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EXPLOSION OF SMOOTHNESS FOR CONJUGACIES BETWEEN

MULTIMODAL MAPS

JOSÉ F. ALVES, VILTON PINHEIRO, AND ALBERTO A. PINTO

Abstract. Let f and g be smooth multimodal maps with no periodic attractors and
no neutral points. If a topological conjugacy h between f and g is C1 at a point in the
nearby expanding set of f , then h is a smooth diffeomorphism in the basin of attraction of
a renormalization interval of f . In particular, if f : I → I and g : J → J are Cr unimodal
maps and h is C1 at a boundary of I then h is Cr in I.

1. Introduction

There is a well-known theory in hyperbolic dynamics that studies properties of the
dynamics and of the topological conjugacies that lead to additional regularity for the
conjugacies. D. Mostow [21] proved that if H/ΓX and H/ΓY are two closed hyperbolic
Riemann surfaces covered by finitely generated Fuchsian groups ΓX and ΓY of finite analytic
type, and φ : H → H induces the isomorphism i(γ) = φ ◦ γ ◦ φ−1, then φ is a Möbius
transformation if, and only if, φ is absolutely continuous. M. Shub and D. Sullivan [25]
proved that for any two analytic orientation preserving circle expanding endomorphisms
f and g of the same degree, the conjugacy is analytic if, and only if, the conjugacy is
absolutely continuous. Furthermore, they proved that if f and g have the same set of
eigenvalues, then the conjugacy is analytic. R. de la Llave [11] and J.M. Marco and R.
Moriyon [19, 20] proved that if Anosov diffeomorphisms have the same set of eigenvalues,
then the conjugacy is smooth. For maps with critical points, M. Lyubich [12] proved
that C2 unimodal maps with Fibonnaci combinatorics and the same eigenvalues are C1

conjugate. W. de Melo and M. Martens [16] proved that if topological conjugate unimodal
maps, whose attractors are cycles of intervals, have the same set of eigenvalues, then the
conjugacy is smooth. N. Dobbs [22] proved that if a multimodal map f has an absolutely
continuous invariant measure, with a positive Lyapunov exponent, and f is absolutely
continuous conjugate to another multimodal map, then the conjugacy is Cr in the domain
of some induced Markov map of f .
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Here, we study the explosion of smoothness for topological conjugacies, i.e. the condi-
tions under which the smoothness of the conjugacy in a single point extends to an open set.
P. Tukia [28] extended the result above of D. Mostow proving that if H/ΓX and H/ΓY are
two closed hyperbolic Riemann surfaces covered by finitely generated Fuchsian groups ΓX

and ΓY of finite analytic type, and φ : H → H induces the isomorphism i(γ) = φ ◦ γ ◦ φ−1,
then φ is a Möbius transformation if, and only if, φ is differentiable at one radial limit
point with non-zero derivative. Sullivan [26] proved that if a topological conjugacy be-
tween analytic orientation preserving circle expanding endomorphisms of the same degree
is differentiable at a point with non-zero derivative, then the conjugacy is analytic. Exten-
sions of these results for Markov maps and hyperbolic basic sets on surfaces were developed
by E. Faria [3], Y. Jiang [8, 9] and A. Pinto, D. Rand and F. Ferreira [4, 23], among oth-
ers. For maps with critical points, Y. Jiang [5, 6, 7, 10] proved that quasi-hyperbolic
one-dimensional maps are smooth conjugated in an open set with full Lebesgue measure if
the conjugacy is differentiable at a point with uniform bound. In this paper, we define the
nearby expanding set NE(f) of a multimodal map f and characterize NE(f) in terms of the
basins of attraction of renormalization intervals. We prove that if a topological conjugacy
between multimodal maps is C1 at a point in the nearby expanding set NE(f) of f , then
the conjugacy is a smooth diffeomorphism in the basin of attraction of a renormalization
interval.

2. Explosion of smoothness

Let I be a compact interval and f : I → I a C1+ map. By C1+ we mean that f is a
differentiable map whose derivative is Hölder. We say that c is a non-flat turning point of
f , if there exist α > 1 and a Cr diffeomorphism φ defined in a small neighborhood K of 0
such that

f(c+ x) = f(c) + φ(|x|α), for every x ∈ K. (2.1)

We say that α is the order of the turning point c and denote it by ordf(c). We say that
f is a multimodal map if the next three conditions hold: i) f(∂I) ⊂ ∂I; ii) f has a finite
number of turning points points that are all non-flat; and iii) #Fix(fn) <∞ for all n ∈ N.
A unimodal map f : I → I is a non-flat multimodal map with a unique turning point c ∈ I.

The non-critical backward orbit O−
nc(p) of p is the set of all points q such that there is

n = n(q) ≥ 0 with the property that fn(q) = p and (fn)′(q) 6= 0. The non-critical alpha
limit set αnc(p) of p is the set of all accumulation points of O−

nc(p). Let O
−
nc(PR(f)) be the

union ∪p∈PR(f)O
−
nc(p) of the non-critical backward orbits O−

nc(p) for every repellor periodic
points of p ∈ PR(f). Let αnc(PR(f)) be the union ∪p∈PR(f)αnc(p) of the non-critical alpha
limit sets αnc(p) for all repellor periodic points of p ∈ PR(f).

A set A ⊂ J is said to be forward invariant if f(A) ⊂ A. The basin B(A) of a forward
invariant set A is the set of all points x ∈ A such that its omega limit set ω(x) is contained
in A. An invariant compact set A ⊂ J is called a (minimal) attractor, in Milnor’s sense
[17, 18], if the Lebesgue measure of its basin is positive and there is no forward invariant
compact set A′ strictly contained inA such that B(A′) has non zero measure. The attractors
of a Cr non-flat multimodal map are of one of the following three types: i) a periodic
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attractor; ii) a minimal set with zero Lebesgue measure; or iii) a cycle of intervals such
that the omega limit set of almost every point in the cycle is the whole cycle (see [27]).
According to S. van Strien and E. Vargas [27], if f : I → I is a Cr non-flat multimodal
map, then there is a finite set of attractors A1, . . . , Al ⊂ I such that the union of their
basins has full Lebesgue measure in I.

An open interval J(c) containing a critical point c is a renormalization interval of a
multimodal (resp. unimodal) map f , if there is n = n(J(c)) ≥ 1 such that fn|J(c) is

also a multimodal (resp. unimodal) map. Hence, the forward orbit of J(c) is a positive
invariant set. A multimodal map f is no renormalizable inside a renormalization interval
J(c), if there is no renormalization interval strictly contained in J . A multimodal map
f is infinitely renormalizable around a critical point c if there is an infinite sequence of
renormalization intervals J1(c), J2(c), . . . such that Jn+1(c) is strictly contained in Jn(c)
and c = ∩n≥1Jn(c). The basin of attraction B(J(c)) of J(c) is the set of points whose
forward orbit intersects J(c).

Definition 1 (Expanding and nearby expanding points). A point p ∈ I is called nearby
expanding if there are

(1) a sequence of points pn converging to p,
(2) a sequence of open intervals Vn containing pn,
(3) a sequence of positive integers kn tending to infinity, and
(4) δ = δ(p) > 0,

with the following properties:

(1) fkn|Vn
is a diffeomorphism and

(2) fkn(Vn) = Bδ(f
kn(pn)).

Furthermore, a point p ∈ I is called expanding if p ∈ I is a nearby expanding point with
pn = p for every n ∈ N.

The nearby expanding set NE(f) is the set of all nearby expanding points of f and the
expanding set E(f) is the set of all expanding points of f .

Lemma 2.1 (Fatness of E(f) and NE(f)). Let f be Cr a multimodal map with r ≥ 3 and
no periodic attractors nor neutral periodic points. Then:

(1) E(f) ⊃ O−
nc(PR(f)) and NE(f) ⊃ αnc(PR(f));

(2) if f is infinitely renormalizable around a critical point c, then there is a renormal-
ization interval J(c) such that E(f) and NE(f) are dense in B(J(c));

(3) if f is no renormalizable inside a renormalizable interval J , then E(f) is dense in

B(J) and NE(f) contains B(J).

