup{|Snϕ(x) − Snϕ(y)| | x, y ∈ [w], w ∈ Gn}.

A potential ϕ has the Bowen property on G if supn∈N
Vn(G, Snϕ) <∞. Denote the

set of such potentials by Bow(G). If ϕ has the Bowen property on L, then we just
say that ϕ has the Bowen property.

Note that for shift spaces every Hölder continuous potential has the Bowen prop-
erty. This is because Vn(L, Snϕ) ≤

∑n
k=1 sup{|ϕ(x) − ϕ(y)| | x, y ∈ [w], w ∈ Lk},

and Hölder continuity implies that the quantity in the sum decays exponentially in
k.

2.3. Main result. We consider decompositions of the language: collections of
words Cp,G, Cs ⊂ L such that CpGCs = L. Every word in L can be written as
a concatenation of a ‘good’ core (from G) with a prefix and a suffix (from Cp and
Cs). Given such a decomposition, we consider for every M ∈ N the following
‘fattened’ set of good words

G(M) = {uvw ∈ L | u ∈ Cp, v ∈ G, w ∈ Cs, |u| ≤M, |w| ≤M}.

Note that
⋃

M G(M) = L, so this gives a filtration of the language.

Theorem C. Let (X, σ) be a subshift on a finite alphabet and ϕ ∈ C(X) a potential.
Suppose there exists collections of words Cp,G, Cs ⊂ L such that CpGCs = L and
the following conditions hold:

(I) G(M) has (S)-specification for every M ;
(II) ϕ ∈ Bow(G);
(III) The collections Cs and Cp satisfy

(3)
∑

n≥1

Λn(C
p ∪ Cs, ϕ)e−nP (ϕ) <∞;

Then ϕ has a unique equilibrium state µϕ, which satisfies the following weak Gibbs
property: there exists constants K ′,KM > 0 such that for every n ∈ N and w ∈
G(M)n, we have

(4) KM ≤
µϕ([w])

e−nP (ϕ)+ϕn(w)
≤ K ′.
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If (S)-specification is replaced with (Per)-specification in Condition (I), then

(5) µϕ = lim
n→∞

1
∑

x∈Pern
eSnϕ(x)

∑

x∈Pern

eSnϕ(x)δx,

where Pern is the collection of periodic orbits of length exactly n.

Remark 2.1. If P (Cp ∪ Cs, ϕ) < P (ϕ), then Condition (III) holds.

Remark 2.2. When ϕ = 0, the conditions in the main theorem of [CT12] imply
the conditions above except with (W)-specification in place of (S)-specification in
(I). The theorem holds true if we assume (W)-specification in (I) but it leads to
some additional technicalities in the proof. The stronger assumption is made purely
out of convenience and is satisfied by all examples under consideration here.

Remark 2.3. Because we assume that G(M) satisfies (Per)-specification for every
M , we obtain a stronger result concerning the periodic orbit measures than the
corresponding result in [CT12], where we considered measures supported on periodic
points of period at most n.

Remark 2.4. The Gibbs property (4) shows that µ is fully supported on X. If X
is a non-trivial shift space (i.e. contains an infinite number of points), this shows,
by ergodicity, that µ has no atoms.

Remark 2.5. Theorem C applies both when X is one-sided (i.e. X ⊂ AN) and two-
sided (i.e. X ⊂ AZ). The role of the prefix collection Cp seems to be much more
important in the two-sided case. Indeed, for all of the examples considered in this
paper, which are one-sided, Cp = ∅. In [CT12], we gave many two-sided examples
(S-gap shifts and coded systems) where the prefixes are indispensable. We also note
that in the two-sided case, the notation [w] refers to the standard two-sided central
cylinder.

3. Symbolic Examples

In this section, we apply Theorem C to symbolic systems. In §3.1, we show that
every function on a β-shift which has the Bowen property satisfies the hypotheses of
Theorem C. In §3.2, we prove Theorem B (and more) for shifts with specification.
In §3.3, we prove Theorem B for β-shifts. Combining these results yields the full
statements of Theorems A and B.

3.1. β-shifts. Fix β > 1, write b = ⌈β⌉, and let wβ ∈ {0, 1, . . . , b − 1}N be the
greedy β-expansion of 1 (see [CT12, Bla89, Par60, Mai07] for details). Then wβ

satisfies

(6)

∞
∑

j=1

wβj β
−j = 1,

and has the property that σk(wβ) � wβ for all k ≥ 1, where � denotes the lexico-
graphic ordering. The β-shift is defined by

(7) Σβ =
{

x ∈ {0, 1, . . . , b− 1} : σk(x) � wβ for all k ≥ 1
}

.

For the rest of this exposition, we assume that wβ is not eventually periodic. This
happens for Lebesgue almost every β, and is the interesting case for our analysis.
Although our methods apply equally well when wβ is eventually periodic, in this
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case Σβ is a sofic shift, and thus the thermodynamic formalism is already well
understood.

We showed in [CT12] that the language of Σβ can be decomposed as L = GCs,

where Csn = {wβ1 · · ·wβn}. We briefly review the construction, and show that G(M)
has (Per)-specification for every M .

Every β-shift can be presented by a countable state directed labeled graph Γβ,
as follows (see [BH86, PS07, CT12]). Consider a countable set of vertices labeled
v1, v2, . . .. For every i ≥ 1, we draw an edge from vi to vi+1, and label it with the

value wβi . Next, whenever wβi > 0, for each integer from 0 to wβi − 1, we draw an
edge from vi to v1 labeled by that value.

The β-shift can be characterised as the set of sequences given by the labels of
infinite paths through the directed graph which start at v1. For our set G, we take
the collection of words labeling a path that begins and ends at the vertex v1. It is
clear that

(1) such paths can be freely concatenated, and each one corresponds to a peri-
odic point – in particular, G has (Per)-specification with t = 0;

(2) G(M) is the set of words labeling finite paths that begin at v1 and terminate
at some vertex vi such that i ≤M .

(3) if τM = max{length of shortest path from vi to v1 | 0 ≤ i ≤M}, then G(M)
has (Per)-specification with t = τM . The ‘gap’ can be made to be exactly
τM rather than at most τM by padding out with a string of 0’s based at v1
if necessary.

It is clear from the graph presentation of Σβ that every word in L can be written

as a word from G followed by a word in Cs = {wβ1 · · ·wβn | n ≥ 1}. From the remarks
above, Condition (I) is satisfied.

Suppose ϕ has the Bowen property; then Condition (II) is immediate. Thus in
order to apply Theorem C, it remains only to show that ϕ satisfies Condition (III).
Because Csn is a singleton for all n, this amounts to checking that

(8)
∑

n≥1

eSnϕ(w
β)−nP (Σβ ,ϕ) <∞,

and thus it suffices to show that

(9) lim
n→∞

1

n
Snϕ(w

β) < P (Σβ , ϕ).

Proposition 3.1. Suppose ϕ ∈ Bow(Σβ). Then (9) holds.

It follows from Proposition 3.1 and Theorem C that every ϕ ∈ Bow(Σβ) has a
unique equilibrium state. In particular, every Hölder continuous potential ϕ on Σβ
has a unique equilibrium state.

Remark 3.2. Equilibrium states for β-shifts were studied by Walters [Wal78], who
dealt with the smaller class of Lipschitz potentials, but obtained stronger results than
we do regarding properties of the unique equilibrium states. His approach relies on
the Perron–Frobenius operator Lϕ defined by

(Lϕh)(x) =
∑

σy=x

eϕ(y)h(y).
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In the remarks following [Wal78, Corollary 8], he observes that if a Hölder contin-
uous ϕ is such that there exists M > 0 with

(10) Lnϕ1(x) ≤MenP (ϕ)

for all n ≥ 0, then the remainder of the results in [Wal78] go through. This inequal-
ity is a corollary of a key step in the proof of our main theorem: the upper bound
in Proposition 5.3 and the elementary inequality Lnϕ1(x) ≤ Λn(L, ϕ) yields (10)
for every Hölder ϕ. Thus in addition to the uniqueness results proved here, we can
deduce the following result from [Wal78, Theorems 10,13,15].

