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EXPLOSION OF SMOOTHNESS FOR CONJUGACIES BETWEEN
MULTIMODAL MAPS

JOSE F. ALVES, VILTON PINHEIRO, AND ALBERTO A. PINTO

ABSTRACT. Let f and g be smooth multimodal maps with no periodic attractors and
no neutral points. If a topological conjugacy h between f and g is C' at a point in the
nearby expanding set of f, then A is a smooth diffeomorphism in the basin of attraction of
a renormalization interval of f. In particular,if f: I — [ and g : J — J are C" unimodal
maps and h is C! at a boundary of I then h is C" in I.

1. INTRODUCTION

There is a well-known theory in hyperbolic dynamics that studies properties of the
dynamics and of the topological conjugacies that lead to additional regularity for the
conjugacies. D. Mostow [2I] proved that if H/I'y and H/T'y are two closed hyperbolic
Riemann surfaces covered by finitely generated Fuchsian groups ['x and I'y of finite analytic
type, and ¢ : H — H induces the isomorphism i(y) = ¢ oy o ¢~!, then ¢ is a Mobius
transformation if, and only if, ¢ is absolutely continuous. M. Shub and D. Sullivan [25]
proved that for any two analytic orientation preserving circle expanding endomorphisms
f and g of the same degree, the conjugacy is analytic if, and only if, the conjugacy is
absolutely continuous. Furthermore, they proved that if f and g have the same set of
eigenvalues, then the conjugacy is analytic. R. de la Llave [II] and J.M. Marco and R.
Moriyon [19, 20] proved that if Anosov diffeomorphisms have the same set of eigenvalues,
then the conjugacy is smooth. For maps with critical points, M. Lyubich [12] proved
that C? unimodal maps with Fibonnaci combinatorics and the same eigenvalues are C*
conjugate. W. de Melo and M. Martens [16] proved that if topological conjugate unimodal
maps, whose attractors are cycles of intervals, have the same set of eigenvalues, then the
conjugacy is smooth. N. Dobbs [22] proved that if a multimodal map f has an absolutely
continuous invariant measure, with a positive Lyapunov exponent, and f is absolutely
continuous conjugate to another multimodal map, then the conjugacy is C" in the domain
of some induced Markov map of f.
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Here, we study the explosion of smoothness for topological conjugacies, i.e. the condi-
tions under which the smoothness of the conjugacy in a single point extends to an open set.
P. Tukia [28] extended the result above of D. Mostow proving that if H/T'x and H/T'y are
two closed hyperbolic Riemann surfaces covered by finitely generated Fuchsian groups ['x
and I'y of finite analytic type, and ¢ : H — H induces the isomorphism i(y) = ¢o~yo ¢!,
then ¢ is a Mobius transformation if, and only if, ¢ is differentiable at one radial limit
point with non-zero derivative. Sullivan [26] proved that if a topological conjugacy be-
tween analytic orientation preserving circle expanding endomorphisms of the same degree
is differentiable at a point with non-zero derivative, then the conjugacy is analytic. Exten-
sions of these results for Markov maps and hyperbolic basic sets on surfaces were developed
by E. Faria [3], Y. Jiang [8, 0] and A. Pinto, D. Rand and F. Ferreira [4], 23], among oth-
ers. For maps with critical points, Y. Jiang [, 6] [7, [10] proved that quasi-hyperbolic
one-dimensional maps are smooth conjugated in an open set with full Lebesgue measure if
the conjugacy is differentiable at a point with uniform bound. In this paper, we define the
nearby expanding set NE( f) of a multimodal map f and characterize NE(f) in terms of the
basins of attraction of renormalization intervals. We prove that if a topological conjugacy
between multimodal maps is C* at a point in the nearby expanding set NE(f) of f, then
the conjugacy is a smooth diffeomorphism in the basin of attraction of a renormalization
interval.

2. EXPLOSION OF SMOOTHNESS

Let I be a compact interval and f : I — I a C'* map. By C'* we mean that f is a
differentiable map whose derivative is Holder. We say that c is a non-flat turning point of
f, if there exist a > 1 and a C" diffeomorphism ¢ defined in a small neighborhood K of 0
such that

fle+x) = f(c) + o(|x]¥), forevery z € K. (2.1)

We say that « is the order of the turning point ¢ and denote it by ords(c). We say that
f is a multimodal map if the next three conditions hold: i) f(0I) C 01; ii) f has a finite
number of turning points points that are all non-flat; and i) # Fix(f") < oo for all n € N.
A unimodal map f : I — I is a non-flat multimodal map with a unique turning point ¢ € I.

The non-critical backward orbit O, .(p) of p is the set of all points ¢ such that there is
n = n(q) > 0 with the property that f"(¢) = p and (f")(¢) # 0. The non-critical alpha
limit set ap,e(p) of p is the set of all accumulation points of O, (p). Let O, (PR(f)) be the
union Upepr(s)O;.(p) of the non-critical backward orbits O, (p) for every repellor periodic
points of p € PR(f). Let a,.(PR(f)) be the union U,epr(s)amne(p) of the non-critical alpha
limit sets «,.(p) for all repellor periodic points of p € PR(f).

A set A C J is said to be forward invariant if f(A) C A. The basin B(A) of a forward
invariant set A is the set of all points x € A such that its omega limit set w(x) is contained
in A. An invariant compact set A C J is called a (minimal) attractor, in Milnor’s sense
[T7, [18], if the Lebesgue measure of its basin is positive and there is no forward invariant
compact set A’ strictly contained in A such that B(A’) has non zero measure. The attractors
of a C" non-flat multimodal map are of one of the following three types: i) a periodic
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attractor; ii) a minimal set with zero Lebesgue measure; or iii) a cycle of intervals such
that the omega limit set of almost every point in the cycle is the whole cycle (see [27]).
According to S. van Strien and E. Vargas [27], if f : [ — [ is a C" non-flat multimodal
map, then there is a finite set of attractors A;,...,A; C I such that the union of their
basins has full Lebesgue measure in I.

An open interval J(c) containing a critical point ¢ is a renormalization interval of a
multimodal (resp. unimodal) map f, if there is n = n(J(c)) = 1 such that f"|57 is
also a multimodal (resp. unimodal) map. Hence, the forward orbit of J(c) is a positive
invariant set. A multimodal map f is no renormalizable inside a renormalization interval
J(c), if there is no renormalization interval strictly contained in J. A multimodal map
f is infinitely renormalizable around a critical point c if there is an infinite sequence of
renormalization intervals Ji(c), Jy(c),... such that J,y1(c) is strictly contained in J,(c)
and ¢ = Ny>1J,(c). The basin of attraction B(J(c)) of J(c) is the set of points whose
forward orbit intersects J(c).