If f : I → I is a unimodal map, for every renormalization interval J , ∂B(J) is uniformly
expanding, ∂I ⊂ ∂B(J) and B(J) is an open set with full Lebesgue measure. Hence, by
Lemma 2.1, if f is a unimodal map whose attractor is a cycle of intervals then E(f) is dense
in I and NE(f) = I. Furthermore, if f is a unimodal map that is infinitely renormalizable
then E(f) and NE(f) are dense in I.
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Proof. Let f be infinitely renormalizable around a critical point c. By Lemma A.5, there
is a renormalization interval J(c) such that O−

nc(PR(f)) is a dense set in J(c). Since
E(f) ⊃ O−

nc(PR(f)), we obtain that E(f) and NE(f) are dense in J(c).
Let f be no renormalizable inside a renormalizable interval J . By Lemma A.5, αnc(PR(f))

contains J . Hence, E(f) is dense in J and NE(f) contains J . �

Definition 2 (Puncture set P (J)). Let CP (I) be the set of all critical points c whose non-
critical alpha limit sets αnc(c) do not intersect the interior of I. The puncture set P (I) of
I is P (I) = ∪c∈CP (I)O

−
nc(c). Let J be a renormalization interval and n the smallest integer

such that F = fn|J is a renormalization of f . Let CP (J) be the set of all critical points c
whose non-critical alpha limit sets αnc(c) with respect to F |J do not intersect the interior
of J . The puncture set P (J) of J is P (J) = ∪c∈CP (J)O−

nc(c).

Hence, the puncture set P is either empty or a discrete set. Furthermore, we observe
that the puncture set is not located in the central part of the dynamics, i.e. (i) if f is
infinitely renormalizable there is a renormalization interval J(c) such that P ∩ J(c) = ∅
and (ii) if the Milnor’s attractor A of f is a cycle of intervals then P ∩ A = ∅, because
αnc(c) is dense in A for every critical point c in the interior of A.

For every connected component G ∈ D(J), let m = m(G) be the smallest integer such
that fm(G) ⊂ J(c). Ifm = 0 the puncture set GP ⊂ G of G is GP = P (J), and ifm > 0 the
puncture set GP ⊂ G of G be the union of all points x ∈ G such that (i) (fm)′(x) = 0 or (ii)
(fm)′(x) ∈ P (J). We observe that GP ∩G is either a discrete set or empty. The punctured
basin of attraction BP (J(c)) of J(c) is the union ∪G∈D(J)G\GP . A renormalization domain
J = ∪c∈CRJ(c) of a multimodal map f is the union of renormalization intervals J(c) for a

given subset CR ⊂ Cf . Set BP (J) = ∪c∈CRBP (J(c)). We observe that BP (J) = B(J).

Definition 3 (C1 at a point). We say that a map h : I → I ′ is C1 at a point p ∈ I, if

lim
x,y→p
x 6=y

h(x)− h(y)

x− y
= h′(p) 6= 0.

We observe that h is C1 at every point belonging to an interval K ⊂ I if, and only if, f
is a C1 local diffeomorphism in that interval K.

We say that a topological conjugacy h : I → L between f : I → I and g : I ′ → I ′

preserves the order of the critical points, if ordf(c) = ordg(h(c)) for every critical point
c ∈ Cf .

Theorem 1 (Explosion of smoothness). Let f and g be Cr multimodal maps with r ≥ 3
and no periodic attractors nor neutral periodic points. Let h be a topological conjugacy
between f and g preserving the order of the critical points. If h is C1 at a point p ∈ NE(f),
then either

(1) h is a Cr diffeomorphism in I \ P (I); or
(2) there is a unique maximal renormalization domain J such that h is a Cr diffeomor-

phism in J \ P (J). Furthermore,
(a) h is a Cr diffeomorphism in the punctured basin of attraction BP (J);
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(b) h is not Cr at any open interval contained in I \ B(J);
(c) h is not C1 at any point in E(f) ∩ ∂B(J).

We observe that Theorem 1 still holds if we replace the hypotheses of h being C1 at a
point p ∈ E(f) by h being Cr in an open set. N. Dobbs [22] proved that if (i) a multimodal
map f has an absolutely continuous invariant measure with a positive Lyapunov exponent
and (ii) the conjugacy h between f and another multimodal map g is absolutely continuous,
then h is Cr in an open set. Hence, Theorem 1 applies to this case.

The proof of Theorem 1 is given at the end of Section 6.

Corollary 2 (Full measure explosion of smoothness for unimodal maps). Let f and g be
Cr unimodal maps with r ≥ 3 and no periodic attractors nor neutral periodic points. Let h
be a topological conjugacy between f and g preserving the order of the critical points. If h
is C1 at a point p ∈ NE(f), then either

(1) h is a Cr diffeomorphism in the full interval I; or
(2) there is a unique maximal renormalization interval J ⊆ I such that

(a) h is a Cr diffeomorphism in the basin B(J), and
(b) h is not C1 at any point in ∂B(J).

We observe that if f : I → I is a unimodal map, then (i) ∂B(J) is uniformly expanding,
(ii) ∂I ⊂ ∂B(J), and (iii) B(J) is an open set with full Lebesgue measure in I. By Corollary
2, the map h is C1 at a point p ∈ ∂I if, and only if, h is a Cr diffeomorphism in I.

3. Zooming pairs

We will prove that, in Theorem 3 and in its two corollaries, the hypothesis h is C1 at
a point p can be weakened to h being (uaa) uniformly asymptotically affine at p. We will
define the zooming pairs that we will use to show if h is uaa at a point then h and h−1 are
Cr in small open sets.

Let h : I → I ′ be a homeomorphism. For every (x,y,z) of points x, y, z ∈ I, such that
x < y < z, we define the logarithmic ratio distortion lrdh(x, y, z) by

lrdh(x, y, z) =

∣

∣

∣

∣

log
|h(z)− h(y)|

|h(y)− h(x)|

|y − x|

|z − y|

∣

∣

∣

∣

.

Definition 4 (uaa). Let h : I → I ′ be a homeomorphism. The map h is uniformly
asymptotically affine (uaa) at a point p if, for every C ≥ 1, there is a continuous function
ǫC : R+

0 → R
+
0 , with ǫC(0) = 0, such that

lrdh(x, y, z) ≤ ǫC(|x− p|) , (3.1)

for all x < y < z with C−1 < |z − y|/|y − x| < C.

Lemma 3.1 (C1 implies uaa). Let h : I → I ′ be a homeomorphism. If h is C1 at a point
p ∈ I, then h is uaa at p.
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Proof. If h is C1 at p, then there is a sequence θm converging to 0, when m tends to ∞,
such that

∣

∣

∣

∣

log
|h(y)− h(x)|

|y − x|
h′(p)

∣

∣

∣

∣

≤ O

(

1

m

)

, (3.2)

for all x, y ∈ Bθm(p). Hence, for all x, y, z ∈ Bθm(p), we obtain
∣

∣

∣

∣

log
|h(z)− h(y)|

|h(y)− h(x)|

|y − x|

|z − y|

∣

∣

∣

∣

≤ O

(

1

m

)

, (3.3)

and so, h is uaa at p. �

Definition 5 (α-bounded distortion). We say that a Cr multimodal map f has α-bounded
distortion with respect to a sequence V1, V2, . . . of intervals and a sequence of integers kn
tending to ∞, if there is C ≥ 1 such that

lrdfkn (x, y, z) ≤ C|fkn(z)− fkn(x)|α , (3.4)

for all x, y, z ∈ Vn, with x < y < z, and all n ≥ 1.

Definition 6 (Zooming pair (p, V )). Let f : I → I and g : I ′ → I ′ be Cr maps, with r ≥ 2,
and h : I → I ′ a topological conjugacy between f and g. An α-zooming pair (p, V ) consists
of a point p ∈ I and an open interval V ⊂ I such that

(1) there is a sequence V1, V2, . . . of intervals in I and
(2) a sequence of integers kn tending to ∞,

with the following properties:

(1) supx∈Vn
|x− p| → 0 when n→ ∞;

(2) fkn|Vn
and gkn|h(Vn) are diffeomorphisms onto the intervals V and h(V ) respectively;

(3) f has α-bounded distortion with respect to the sequences V1, V2, . . . and k1, k2, . . .;
(4) g has α-bounded distortion with respect to the sequences h(V1), h(V2), . . . and

k1, k2, . . ..

A central zooming pair (p, V ) is a zooming pair (p, V ) with the property that p ∈ Vn for
some n ∈ N.

Lemma 3.2 (Explosion of smoothness from p to V ). Let f and g be Cr maps, with r ≥ 3,
topologically conjugated by a homeomorphism h. Assume that (p, V ) is an α-zooming pair
for some 0 < α < 1. If h is uaa at p, then h|V is a C1+α diffeomorphism onto its image.
Furthermore, if (p, V ) is a central zooming pair then h|V0 is a C1+α diffeomorphism onto
its image, for some open interval V0 containing p.