Theorem 3.3. Given a Hölder continuous ϕ on a β-shift Σβ, there exists a Borel

probability measure ν on X such that
∫

Lϕg dν = eP (ϕ)
∫

g dν for all g ∈ C(Σβ),

and a positive function h ∈ C(Σβ) such that Lϕh = eP (ϕ)h and the following are
true:

(1) µϕ = hν is a σ-invariant probability measure and the unique equilibrium
state for ϕ;

(2) e−nP (ϕ)Lnϕg converges uniformly to h
∫

g dν for every g ∈ C(Σβ);

(3) ν ◦ σ−n → µϕ in the weak* topology;

(4) Lϕ : C(Σβ) → C(Σβ) has spectral radius eP (ϕ);
(5) the natural extension of (Σβ , σ, µϕ) is isomorphic to a Bernoulli shift.

Moreover, given two Hölder functions ϕ and ψ, we have µϕ = µψ if and only if
there exists g ∈ C(Σβ) and C ∈ R such that ϕ− ψ = C + g ◦ σ − g.

3.2. Non-Bowen potentials. Let X ⊂ Σ+
d be a shift space, and fix an arbitrary

subshift Y ⊂ X . We describe a class of potentials on X for which the Bowen
property fails due to a detoriation in the regularity of the potential at points close
to Y . We give conditions under which our main theorem can be applied to give a
unique equilibrium state.

Our potentials are similar in spirit to the functions considered in [Hof77, MP82]
and §7 of [IT10]. A motivating example, described fully in §14, is when Y is the
fixed point at 0, and the function models the geometric potential for the Manneville–
Pomeau map.

In general, when Y is a non-trivial subshift, the (lack of) regularity in our class
of potentials is allowed to depend in a very precise way on the structure of Y , as
follows. Consider the set

F(X,Y ) := {w ∈ L(X) \ L(Y ) | w1 · · ·w|w|−1 ∈ L(Y )},

whose elements are forbidden words of minimal length for Y in X . Observe that
[v] ∩ [w] = ∅ for every v, w ∈ F(X,Y ), and define a countable partition of X by

P(X,Y ) := {[w] | w ∈ F(X,Y )} ∪ {Y }.

For example, if X = {0, 1}N and Y = {0}, then

P(X,Y ) = {{0}, [1], [01], [001], [00001], . . .}.

If X = {0, 1, 2}N and Y = {0, 1}N, then

P(X,Y ) = {Y, [2], [02], [12], [002], [012], . . .}.

Definition 3.1. A grid function for the partition P(X,Y ) is a function ϕ0 that
can be written as ϕ0 =

∑

w∈F(X,Y ) aw1[w], where {aw} are real numbers such that

limn→∞ maxw∈F(X,Y )n aw = 0.
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Let A = A(X,Y ) be the set of potential functions ϕ = ϕr + ϕ0 such that
ϕr ∈ Bow(L(X)) (the subscript r denotes ‘regular’) and ϕ0 =

∑

w aw1[w] is a grid
function for P(X,Y ). In many cases, a function ϕ ∈ A does not have the Bowen
property on X (see Proposition 3.8). However, given ϕ ∈ A, there is a natural
way to choose a collection G on which ϕ has the Bowen property. This gives us a
natural setting where our main theorem may be applied.

Theorem 3.4. Suppose X ⊂ AN is a shift with specification on a finite alphabet,
and let Y ⊂ X be an arbitrary subshift. Consider the class of potentials B = {ϕ ∈
A(X,Y ) | P (Y, ϕ) < P (X,ϕ)}. Then every ϕ ∈ B has a unique equilibrium state.
Furthermore, this equilibrium state has the weak Gibbs property (4) and is the weak*
limit of the periodic orbit measures

1
∑

x∈Pern
eSnϕ(x)

∑

x∈Pern

eSnϕ(x)δx.

Proof. We write down suitable collections G and Cs in order to apply our general
theorem. For any ℓ ≥ 0, we can define the collections

(11)
Gℓ = {w ∈ L(X) | σ|w|−ℓ(w) /∈ L(Y )},

Cs,ℓ = {w ∈ L(X) | wk · · ·wk+ℓ ∈ L(Y ) for all 1 ≤ k ≤ |w| − ℓ}.

For a suitably chosen ℓ, we will let G = Gℓ and Cs = Cs,ℓ. Given an arbitrary
w ∈ L(X), we can decompose w as uv, where every subword of v with length ℓ is
in L(Y ), and hence v ∈ Cs, while the word comprising the last ℓ symbols of u is
not in L(Y ), and hence u ∈ G.

Lemma 3.5. ϕ ∈ Bow(Gℓ) for every ϕ ∈ A(X,Y ) and ℓ ≥ 1.

Proof. It suffices to show that ϕ0 ∈ Bow(Gℓ). Given w ∈ Gℓ, observe that for all
0 ≤ k ≤ |w| − ℓ, ϕ0 is constant on each [σk(w)]. It follows that for every x, y ∈ [w],
we have

|Snϕ0(x)− Snϕ0(y)| ≤
N
∑

j=N−ℓ+1

|ϕ0(σ
j(x))− ϕ0(σ

j(y))| ≤ 2ℓ‖ϕ0‖. �

Lemma 3.6. There exists ℓ such that P (Cs,ℓ, ϕ) < P (X,ϕ).

Proof. For ease of exposition, we break the proof into two cases.
Case 1: Y is an SFT or there exists an SFT Z such that Y = Z ∩ X. Let F

be a finite collection of forbidden words which describes the SFT (see [LM95] for
details), and take ℓ = max{|w| | w ∈ F}. Then Cs,ℓ = L(Y ) and a short calculation
combined with the assumption that ϕ ∈ B shows that P (Cs,ℓ, ϕ) = P (Y, ϕ) <
P (X,ϕ).

Case 2: Y is an arbitrary subshift. Let Zℓ be the SFT whose forbidden words
are all words of length at most ℓ in AN \ L(Y ), and let Yℓ = Zℓ ∩ X . We have
⋂

ℓ Yℓ = Y . An easy generalisation of the proof of Proposition 4.4.6 of [LM95]
shows that limℓ→∞ P (Yℓ, ϕ) = P (Y, ϕ). Since P (Y, ϕ) < P (X,ϕ), we can choose ℓ
sufficiently large so that P (Yℓ, ϕ) < P (X,ϕ). Just as in case 1 of the proof, a short
calculation shows that P (Cs,ℓ, ϕ) = P (Yℓ, ϕ). �

Remark 3.7. Up to this point, we have not used the fact that the shift has spec-
ification. In particular, Lemma 3.5 shows that for all subshifts Y ⊂ X and ϕ ∈
A(X,Y ), if G ⊂ Gℓ for some ℓ ≥ 1, then ϕ ∈ Bow(G).
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Returning to the proof of Theorem 3.4, we let ℓ be as in Lemma 3.6 and let
G, Cs be as in (11). We check the hypotheses of Theorem C: Since L(X) has
specification, and thus (Per)-specification, G(M) has (Per)-specification for every
M ; Condition (II) holds by Lemma 3.5; and Condition (III) follows from Lemma 3.6.
Thus for ϕ ∈ B, all the hypotheses of Theorem C are satisfied, so the result follows.

�

The following proposition gives necessary and sufficient conditions for ϕ to have
the Bowen property.

Proposition 3.8. Consider ϕ ∈ A and let ϕ0 =
∑

aw1[w] be the associated grid
function. Then ϕ ∈ Bow(L(X)) if and only if there is V < ∞ such that for every
w ∈ L(Y ) and x ∈ [w], we have |S|w|ϕ0(x)| ≤ V .

Corollary 3.9. If Y = {0} and ϕ = ϕr + ϕ0 ∈ A with ϕ0 =
∑

aw1[w], then
ϕ ∈ Bow(L(X)) if and only if

∑

n a0nz converges for every z ∈ A \ {0}.

We briefly mention a condition under which it is easy to apply Theorem 3.4.
Observe that whenever X has specification and ϕ = ϕr + ϕ0 ∈ A(X,Y ) for some
subshift Y ⊂ X , the unique equilibrium state of ϕr is fully supported on X . Thus
we often have P (Y, ϕr) < P (X,ϕr); for example, this holds whenever ϕr|Y has a
unique equilibrium state on Y . In this case there is a gap between the two pressures,
and we put a condition on ϕ0 that guarantees the persistence of this gap for ϕ.

Corollary 3.10. Let X have specification and let Y ⊂ X be an arbitrary subshift.
Suppose ϕ = ϕr + ϕ0 ∈ A(X,Y ) satisfies

(12) − inf ϕ0 < P (X,ϕr)− P (Y, ϕr).