Definition 1 (Expanding and nearby expanding points). A point p € I is called nearby
expanding if there are

(1) a sequence of points p,, converging to p,

(2) a sequence of open intervals V,, containing p,,,

(3) a sequence of positive integers k, tending to infinity, and

(4) 0 =0d(p) >0,
with the following properties:

(1) f*=|y, is a diffeomorphism and

(2) 5 (Vo) = Bs(f*(pn))-
Furthermore, a point p € [ is called expanding if p € I is a nearby expanding point with
pn = p for every n € N.

The nearby expanding set NE(f) is the set of all nearby expanding points of f and the
expanding set E(f) is the set of all expanding points of f.

Lemma 2.1 (Fatness of E(f) and NE(f)). Let f be C" a multimodal map with r > 3 and
no periodic attractors nor neutral periodic points. Then:

(1) E(f) D Op(PR(f)) and NE(f) D anc(PR(f));

(2) if f is infinitely renormalizable around a critical point c, then there is a renormal-
ization interval J(c) such that E(f) and NE(f) are dense in B(J(c));

(3) if f is no renormalizable inside a renormalizable interval J, then E(f) is dense in

B(J) and NE(f) contains B(J).

If f: 1 — Iisaunimodal map, for every renormalization interval .J, 0B(.J) is uniformly
expanding, 0 C 0B(J) and B(J) is an open set with full Lebesgue measure. Hence, by
Lemma 2] if f is a unimodal map whose attractor is a cycle of intervals then E(f) is dense

in [ and NE(f) = I. Furthermore, if f is a unimodal map that is infinitely renormalizable
then E(f) and NE(f) are dense in I.
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Proof. Let f be infinitely renormalizable around a critical point ¢. By Lemma [A.5] there
is a renormalization interval J(c) such that O, (PR(f)) is a dense set in J(c). Since
E(f) D O,.(PR(f)), we obtain that E(f) and NE(f) are dense in J(c).

Let f be no renormalizable inside a renormalizable interval J. By LemmalA.9l a,,.(PR(f))
contains J. Hence, E(f) is dense in J and NE(f) contains J. O

Definition 2 (Puncture set P(J)). Let Cp(I) be the set of all critical points ¢ whose non-
critical alpha limit sets a,.(c) do not intersect the interior of I. The puncture set P(I) of
I'is P(I) = Usecp(1)Ope(c). Let J be a renormalization interval and n the smallest integer
such that F' = f"|J is a renormalization of f. Let Cp(J) be the set of all critical points ¢
whose non-critical alpha limit sets «,.(c) with respect to F'|J do not intersect the interior
of J. The puncture set P(J) of Jis P(J) = Ucecp()Onelc).

Hence, the puncture set P is either empty or a discrete set. Furthermore, we observe
that the puncture set is not located in the central part of the dynamics, i.e. (i) if f is
infinitely renormalizable there is a renormalization interval J(¢) such that P N J(c) = ()
and (ii) if the Milnor’s attractor A of f is a cycle of intervals then P N A = (), because
Qpe(c) is dense in A for every critical point ¢ in the interior of A.

For every connected component G € D(J), let m = m(G) be the smallest integer such
that f™(G) C J(c). If m = 0 the puncture set Gp C G of Gis Gp = P(J), and if m > 0 the
puncture set Gp C G of G be the union of all points x € G such that (i) (f™) (x) = 0 or (ii)
(f™)(x) € P(J). We observe that Gp NG is either a discrete set or empty. The punctured
basin of attraction Bp(J(c)) of J(c) is the union Ugep()G'\G'p. A renormalization domain
J = Ueecrd(¢) of a multimodal map f is the union of renormalization intervals J(c) for a

given subset CR C C}. Set Bp(J) = UcecrBp(J(c)). We observe that Bp(J) = B(J).

Definition 3 (C' at a point). We say that a map h: I — I' is C* at a point p € I, if

h(z) — h
tim MWy 2
e a—y

We observe that h is C! at every point belonging to an interval K C I if, and only if, f
is a C' local diffeomorphism in that interval K.

We say that a topological conjugacy h : I — L between f : I — I and g : I’ — I
preserves the order of the critical points, if ords(c) = ordy(h(c)) for every critical point
cE Cf.

Theorem 1 (Explosion of smoothness). Let f and g be C" multimodal maps with r > 3
and no periodic attractors nor neutral periodic points. Let h be a topological conjugacy
between f and g preserving the order of the critical points. If h is C* at a point p € NE(f),
then either
(1) his a C" diffeomorphism in I\ P(I); or
(2) there is a unique mazimal renormalization domain J such that h is a C" diffeomor-
phism in J \ P(J). Furthermore,
(a) his a C" diffeomorphism in the punctured basin of attraction Bp(J);
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(b) h is not C" at any open interval contained in I\ B(J);
(c) h is not C* at any point in E(f) NoB(J).

We observe that Theorem [ still holds if we replace the hypotheses of h being C* at a
point p € E(f) by h being C" in an open set. N. Dobbs [22] proved that if (i) a multimodal
map f has an absolutely continuous invariant measure with a positive Lyapunov exponent
and (ii) the conjugacy h between f and another multimodal map g is absolutely continuous,
then h is C" in an open set. Hence, Theorem [Il applies to this case.

The proof of Theorem [ is given at the end of Section [Gl

Corollary 2 (Full measure explosion of smoothness for unimodal maps). Let f and g be
C" unimodal maps with v > 3 and no periodic attractors nor neutral periodic points. Let h
be a topological conjugacy between f and g preserving the order of the critical points. If h
is C' at a point p € NE(f), then either

(1) his a C" diffeomorphism in the full interval I; or

(2) there is a unique maximal renormalization interval J C I such that
(a) his a C" diffeomorphism in the basin B(J), and
(b) h is not C* at any point in OB(J).

We observe that if f : I — I is a unimodal map, then (i) 0B(J) is uniformly expanding,
(ii) 0I € 0B(J), and (iii) B(J) is an open set with full Lebesgue measure in I. By Corollary
@ the map h is C* at a point p € 91 if, and only if, h is a C" diffeomorphism in I.

3. ZOOMING PAIRS

We will prove that, in Theorem Bl and in its two corollaries, the hypothesis h is C! at
a point p can be weakened to h being (uaa) uniformly asymptotically affine at p. We will
define the zooming pairs that we will use to show if & is uaa at a point then h and h~! are
C" in small open sets.