Proof. Given a, b, c ∈ V , with a < b < c, let an, bn, cn ∈ Vn be such that fkn(an) = a,
fkn(bn) = b and fkn(cn) = c. Since f has α-uniformly bounded distortion,

lrdfkn (an, bn, cn) ≤ O(|c− a|α). (3.5)

Since g has has uniformly bounded distortion, we get

lrdgkn (h(an), h(bn), h(cn)) ≤ O(|h(c)− h(a)|α) . (3.6)
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By the definition of zooming, there is a sequence σn → 0 such that, for all x ∈ Vn,

|x− p| < σn . (3.7)

Since f is (uaa) at p, by (3.1), we have

lrdh(an, bn, cn) ≤ ǫC(σn) .

Hence, by (3.7), there is n large enough such that

lrdh(an, bn, cn) ≤ |c− a| . (3.8)

Combining (3.5), (3.6) and (3.8), we have

lrdh(a, b, c) ≤ lrdgkn (h(an), h(bn), h(cn)) + lrdh(an, bn, cn) + lrdfkn (an, bn, cn)

≤ O(|c− a|α + |h(c)− h(a)|α) . (3.9)

Therefore, the homeomorphism h is quasi-symmetric in V . Hence, there is γ > 0, such
that h|V is γ-Hölder continuous. Thus, we obtain that (3.9) is bounded by C1|c− a|αγ, for
some C1 > 1. Hence, by [24], we get that h|V and h−1|h(V ) are C1+αγ maps. Therefore,
|h(c) − h(a)| ≤ O(|c− a|) and, so, (3.9) is also bounded by C2|c − a|α, for some C2 > 1.
Hence, again by [24], we get that h|V and h−1|h(V ) are C1+α maps.

Furthermore, if (p, V ) is a central zooming pair then there is an open interval V0 con-
taining p and an integer n such that fn|V0 is a Cr diffeomorphism and fn(V0) ⊂ V . Hence
h|V0 = (gn|h(V0))

−1 ◦ h ◦ fn is a Cr diffeomorphism. �

Lemma 3.3 (Building up smoothness from C1+α to Cr). Let f and g be Cr maps, with
r ≥ 3, topologically conjugated by a homeomorphism h. If h|V is a C1+α diffeomorphism
in some open set V , then h|W is a Cr diffeomorphism for some open set W ⊂ V .

Proof. By Lemma A.5, there is a reppelor p ∈ I and integers m and l such that p ∈
int(fm(V )) and f l(p) = p. Since p is a reppelor there is an open interval W ⊂ int(fn(V ))
with p ∈ W such that |f lj(x)| > λ > 1, for all x ∈ W . Let W0,W1, . . . be a sequence of
open intervals contained in W such that (i) f l(Wn+1) = Wn, (ii) Wn+1 ⊂ Wn, and (iii)
|Wn| → 0 for every n ≥ 0. Let in : Wn → (0, 1) be the affine map with the property that
in(Wn) = (0, 1) and let fn = i0 ◦ fnl ◦ i−1

n . By Lemma E13 in [23], there is b > 0 such that
‖ ln dfn‖Cr−1 ≤ b, for every n ≥ 1. Hence, by Lemma E15 in [23], there is a small ǫ > 0 and
a subsequence fkn converging to a Cr diffeomorphism f : (0, 1) → (0, 1) in the Cr−ǫ norm.

Let W ′
n = h(Wn) and jn : W ′

n → (0, 1) be the affine map with the property that
jn(W

′
n) = (0, 1), for every n ≥ 1. Let gn = j0 ◦ gnl ◦ j−1

n . By Lemma E13 in [23], there is
b > 0 such that ‖ ln dgn‖Cr−1 ≤ b, for all n ≥ 1. Hence, by Lemma E15 in [23], there is
a small ǫ > 0 and a subsequence mn of the sequence kn such that gmn

converges to a Cr

diffeomorphism g in the Cr−ǫ norm.

Let hn = jn ◦ h ◦ i−1
n . Since h is a C1+α diffeomorphism, there is a sequence λn tending

to 1 such that
|hn(z)− hn(y)|

|hn(y)− hn(x)|

|y − x|

|z − y|
≤ λn

for all x, y, z ∈ (0, 1). Hence, h = limhn is an affine map.
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We note that h|W0 = j−1
0 ◦ gn ◦ hn ◦ f−1

n ◦ i0, for every n ≥ 1. Hence,

h|W0 = lim j−1
0 ◦ gmn

◦ hmn
◦ f−1

mn
◦ i0 = j−1

0 ◦ g ◦ h ◦ f−1 ◦ i0.

Since, g, h and f are Cr diffeomorphisms, we obtain that h|W0 is a C
r diffeomorphism. �

4. Nearby expanding set

We will prove that for every nearby expanding point p ∈ NE(f) there is an open set V
such that (p, V ) is a 1-zooming pair.

Given any K ⊂ R and r > 0, set Br(K) =
⋃

p∈K Br(p), where Br(p) = (p− r, p+ r).
Recall that the Schwarzian derivative of f in the complement of the critical points is

defined by

Sf :=
f ′′′

f ′
−

3

2

(

f ′′

f ′

)2

.

Lemma 4.1 (Nearby expanding point originates a zooming pair). Let f and g be C3

multimodal maps topologically conjugated by h, with no periodic attractors and no neutral
periodic points. For every x ∈ NE(f) there is an interval V such that (x, V ) is a 1-zooming
pair. Furthermore, for every x ∈ E(f) there is an interval V such that (x, V ) is a central
1-zooming pair.

Proof. By [27], there is γ > 0 such that, for every point x ∈ I, with

fn(x) ∈
⋃

c∈C(f)

Bγ(c) and gn(h(x)) ∈
⋃

c∈C(f)

h(Bγ(c)),

we have Sfn+1(x) < 0 and Sgn+1(h(x)) < 0.
By Lemma A.4, one find γ0 < γ1 < γ2 < γ3 < γ4 < γ and nice sets J0, J1, J2 such that

Bγ0(Cf ) ⊂ J0 ⊂ Bγ1(Cf ) ⊂ Bγ2(Cf ) ⊂ J1 ⊂ Bγ3(Cf ) ⊂ Bγ4(Cf) ⊂ J2 ⊂ Bγ(Cf ).

Let Ji =
⋃

c∈Cf
Ji(c), c ∈ Ji(c) = (ai(c), bi(c)) for every c ∈ Cf and i = 0, 1, 2.

Given x ∈ NE(f), for some small δ > 0, take a sequence of points xj → x and intervals
W 0

j ∋ xj such that fmj |
W 0

j

is a diffeomorphism and fmj (W 0
j ) = B2δ(f

mj (xj)) for mj → ∞.

Let Wj ⊂W 0
j be the interval such that fmj (Wj) = Bδ(xj) and let L0

j , R
0
j be the connected

components of W 0
j \Wj .

For every j ≥ 1, define nj as follows: If f
i(xj) /∈ J1, for every 0 ≤ i < mj , take nj = −1;

otherwise, take nj < mj as the biggest integer such that f i(xj) ∈ J1.
Our goal is to obtain a sequence ji → +∞ and intervals Vji ⊂ W 0

ji
containing xji with

the following properties: inf i |fmji (Vji)| > 0 and the ratio distortion of fmji |Vji
uniformly

bounded. If nj = −1 take Vj = Wj . In this case, |fmj(Vj)| = 2δ and the bounded of the
ratio distortion follows from Theorem A.1, because J1 ⊃ Bγ2(Cf ). Thus, we assume from
now on that nj 6= −1.

If lim infj mj − nj < ∞, let Vj be the maximal interval such that xj ∈ Vj ⊂ Wj and
fnj(Vj) ⊂ J2. Taking a subsequence, we assume that there is K > 0 such that mj−nj ≤ K
for every j.
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Since Dfmj 6= 0 in Wj and f
ni(Wi) ∩ J1 6= ∅ and by maximality of Vj , if Wj 6= Vj then

fnj(Vj) ⊃ (cj − γ4, cj − γ3) or f
nj(Vj) ⊃ (cj + γ3, cj + γ4)

for some cj ∈ Cf . In particular, |fnj(Vj)| ≥ γ4 − γ3. Thus, there is ε > 0 such that, for
every j, |fmj (Vj)| > ε > 0, |fmj(Vj)| = |fmj (Wj)| = 2δ or fmj (Vj) is a finite iteration of
an interval with length greater than γ4 − γ3. Furthermore, since

|fmj (Lj)|/|f
mj(Wj)| = |fmj(Rj)|/|f

mj(Wj)| = 1/2 for every j, (4.1)

we get that

|fnj+1(Lj)|

|fnj+1(Vj)|
≥

|fnj+1(Lj)|

|fnj+1(Wj)|

and
|fnj+1(Rj)|

|fnj+1(Vj)|
≥

|fnj+1(Rj)|

|fnj+1(Wj)|

are bounded away from zero. Since Sfnj+1(z) < 0, for every

z ∈ f−nj(Bγ(Cf)) ⊃ f−nj(Bγ5(Cf )) ⊃ f−nj(J2) ⊃ Vj,

the ratio distortion of fnj+1|Vj
is uniformly bounded (Vj ⊂Wj). Thus, the ratio distortion

of fmj |Vj
is also uniformly bounded and |fmj (Vj)| > ε > 0 for every j.