Then ϕ has a unique equilibrium state.

Proof. Write ϕ−
0 = min(0, ϕ0). Using the fact that the pressure function is mono-

tonic [Wal82, Theorem 9.7] and the variational principle, we see that

P (X,ϕ) = P (X,ϕr + ϕ0) ≥ P (X,ϕr + ϕ−
0 ) ≥ P (X,ϕr)− ‖ϕ−

0 ‖

= P (X,ϕr) + inf ϕ0 > P (Y, ϕr) = P (Y, ϕ),

where the last inequality uses (12). Thus Theorem 3.4 applies. �

Remark 3.11. If ϕr = 0 and Y is a single periodic orbit, then (12) follows from
the familiar condition that supϕ− inf ϕ < htop(X).

3.3. Non-Bowen potentials for β-shifts. We extend Theorem 3.4 to the setting
when X is a β-shift and Y = {0}. This will complete the proof of Theorem B.

Theorem 3.12. Let ϕ ∈ A(Σβ , {0}) be such that the numbers aw in Definition 3.1
depend only on the length of w. If P (Σβ , ϕ) > ϕ(0), then ϕ has a unique equilibrium
state. Furthermore, this measure has the weak Gibbs property (4) and is the weak*-
limit of the periodic orbit measures (1).

For the proof of Theorem 3.12, we define collections G and Cs in order to deal
with both the non-Markov structure of Σβ and the failure of the Bowen property
for ϕ simultaneously so that we can apply Theorem C. Recall the presentation of
Σβ via a graph on a countable vertex set. Let G be the collection of words w which
label a path that either: (1) begins and ends at the base vertex v1 and has the
additional property that w|w| 6= 0; or (2) begins at v1 and ends at v2.



EQUILIBRIUM STATES BEYOND SPECIFICATION 11

For the suffix set, take Cs = Cs,1 ∪ Cs,2 ∪ Cs,3, where

Cs,1 = {wβ1w
β
2 · · ·wβm | m ≥ 1} · A · {0ℓ | ℓ ≥ 0},

Cs,2 = {wβ2w
β
3 · · ·wβm | m ≥ 2} · A · {0ℓ | ℓ ≥ 0},

Cs,3 = {0ℓ | ℓ ≥ 0}.

It is clear that every word in L can be written as a word in G followed by a word
in Cs. It follows from our earlier analysis of the β-shift that G(M) has (Per)-
specification for every M . To prove Theorem 3.12 we need only verify that Cs

satisfies Condition (III) of Theorem C. This is the content of §6.3.

3.4. Factors of β-shifts. Let X be a subshift factor of a β-shift. In [CT12], we
proved that there is a natural way to write L(X) = GCs, which is inherited from
the β-shift. An easy variation of the argument in [CT12] shows that G(M) has
(Per)-specification and P (Cs, 0) = 0. The following theorem is a corollary of this
fact and our main theorem.

Theorem 3.13. Let X be a subshift factor of a β-shift, and let L(X) = GCs be the
decomposition inherited from the β-shift. Suppose ϕ ∈ Bow(G) and supϕ− inf ϕ <
htop(X). Then ϕ has a unique equilibrium state.

Proof. We just need to check that P (Cs, ϕ) < P (X,ϕ). Since #Csn grows subexpo-
nentially, we have P (Cs, ϕ) ≤ supϕ. By the variational principle,

P (X,ϕ) ≥ htop(X) + inf ϕ

≥ htop(X)− (supϕ− inf ϕ) + P (Cs, ϕ)

> P (Cs, ϕ). �

4. Interval maps

We prove uniqueness of equilibrium states for systems that can be well coded by
shift spaces meeting the hypotheses of our main theorem.

4.1. Piecewise monotonic interval maps. We consider maps on the interval
(perhaps discontinuous) which admit a finite partition such that the map is contin-
uous and monotonic when restricted to the interior of any partition element. That
is, let I = [0, 1] be the unit interval, and let f : I → I be such that there exists
p ≥ 2 and 0 = a0 < a1 < . . . < ap = 1 such that writing Ij = (aj , aj+1), the
restriction f |Ij is a continuous, monotonic map for every j.

Let S = {a0, . . . , ap} and I ′ = I \
⋃

i≥0 f
−iS. We code (I, f) by the alphabet

A = {0, . . . , p− 1}; the symbolic dynamics of (I, f) is defined by the natural coding
map i : I ′ → AN, which is given by i(x)k = j if fk(x) ∈ Ij . We make the assumption
that i is well defined and injective on I ′. This is clearly true when f is C1 and
satisfies |f ′(x)| ≥ α > 1 for all x. When f is assumed only to be increasing on each
Ij , a sufficient condition for i to be well defined and injective is that f is transitive
[FP09, Par64].

Definition 4.1. We say that a piecewise monotonic map admits symbolic dynamics
if the natural coding map i : I ′ → AN is injective. The symbolic dynamics of (I, f)

is the symbolic space Σf ⊂ AN given by Σf = i(I ′).

We define π : Σf → I by π(x) =
⋂∞
k=0 f

−kIxk
, and recall the following important

facts.



12 VAUGHN CLIMENHAGA AND DANIEL J. THOMPSON

(1) (I, f) is a topological factor of (Σf , σ), with π as a factor map.
(2) π is injective away from a countable set.
(3) Since any measure whose support is contained in a countable set is periodic,

π can be used to give a measure theoretic isomorphism between (Σf , σ) and
(I, f) for any measure which has no atoms.

(4) Hence, to prove that ϕ has a unique equilibrium state on (I, f), it suffices
to show that ϕ ◦ π has a unique equilibrium state which has no atoms.

There is a natural identification between words w in Σf and ‘cylinder sets’ π(w) ⊂ I,

where π(w) =
⋂|w|−1
k=0 f−kIwk

. Consider the class of functions Ĉ(I) = {ϕ : I → R |

ϕ ◦ π ∈ C(Σf )}. For a function ϕ ∈ Ĉ(I), we define a Bowen property which is
adapted to the symbolic dynamics. For any G ⊂ L(Σf ), define

Vn(I,G, Snϕ) = sup{|Snϕ(x) − Snϕ(y)| | x, y ∈ π(w), w ∈ Gn}.

We define BowI(G) = {ϕ ∈ Ĉ(I) | supn Vn(I,G, Snϕ) < ∞}. For w ∈ L(Σf ), we
define

ϕn(π(w)) = sup
x∈π(w)

Snϕ(x).

Given a collection of words D ⊂ L(Σf ), we write Dn = D ∩ Ln, and we consider
the quantities

Λn(I,D, ϕ) =
∑

w∈Dn

eϕn(π(w)).

We define

P (ϕ) = lim
n→∞

1

n
log Λn(I,L(Σf ), ϕ).

Theorem 4.1. Let f be a piecewise monotonic interval map which admits symbolic
dynamics, and ϕ ∈ Ĉ(I) be a potential. Suppose there exist collections of words
Cp,G, Cs ⊂ L(Σf ) such that CpGCs = L(Σf ) and the following conditions hold:

(I) G(M) has (S)-specification for every M ;
(II) ϕ ∈ BowI(G);
(III)

∑

n≥1 Λn(I, C
p ∪ Cs, ϕ)e−nP (ϕ) <∞.

Then ϕ has a unique equilibrium state µϕ. Furthermore, µϕ is fully supported and
satisfies the weak Gibbs property (4). If each G(M) has (Per)-specification, µϕ is
the weak* limit of the periodic orbit measures

(13)
1

∑

x∈Pern
eSnϕ(x)

∑

x∈Pern

eSnϕ(x)δx.

Proof. The hypotheses of the theorem show that the function ϕ ◦ π on (Σf , σ)
satisfies the hypotheses on Theorem C. Thus, ϕ ◦ π has a unique equilibrium state
on Σf . We see from Remark 2.4 that this equilibrium state has no atoms, and
therefore, the discussion above yields a unique equilibrium state for ϕ on (I, f). �

We show how to verify these hypotheses for natural classes of functions on some
special classes of piecewise monotonic interval maps.
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4.2. β-transformations and F -transformation. Let F : I → R be an increasing
C1 map such that F (0) = 0, and suppose that there exists α > 1 such that F ′(x) ≥
α > 1 for all x ∈ I. Let f : [0, 1) → [0, 1) be the map given by

f(x) = F (x) (mod 1).