Let h : I — I' be a homeomorphism. For every (x,y,z) of points x,y, z € I, such that
x <y < z, we define the logarithmic ratio distortion Ird,(z,y, z) by

h(z) = )| ly — «|
h(y) = h(@)| |z =yl | -

Definition 4 (uaa). Let h : I — I' be a homeomorphism. The map h is uniformly
asymptotically affine (uaa) at a point p if, for every C' > 1, there is a continuous function
ec : Ry — Ry, with ec(0) = 0, such that

Irdy(z,y, 2) < ec(lx—p|), (3.1)

forall x <y < z with O™ < |z —y|/|ly — 2| < C.

Irdy,(z,y, z) = |log

Lemma 3.1 (C' implies uaa). Let h: I — I' be a homeomorphism. If h is C' at a point
p € 1, then h is uaa at p.
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Proof. If h is C* at p, then there is a sequence 6,, converging to 0, when m tends to oo,

such that
10th/(p)‘ <0 (l) (3.2)
ly — | - o\m)’

for all x,y € By, (p). Hence, for all z,y,z € By, (p), we obtain
|h(z) = h(y)| ly — =| (1)

<O|l—|, 3.3
b))~ b ==l =\ 3

and so, h is uaa at p. O

log

Definition 5 (a-bounded distortion). We say that a C" multimodal map f has a-bounded

distortion with respect to a sequence Vi, Vs, ... of intervals and a sequence of integers k,
tending to oo, if there is C' > 1 such that
Ird i (2,y, 2) < C|f5(2) = [ ()], (3.4)

for all z,y,2z € V,,, with x <y < z, and all n > 1.

Definition 6 (Zooming pair (p,V)). Let f: I — I and g: I' — I’ be C" maps, with r > 2,
and h : I — I’ a topological conjugacy between f and g. An a-zooming pair (p, V') consists
of a point p € I and an open interval V' C I such that

(1) there is a sequence Vi, Vs, ... of intervals in / and
(2) a sequence of integers k, tending to oo,

with the following properties:

(1) sup,ey, |# —p| — 0 when n — oo;

(2) f*™|v, and g*|4,) are diffeomorphisms onto the intervals V and h(V') respectively;
(3) f has a-bounded distortion with respect to the sequences Vi, Vs, ... and ky, ko, .. .;
(4) g has a-bounded distortion with respect to the sequences h(V}), h(V3),... and
ki, ko, . ...

A central zooming pair (p,V') is a zooming pair (p, V') with the property that p € V,, for
some n € N.

Lemma 3.2 (Explosion of smoothness from p to V). Let f and g be C" maps, with r > 3,
topologically conjugated by a homeomorphism h. Assume that (p,V') is an a-zooming pair
for some 0 < o < 1. If h is uaa at p, then h|V is a C** diffeomorphism onto its image.
Furthermore, if (p,V) is a central zooming pair then h|Vy is a C*T* diffeomorphism onto
its image, for some open interval Vo containing p.

Proof. Given a,b,c € V, with a < b < ¢, let a,,b,,c, € V, be such that f*(a,) = a,
f¥n(b,) = b and f*(c,) = c. Since f has a-uniformly bounded distortion,

Ird i (@, by €n) < O(|c — al®). (3.5)
Since g has has uniformly bounded distortion, we get

lrdgin (A(an), h(bn), h(cn)) < O(|h(c) = h(a)[*) - (3.6)
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By the definition of zooming, there is a sequence o,, — 0 such that, for all z € V,,,
|z —p| <o, . (3.7)
Since f is (uaa) at p, by ([B.1]), we have
Irdy,(ap, by, cn) < €c(on) -
Hence, by ([B.7)), there is n large enough such that
lrdp, (@n, by, cn) < |c—al . (3.8)

Combining ([3.3)), (3.6) and (3.8)), we have
Irdy(a,b,c) < lrdgen (h(an), h(bn), h(cn)) + Irdp(an, b, ¢n) + 1vd fin (an, by, ¢1)
< O(le —al” + |h(e) = h(a)]?) - (3.9)

Therefore, the homeomorphism h is quasi-symmetric in V. Hence, there is v > 0, such
that h|V is v-Holder continuous. Thus, we obtain that (3.9]) is bounded by Ci|c —a|*?, for
some C} > 1. Hence, by [24], we get that h|V and h™|h(V) are C'T* maps. Therefore,
|h(c) — h(a)] < O(|c — a|) and, so, ([B.9) is also bounded by Cs|c — a|®, for some Cy > 1.
Hence, again by [24], we get that h|V and h~|h(V) are C1** maps.

Furthermore, if (p, V) is a central zooming pair then there is an open interval Vj con-
taining p and an integer n such that |V} is a C" diffeomorphism and f"(V4) C V. Hence
h|\Vo = (g"h(Vo)) Lo ho f*isa C" diffeomorphism. O

Lemma 3.3 (Building up smoothness from C'* to C"). Let f and g be C" maps, with
r > 3, topologically conjugated by a homeomorphism h. If h|V is a C** diffeomorphism
in some open set V', then h|W is a C" diffeomorphism for some open set W C V.

Proof. By Lemma [A.5] there is a reppelor p € I and integers m and [ such that p €
int(f™(V)) and f!(p) = p. Since p is a reppelor there is an open interval W C int(f™(V))
with p € W such that |f¥(z)] > XA > 1, for all z € W. Let Wy, Wi, ... be a sequence of
open intervals contained in W such that (i) f'{(W,y1) = W,, (ii) Woy1 C W, and (iii)
|W,| — 0 for every n > 0. Let i, : W,, — (0,1) be the affine map with the property that
in(W,) = (0,1) and let f,, =igo f™oi,!. By Lemma E13 in [23], there is b > 0 such that
| Indf,||cr-1 < b, for every n > 1. Hence, by Lemma E15 in [23], there is a small ¢ > 0 and
a subsequence f, converging to a C" diffeomorphism f : (0,1) — (0,1) in the C"~¢ norm.

Let W) = h(W,) and j, : W) — (0,1) be the affine map with the property that
Jn(W!) = (0,1), for every n > 1. Let g, = jo o g™ 0 j,;!. By Lemma E13 in [23], there is
b > 0 such that ||Indg,||c-—1 < b, for all n > 1. Hence, by Lemma E15 in [23], there is
a small € > 0 and a subsequence m,, of the sequence k,, such that g,,, converges to a C"
diffeomorphism ¢ in the C"~¢ norm.