Let us consider the case lim infj mj − nj = ∞. Taking a subsequence, if necessary, we
assume that limj mj − nj = ∞.

Claim 1. fnj(W 0
j ) ⊂ J2 for every j ∈ N.

Proof of the claim. Let V 0
j be the maximal interval such that

xj ∈ V 0
j ⊂W 0

j and fnj(V 0
j ) ⊂ J2.

We will show that W 0
j = V 0

j .

By the maximality of V 0
j , if W

0
j 6= V 0

j then there is p2,j ∈ ∂J2 ∩ ∂(fnj (V 0
j )). On the

other hand, since fnj(xj) ∈ J1, there is p1,j ∈ ∂J1 such that

fnj(V 0
j ) ⊃ (p1,j, p2,j) or f

nj(V 0
j ) ⊃ (p2,j, p1,j).

If p1,j < p2,j take Tj = (p1,j, p2,j); otherwise, take Tj = (p2,j, p1,j). Since J1 and J2 are nice
sets with J1 ⊂ J2, it follows that fk(∂Tj) ∩ J1 = ∅ for every k ≥ 0. Hence, if ℓj ≥ 0 is
the smaller integer such that f ℓj(Tj) ∩ J1 6= ∅, then f ℓj(Tj) ∩ J1(cj) 6= ∅ for some cj ∈ Cf .
Furthermore, f ℓj(Tj) ⊃ J1(cj). However, since Dfmj 6= 0 on W 0

j , we get ℓj ≥ mj − nj .
Thus, it follows from Theorem A.1 that

4δ = |fmj(W 0
j )| ≥ |fmj(V 0

j )| ≥ |fmj−nj (Tj)| ≥ Cλmj−nj |Tj| ≥

≥ Cλmj−nj(γ4 − γ3) → ∞ (for a subsequence).

Hence, we get a contradiction. �
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By Theorem A.1, if f i(W 0
j ) ∩ J0 = ∅, for every nj < i < mj , then fmj−(nj+1) has

uniformly bounded distortion on fnj+1(W 0
j ) not dependent upon j. In particular,

|fnj+1(Lj)|/|f
nj+1(Wj)| and |fnj+1(Rj)|/|f

nj+1(Wj)|

are bounded away from zero. Since fnj(W 0
j ) ⊂ Bγ(Cf) and Sfnj+1(z) < 0, for every

z ∈ W 0
j , the ratio distortion of fnj+1|Wj

is uniformly bounded. Thus, taking Vj =Wj , the
ratio distortion of fmj |Vj

is uniformly bounded and |fmj (Vj)| = 2δ for every j.
From now on, we will assume not only that mj −nj → ∞, but also that f i(W 0

j )∩J0 6= ∅
for some nj < i < mj .

Let kj be the smaller integer ℓ > nj such that f ℓ(W 0
j ) ∩ J0 6= ∅, i.e.

kj = min{ℓ > nj ; f
ℓ(W 0

j ) ∩ J0 6= ∅}.

Claim 2. There is K > 0 such that mj − kj ≤ K, for every j ∈ N.

Proof of the claim. Since f ℓ(xj) /∈ J1, for all nj < j < mj , there is a connected component

Tj of J1 \ J0 such that Tj ⊂ fkj(W 0
j ). Since J0 and J1 are nice sets with J0 ⊂ J1, it follows

that
f i(∂Tj) ∩ J0 = ∅

for all i ≥ 0. So, if ℓj ≥ 0 is the smaller integer such that

f ℓj(Tj) ∩ J0 6= ∅,

i.e. f ℓj(Tj) ∩ J0(cj) 6= ∅ for some cj ∈ Cf . Thus, f ℓj(Tj) ⊃ J0(cj). Since fmj |W 0
j
in a

diffeomorphism, we get ℓj ≥ mj − kj . Thus, from Theorem A.1, it follows that

4δ = |fmj (W 0
j )| ≥ |fmj−nj (Tj)| ≥ Cλmj−kj |Tj| ≥ Cλmj−nj(γ2 − γ1),

for every j ∈ N. Since λ > 1, we necessarily have mj − kj bounded. �

Using Theorem A.1, we conclude that fkj−(nj+1) has uniformly bounded distortion on
fnj+1(W 0

j ) (not dependent upon j). Since 0 ≤ mj − kj ≤ K and fmj |
W 0

j

is a diffeomor-

phism, we obtain that fmj−(nj+1) has uniformly bounded distortion on fnj+1(W 0
j ) (also not

dependent upon j). Thus,

|fnj+1(Lj)|/|f
nj+1(Wj)| and |fnj+1(Rj)|/|f

nj+1(Wj)|

are bounded away from zero. Since Sfnj+1(z) < 0 the ratio distortion of fnj+1|Wj
is

uniformly bounded for all z ∈ W 0
j . Again, taking Vj = Wj , the ratio distortion of fmj |Vj

is uniformly bounded and |fmj (Vj)| = 2δ for all j.
Thus, replacing j by a subsequence, we get intervals Vj ⊂ W 0

j containing xj with the
following properties: infj |fmj (Vj)| > 0, the ratio distortion of fmj |Vj

is uniformly bounded
and the ratio distortion of gmj |h(Vj) is also uniformly bounded.

By compactness, taking a subsequence, there is an open interval V and a sequence of
intervals xj ∈ V ′

j ⊂ Vj, j ≥ 1, such that f sj(V ′
j ) = V , for all j. Thus, (x, V ) is a 1-zooming

pair. Similarly, if x ∈ E(f) there is an interval V such that (x, V ) is a central 1-zooming
pair. �
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Lemma 4.2 (Explosion of smoothness at expanding points). Let f and g be C3 multimodal
maps topologically conjugated by h, with no periodic attractors and no neutral periodic
points. Let the conjugacy h be C1 at a point x. If x ∈ NE(f), then there is an open
interval V such that h|V is Cr.

Proof. By Lemma 4.1, if x ∈ NE(f) there is an interval V such that (x, V ) is a 1-zooming
pair. Since h is C1 at x, then by Lemma 3.1 we have that h is uaa at x. Thus, it follows
from Lemma 3.2 that h|V is a C1+α diffeomorphism. Hence, by Lemma 3.3, h|W is a Cr

diffeomorphism for some W ⊂ V . �

5. Smooth conjugacy and renormalization intervals

In this section we assume that f and g are Cr multimodal maps, with r ≥ 3 and
no periodic attractors nor neutral periodic points. Furthermore, we assume that h is a
topological conjugacy between f and g preserving the order of the critical points. We
define

s = min
{c∈Cf}

ordf(c).

Definition 7 (Smooth conjugacy domain). For s ≤ t ≤ r, the t-smooth conjugacy interval
V is an open set V such that h|V is a Ct diffeomorphism. The set Ct

f ⊆ Cf consists of all
critical points c such that there is a t-smooth conjugacy open interval V containing c ∈ V .
For every c ∈ Cs

f , the s-smooth conjugacy maximal interval Js(c) of c is the maximal open
interval Js(c) containing c such that h is Cs in Js(c). The s-smooth conjugacy domain Js

is

Js = ∪c∈Cs
f
Js(c).

We say that a critical point c ∈ Cf is s-recurrent, if there is n = n(c, s) ≥ 1 such that
Js(c) ∩ fnJs(c) 6= ∅. Let CRs ⊂ Cf be the set of all s-recurrent critical points. Let
Js
R = ∪c∈CRsJs(c).

Lemma 5.1 (Spreading smooth conjugacy intervals). Let h be a topological conjugacy
between f and g and let s ≤ t ≤ r. Then

(1) if V is a t-smooth conjugacy interval then int(f(V )) is a t-smooth conjugacy inter-
val;

(2) if V is a t-smooth conjugacy interval then the connected components of f−1(V ) \
(f−1(V ) ∩ Cf) are t-smooth conjugacy intervals; and

(3) if V is an s-smooth conjugacy interval then f−1(V ) is an s-smooth conjugacy inter-
val.

Furthermore,

(1) if c ∈ Cf and, for some small open interval V containing c and some n, fn(V ) ⊂ Js

then c ∈ Cs
f ; and

(2) if c ∈ Cf and, for some small open interval V ⊂ Jr and some n, c ∈ int(fn(V ))
then c ∈ Cr

f .
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Proof. Since f is a multimodal map, the interior of f(V ) is an open interval and for every
x ∈ f(V ) there is an open intervalW such that x ∈ f(W ) and f |W is a Cr diffeomorphism.
Hence, h|f(W ) = g ◦ h ◦ (f |W )−1 is a Cr diffeomorphism.