Following [Wal78, Sch95], we call such a map an F -transformation (in [Hof87], these
are called monotonic mod 1 transformations). When F (x) = βx for some β > 1,
we recover the definition of the β-transformation.

As described in [FP09], it can be shown that writing b = ⌈F (1)⌉, the space
Σf ⊂ Σ+

b has a lexicographically maximal element w, and Σf can be characterised
as

Σf = {x ∈ Σ+
b | 0 � σnx � w for all n ≥ 0}.

In other words, the symbolic dynamics of (I, f) is a β-shift. Since f is uniformly

expanding, it is easy to check that if ϕ ∈ Ĉ(I) is Hölder, then ϕ ∈ BowI(I) and
thus ϕ ◦ π ∈ Bow(Σf ). Proposition 3.1 shows that Condition (III) of Theorem C
holds for ϕ◦π, and thus ϕ◦π has a unique equilibrium state (which has no atoms).
Thus, by the comments above, ϕ has a unique equilibrium state. In summary, we
obtain

Theorem 4.2. Let f : [0, 1) 7→ [0, 1) be an F -transformation and ϕ ∈ Ĉ(I) have
the Bowen property. Then ϕ has a unique equilibrium state µϕ. Furthermore, µϕ is
fully supported and satisfies the weak Gibbs property (4); it is also the weak* limit
of the periodic orbit measures (13).

4.3. A generalisation of the Manneville-Pomeau maps. We explain how
Theorem 4.1 can be applied to the maps in Example 1.1. Recall, we fix γ > 0
and ε ∈ (0, 1) and define

(14) f(x) = x+ γx1+ε (mod 1).

When γ = 1, f is the well-known Manneville–Pomeau map. More generally, f is an
F -transformation, albeit with only non-uniform expansion. The characterisation
of the symbolic dynamics for F -transformations holds true in this case, and we see
that there exists β > 1 such that the symbolic dynamics of (I, f) is Σβ .

Consider the geometric potential ϕ(x) = − log |f ′(x)|. When t < 1, we show
that tϕ ◦ π is a function on Σβ of the type studied in §3.2.

Theorem 4.3. Fix γ > 0 and 0 < ε < 1, and let f be the piecewise monotonic
interval map defined in (14). Let ϕ(x) = − log |f ′(x)| be the geometric potential.
Then the following are true.

(1) For each t < 1, the potential tϕ has a unique equilibrium state µt. The
measures µt have the weak Gibbs property (4) and are the weak* limit of
the periodic orbit measures

1
∑

x∈Pern
((fn)′(x))−t

∑

x∈Pern

((fn)′(x))−tδx.

On (−∞, 1), the pressure function t 7→ P (tϕ) is C1 and strictly positive.
(2) At t = 1, the function t 7→ P (tϕ) is not differentiable, and there are at least

two distinct ergodic equilibrium states for ϕ.
(3) For t ≥ 1, we have P (tϕ) = 0, and the δ-measure at 0 is an equilibrium

state.
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Proof. We show that ϕ ◦ π ∈ A(Σβ , {0}), and it immediately follows that tϕ ◦ π ∈
A(Σβ , {0}) for all t. For t < 1, we then verify the hypotheses of Theorem 3.12
to establish uniqueness of equilibrium states. The second and third parts of the
theorem follow directly from the inequality hµ(f) ≤

∫

log |f ′(x)| dµ for all ergodic
f -invariant measures, which holds for this family of maps by [Hof91, Theorem 1]
(see also [BBJL12, Theorem 7.1]).

Let x0 be the solution of x + γx1+ε = 1, and let xn be the unique number
with 0 < xn < x0 and xn−1 = f(xn). Note that if I0 is the first interval of
monotonicity of (I, f), then I0 = (0, x0). Note also that for any n ≥ 1 and z 6= 0,
that π(0nz) ∈ [xn, xn−1]. Using the notation conventions of §3.2, we find functions
ϕ0 and ϕr so that ϕ ◦ π = ϕr + ϕ0. With X = Σβ and Y = {0}, we have
F(X,Y ) = {0nc | n ≥ 0, c ∈ {1, . . . , b − 1}}. Define a grid function ϕ0 as in
Definition 3.1 using the values a0nc = ϕ(xn), so that

ϕ0(x) = ϕ(xn) whenever π(x) ∈ (xn+1, xn],

and ϕ0(0) = 0. Let ϕr = ϕ ◦ π − ϕ0. The following lemma is proved in §6.4.

Lemma 4.4. The potential ϕr has the Bowen property, while the potential ϕ ◦ π
does not.

Remark 4.5. The first part of Lemma 4.4 is immediate if ϕ has the Bowen prop-
erty with respect to the countable partition {(x0, 1], (x1, x0], (x2, x1], . . .}, and this
is essentially what we prove. For the Manneville–Pomeau map, this was shown
by Sarig in [Sar01, Claim 2]. Our proof relies on elegant elementary distortion
estimates proved by Young [You99, §6].

We now assume that t < 1 and verify that P (tϕ) > 0. A key ingredient is the
following lemma, whose proof was communicated to us by D. Dolgopyat.

Lemma 4.6. Let Z0 = {x ∈ I | lim 1
n log(fn)′(x) = 0}. Then LebZ0 = 0.

This is the key tool in deriving the following estimate.

Lemma 4.7. For the geometric potential ϕ = − log f ′, there exists λ > 1 such that
P (tϕ) ≥ (1− t) logλ > 0 for all t < 1.

Applying Theorem 3.12, this shows that tϕ has a unique equilibrium state for
every t < 1. Because the entropy map is upper semi-continuous, this implies that
the pressure function is C1. �

Remark 4.8. The assumption that 0 < ε < 1 is only used in the proofs of Lemmas
4.6 and 4.7. If the inequality P (tϕ) > 0 for t < 1 can be established by other means,
then Theorem 4.3 follows even if ε ≥ 1.

5. Proof of Theorem C

5.1. Estimates of partition sums.

Lemma 5.1. For every M ≥ 0, there exists DM > 0 such that Λn(G(M), ϕ) ≤
DMe

nP (ϕ) for all n.

Proof. Using Condition (I), there is a map π : G(M)kn → Lk(n+tM ) such that π(~w) =

w1v1w2 · · ·wkvk for some vi ∈ LtM . Let VM := supn Vn(G(M), Snϕ), and observe
that

VM ≤ 4M‖ϕ‖+ sup
k
Vk(G, Skϕ) <∞,
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using the fact that ϕ ∈ Bow(G). Furthermore,

ϕk(n+tM )(π(~w)) ≥
k

∑

j=1

ϕn(w
j)− k(VM + tM )‖ϕ‖.

Thus we have

Λk(n+tM )(L, ϕ) ≥
∑

~w∈G(M)kn

e(
∑k

j=1 ϕn(w
j))−k(VM+tM‖ϕ‖)

= (Λn(G(M), ϕ)e−(VM+t‖ϕ‖))k,

whence

1

n+ tM
log Λn(G(M), ϕ) ≤

1

k(n+ tM )
log Λk(n+tM )(L, ϕ) +

VM + tM‖ϕ‖

n+ tM
.

Sending k → ∞ gives

1

n
log Λn(G(M), ϕ) ≤

n+ tM
n

(

P (ϕ) +
VM + tM‖ϕ‖

n+ tM

)

. �

Proposition 5.2. Suppose D ⊂ L and C1 > 0 are such that Λn(D, ϕ) ≥ C1e
nP (ϕ)

for every n ∈ N. Then for every δ > 0, there exists M ∈ N such that Λn(D ∩
G(M), ϕ) ≥ (1 − δ)Λn(D, ϕ) for every n ∈ N.

Proof. Let ai = Λi(Cp∪Cs, ϕ)e−iP (ϕ), so
∑

i ai <∞ by Condition (III). Every word
y ∈ Dn has the form uvw for some u ∈ Cpi , v ∈ Gj , and w ∈ Csk, where i+j+k = n. If
i∨k ≤M , then y ∈ G(M); thus using the inequality ϕn(y) ≤ ϕi(u)+ϕj(v)+ϕk(w),
we have

Λn(D, ϕ) ≤ Λn(D ∩ G(M), ϕ) +
∑

i+j+k=n
i∨k>M

Λi(C
p, ϕ)Λj(G, ϕ)Λk(C

s, ϕ).