Let h, = j,ohoi_ ! Since h is a C'™* diffeomorphism, there is a sequence ), tending

to 1 such that
[P (2) = hu(y)| |y — 2| _ |

h(y) = ha(@)] |2 —y| ="
for all z,y,z € (0,1). Hence, h = lim h,, is an affine map.
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We note that h|Wy = jy ' 0 gn 0 by o f 1 0, for every n > 1. Hence,
h|W0:limjo_logmnohmnof;ioio:jo_logo@oi_loio.

Since, g, h and f are C" diffeomorphisms, we obtain that h|W; is a C" diffeomorphism. [

4. NEARBY EXPANDING SET

We will prove that for every nearby expanding point p € NE(f) there is an open set V'
such that (p, V) is a 1-zooming pair.

Given any K C R and 7 > 0, set B,(K) =, cx B:(p), where B.(p) = (p —r,p + 7).

Recall that the Schwarzian derivative of f in the complement of the critical points is

defined by
a f/// B § f// 2
Sf = _f' 5 <_f’) .

Lemma 4.1 (Nearby expanding point originates a zooming pair). Let f and g be C3
multimodal maps topologically conjugated by h, with no periodic attractors and no neutral
periodic points. For every x € NE(f) there is an interval V' such that (z, V') is a 1-zooming
pair. Furthermore, for every x € E(f) there is an interval V' such that (z,V') is a central
1-zooming pair.

Proof. By [27], there is v > 0 such that, for every point = € I, with

M@y e |J Biyle) and g"(h(x)) € (] A(B,(0)),
ceC(f) ceC(f)
we have Sf"*(z) < 0 and Sg" ™ (h(z)) < 0.
By Lemma [A4] one find 79 < 71 < 72 < 73 < 74 < v and nice sets Jy, Ji, Jo such that

By, (Cp) € Jo € By, (Cr) C By, (Cp) C Ji C Byy(Cy) C By (Cy) C J2 C By(Cy).

Let J; = Ucecf Ji(c), ¢ € Ji(c) = (ai(c),bi(c)) for every ¢ € Cy and i = 0,1, 2.

Given z € NE(f), for some small § > 0, take a sequence of points z; — = and intervals
W) > x; such that f7 |ij0 is a diffeomorphism and f™(W})) = Bas(f™ (x;)) for m; — oco.
Let W; C W} be the interval such that f™(W;) = Bs(z;) and let LY, R be the connected
components of W)\ ;.

For every j > 1, define n; as follows: If f(xz;) ¢ Jy, for every 0 < i < mj, take n; = —1;
otherwise, take n; < mj; as the biggest integer such that f'(z;) € Ji.

Our goal is to obtain a sequence j; — +o00 and intervals Vj, C Wﬁ containing x;, with
the following properties: inf; [f™(V},)| > 0 and the ratio distortion of ™|y, uniformly
bounded. If n; = —1 take V; = W;. In this case, |f"(V;)| = 26 and the bounded of the
ratio distortion follows from Theorem [A] because J; D B,,(Cs). Thus, we assume from
now on that n; # —1.

If liminf; m; —n; < oo, let V; be the maximal interval such that z; € V; C W; and
f7(V;) C Jo. Taking a subsequence, we assume that there is & > 0 such that m; —n; < K
for every j.
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Since D f™ # 0 in W; and f™(W;) N J; # 0 and by maximality of V;, if W; # V; then

(V) D (¢j —vya,¢j —73) or f(V}) D (¢j+ 73, ¢ + Ya)

for some ¢; € Cy. In particular, |f"(V;)| > 74 — 3. Thus, there is ¢ > 0 such that, for
every 7, |[f™ (V)] > e >0, |[f™(V;)] = [f™(W;)] = 2§ or f™(V}) is a finite iteration of
an interval with length greater than ~, — v3. Furthermore, since

Lf LI/ W)= L™ (Ry)I/LF™ (W) | = 1/2 forevery j, (4.1)
we get that
(SIS L)
|t (Vi Lt (W)
and

S (R R
|frtt (V)L [t (05)]
are bounded away from zero. Since Sf"1(z) < 0, for every
2 € [T(By(Cr)) D f T (By(Cr)) D fT () DV,

the ratio distortion of f"*1[y, is uniformly bounded (V; C W;). Thus, the ratio distortion
of f™ily, is also uniformly bounded and |f™ (V)| > & > 0 for every j.

Let us consider the case liminf; m; — n; = co. Taking a subsequence, if necessary, we
assume that lim; m; —n; = oo.

Claim 1. ™ (W?) C J, for every j € N.

Proof of the claim. Let Vj0 be the maximal interval such that
z; € V) C W) and f(V)) C Ja.

We will show that W) = V.
By the maximality of V), if W) # V then there is py; € 9Jo N A(f" (V). On the
other hand, since " (x;) € Jy, there is py ; € 0.J; such that

fnj(‘/j()) D (p1j,p2,;) or fnj(vjo) D (p2,j, P1j)-

If p1; < paj take T; = (p1j, paj); otherwise, take T; = (pa;,p1,;). Since J; and J, are nice
sets with J; C Jo, it follows that f*(97;) N J; = () for every k > 0. Hence, if £; > 0 is
the smaller integer such that f%(7;) N J; # 0, then f%(T;) N Ji(c;) # 0 for some ¢; € Cy.
Furthermore, f%(T;) D Ji(c;). However, since Df™ # 0 on W), we get {; > m; — n;.
Thus, it follows from Theorem [A1] that

40 = [fm (W) = 1f™ (V) = |f™ 7 (Th)| = CA™ T >

> CN™7" (44 — 7y3) — oo (for a subsequence).

Hence, we get a contradiction. 0
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By Theorem [AT] if f(WP) N Jo = 0, for every n; < i < my, then f™~Fh has
uniformly bounded distortion on f"ﬂ'“(WjO) not dependent upon j. In particular,
o I/ (W) and [ F 51 (Ry)| /|9 (W)
are bounded away from zero. Since f(W?) C B,(Cy) and Sf"*!(z) < 0, for every
z € W]Q, the ratio distortion of f”f“\wj is uniformly bounded. Thus, taking V; = W, the
ratio distortion of f™|y, is uniformly bounded and |f™ (V)| = 26 for every j.
From now on, we will assume not only that m; —n; — oo, but also that fi(VV]Q) NJy# 0D

for some n; <@ < m;.
Let k; be the smaller integer £ > n; such that f(W0) N .Jy # 0, i.e.

kj = min{l > n;; fZ(WJQ) N Jo # 0}.
Claim 2. There is K > 0 such that m; — k; < K, for every j € N.