For every x ∈ f−1(V ) \ (f−1(V )∩Cf ), there is an open interval W such that x ∈ W and
f |W is a Cr diffeomorphism. Hence, h|W = (g|h(W ))

−1 ◦ h ◦ f is a Cr diffeomorphism.
Let c ∈ f−1(V ) ∩ Cf and c′ = h(c). Let b = f(c) and b′ = g(h(c)). Recall that

f(c + x) = f(c) + φ(|x|α) and g(c′ + x) = g(c′) + ψ(|x|α). Hence, there is a small open
interval W containing c, such that for every c+ x ∈ W

(g|h(W ))
−1(y) = c′ + (ψ−1(y − g(c′))1/α,

if x ≥ 0 and
(g|h(W ))

−1(y − g(c′)) = c′ − (ψ−1(y − g(c′))1/α,

if x ≤ 0. Hence, if x ≥ 0

h|W = (g|h(W ))
−1 ◦ h ◦ f = c′ + [ψ−1(−g(c′) + h(f(c) + φ(|x|α)))]1/α

and if x ≤ 0

h|W = (g|h(W ))
−1 ◦ h ◦ f = c′ − [ψ−1(−g(c′) + h(f(c) + φ(|x|α)))]1/α.

The map ψ−1(−g(c′)+h(f(c)+y)) is a Cr diffeomorphism. Hence, by Taylor’s theorem,
there is a constant c and Cr diffeomorphism θ such that ψ−1(−g(c′) + h(f(c) + y)) =
y(c+ yθ(y)). Therefore,

h|W = x(c + |x|αθ(|x|α))1/α.

Hence, h is a Cs diffeomorphism. �

Denoting by p and q the points that form the boundary of an interval V , the set V is
dynamically symmetric if either f(p) = f(q) or f(p) and f(q) form the boundary of f(V ).

Lemma 5.2 (Nice Js). If h is a Cs diffeomorphism in an open set V then the s-conjugacy
maximal domain Js is a non-empty and there is n ≥ 0 such that int(fn(V )) ⊂ Js. Fur-
thermore,

(1) if c ∈ Cs
f the set Js(c) is dynamically symmetric;

(2) for all c1, c2 ∈ Cs
f the sets Js(c1) and J

s(c2) are either disjoint or equal; and
(3) the s-conjugacy maximal domain Js is a nice set.

Proof. Let us assume that h is a Cr diffeomorphism in an open set V . It follows from
Lemma A.2 that there is an n ∈ N and c ∈ Cf such that fn|V is a diffeomorphism Cr

and c ∈ int(fn(V )). Hence, by Lemma 5.1 (i), h is a Cr diffeomorphism in fn(V ). Hence,
Js(c) ⊃ fn(V ) is a non-empty closed interval and c ∈ Cr

f .
Let us denote Js by J . Let us denote by p and q the boundary points of J(c). Let

us prove that the interval J(c) is dynamically symmetric, i.e. either f(p) = f(q), or f(p)
and f(q) form the boundary of f(J(c)). Let us suppose, by contradiction, that there is
z ∈ int J(c) that is not a critical point such that f(z) = f(q) (or, similarly, f(z) = f(q)).
Let Vz and Vq be small neighborhoods of z and q, respectively, such that f |Vz

is a Cr

diffeomorphism and f(Vq) ⊂ f(Vz). Hence, by Lemma 5.1 (i), h is a Cs diffeomorphism in
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f(Vq) ⊂ f(Vz) and, again by Lemma 5.1, h is a Cr diffeomorphism in Vq. Hence, h has a
Cr diffeomorphic extension to a neighborhood of q which is absurd.

By construction, if J(c1) ∩ J(c2) 6= ∅, for some c1, c2 ∈ Cf , then J(c1) = J(c2)
Let us prove that the set J is nice. Let us suppose, by contradiction, that there is a

point p ∈ ∂J(c) and n ≥ 0 such that fn(p) ∈ J and fm(p) /∈ J , for all 0 < m < n. Hence,
there is a small neighborhood V of p such that fn(V ) ⊂ J . By Lemma 5.1 (i) and (iii), h
is a Cs diffeomorphism in V which is absurd. The proof of case (ii) is similar. �

Given a nice set J , let I(J) be the set of all points x ∈ I whose forward orbit intersects
J . Let D(J) be the set of all connected components G of I(J), i.e.

I(J) =
⋃

G∈D(J)

G.

The open intervals G ∈ D(J) are called the gaps of I(J). We note that the boundary
∂I(J) of I(J) is totally disconnected.

Lemma 5.3 (The basin of attraction of Js). Let ∅ 6= Js ⊂ int(I) For every G ∈ D(Js)
with G ∩ Js = ∅, there is n = n(G) ≥ 1 such that

(1) fn|G is a diffeomorphism;
(2) there is c ∈ Cs

f such that fn(G) = Js(c);

(3) f j(G) ∩ Js = ∅, for every 0 ≤ j < n.

Proof. For every x ∈ I(J) \ J , let n(x) > 1 be such that fn(x) ∈ J and f j(x) /∈ J for
every 0 ≤ j < n. Let E = {x, . . . , fn−1(x)}. By Lemma 5.2, E ∩ Cf = ∅ and so there
is a small open set V such that fn|V is a Cr diffeomorphism and fn(V ) ⊂ J . Let us
prove by contradiction that there is a small open interval W ⊂ V containing x such that
n(y) = n(x) for every y ∈ W . If there is not a small open intervalW ⊂ V containing x such
that n(y) = n(x), for every y ∈ W , then there is a sequence of points xn ∈ V converging
to x with n(xn) = j < n(x). Hence, f j(x) ∈ ∂J . Since J is nice fn−j(f j(x))∩J = ∅ which
is a contradiction. Let V = (x, a) be the maximal open interval containing x such that
n(y) = n(x) for every y ∈ V . Let us prove, by contradiction, that fn(a) ∈ ∂J . By the
above argument, If fn(a) ∈ J then there is an open interval Wa such that n(y) = n(a) for
every y ∈ Wa which is absurd by maximality of V . Hence, for every x ∈ I(J) \ J , there
is a maximal open interval G such that n(y) = n(x), for every y ∈ G, and fn(G) ⊂ ∂J .
Hence, fn|G is a Cr diffeomorphism and fn(G) = J(c) for some c. �

Lemma 5.4 (Js
R is a renormalization domain). Let ∅ 6= Js ⊂ int(I). For every c ∈ Cs

f ,
there is n(c) and c′(c) ∈ Cs

f with the following properties:

(1) fn(c)(Js(c)) ⊂ (Js(c′(c)));
(2) ∂fn(c)(Js(c)) ⊂ ∂Js(c′(c));
(3) f i(Js(c)) ∩ Js = ∅, for every 1 ≤ i < n(c);
(4) Js

R is a renormalization domain;

(5) B(Js
R) ⊆ I(Js) and B(Js

R) = I(Js);
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Proof. By Lemma 5.3, for every gap G ∈ D(J) there are n = n(G) ≥ 1 and c(G) ∈ Cf ∩ J
such that fn(G) = J(c(G)), fn|G is a Cr diffeomorphism and fn(G) ∩ J = ∅ for every
o ≤ i < n.

For every c ∈ Cf , either (A) int f(J(c)) ∩ ∂I(J) = ∅; or (B) int f(J) ∩ ∂I(J) 6= ∅
Case (A). Since int f(J(c))∩ ∂I(J) = ∅, there is an open interval K, that is either a) an

interval J(c′) or b) a gap G, such that f(J(c)) ⊂ K. In case a), this lemma follows from
noting that J is nice, and so ∂f(J(c)) ⊂ ∂J(c′). In case b), there is n = n(G) ≥ 1 such
that fn+1J(c) ⊂ J(c(G)) and f i+1J(c) ∩ J = ∅ for every 0 ≤ i < n. Furthermore, since J
is nice, fn+1(∂J(c)) ⊂ ∂J(c(G)) that proves this lemma in case b).