Multiplying both sides by e−nP (ϕ) and using the result of Lemma 5.1, we obtain

Λn(D, ϕ)e
−nP (ϕ) ≤ Λn(D ∩ G(M), ϕ)e−nP (ϕ) +

∑

i∨k>M

aiakD0.

Because
∑

ai <∞, we can choose M such that
∑

i∨k>M

aiakD0 ≤ δC1 ≤ δΛn(D, ϕ)e
−nP (ϕ),

and so we have

(1 − δ)Λn(D, ϕ)e
−nP (ϕ) ≤ Λn(D ∩ G(M), ϕ)e−nP (ϕ). �

Proposition 5.3. There exists C2 > 0 such that enP (ϕ) ≤ Λn(L, ϕ) ≤ C2e
nP (ϕ)

for all n.

Proof. Define a map π :
⋃∞
i=n Li → Ln by π(w) = w1 . . . wn. Then

ϕnk(w) ≤
k
∑

i=1

ϕn(π(σ
(i−1)nw)),

which gives

Λnk(L, ϕ) ≤
∑

w∈Lnk

e
∑k

i=1 ϕn(π(σ
(i−1)nw)) ≤ Λn(L, ϕ)

k.
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Thus 1
nk log Λnk(L, ϕ) ≤

1
n log Λn(L, ϕ), and sending k → ∞ gives the first inequal-

ity in the statement of the proposition.
For the second inequality, we apply Proposition 5.2 with D = L to see that there

exists M such that Λn(G(M), ϕ) ≥ 1
2Λn(L, ϕ) for all n ∈ N. An application of

Lemma 5.1 completes the argument. �

Given µ ∈ M(X) and Dn ⊂ Ln, we write µ(Dn) = µ(
⋃

w∈Dn
[w]).

Proposition 5.4. For every γ > 0, there exist M ∈ N and C1 > 0 such that if ν is
an equilibrium state for ϕ, then every collection Dn ⊂ Ln with ν(Dn) ≥ γ satisfies

(15) Λn(D ∩ G(M), ϕ) ≥ C1e
nP (ϕ).

Proof. Recall that the entropy of ν is given by

h(ν) = inf
n≥1

1

n

∑

w∈Ln

−ν(w) log ν(w),

and so for the pressure P (ϕ) = h(ν) +
∫

ϕdν, we get

nP (ϕ) = n

(

h(ν) +

∫

1

n
Snϕdν

)

≤
∑

w∈Ln

ν(w)(ϕn(w) − log ν(w)).

Observe that
∑

w∈Dn

ν(w)(ϕn(w)− log ν(w))

= ν(Dn)
∑

w∈Dn

ν(w)

ν(Dn)

(

ϕn(w) − log
ν(w)

ν(Dn)
− log ν(Dn)

)

≤ ν(Dn) log Λn(D, ϕ)− ν(Dn) log ν(Dn),

where we use the fact that if ai ≥ 0,
∑

i ai = 1, and pi ∈ R, then

∑

i

ai(pi − log ai) ≤ log
∑

i

epi .

Now writing Dc
n = Ln \ Dn, the above estimates give

nP (ϕ) ≤ ν(Dn) log Λn(D, ϕ) + ν(Dc
n) log Λn(D

c, ϕ) +H,

where H = supt∈[0,1](−t log t− (1− t) log(1− t)). Using the fact that Λn(Dc, ϕ) ≤
Λn(L, ϕ), we see from Proposition 5.3 that

nP (ϕ) ≤ ν(Dn) log Λn(D, ϕ) + (1− ν(Dn))(nP (ϕ) + logC2) +H

= ν(Dn)(log Λn(D, ϕ) − nP (ϕ)− logC2) + nP (ϕ) + logC2 +H.

Now since ν(Dn) ≥ γ, we have

logΛn(D, ϕ) − nP (ϕ)− logC2 ≥ −
logC2 +H

ν(Dn)
≥ −

logC2 +H

γ
,

which shows that there exists C1 > 0 such that Λn(D, ϕ) ≥ C1e
nP (ϕ). An applica-

tion of Proposition 5.2 completes the proof. �
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5.2. A Gibbs property. We build an equilibrium state µ as a limit of δ-measures
µn distributed on n-cylinders according to the weights given by eϕn(w). To be
precise, for each w ∈ L, fix a point x(w) ∈ [w]; then consider the measures defined
by

νn =
1

Λn(L, ϕ)

∑

x∈Ln

eϕn(w)δx(w), µn =
1

n

n−1
∑

k=0

(σ∗)kνn,

and let µ be a weak* limit of the sequence µn. It is shown in [Wal82, Theorem
9.10] that h(µ) +

∫

ϕdµ = P (ϕ), so it remains to show that there can be no other
equilibrium states.

Proposition 5.5. For sufficiently large M , there exists a constant KM such that
for every n ∈ N and w ∈ G(M), we have µ([w]) ≥ KMe

−nP (ϕ)+ϕn(w).

Proof. Combining Propositions 5.2 and 5.3, we see that for large enough M there
exists C = C(M) > 0 such that Λn(G(M), ϕ) ≥ CenP (ϕ) for all n.

Fix w ∈ G(M)n. We estimate µm(w) for largem by first estimating νm(σ−k(w)).
Let tM be the gap size in the specification property, and let ℓ1 = k − tM and
ℓ2 = m− k − tM − n. From Condition (I), for every vi ∈ G(M)ℓi there exist words
u1, u2 ∈ LtM such that v1u1wu2v2 ∈ Lm. Since different choices of v1, v2 give
different words in Lm, this defines an injective map π : G(M)ℓ1 × G(M)ℓ2 → Lm.
Note that

ϕm(π(v1, v2)) ≥ ϕℓ1(v1) + ϕn(w) + ϕℓ2(v2)− 2tM‖ϕ‖ − 3V,

and this allows us to estimate that

νm(σ−k(w)) ≥

∑

v1∈G(M)ℓ1 ,v
2∈G(M)ℓ2

eϕm(π(v1,v2))

Λm(L, ϕ)

≥
Λℓ1(G(M), ϕ)eϕn(w)Λℓ2(G(M), ϕ)e−(3V +2tM‖ϕ‖)

Λm(L, ϕ)
.

Using the lower bound given above for Λℓi(G(M), ϕ) together with the result of
Proposition 5.3, we have

νm(σ−k([w])) ≥
C2e(ℓ1+ℓ2)P (ϕ)eϕn(w)e−(3V+2tM‖ϕ‖)

C2emP (ϕ)

= C2C−1
2 e−(3V+2tM‖ϕ‖)e−2tMP (ϕ)e−nP (ϕ)+ϕn(w).

Since this holds for all k and m, we are done. �

The Gibbs property above shows that if µ is ergodic (which we will verify shortly),
then µ is not atomic.

Lemma 5.6. There exists C3 > 0 such that for every n ∈ N and w ∈ Ln, we have
µ(w) ≤ C3e

−nP (ϕ)+ϕn(w).

Proof. Fix m > n and k < m− n. Using Proposition 5.3, we have

νm(σ−k([w])) ≤
Λk(L, ϕ)eϕn(w)Λm−k−n(L, ϕ)

Λm(L, ϕ)

≤
C2

2e
(m−n)P (ϕ)eϕn(w)

emP (ϕ)
,

and the result follows upon passing to the limit. �
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Using the Gibbs property, we show that µ is concentrated on cylinders from
G(M) in the following sense.

Lemma 5.7. Let δ1 > 0. There exists M such that for all n, any subset Dn ⊂ Ln
satisfies µ(Dn ∩ G(M)) ≥ µ(Dn)− δ1.

Proof. By Proposition 5.2, there exists M such that for all n,

Λn(G(M)c, ϕ) ≤ (δ1C
−1
3 C−1

2 )Λn(L, ϕ).

Together with Proposition 5.3 and Lemma 5.6, this gives

µ(G(M)c) ≤ C3Λn(G(M)c, ϕ)e−nP (ϕ) ≤ (δ1C
−1
3 C−1

2 )C3C2 = δ1,

and the result follows. �

5.3. Ergodicity of µ.

Proposition 5.8. If two measurable sets P,Q ⊂ X both have positive µ-measure,
then limn→∞ µ(P ∩ σ−nQ) > 0.

Proof. We start by considering the case where P and Q are cylinders corresponding
to words in G(M).