Proof of the claim. Since f(x;) ¢ Jy, for all n; < j < m;, there is a connected component
T; of Jy \ Jo such that T; C fkj(WjO). Since Jy and J; are nice sets with Jy C J;, it follows
that .
FHOT;) O o = 0
for all ¢ > 0. So, if £; > 0 is the smaller integer such that
fej(j—‘j) N JO 7& ®a
ie. fY(T;) N Jo(cj) # O for some ¢; € Cyp. Thus, f%(T;) D Jo(c;). Since fmf|WJo in a
diffeomorphism, we get £; > m; — k;. Thus, from Theorem [AT] it follows that
45 = [fr (W] 2 177 (T)] 2 O MIT| > OX™ (5 = 1),
for every j € N. Since A > 1, we necessarily have m; — k; bounded. 0J

Using Theorem [AT], we conclude that f*~(+1 has uniformly bounded distortion on
S W) (not dependent upon j). Since 0 < m; — k; < K and f™ |5 is a diffeomor-
J

phism, we obtain that f™~("+1) has uniformly bounded distortion on f"*(W?) (also not
dependent upon j). Thus,

L)/ (W) ] and [ (Ry)| /1 £ (W)

are bounded away from zero. Since Sf"*!(z) < 0 the ratio distortion of f"*!|y, is
uniformly bounded for all z € VV]Q. Again, taking V; = Wj, the ratio distortion of ™[y,
is uniformly bounded and |f™(V;)| = 20 for all j.

Thus, replacing j by a subsequence, we get intervals V; C VV]Q containing x; with the
following properties: inf; | f™(V;)| > 0, the ratio distortion of f™[y, is uniformly bounded
and the ratio distortion of g™ |y, is also uniformly bounded.

By compactness, taking a subsequence, there is an open interval V' and a sequence of
intervals z; € Vj C V}, j > 1, such that f%(V]) =V, for all j. Thus, (z,V) is a 1-zooming
pair. Similarly, if x € E(f) there is an interval V' such that (x,V) is a central 1-zooming
pair. 0
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Lemma 4.2 (Explosion of smoothness at expanding points). Let f and g be C® multimodal
maps topologically conjugated by h, with no periodic attractors and no neutral periodic
points. Let the conjugacy h be C' at a point x. If v € NE(f), then there is an open
interval V' such that h|V is C".

Proof. By Lemma [T, if x € NE(f) there is an interval V such that (z,V) is a 1-zooming
pair. Since h is C* at z, then by Lemma 3.l we have that h is uaa at x. Thus, it follows
from Lemma that h|V is a C'T< diffeomorphism. Hence, by Lemma 3.3, h|W is a C"
diffeomorphism for some W C V. O

5. SMOOTH CONJUGACY AND RENORMALIZATION INTERVALS

In this section we assume that f and ¢ are C" multimodal maps, with » > 3 and
no periodic attractors nor neutral periodic points. Furthermore, we assume that h is a
topological conjugacy between f and g preserving the order of the critical points. We
define

s {gg;} ordy(c).
Definition 7 (Smooth conjugacy domain). For s <t < r, the t-smooth conjugacy interval
V is an open set V such that h|V is a C* diffeomorphism. The set C} C U consists of all
critical points ¢ such that there is a t-smooth conjugacy open interval V' containing ¢ € V.
For every ¢ € C}, the s-smooth conjugacy mazimal interval J*(c) of cis the maximal open
interval J®(c) containing ¢ such that h is C* in J*(c). The s-smooth conjugacy domain J*
is

JS - UceC;JS(C).

We say that a critical point ¢ € Cy is s-recurrent, if there is n = n(c,s) > 1 such that
Jo(e) N frJ%(c) # 0. Let CR® C Cy be the set of all s-recurrent critical points. Let
J}S% = UceCRS JS(C).

Lemma 5.1 (Spreading smooth conjugacy intervals). Let h be a topological conjugacy
between f and g and let s <t <r. Then

(1) if V is a t-smooth conjugacy interval then int(f(V)) is a t-smooth conjugacy inter-
val;
(2) if V is a t-smooth conjugacy interval then the connected components of f=1(V)\
(f~Y V)N C}) are t-smooth conjugacy intervals; and
(3) if V' is an s-smooth conjugacy interval then f~1(V') is an s-smooth conjugacy inter-
val.
Furthermore,

(1) if c € Cf and, for some small open interval V' containing ¢ and somen, f*(V) C J*
then c € C§; and

(2) if c € Cy and, for some small open interval V- C J" and some n, ¢ € int(f*(V))
then c € C.
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Proof. Since f is a multimodal map, the interior of f(V) is an open interval and for every
x € f(V) there is an open interval W such that x € f(W) and f|W is a C” diffeomorphism.
Hence, h|f(W)=goho (f[W) !is a C" diffecomorphism.

For every z € f~(V)\ (f~(V)NCYy), there is an open interval W such that 2 € W and
fIW is a C" diffeomorphism. Hence, h|W = (g|nw) ' oho fis a C" diffeomorphism.

Let ¢ € fFY(V)NC; and ¢ = h(c). Let b = f(c) and b = g(h(c)). Recall that
fle+x) = f(c) + ¢(|x]*) and g(c + x) = g(¢') + ¥(]z|*). Hence, there is a small open
interval W containing ¢, such that for every c+x € W

(glaw) () = ¢ + (™ (y — gV,
if £ > 0 and
(glnw) ™y = g() = ¢ = (@~ (y — g()*,
if z <0. Hence, if x > 0

hW = (gluw)) o ho f=c + 1 (—g(d) + h(f(c) + o(|x]*))]"*
and if <0

hW = (gluw)) " o ho f=¢ = [0 (=g(¢) + h(f () + (|x|*))]*.

The map ¥~ (—g(d)+h(f(c)+y)) is a C" diffeomorphism. Hence, by Taylor’s theorem,
there is a constant ¢ and C" diffeomorphism 6 such that ¢¥='(—g(c') + h(f(c) + y)) =
y(c+yb(y)). Therefore,

AW = a(c + |z]*0(|2|*)) /.
Hence, h is a C*® diffeomorphism. O

Denoting by p and ¢ the points that form the boundary of an interval V', the set V' is
dynamically symmetric if either f(p) = f(q) or f(p) and f(g) form the boundary of f(V').

Lemma 5.2 (Nice J*%). If h is a C* diffeomorphism in an open set V' then the s-conjugacy
mazimal domain J* is a non-empty and there is n > 0 such that int(f"(V')) C J*. Fur-
thermore,

(1) if c € Cf the set J*(c) is dynamically symmetric,

(2) for all c1,cy € C§ the sets J*(c1) and J*(cq) are either disjoint or equal; and

(3) the s-conjugacy maximal domain J*® is a nice set.