Case (B). Let us suppose that there is a point x ∈ ∂I(J)∩ int f(J(c)). Let V be a small
neighborhood contained in J(c) such that f |V is a Cr diffeomorphism and x is contained
in the interior of f(V ). Since ∂I(J) is a totally disconnected set, there are gaps Gy and
G′

y with a boundary point y ∈ f(V ). Let z ∈ V be such that f(z) = y and take a smaller
neighborhood V0 ⊂ V of z such that f(V0 \ {z}) ⊂ Gy ∪G′

y. By Lemma 5.1, if there is

w ∈ fn(Gy)+1(V0 \ {z}) ∩ ∂J(c(Gy)),

then there is an open interval W ⊂ fn(Gy)+1(V0 \ {z}) containing w such that h|W is
a Cs diffeomorphism. Since w ∈ ∂J(c(Gy)), we obtain a contradiction. Hence, for some
0 ≤ i < n(Gy), there is a critical point cy ∈ Cf such that cy = f i(y). Therefore, J(c(Gy)) =
J(c(G′

y)) and n(Gy) = n(G′
y). Since the set of critical points is finite, ∂I(J) ∩ int f(J(c0))

is also finite and for every w ∈ ∂I(J) ∩ int f(J(c0)), there are gaps Gw and G′
w with

w ∈ ∂Gw ∩ ∂G′
w such that

J(c(Gw)) = J(c(G′
w)) = J(c(Gy)) and n(Gw) = n(G′

w) = n(Gy).

Furthermore, since J is nice, fn(Gy)(∂J(c)) ⊂ ∂J(c(Gy)), that proves this lemma in case
(B).

Hence, Lemma 5.4 (i) and (ii) hold. Therefore, Js
R is a renormalization domain. Lemma

5.4 (i) and (ii) also imply for every gap G ⊂ I(Js) there is a gap G′ ⊂ B(Js
R) such that

G \ G′ is either (i) empty or (ii) it is a finite set of points SG = G \G′ with the following
properties: for every x ∈ SG there is i = i(x) and j = j(x) such that (i) 0 ≤ i < j, (ii)
f i(x) ∈ Cs

f , (iii) f
i(x) /∈ Js

R, and (iv) f j(x) ∈ ∂Js
R. Hence, Lemma 5.4 (iv) holds. �

Theorem 3 (Explosion of smoothness). Let f and g be Cr multimodal maps with r ≥ 3
and no periodic attractors and no neutral periodic points. Let h be a topological conjugacy
between f and g preserving the order of the critical points. If h is C1 at a point p ∈ NE(f),
then either

(1) h is a Cs diffeomorphism in the full interval I or in its interior int(I); or
(2) there is a unique maximal renormalization domain J ⊆ I such that h is a Cs

diffeomorphism in J . Furthermore,
(a) h is a Cs diffeomorphism in the basin of attraction B(J);

(b) h is not Cs at any open interval contained in I \ B(J);
(c) h is not C1 at any point in E(f) ∩ ∂B(J).
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Proof. By Lemma 4.2, there is an open interval W such that h|W is Cs and so the s-
smooth conjugacy maximal domain Js 6= ∅. If h is not a Cs diffeomorphism in I or int(I),
then, by Lemma 5.4, there is a renormalization domain Js

R such that (i) h|B(Js
R) is a Cs

diffeomorphism and (ii) there is no open interval V ⊂ I \ B(Js
R) = I \ I(Js) such that h|

is a Cs diffeomorphism. Let us prove, by contradiction, that h is not C1 at any point in
E(f)∩ ∂B(J). By Lemma 4.2, if h is C1 at some point x ∈ E(f)∩ ∂B(J) then there is an
open interval W containing x such that h|W is Cs which is a contradiction. �

Theorem 4 below gives a criterium for non-smoothness of the conjugacy when the con-
jugacy does not preserve the order of the critical points. The non-critical forward orbit
O+

nc(p) of p is the set of all points q such that there is n = n(q) ≥ 0 with the property that
fn(p) = q and (fn)′(p) 6= 0. The non-critical omega limit set ωnc(p) of p is the set of all
accumulation points of O+

nc(p).

Theorem 4 (Implosion of non smoothness). Let f and g be Cr multimodal maps with r ≥ 3
and no periodic attractors and no neutral periodic points. Let h be a topological conjugacy,
between f and g, not preserving the order of the critical points cf and cg = h(cf ). The
conjugacy h is not C1 simultaneously at (i) a point belonging to E(f)∩αnc(cf) and a point
belonging to E(f) ∩ ωnc(cf).

If f is a Collet-Eckmann map with negative Schwarzian derivative, then E(f)∩ωnc(cf ) 6=
∅ and αnc(cf) contains the Milnor’s attractor cycle.

Proof. Let us prove, by contradiction, that h is not C1 at any point belonging to E(f) ∩
α(cf). If h is C1 at a point x ∈ E(f) ∩ αnc(cf ) then, by Lemma 4.2, there is an open
interval V1 containing x such that h|V1 is Cr. Since x ∈ αnc(cf), there is an integer n such
that c ∈ int(fn(V1)). Hence, by Lemma 5.1, h is a Cr diffeomorphism in an open set Vc
containing c.

If h is C1 at a point x ∈ E(f)∩ωnc(cf) then, by Lemma 4.2, there is an open intervalW1

containing x such that h|W1 is C
r. Since x ∈ ωnc(cf ), there is an open set Wf(c) containing

f(c) and an integer n such that fn(Wf(c)) ⊂ W1 and fn|Wf(c) is a Cr diffeomorphism.
Hence, by Lemma 5.1, h|Wf(c) is a C

r diffeomorphism.
Since h does not preserve the order of the critical points cf and cg = h(cf), h can not

be C1 at cf and f(cf) simultaneously which is an absurd. �

6. Cr smoothness of the conjugacy

In this section, we prove Theorem 1.

Lemma 6.1 (K(c′) ⊆ Js
R is a renormalization interval). Let h be a Cr diffeomorphism in

an open set V1. There is a maximal renormalization interval K(c′) ⊆ Js
R and a puncture

set P (c′) ⊂ K(c′) such that

(1) h is a Cr diffeomorphism in K(c′) \ P (c′), and
(2) int(V1 ∩ B(K(c′))) 6= ∅.

Furthermore, ∂K(c′) ⊂ E(f) and h is not C1 at the boundary ∂K(c′) points.
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Proof. Using Lemma A.2, there is a sequence of open sets V1, V2, V3, . . . such that (i) Vi+1∩
Cf 6= ∅; (ii) fni(Vi) ⊃ Vi+1, and (iii) |Vi| → 0. Since Cf is finite, (i) there is c′ ∈ Cf ∩ J
and (ii) a subsequence Vn1

, Vn2
, Vn3

, . . . such that fmi(Vni
) ⊃ Vni+1

, where mi =
∑ni+1−1

j=ni
nj ,

and (iii) c′ ∈ Vni
for every i ≥ 1. By Lemma 5.1, h| int(fmi(Vni

)) is a Cr diffeomorphism
and so h|Vni+1

is also a Cr diffeomorphism. By Lemma 5.4, there is a non-empty maximal
renormalization interval J = Js(c′) ⊆ Js

R containing Vni
for all i. Let l be the smallest

integer such that F = f l|J is a renormalization of f restricted to J .
Let C (possibly empty) be the set of all critical point c ∈ CF of F |J such that there is

no open interval Vc ⊂ J with the property that c ∈ Vc and h|Vc is a Cr diffeomorphism.
For every c ∈ C, let αnc(c) be the non-critical alpha limit set of c with respect to F |J . Set
αnc(C) = ∪c∈Cαnc(c).

Let us prove that the open connected component H of J \ αnc(C) containing c′ is a
renormalization interval for F . Let us start proving, by contradiction, that H is non-
empty. If H = ∅, there are (i) c1 ∈ C, (ii) an open interval U ∈ Vn1

and (iii) an integer l
such that c1 ∈ intF l(U). By Lemma 5.1, c1 ∈ Cr

F which is absurd. Take i0 large enough
such that, for every i ≥ i0, c

′ ∈ Vni
⊂ H and c′ ∈ Vni+1

⊂ H . Since fmi(Vni
) ⊃ Vni+1

, there
is li such that (i) F li(Vni

) = fmi(Vni
) and (ii) F li(Vni

) ∩ H 6= ∅. Since αnc(C) is forward
invariant, ∂F li(H) ⊂ αnc(C). Let us prove, by contradiction, that (i) ∂F li(H) ⊂ ∂H
and (ii) F li(H) ⊂ H . If F li(H) 6⊂ H then there is x ∈ ∂H such that x ∈ int(F li(H)).
Hence, by Lemma 5.1, h is Cr in an open set containing x which is a contradiction.
Hence, F li(H) ⊂ H and, by forward invariance of αnc(C), ∂F

li(H) ⊂ ∂H . Thus, H is
a renormalization interval for F . Take k the smallest integer such that F1 = F k|H is a
renormalization of F restricted to H .