Lemma 5.9. For all sufficiently large M , there exists EM > 0 such that if u, v ∈
G(M), then limn→∞ µ([u] ∩ σ−n[v]) ≥ EMµ(u)µ(v).

Proof. As in the proof of Proposition 5.5, we take M and C = C(M) such that
Λn(G(M), ϕ) ≥ CenP (ϕ) for all n. Now fix u, v ∈ G(M), let m ∈ N be large and fix
k ≤ m. We estimate

(νm ◦ σ−k)([u] ∩ σ−n[v]) = νm(σ−k[u] ∩ σ−(n+k)[v]).

Write ℓ1 = k − tM , ℓ2 = n − |u| − 2tM , and ℓ3 = m − n − k − |v| − tM and
notice that ℓ1 + ℓ2 + ℓ3 −m = −(4tM + |u| + |v|). Using Condition (I), for every
(w1, w2, w3) ∈ Gℓ1 × Gℓ2 × Gℓ3 there exist x1, x2, x3, x4 ∈ LtM such that

w1x1ux2w2x3vx4w3 ∈ Lm.

As in Proposition 5.5, it follows that

(νm ◦ σ−k)([u] ∩ σ−n[v])

≥
Λℓ1(G(M), ϕ)eϕ|u|(u)Λℓ2(G(M), ϕ)eϕ|v|(v)Λℓ3(G(M), ϕ)e−(3V+4tM‖ϕ‖)

Λm(L, ϕ)

≥
C3e(ℓ1+ℓ2+ℓ3)P (ϕ)eϕ|u|(u)eϕ|v|(v)e−(3V+4tM‖ϕ‖)

C2emP (ϕ)

≥ C3C−1
2 e−|u|P (ϕ)+ϕ|u|(u)e−|v|P (ϕ)+ϕ|v|(v)e−4tMP (ϕ)e−(3V+4tM‖ϕ‖)

≥ C3C−1
2 e−4tMP (ϕ)e−(3V+4tM‖ϕ‖)µ(u)µ(v),

where the last inequality follows from Lemma 5.6. This holds for all k and m,
whence we have the desired result. �

Given P ⊂ G(M)m, let [P ] =
⋃

w∈P [w]. Then for P,Q ⊂ G(M)m, we have

µ([P ] ∩ σ−n[Q]) =
∑

w∈P,w′∈Q

µ([w] ∩ σ−n[w′]),
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and using Lemma 5.9, we see that

(16) lim
n→∞

µ([P ] ∩ σ−n[Q]) ≥ EMµ(P )µ(Q).

To complete the proof of Proposition 5.8, we let P,Q ⊂ X be any measurable
sets with positive µ-measure, and take 0 < δ1 < µ(P ) ∧ µ(Q). Let M be as in
Lemma 5.7.

Fix ε > 0 and choose sets U, V that are unions of cylinders of the same length,
say m, and for which µ(U △ P ) < ε and µ(V △ Q) < ε. Let U ′ = U ∩ [G(M)m]
and V ′ = V ∩ [G(M)m]; then by Lemma 5.7, we have µ(U ′) > µ(U) − δ1 and
µ(V ′) > µ(V )− δ1. Furthermore, using (16), we see that

lim
n→∞

µ(U ′ ∩ σ−n(V ′)) ≥ EMµ(U
′)µ(V ′),

whence

(17) lim
n→∞

µ(U ∩ σ−n(V )) ≥ EM (µ(U)− δ1)(µ(V )− δ1).

Finally, we observe that

|µ(U ∩ σ−n(V ))− µ(P ∩ σ−n(Q))| ≤ µ((U ∩ σ−n(V ))△ (P ∩ σ−n(Q)))

≤ µ((U △ P ) ∩ σ−n(V △Q)) < ε

for every n, which together with (17) implies

lim
n→∞

µ(P ∩ σ−n(Q)) ≥ EM (µ(P )− δ1)(µ(Q)− δ1)− ε.

Since ε > 0 was arbitrary, this completes the proof. �

5.4. Uniqueness of µ. Let µ be the ergodic equilibrium state constructed in the
previous sections, and suppose that some ergodic measure ν ⊥ µ is also an equilib-
rium state. Let D be a collection of words such that µ(Dn) → 0 and ν(Dn) → 1.
Applying Proposition 5.4, we may assume that M and C1 > 0 are such that

Λn(D ∩ G(M), ϕ) ≥ C1e
nP (ϕ)

for every n. Using the Gibbs property from Proposition 5.5, we have

µ(Dn) ≥ µ(Dn ∩ G(M)) ≥
∑

w∈Dn∩G(M)

KMe
−nP (ϕ)+ϕn(w)

= KMe
−nP (ϕ)Λn(D ∩ G(M), ϕ) ≥ KMC1 > 0,

which contradicts the fact that µ(Dn) → 0. This contradiction implies that every
equilibrium state ν for ϕ is absolutely continuous with respect to µ, and since µ is
ergodic, this in turn implies that ν = µ, which completes the proof of Theorem C.

5.5. Characterisation of µ. We claim that if G(M) has (Per)-specification for
all M , then µ can be characterised by the equation (5). The argument is simi-
lar to the one described in more detail in §5.6 of [CT12]. The key point is that
∑

x∈Pern+τ
eSnϕ(x) can be controlled from below by Λn(G(M), ϕ), where τ is the

gap size in the specification property of G(M). This can be used to show that any
limit measure of the sequence of measures in (5) is an equilibrium measure for ϕ.
By uniqueness of the equilibrium measure, this establishes (5).



20 VAUGHN CLIMENHAGA AND DANIEL J. THOMPSON

6. Proofs of results from Sections 3 and 4

6.1. Proof of Proposition 3.1. Let Σ ⊂ Σβ be an SFT containing 0. This is
possible by fixing N ∈ N and taking the shift space defined by all the paths on the
graph presentation of Σβ which never leave the first N vertices of the graph. Then
there is a unique equilibrium state µ′ for ϕ|Σ, and µ′ is fully supported on Σ. In
particular, µ′ is non-atomic, and so

P (Σβ , ϕ) ≥ P (Σ, ϕ) = hµ′(f) +

∫

ϕdµ′ > ϕ(0).

Let V = max{supn Vn(L, Snϕ), ‖ϕ‖∞}, and fix δ > 0 such that

(18) ϕ(0) + 8δV < P (Σβ , ϕ).

Fix n ≥ 1 and let w = wβ1 · · ·wβn be the unique word in Csn. Let an be the number
of non-zero entries in w; that is, an = #{i ∈ {1, . . . n} | wi 6= 0}. For every
0 ≤ k ≤ an, let Ak be the set of words obtained by changing precisely k of those
entries to 0. Observe that Ak ⊂ Ln (this follows from the characterisation of Σβ in
terms of the lexicographic ordering). Furthermore, for each v ∈ Ak, we have

w = w1x1w
2x2 · · ·xkw

k+1,

v = w10w20 · · · 0wk+1,

where wi ∈ L and xi ∈ A. (Recall that A is the alphabet of the shift.) Writing
Φ(u) = ϕ|u|(u) = supx∈[u] S|u|ϕ(x) for u ∈ L, we have

|Φ(w)− (Φ(w1) + Φ(x1) + Φ(w2) + Φ(x2) + · · ·+Φ(wk))| ≤ (2k + 1)V,

|Φ(v) − (Φ(w1) + Φ(0) + Φ(w2) + Φ(0) + · · ·+Φ(wk))| ≤ (2k + 1)V,

and so

|Φ(v)− Φ(w)| ≤ (4k + 2)V +

k
∑

i=1

|Φ(xi)− Φ(0)| ≤ (5k + 2)V.

We use the bound |Φ(v)−Φ(w)| ≤ 7kV . There are
(

an
k

)

distinct words in Ak, and
so

∑

v∈Ak

eΦ(v) ≥

(

an
k

)

eΦ(w)−7kV .

Summing over all k gives

Λn(L, ϕ) ≥
an
∑

k=0

(

an
k

)

eΦ(w)e−7kV = eΦ(w)(1 + e−7V )an .

In particular, if an ≥ δn, then we have

(19)
1

n
log Λn(L, ϕ) ≥

1

n
ϕn(w) + δ log(1 + e−7V ).

On the other hand, if an < δn, then we can use a similar argument to compare
ϕn(w) and nϕ(0), obtaining

ϕn(w) ≤ nϕ(0) + 7δnV.