Proof. Let us assume that h is a C" diffeomorphism in an open set V. It follows from
Lemma [A.2] that there is an n € N and ¢ € Cy such that f"|y is a diffeomorphism C”
and ¢ € int(f™"(V)). Hence, by Lemma 511 (i), h is a C" diffeomorphism in f"(V'). Hence,
J*(e) D f(V) is a non-empty closed interval and c € C7.

Let us denote J® by J. Let us denote by p and ¢ the boundary points of J(c). Let
us prove that the interval J(c) is dynamically symmetric, i.e. either f(p) = f(q), or f(p)
and f(¢) form the boundary of f(J(c)). Let us suppose, by contradiction, that there is
z € int J(c) that is not a critical point such that f(z) = f(q) (or, similarly, f(z) = f(q)).
Let V., and V, be small neighborhoods of z and g, respectively, such that f|y, is a C”
diffeomorphism and f(V,) C f(V.). Hence, by Lemma 5.1 (i), ~ is a C* diffeomorphism in



EXPLOSION OF SMOOTHNESS FOR CONJUGACIES 13

f(V,) C f(V,) and, again by Lemma 5.1} ~ is a C" diffeomorphism in V. Hence, h has a
C" diffeomorphic extension to a neighborhood of ¢ which is absurd.

By construction, if J(c;) N J(c2) # 0, for some ¢, co € Cy, then J(c1) = J(c2)

Let us prove that the set .J is nice. Let us suppose, by contradiction, that there is a
point p € 9.J(c) and n > 0 such that f*(p) € J and f™(p) ¢ J, for all 0 < m < n. Hence,
there is a small neighborhood V' of p such that (V) C J. By Lemma 5] (i) and (iii), h
is a C* diffeomorphism in V' which is absurd. The proof of case (ii) is similar. O

Given a nice set J, let I(J) be the set of all points 2 € I whose forward orbit intersects
J. Let D(J) be the set of all connected components G of I(.J), i.e.

= J @
GeD(J)

The open intervals G € D(J) are called the gaps of I(J). We note that the boundary
OI(J) of I(J) is totally disconnected.

Lemma 5.3 (The basin of attraction of J*). Let ) # J° C int(I) For every G € D(J*)
with G N J* =0, there is n = n(G) > 1 such that

(1) f™G is a diffeomorphism;

(2) there is c € C§ such that f*(G) = J*(c);

(3) fA(G)N TS =0, for every 0 < j < n.

Proof. For every x € I(J)\ J, let n(z) > 1 be such that f*(z) € J and f’(x) ¢ J for
every 0 < j < n. Let £ = {x,..., " Y(z)}. By LemmaE2 £NC; = 0 and so there
is a small open set V such that f"|V is a C" diffeomorphism and f"(V) C J. Let us
prove by contradiction that there is a small open interval W C V' containing = such that
n(y) = n(zx) for every y € W. If there is not a small open interval W C V containing = such
that n(y) = n(z), for every y € W, then there is a sequence of points x,, € V' converging
to x with n(z,) = j < n(x). Hence, f/(z) € 9.J. Since J is nice f*~I(f7(z))NJ = 0 which
is a contradiction. Let V = (z,a) be the maximal open interval containing x such that
n(y) = n(zx) for every y € V. Let us prove, by contradiction, that f"(a) € 0J. By the
above argument, If f"(a) € J then there is an open interval W, such that n(y) = n(a) for
every y € W, which is absurd by maximality of V. Hence, for every = € I(J) \ J, there
is a maximal open interval G such that n(y) = n(z), for every y € G, and f*(G) C 0J.
Hence, f"|G is a C" diffeomorphism and f"(G) = J(c) for some c. O

Lemma 5.4 (J}, is a renormalization domain). Let ) # J* C int(I). For every ¢ € C%,
there is n(c) and c(c) € C% with the following properties:

(1) f“( J*(c)) < (*(¢(0));
0f"9(J*(c)) € 0J*(c'(0));
Fi(J5(c)) N J5 =0, for every 1 <i < n(c);
J3 is a renormalization domain;
B(J}) C I(J*%) and B(J3) = 1(J*);

(2)
(3)
(4)
()

5
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Proof. By Lemma 5.3 for every gap G € D(J) there are n = n(G) > 1 and ¢(G) € CyNJ
such that f"(G) = J(c¢(G)), f*G is a C" diffeomorphism and f"(G) N J = ) for every
o<1<n.

For every ¢ € Cy, either (A) int f(J(c)) NOI(J) = 0; or (B) int f(J) NOI(J) # ()

Case (A). Since int f(J(c))NOI(J) = (), there is an open interval K, that is either a) an
interval .J(¢') or b) a gap G, such that f(J(c)) C K. In case a), this lemma follows from
noting that J is nice, and so df(J(c)) C dJ(¢). In case b), there is n = n(G) > 1 such
that f"*1J(c) C J(c(@)) and f*1J(c) N J = 0 for every 0 < i < n. Furthermore, since .J
is nice, f"1(0J(c)) C 0J(c(G)) that proves this lemma in case b).

Case (B). Let us suppose that there is a point x € 9I(J)Nint f(J(c)). Let V be a small
neighborhood contained in .J(c¢) such that f|V is a C" diffeomorphism and x is contained
in the interior of f(V'). Since 0I(J) is a totally disconnected set, there are gaps G, and
G, with a boundary point y € f(V). Let z € V be such that f(2) =y and take a smaller
neighborhood Vo C V' of z such that f(Vo \ {2}) C G, UG|. By Lemma[5.1] if there is

w e frEILN\ {2} N0 (e(Gy)),

then there is an open interval W C f™@)+ (1 \ {z}) containing w such that h|W is
a C® diffeomorphism. Since w € 0J(c(Gy)), we obtain a contradiction. Hence, for some
0 < i < n(G,), there is a critical point ¢, € C} such that ¢, = f*(y). Therefore, J(c¢(G,)) =
J(c(G)) and n(Gy) = n(G)). Since the set of critical points is finite, 9I(J) Nint f(J(co))
is also finite and for every w € 90I(J) Nint f(J(cp)), there are gaps G,, and G, with
w € 0G, N 0G!, such that

J(e(Gw)) = J(c(G,)) = J(c(Gy)) and n(Gw) = n(G,,) = n(Gy).