For every open interval H1 ⊂ H , let CH1
be the set of all critical point c ∈ H1 of F1|H

such that there is no open interval Vc ⊂ H with the property that c ∈ Vc and h|Vc is a Cr

diffeomorphism. For every c ∈ CH1
, let O−

nc(c) be the non-critical backward orbit of c with
respect to F1|H . Set O−

nc(CH1
) = ∪c∈CH1

O−
nc(c). Since the accumulation set of O−

nc(CH)

is contained in αnc(C), the set O−
nc(CH1

) is a discrete set of H , for every open interval
H1 ⊂ H .

Now, let H1 ⊂ H be the maximal open set such that h|H1 \ O−
nc(CH1

) is Cr. Either (i)
H1 = H , or (ii) H1 6= H is non-empty.

Case (i). The interval K(c′) = H is the maximal interval of renormalization containing
c′ and P (c′) = O−

nc(CH) is the punctured set of K(c′) with the property that h|K(c′)\P (c′)
is Cr. Furthermore, int(V1 ∩ B(K(c′))) 6= ∅.

Case (ii). There is i large enough such that Vni
⊂ H1 and F l

1(Vni
) ∩H1 6= ∅.

Let us prove by contradiction that ∂H1 ∩ O−
nc(CH) = ∅. If x ∈ ∂H1 ∩ O−

nc(CH) take the
smallest m such that Fm

1 (x) ∈ CH . Let a and b be close enough to x such that (i) either
(a, x) or (x, b) is contained in H1, (ii) F

m+1
1 (a) = Fm+1

1 (b), (iii) Fm
1 |(a, b) , Fm+1

1 |(a, x) and
Fm+1
1 |(x, b) are diffeomorphisms. Hence, (a, b) ⊂ H1 that is a contradiction.
Let us prove by contradiction that if x ∈ ∂H1 then x is not contained in the pre-

orbit of a critical point. Take the smallest m such that Fm
1 (x) = c is a critical point.

Since c /∈ O−
nc(CH), there is a small open set W containing c such that h|W is a Cr
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diffeomorphism. Furthermore, there is a small enough open set V such that (i) V contains
x, (ii) Fm

1 |V is a diffeomorphism and (iii) Fm
1 (V ) ⊂ W . Thus, by Lemma 5.1, h|V is also

a Cr diffeomorphism that is a contradiction.
Let us prove by contradiction that F1(∂H1) ∩ H1 = ∅. If x ∈ ∂H1 and F1(x) ∈ H1

then there are small enough open sets V and W such that (i) V contains x, (ii) F1|V is
a diffeomorphism because x is not a critical point of F1, (iii) F1(V ) = W , (iv) W ⊂ H1

and so (v) h|W is a Cr diffeomorphism. Hence h|V is also a Cr diffeomorphism that is a
contradiction.

There is i large enough such that Vni
⊂ H1 and c′ ∈ F k

1 (Vni
), for some k, and so

F k
1 (H1) ∩ H1 6= ∅. Hence, to prove that H1 is a renormalization maximal interval it is

enough to prove, by contradiction, that F1(∂H1) ⊂ ∂H1. If x ∈ ∂H1 and F1(x) /∈ ∂H1 and
so F1(x) /∈ H1, then (i) there is y ∈ H1 such that F1(y) = x and (ii) open intervals V and
W with the following properties: (i) V contains x, (ii) W ⊂ H1 contains y, (iii) F1|W is a
diffeomorphism, (iv) Fm

1 (W ) = V . Since h|W is a Cr diffeomorphism, by Lemma 5.1, we
get that h|V is also a Cr diffeomorphism that is a contradiction. Therefore, K(c′) = H1

is a renormalization interval containing c′ and P (c′) = O−
nc(CH1

) is the punctured set of
K(c′) such that h|K(c′) \ P (c′) is Cr. Furthermore, int(V1 ∩ B(K(c′))) 6= ∅. �

Proof of Theorem 1. By Lemma 4.2, there is an open interval V1 such that h|V1 is C
r. If h

is not a Cr diffeomorphism in I\P , then, by Lemma 6.1, there is a maximal renormalization
interval K(c′) and a punctured set P (c′) ⊂ K(c′) such that h is a Cr diffeomorphism in
K(c′)\P (c′). By Lemma 5.1, h is a Cr diffeomorphism in the punctured basin of attraction
BP (J(c

′)).
Let Cr

f be the union of all critical points c ∈ Cf such that K(c) 6= ∅ is a maximal
renormalization interval and P (c) ⊂ K(c) is a punctured subset such that h is a Cr

diffeomorphism inK(c)\P (c). Let J = ∪c∈Cr
f
K(c) be the maximal renormalization domain

and P = ∪c∈Cr
f
P (c) the punctured set of J . By Lemma 5.1, h is a Cr diffeomorphism in

the punctured basin of attraction BP (J) = ∪c∈Cr
f
BP (J(c

′)).

Let us prove, by contradiction, h is not a Cr diffeomorphism at any open interval V ⊂
I \ B(J). If h is a Cr diffeomorphism at V then, by Lemma 6.1, there is c ∈ Cr

f such that
int(V ∩ B(K(c))) 6= ∅ which is a contradiction.

Let us prove, by contradiction, that h is not C1 at any point in E(f) ∩ ∂B(J). By
Lemma 4.2, if h is C1 at some point x ∈ E(f) ∩ ∂B(J) then there is an open interval W
containing x such that h|W is Cs which is a contradiction. �

Appendix A. Properties of multimodal maps

A periodic point p with period n ∈ N is called a periodic attractor if there is an open set
V with p ∈ ∂V such that limj→+∞ f jn(V ) = p. A periodic point p with period n ∈ N is
called neutral if |Dfn(p)| = 1. A periodic point p with period n ∈ N is weak repelling if p
is neutral and there is an open set V with p ∈ V such that fn|V is a diffeomorphism and
limj→+∞(fn|V )−n(x) = p for all x ∈ V . A periodic point p with period n ∈ N is a repellor
if |Dfn(p)| > 1. Let us denote by PR(f) the set of all repellor periodic points of f .
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Theorem A.1 (Mañé). Let f : I → I be a C2 map without weak repelling periodic points
and such that #Fix(fn) < ∞ for all n ∈ N. For every γ > 0, there are C > 0 and λ > 1
with the following properties:

(1) if J ⊂ I is an interval whose ω(J) does not intersect any periodic attractor, and
(2) if n ∈ N is such that, for every 0 ≤ j ≤ n, f j(J) ∩Bγ(Cf) = ∅,

then

lrdfn(x, y, z) ≤ C|fn(z)− fn(x)| and |fn(J)| ≥ Cλn|J |,

for every x, y, z ∈ J with x < y < z.

Proof. It follows from Mañe’s Theorem [13] and the fact that the logarithm of a C2 map
is locally Lipschitz outside the critical set. �

Lemma A.2 (Forward capture of a critical point). Let f : I → I be a C2 map and
#Fix(fn) <∞ for every n ∈ N. For each interval J ⊂ I, whose ω(J) does not intersect a
periodic attractor, there is n ∈ N such that the interior of fn(J) contains a critical point.

Proof. Let us suppose, by contradiction, that fn| int(J) is a diffeomorphism onto its image
for every n ∈ N. Since ω(J) does not intersect a periodic attractor and a C2 map does not
admit a wandering interval (see [1, 15]), there is k > l > 0 such that fk(J) ∩ f l(J) 6= ∅.
The closure D of the set

⋃

n≥0 f
n(k−l)(f l(J)) is a forward invariant interval for f (k−l).

Thus, g = f 2(k−ℓ)|D is monotone map of D into itself. Thus, ωg(x) ⊂ Fix(g) for every
x ∈ D. Since #Fix(g) < ∞, we get that there is an attracting fixed point p ∈ D for g.
Hence, Of

+(p) is an attracting periodic orbit for f intersecting ωf(J), contradicting our
hypothesis. �

Lemma A.3 (Domain shrinking for iterated local diffeomorphisms). Let f : I → I be a C2

map and #Fix(fn) < ∞ for every n ∈ N. If J1, J2, ... ∈ I is a sequence of open intervals
such that

(1)
⋃

n≥1 ω(Jn) does not intersect a periodic attractor and
(2) fmn|Jn are diffeomorphisms, with mn tending to ∞,

then |Jn| → 0 when n tends to infinity.

Proof. Let us suppose, by contradiction, that there is δ > 0 such that |Jn| > δ, for every
n ≥ 1. Since I is compact, there is an interval L and an infinite subsequence Jm1

, Jm2
, . . .

of intervals such that L ⊂ Jmn
for every n ≥ 1. Hence, f ℓ|L is a diffeomorphism, for every

ℓ ≥ 1, which, by Lemma A.2, is a contradiction. �

Following M. Martens [14], a union J =
⋃

i Ji of pairwise disjoint open intervals J1, J2, . . .

is a nice set, if the forward orbit of the boundaries
⋃l

i=1 ∂Ji of J do not intersect J .