Using (18), this gives

1

n
ϕn(w) ≤ ϕ(0) + 7δV < P (Σβ , ϕ)− δV,
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which together with (19) shows that

lim
n→∞

1

n
Snϕ(w

β) ≤ P (Σβ , ϕ)− δmin{V, log(1 + e−7V )} < P (Σβ , ϕ),

establishing (9) and hence (8).

6.2. Proof of Proposition 3.8 and Corollary 3.9.

of Proposition 3.8. It suffices to restrict our attention to the grid functions ϕ0. Fix
w ∈ L(X)N and let

m = min{k | σk(w) ∈ L(Y )}.

Then for all 0 ≤ k < m, we have σk(w) ∈ L(X) \ L(Y ), whence ϕ0 is constant on
[σk(w)].

Now suppose that V exists such that the bound in the hypothesis holds. We see
that for every x, y ∈ [w] we have

|SNϕ0(x) − SNϕ0(y)| = |SN−mϕ0(σ
m(x)) − SN−mϕ0(σ

m(y))| < 2V.

For the converse, fix V ∈ R and take w ∈ L(Y )N and x ∈ [w] such that |SNϕ0(x)| >
V . Take y ∈ Y ∩ [w], and note that ϕ0(σ

k(y)) = 0 for all k ≥ 0. Consequently, we
have

VN (L(X), SNϕ0) ≥ |SNϕ0(x)− SNϕ0(y)| > V.

Since V was arbitrary, this shows that ϕ0 /∈ Bow(L(X)). �

of Corollary 3.9. In this case, F(X,Y ) = {0nz | n ≥ 0, z ∈ A \ {0}}. If x ∈ [0nz],

then σ(x) ∈ [0n−1z], so for x ∈ [0Nz] we have SNϕ0(x) =
∑N
n=1 a0nz. If V =

max{|
∑

n≥0 a0nz| | z ∈ A \ {0}} < ∞, it follows from Proposition 3.8 that ϕ0

has the Bowen property. Conversely, if V = ∞, it is clear that SNϕ0(x) can be
arbitrarily large. �

6.3. Proof of Theorem 3.12. Let G and Cs be as in the discussion following
the statement of Theorem 3.12. We show that P (Cs, ϕ) < P (ϕ) in order to apply
Theorem C. Because #Csn grows subexponentially, it will suffice to show that there
exists δ′ > 0 such that

(20)
1

n
Snϕ(x) ≤ P (ϕ)− δ′

for every sufficiently large n and every x ∈ [w] for w ∈ Csn. The proof of (20) is
similar to the proof of Proposition 3.1, but greater care must be taken since ϕ does
not have the Bowen property. We write ϕ = ϕr+ϕ0, where the following properties
hold:

(1) there exists V > 0 such that Vn(L, Snϕr) ≤ V for all n;
(2) ϕ0 =

∑

ℓ≥0 aℓ1[0ℓA+] for some sequence aℓ tending monotonically to 0,

where A+ = A \ {0}.

Write sℓ =
∑ℓ
j=0 |aj |; then sℓ = |Sℓ+1ϕ0(x)| for all x ∈ [0ℓA+]. Observe that

because aj converges monotonically to 0, so does the sequence 1
ℓ sℓ. In particular,

using the assumption that ϕ(0) < P (ϕ), there exists L such that

(21) ϕ(0) +
1

L
sL < P (ϕ).

Fix δ > 0 such that

(22) ϕ(0) +
1

L
sL + 8δV + δsL < P (ϕ),
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and fix γ > 0 such that

(23) δ′ := −
δ

4
γ log γ − γ(7V + sL) > 0.

Fix n large enough such that 3C
n logn ≤ δ′, where C > 0 is a constant which, from

Stirling’s approximation formula, satisfies

(24) | logm!− (m logm−m)| ≤ C logm

for all m. We fix w ∈ Ln and show that (20) holds for every x ∈ [w]. Write

w = 0ℓ0x10
ℓ1x2 · · ·xk0

ℓk

for some xi ∈ A+ and ℓi ≥ 0; then for every x ∈ [w],

(25) Snϕ0(x) = ±(sℓ0 + sℓ1 + · · ·+ sℓk−1
) + Sℓkϕ0(0

ℓk · σn(x)),

where the choice of sign depends only on whether the sequence an takes positive or
negative values. Consider the set of indices

Q = {1 ≤ i < k | ℓi < L}.

Lemma 6.1. If #Q ≤ δn, then (20) holds for every x ∈ [w].

Proof. By the argument in the proof of Proposition 3.1, we have

(26) Snϕr(x) ≤ nϕ(0) + 7δnV,

so we must estimate Snϕ0(x). We see from (25) that

Snϕ0(x) ≤ sℓ0 + sℓ1 + · · ·+ sℓk ≤ δnsL +

k
∑

i=0

ℓi
L
sL ≤ δnsL + n

1

L
sL,

where the second inequality uses the fact that if ℓi ≥ L, then 1
ℓi
sℓi ≤

1
LsL. Together

with (26) and (22), this completes the proof of the lemma. �

Thanks to Lemma 6.1, it only remains to consider the case where w ∈ Ln is such
that #Q ≥ δn. Writing Q = {i1, i2, . . . , i#Q}, where i1 < i2 < · · · , consider the
subset Q′ = {i1, i3, i5, . . . } ⊂ Q. Then we have #Q′ ≥ 1

2δn and |j − i| ≥ 2 for all
i, j ∈ Q′.

Given P ⊂ Q′, let w′ be the word obtained from w by changing xi to 0 whenever
i ∈ P . It follows from the characterisation (7) of Σβ that w′ ∈ L.

Given x ∈ [w] and y ∈ [w′] we have as in Proposition 3.1 that

(27) |Snϕr(x)− Snϕr(y)| ≤ 7(#P )V.

Changing xi to 0 results in a block of 0s of length ℓi−1+ℓi+1 (using the fact that P
does not contain two consecutive integers). Using (25), this gives us the following
estimate for ϕ0:

(28) |Snϕ0(x) − Snϕ0(y)| ≤
∑

i∈P

|sℓi−1+ℓi+1 − sℓi−1 − sℓi |.

Furthermore, we have

|sℓi−1+ℓi+1 − sℓi−1 − sℓi | =
ℓi+1
∑

j=1

(

|aj | − |aℓi−1+j |
)

≤
ℓi+1
∑

j=1

|aj | = sℓi+1,
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whence (28) yields

|Snϕ0(x)− Snϕ0(y)| ≤
∑

i∈P

sℓi+1 ≤ (#P )sL.

Together with (27) and the observation that there are
(

#Q′

m

)

ways to choose P with
#P = m for 0 ≤ m ≤ #Q′, we see that

(29) Λn(L, ϕ) ≥

(

#Q′

m

)

eSnϕ(x)−m(7V+sL).

An elementary calculation shows that for all m and N , (24) yields

(30) log

(

N

m

)

≥ N
(

−
m

N
log

m

N

)

− 3C logN.

Taking logarithms in (29) and applying (30) yields

log Λn(L, ϕ) ≥ #Q′

(

−
m

#Q′
log

m

#Q′

)

− 3C log#Q′ + Snϕ(x) −m(7V + sL)

for every 0 ≤ m ≤ #Q′. Using the inequality 1
2δn ≤ #Q′ ≤ n and choosing m such

that γ#Q′ ≤ m ≤ 2γ#Q′, we obtain

(31) log Λn(L, ϕ) ≥
1

2
δn(−γ log γ)− 3C logn+ Snϕ(x)− 2γn(7V + sL).

In particular, applying (23) gives

1

n
log Λn(L, ϕ) ≥

1

n
Snϕ(x) +

1

2
δ(−γ log γ)− 2γ(7V + sL)−

3C

n
logn

=
1

n
Snϕ(x) + 2δ′ −

3C

n
logn.

Thus all sufficiently large values of n satisfy

1

n
log Λn(L, ϕ) ≥

1

n
Snϕ(x) + δ′,

and (20) follows.

6.4. Proofs of lemmas used in Theorem 4.3. For any γ > 0, the behaviour of
the map f near the fixed point 0 is described by the discussion in [You99, §6]. The
following lemma, which is proved by an elegant elementary argument is crucial for
our analysis.

Lemma 6.2 (([You99, Lemma 5])). There exists L > 0 such that for all i, n with
0 ≤ i ≤ n and for all x, y ∈ [xn+1, xn], we have

| log(f i)′(x)− log(f i)′y| ≤ L
|f ix− f iy|

|xn−i − xn−i+1|
≤ L.