Furthermore, since J is nice, f"%)(d.J(c)) € 8J(c(G,)), that proves this lemma in case
(B).

Hence, Lemma[5.4] (i) and (ii) hold. Therefore, J}, is a renormalization domain. Lemma
6.4 (i) and (ii) also imply for every gap G C I(J*) there is a gap G’ C B(J};) such that
G\ G’ is either (i) empty or (ii) it is a finite set of points S¢ = G \ G’ with the following
properties: for every z € Sg there is i = i(x) and j = j(z) such that (i) 0 <1 < j, (i)
fi(z) € C%, (iii) fi(x) & J3, and (iv) f/(z) € 0J5. Hence, Lemma [5.4] (iv) holds. O

Theorem 3 (Explosion of smoothness). Let f and g be C" multimodal maps with r > 3
and no periodic attractors and no neutral periodic points. Let h be a topological conjugacy
between f and g preserving the order of the critical points. If h is C* at a point p € NE(f),
then either

(1) h is a C° diffeomorphism in the full interval I or in its interior int(I); or

(2) there is a unique mazximal renormalization domain J C I such that h is a C*®
diffeomorphism in J. Furthermore,
(a) his a C* diffeomorphism in the basin of attraction B(J);

(b) h is not C* at any open interval contained in I\ B(J);
(c) his not C* at any point in E(f) NOB(J).
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Proof. By Lemma [A.2] there is an open interval W such that h|W is C* and so the s-
smooth conjugacy maximal domain J* 2 (). If h is not a C* diffeomorphism in I or int(7),
then, by Lemma [5.4] there is a renormalization domain J§ such that (i) h|B(J}) is a C*
diffeomorphism and (ii) there is no open interval V' C I\ B(J}) = I \ I(J*) such that h|
is a C*® diffeomorphism. Let us prove, by contradiction, that A is not C!' at any point in
E(f)NoB(J). By LemmalL2 if h is C' at some point x € E(f) N dB(J) then there is an

open interval W containing x such that h|WW is C* which is a contradiction. O

Theorem [] below gives a criterium for non-smoothness of the conjugacy when the con-
jugacy does not preserve the order of the critical points. The non-critical forward orbit
O .(p) of p is the set of all points ¢ such that there is n = n(q) > 0 with the property that
f™(p) = q and (f")'(p) # 0. The non-critical omega limit set w,.(p) of p is the set of all
accumulation points of O;f.(p).

Theorem 4 (Implosion of non smoothness). Let f and g be C" multimodal maps with r > 3
and no periodic attractors and no neutral periodic points. Let h be a topological conjugacy,
between f and g, not preserving the order of the critical points ¢y and c; = h(cy). The
conjugacy h is not C* simultaneously at (i) a point belonging to E(f)Nayc(cy) and a point
belonging to E(f) N wpe(cy).

If f is a Collet-Eckmann map with negative Schwarzian derivative, then E(f)Nwpc(cr) #
) and ay.(cy) contains the Milnor’s attractor cycle.

Proof. Let us prove, by contradiction, that & is not C at any point belonging to E(f) N
a(cs). If his C' at a point @ € E(f) N au(cs) then, by Lemma A2 there is an open
interval V; containing x such that h|V; is C". Since x € ay,.(cy), there is an integer n such
that ¢ € int(f™"(V1)). Hence, by Lemma [5.1] A is a C" diffeomorphism in an open set V,
containing c.

If his C' at a point € E(f)Nwye(cy) then, by LemmalL2] there is an open interval Wy
containing x such that h|W; is C". Since & € wyc(cy), there is an open set Wy containing
f(c) and an integer n such that f"(Wy)) C Wi and f"|Wy() is a C" diffeomorphism.
Hence, by Lemma B.1], h|Wy() is a C" diffeomorphism.

Since h does not preserve the order of the critical points ¢y and ¢, = h(cy), h can not
be C' at ¢y and f(cy) simultaneously which is an absurd. O

6. C" SMOOTHNESS OF THE CONJUGACY
In this section, we prove Theorem [Il

Lemma 6.1 (K(¢) C J}, is a renormalization interval). Let h be a C" diffeomorphism in
an open set Vi. There is a mazimal renormalization interval K(c') C J§, and a puncture
set P(d) C K(c) such that

(1) his a C” diffeomorphism in K(c')\ P(c), and

(2) int(Vi NB(K(c))) # 0.
Furthermore, 0K (') C E(f) and h is not C* at the boundary OK (') points.
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Proof. Using Lemmal[A.2] there is a sequence of open sets Vi, V3, Vs, ... such that (i) Vi1 N
Cy # 0; (i) f* (Vi) D Viy, and (iii) |V;| — 0. Since Cy is finite, (i) there is ¢ € CpNJ
and (ii) a subsequence V,,,, V,,,, Vo, . .. such that f™i(V},,) D V,,,.,, where m; = Z;‘jnl_l n,
and (iii) ¢ € V,,, for every ¢ > 1. By Lemma 511 A|int(f™(V,,)) is a C" diffeomorphism
and so h|V,,,, is also a C" diffeomorphism. By Lemma [5.4], there is a non-empty maximal
renormalization interval J = J*(¢/) C Jj, containing V,,, for all 4. Let [ be the smallest
integer such that F' = f!|J is a renormalization of f restricted to J.

Let C' (possibly empty) be the set of all critical point ¢ € Cr of F|J such that there is
no open interval V. C J with the property that ¢ € V. and h|V, is a C" diffeomorphism.
For every ¢ € C, let ay,.(c) be the non-critical alpha limit set of ¢ with respect to F'|.J. Set
anc(c) = UceCanc(C)-

Let us prove that the open connected component H of J \ a,.(C) containing ¢ is a
renormalization interval for F. Let us start proving, by contradiction, that H is non-
empty. If H = (), there are (i) ¢; € C, (ii) an open interval U € V,,, and (iii) an integer [
such that ¢; € int F'(U). By Lemma [51] ¢; € C} which is absurd. Take iy large enough
such that, for every i > iy, ¢ € V,,, C H and ¢ € V,,,,, C H. Since f™(V,,) D V,,,,, there
is [; such that (i) F'“(V,,,) = f™(V,,) and (i) F%(V,,) N H # (. Since a,.(C) is forward
invariant, OF'%(H) C a,.(C). Let us prove, by contradiction, that (i) OF'%(H) C 0H
and (ii) F%(H) c H. If Fli(H) ¢ H then there is * € OH such that x € int(F%(H)).
Hence, by Lemma Bl h is C” in an open set containing x which is a contradiction.
Hence, F'i(H) C H and, by forward invariance of a,.(C), OF%(H) C OH. Thus, H is
a renormalization interval for F. Take k the smallest integer such that Fy = F*|H is a
renormalization of F' restricted to H.