Lemma A.4 (Nice infinitesimal neighborhoods of critical points). Let f : I → I be a
multimodal map without periodic attractors. For every small ε > 0, there is a nice set
J =

⋃

c∈Cf
(pc, qc) N such that c ∈ (pc, qc) ⊂ Bε(c) for all c ∈ Cf .
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We note that, if {Jk} is the set of connected components of a nice set J then

J ′ =
⋃

Jk∩Cf 6=∅

Jk

is also a nice set. Let N be the collection of all nice set J =
⋃

k(pk, qk) such that Cf ⊂ J
and (pk, qk) ∩ Cf 6= ∅ for all k. We note that, if U, V ∈ N then U ∩ V ∈ N .

Proof. First, let us show that there is a nice set J such that Cf ⊂ J . Consider the compact
positive invariant set

Λ = {x ∈ I ; f j(x) /∈ Bε(Cf ) , ∀ j ≥ 0}.

For every c ∈ Cf , there is a connected component Jc,Λ ⊃ Bε(c) of I \Λ. Let J =
⋃

c∈Cf
Jc,Λ.

Since ∂J =
⋃

c∈Cf
∂Jc,Λ ⊂ Λ, we get f j(∂J) ⊂ Λ for every j ≥ 0. Hence, f j(∂J) ∩ J = ∅

for every j ≥ 0, i.e. J is a nice set and contains Cf . Thus, N is not an empty collection.
If c ∈ Cf , either V ⊃ Bε(c), for all V ∈ N , or there exists V (c) =

⋃

c̃∈Cf
Vc̃(c) ∈ N such

that Vc(c) ⊂ Bε(c) and c̃ ∈ Vc̃(c) for all c̃ ∈ Cf .
Let Cε

f be the set of c ∈ Cf such that V ⊃ Bε(c) for all V ∈ N . For every c ∈ Cε
f , let

H(c) = int
⋂

J∈N Jc, where Jc is the connected component of J containing c. Hence, H(c)
is a nice interval and

H(c) ⊂W for all W ∈ N . (A.1)

Claim 3. If c0 ∈ Cf is non-wandering then c0 /∈ Cε
f for all ε > 0.

Proof of the claim. Let ε > 0 and c0 ∈ Cf be a non-wandering point. Hence, take the

smallest n ≥ 1 such that fn(H(c0)) ∩ H(c0) 6= ∅. Either (i) fn(H(c0)) 6⊂ H(c0) or (ii)

fn(H(c0)) ⊂ H(c0).

Case (i). Take q ∈ H(c0) such that fn(q) ∈ fn(H(c0)) ∩ H(c0) and there is a small
interval Vq containing q such that fn|Vq is a diffeomorphism. For every c ∈ Cf , let Uc be the
connected component of int(I) \ {q, · · · , fn−1(q)} containing c. We get that U =

⋃

c∈Cf
Uc

belongs to N and H(c0) 6⊂ Uc0, because q ∈ H(c0) but q /∈ Uc0 , contradicting (A.1).

Case (ii). Since fn(H(c0)) ⊂ H(c0), g = fn|H(c0)
is a multimodal map and fn(∂H(c0)) ⊂

∂H(c0). Since there is no periodic attractor for g, there is a periodic point q ∈ H(c0) for the
map g. For every c ∈ Cf , let Uc be the connected component of int(I) \ {q, · · · , fm−1(q)}
containing c, where m is the period of q with respect to f . We get that U =

⋃

c∈Cf
Uc

belongs to N and H(c0) 6⊂ Uc0, because q ∈ H(c0) but q /∈ Uc0 , contradicting (A.1). �

Now, we consider the case of the wandering critical points. Let ε > 0 and c0 be a
wandering critical point. From Lemma A.2, there is n ≥ 1 and a non-wandering c̃ ∈ Cf
such that c̃ ∈ fn(H(c0)). By the claim above, c̃ /∈ Cε

f . Thus, there is V =
⋃

c∈Cf
Vc ∈ N

such that ∂Vc̃∩f
n(H(c0)) 6= ∅. Let q ∈ H(c0) be such that fn(q) ∈ ∂Vc̃ and there is a small

interval Vq containing q such that fn|Vq is a diffeomorphism. For every c ∈ Cf consider Uc

the connected component of Vc \ {q, · · · , f t(q)} containing c. Thus U =
⋃

c∈Cf
Uc ∈ N and

H(c0) 6⊂ Uc0, contradicting (A.1). �
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Lemma A.5 (Fatness of repellors). Let f be Cr a multimodal map with r ≥ 3 and no
periodic attractors and no neutral points.

(1) If f is infinitely renormalizable around a critical point c, then there is a renormal-
ization interval J(c) such that O−

nc(PR(f)) is dense in B(J(c)).
(2) If f is no renormalizable inside a renormalizable interval J , then αnc(PR(f)) con-

tains B(J).

Proof. Let us prove (1). Since f is infinitely renormalizable around c, there is an infinite
sequence of intervals J1, J2, . . . such that Jn+1 is strictly contained in Jn and there is a
sequence m1, m2, . . . such that fmn |Jn is a multimodal map and c ∈ fmn(Jn). By taking
J1 sufficiently small, we assume that for every critical point c′ ∈ J1 with c′ 6= c, there is a
sequence l1, l2, . . . such that mnln < mn+1 and c

′ ∈ fmnln(Jn+1). Let pn be a periodic point
contained in the boundary ∂Jn of Jn. Hence pn is a repellor and the set S = ∪n≥1αnc(pn)
contains c ∈ ∂S. Let us prove that S is dense in the smallest interval set that contains S.
By contradiction, suppose that S is not a dense set. Hence, there is an open interval K
such that K ⊂ J1\S and ∂K ⊂ S. By forward invariance of S under fm1, fm1k(K) ⊂ J1\S
and ∂fm1k(K) ⊂ S for every k. By Lemma A.2, there is k1 such that fm1k1(K) contains
some critical point c′ ∈ J1. Hence, there is n large enough and ln such that fmnln(Jn+1) ⊂
fm1k1(K). Hence, there is k2 such that fmn+1(Jn+1) ⊂ fm1k2(K). Since c ∈ fmn+1(Jn+1),
we get c ∈ fm1k2(K). Noting that pn converges to c, we obtain that fm1k2(K) contain
some pn, for n large, which contradicts that fm1k2(K) ⊂ J1 \ S. Hence, S is dense in the
smallest interval set that contains S. Since c ∈ ∂S is a turning point, S is dense in a
small neighborhood of c. Hence, there is a renormalization interval J(c), small enough,
containing c that is contained in the closure of S.

Let us prove (2). Since J is a renormalization interval, there is m such that fm|J is a
multimodal map. Let p ∈ J be a periodic repellor with period k of the map fm|J . Since
αnc(p) is a closed set, it is enough to prove that αnc(p) is dense in J . By contradiction,
suppose that αnc(p) is not a dense set. Hence, there is an open interval K such that
K ⊂ J \ αnc(p) and ∂K ⊂ αnc(p). By forward invariance of αnc(p) under f

m, fmk(K) ⊂
J1 \ αnc(p) and ∂fmk(K) ⊂ αnc(p) for every k. By Lemma A.2, there is a sequence
k1, k2, . . . such that Kn = fmkn(K) contains some critical point cn ∈ J . Since, the set of
critical points in J is finite, there is a critical point c ∈ J and kl1 < kl2 such that Kl1 and
Kl2 contain the critical point c ∈ J . Hence, Kl1 ∩Kl2 6= ∅. Since

∂Kl1 ⊂ αnc(p) , ∂Kl1 ⊂ αnc(p) , Kl1 ∩ αnc(p) = ∅ and Kl1 ∩ αnc(p) = ∅,

we obtain that Kl1 = Kl2 . In particular, fm(kl−kl1)|Kl1 is a multimodal and Kl1 is strictly
contained in J which contradicts that f is no renormalizable inside of the renormalizable
interval J . Hence, αnc(p) contains the closure of J . Hence, by definition of alpha limit,

αnc(p) contains B(J). �
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22 JOSÉ F. ALVES, VILTON PINHEIRO, AND ALBERTO A. PINTO

[26] D. Sullivan, Class notes at the CUNY Graduate Center (1986)
[27] S. van Strien and E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal

maps, J. Am. Math. Soc. 17 (2004), 749-782.
[28] P. Tukia, Differentiability and rigidity of Möbius groups. Invent. Math., 82 557–578 (1985)
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