In the remarks preceding that lemma, Young shows that there exists E1 > 0
such that

(32) xn − xn+1 ≤ E1n
−(1+1/ε).

Lemma 6.2 and (32) are the only two results we use from [You99]; in particular, we
do not use any of the results that rely on building towers.
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of Lemma 4.4. We start by estimating the variation on words of the form 0nz,
where z ∈ {1, . . . , b− 1}. Suppose x, y ∈ π(0nz); then by Lemma 6.2,

|Snϕ(x) − Snϕ(y)| ≤ L1|f
nx− fny|,

where L1 = L|x0 − x1|−1. Furthermore, since fnx, fny ∈ π(z), and f is uniformly
C2 on each π(z) with z 6= 0, there exists L2 so that

(33) |Sn+1ϕ(x) − Sn+1ϕ(y)| ≤ L2|f
n+1x− fn+1y|.

Note also that since ϕ0 is constant on π(0nz), we have

|Snϕr(x)− Snϕr(y)| = |Snϕ(x) − Snϕ(y)|.

Now we consider more general words. Take λ > 1 such that f expands distances
by a factor of at least λ on each interval Ij with j 6= 0. Thus given any word
w ∈ L(Σβ) with k non-zero entries, we have

(34) diam(π(w)) ≤ λ−k.

Fix w ∈ L(Σβ)N and write

w = 0ℓ1z10
ℓ2z2 · · · zm0ℓm+1,

where ℓj ≥ 0 and zj ∈ {1, . . . , b − 1} for every j. Let x, y ∈ π(w). Then, letting

k1 = 0 and kj = (j − 1) +
∑j−1

i=1 ℓi, and using (33) and (34), we have

|SN−ℓm+1ϕr(x) − SN−ℓm+1ϕr(y)| ≤
m
∑

j=1

|Sℓj+1ϕ(f
kjx)− Sℓj+1ϕ(f

kjy)|

≤ L1

m
∑

j=1

|fkj+1x− fkj+1y| ≤ L1

m
∑

j=1

diam(π(0ℓj+1zj+1 · · · zm0
ℓm+1))

≤ L1

m
∑

j=1

λ−(m−j) ≤ L1(1− λ−1)−1 =: L3.

Now let x′ = fN−ℓm+1x and y′ = fN−ℓm+1y. Then x′, y′ ∈ π(0N−ℓm+1). Suppose
x′ ∈ π(0n1z1) and y

′ ∈ π(0n2z2) for some z1, z2 > 0. Then, applying Lemma 6.2,

|Sℓm+1ϕr(x
′)| = |Sℓm+1ϕ(x

′)− Sℓm+1ϕ(xn1−1)| ≤ L,

and similarly for y′. We conclude that

|SNϕr(x) − SNϕr(y)| ≤ L3 + |Sℓm+1ϕr(x
′)|+ |Sℓm+1ϕr(y

′)| ≤ L3 + 2L,

which shows that ϕr has the Bowen property. To see that ϕ itself is not Bowen, it
suffices to show that

sup{|Snϕ(x) − Snϕ(y)| | x, y ∈ π(0n), n ∈ N} ≤
∣

∣

∣

∑

ϕ(xn)
∣

∣

∣
= ∞.

This follows quickly from the observation that
∣

∣

∣

∣

∣

n
∑

k=1

ϕ(xk)

∣

∣

∣

∣

∣

= |(fn)′(xn)| ≈ x−1
n → ∞. �
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of Lemma 4.6. To prove Lemma 4.6, we use an argument communicated to us
by Dmitry Dolgopyat. Lemma 3.5 shows that ϕ ∈ Bow(G), and thus there exists
V > 0 such that |Sn(log f ′)(x)− Sn(log f

′)(y)| ≤ V whenever x, y ∈ π(w) for some
w ∈ Gn. Using properties of logs and exponentiating gives the following bounded
distortion result, where we write E0 = eV :

(35)
1

E0
≤

(fn)′(x)

(fn)′(y)
≤ E0.

Given x ∈ Σβ, let ℓj = ℓj(x) ≥ 0 and zj ∈ A \ {0} be such that

x = 0ℓ1z10
ℓ2z2 · · · .

Because f is uniformly expanding away from 0, it is easy to see that π(x) ∈ I \ Z0

whenever lim 1
nℓn(x) < ∞. Thus it suffices to show that there exists L < ∞ such

that Ẑ = {π(x) | lim 1
nℓn(x) > L} has zero Lebesgue measure.

To this end, consider the set

Ω(m1,m2, . . . ,mn) = {π(x) | ℓj(x) = mj for all 1 ≤ j ≤ n}.

It follows from (32) that

(36) LebΩ(m) ≤ E1m
−(1+1/ε)

for every m; we claim that there is a constant E2 such that

(37) Leb(Ω(m1,m2, . . . ,mn)) ≤ En2 (m1 · · ·mn)
−(1+1/ε).

Using the bounded distortion estimate (35) and the observation that

Leb(fm1+···+mn+n(Ω(m1, . . . ,mn)))

is uniformly bounded below, we conclude that there are constants E3, E4 such that

LebΩ(m1, . . . ,mn,mn+1)

LebΩ(m1, . . . ,mn)
≤ E3

Leb fm1+···+mn+nΩ(m1, . . . ,mn,mn+1)

Leb fm1+···+mn+nΩ(m1, . . . ,mn)

≤ E4 LebΩ(mn+1).

Using (36) and iterating gives (37).
Choose N such that

∑∞
m=N E2m

−(1+1/ε) < 1 and let Xi be i.i.d. N-valued

random variables such that P (Xi = m) = E2m
−(1+1/ε) for every m > N , and

P (Xi = N) = 1−
∑

m>N E2m
−(1+1/ε). Then we have

LebΩ(m1, . . . ,mn) ≤ En2

n
∏

j=1

m
−(1+1/ε)
j ≤

∏

mj>N

P (Xj = mj)

= P (Xj = mj for all j such that mj > N),

and in particular, for L > N we have

Leb
{

π(x)
∣

∣

∣

1

n

n
∑

j=1

ℓj(x) > L
}

≤
∑

m1+···+mn>nL

P (Xj = mj for all j such that mj > N)

≤ P (X1 + · · ·+Xn > n(L−N)).
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By the law of large numbers, this goes to 0 as n→ ∞ provided we take

L−N >
∑

m≥1

mP (Xj = m) = NP (Xj = N) +
∑

m>N

E2m
−1/ε,

which we can do since the sum converges. This completes the proof of Lemma 4.6.
�

of Lemma 4.7. We begin with the observation that

Λn(L, tϕ) =
∑

w∈Ln

sup
x∈π(w)

(fn)′(x)−t.

As a consequence of Lemma 4.6, there exists a set Z+ ⊂ I, an integer N ∈ N, and a
number λ > 1 such that (fn)′(x) ≥ λn for every x ∈ Z+ and n ≥ N , and moreover
LebZ+ > 0. Let D = {w ∈ L | π(w) ∩ Z+ 6= ∅}, and for each w ∈ D fix a point
xw ∈ π(w) ∩ Z+. Thus for every n ≥ N , we have

Λn(L, tϕ) ≥ Λn(D, tϕ) ≥
∑

w∈Dn

(fn)′(xw)
−te−Vn(L,Sn(tϕ))

≥
∑

w∈Dn

(fn)′(xw)
−1λn(1−t)e−Vn(L,Sn(tϕ)).

Furthermore, we have

Leb(π(w)) ≤ Leb(fn(π(w)))

(

inf
x∈π(w)

(fn)′(x)

)−1

≤ (fn)′(xw)
−1eVn(L,Snϕ),

and so

Λn(L, tϕ) ≥
∑

w∈Dn

Leb(π(w))λn(1−t)e−(1+|t|)Vn(L,Snϕ)

≥ Leb(Z+)λn(1−t)e−(1+|t|)Vn(L,Snϕ).

This yields

1

n
log Λn(L, tϕ) ≥ (1 − t) logλ+

1

n
log Leb(Z+)−

1 + |t|

n
Vn(L, Snϕ),

and since ϕ is continuous the final term goes to 0 as n→ ∞, whence

(38) P (L, tϕ) ≥ (1− t) logλ > 0

for every t < 1. �
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