For every open interval H; C H, let Cy, be the set of all critical point ¢ € Hy of Fi|H
such that there is no open interval V., C H with the property that ¢ € V. and h|V, is a C”
diffeomorphism. For every ¢ € Cp,, let O,,.(c) be the non-critical backward orbit of ¢ with
respect to Fy|H. Set O,.(Crn,) = Ueecy, O,.(c). Since the accumulation set of O,.(Cp)
is contained in ay,.(C), the set O, .(Ch,) is a discrete set of H, for every open interval
H, CH.

Now, let H; C H be the maximal open set such that h|H; \ O,.(Cy,) is C". Either (i)
Hy, = H, or (ii) H; # H is non-empty.

Case (1). The interval K(c¢') = H is the maximal interval of renormalization containing
 and P(c') = O,.(Cy) is the punctured set of K(¢) with the property that h|K(c)\ P(c)
is C". Furthermore, int(Vy N B(K(c))) # 0.

Case (ii). There is i large enough such that V,, C Hy; and F}(V,.) N H; # 0.

Let us prove by contradiction that 0H; N O,.(Cy) =0. If 2 € 90H, N O,.(Cy) take the
smallest m such that Fi"(x) € Cy. Let a and b be close enough to z such that (i) either
(a, ) or (x,b) is contained in Hy, (ii) F""(a) = F"T(b), (iii) F*|(a,b) , F""(a, r) and
F"*Y(z,b) are diffeomorphisms. Hence, (a,b) C H; that is a contradiction.

Let us prove by contradiction that if x € 0H; then x is not contained in the pre-
orbit of a critical point. Take the smallest m such that F]"(z) = ¢ is a critical point.
Since ¢ ¢ O,.(Cy), there is a small open set W containing ¢ such that h|W is a C”
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diffeomorphism. Furthermore, there is a small enough open set V' such that (i) V' contains
x, (ii) F{"|V is a diffeomorphism and (iii) £7"(V) C W. Thus, by Lemma 5.1 h|V is also
a C" diffeomorphism that is a contradiction.

Let us prove by contradiction that Fy(0H;) N Hy = (. If x € 0H; and Fi(x) € H;
then there are small enough open sets V' and W such that (i) V' contains z, (ii) Fi|V is
a diffeomorphism because x is not a critical point of Fy, (iii) Fy(V) = W, (iv) W C H;
and so (v) h|W is a C" diffeomorphism. Hence h|V is also a C" diffeomorphism that is a
contradiction.

There is i large enough such that V,, C H; and ¢ € FF(V,,), for some k, and so
FF(Hy) N Hy # 0. Hence, to prove that H; is a renormalization maximal interval it is
enough to prove, by contradiction, that Fy(0H,) C 0H;. If z € 0H, and Fi(z) ¢ 0H; and
so Fy(z) ¢ Hy, then (i) there is y € H; such that Fy(y) = z and (ii) open intervals V' and
W with the following properties: (i) V' contains z, (ii) W C H; contains y, (iii) F1|W is a
diffeomorphism, (iv) F{"(W) = V. Since h|W is a C" diffeomorphism, by Lemma [B.1], we
get that h|V is also a C" diffeomorphism that is a contradiction. Therefore, K(¢') = H;
is a renormalization interval containing ¢ and P(¢’) = O,,.(Cq,) is the punctured set of
K() such that h|K () \ P(¢) is C". Furthermore, int(Vy N B(K(c))) # 0. O

Proof of Theorem[1. By Lemma[L.2] there is an open interval Vi such that h|V; is C". If h
is not a C" diffeomorphism in 7\ P, then, by Lemmal6.]], there is a maximal renormalization
interval K(¢') and a punctured set P(¢’) C K(c) such that h is a C" diffeomorphism in
K(d)\P(¢). By Lemmalpd] his a C" diffeomorphism in the punctured basin of attraction
Bp(J(c)).

Let C} be the union of all critical points ¢ € Cy such that K(c) # () is a maximal
renormalization interval and P(c) C K(c) is a punctured subset such that h is a C”
diffeomorphism in K (c)\ P(c). Let J = Ucecy K (c) be the maximal renormalization domain
and P = UceC;P(c) the punctured set of J. By Lemma [5.1] h is a C" diffeomorphism in
the punctured basin of attraction Bp(J) = Ueecy Bp(J(c')).

Let us prove, by contradiction, A is not a C" diffeomorphism at any open interval V' C
I\ B(J). If his a C" diffeomorphism at V then, by Lemma B.1 there is ¢ € C% such that
int(V N B(K(c))) # 0 which is a contradiction.

Let us prove, by contradiction, that h is not C' at any point in E(f) N dB(J). By
Lemma 2] if h is C! at some point € E(f) N OB(J) then there is an open interval W
containing = such that h|W is C* which is a contradiction. O

APPENDIX A. PROPERTIES OF MULTIMODAL MAPS

A periodic point p with period n € N is called a periodic attractor if there is an open set
V with p € OV such that lim;_,, f7"(V) = p. A periodic point p with period n € N is
called neutral if | D f™(p)| = 1. A periodic point p with period n € N is weak repelling if p
is neutral and there is an open set V' with p € V such that |V is a diffeomorphism and
lim; oo (f"|V)™(x) = p for all x € V. A periodic point p with period n € N is a repellor
if |[Df"(p)| > 1. Let us denote by PR(f) the set of all repellor periodic points of f.
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Theorem A.1 (Mané). Let f: I — I be a C? map without weak repelling periodic points
and such that # Fix(f") < oo for alln € N. For every v > 0, there are C > 0 and X\ > 1
with the following properties:

(1) if J C I is an interval whose w(J) does not intersect any periodic attractor, and
(2) if n € N is such that, for every 0 < j <mn, f1(J)N B,(Cy) =0,

then
Irdgn(2,y,2) < Clf"(2) — f"(2)| and |f*(J)| = CA"|J],

for every x,y,z € J with x < y < z.

Proof. Tt follows from Maifie’s Theorem [I3] and the fact that the logarithm of a C? map
is locally Lipschitz outside the critical set. 0

Lemma A.2 (Forward capture of a critical point). Let f: I — I be a C* map and
#Fix(f") < oo for every n € N. For each interval J C I, whose w(J) does not intersect a
periodic attractor, there is n € N such that the interior of f"(J) contains a critical point.

Proof. Let us suppose, by contradiction, that f"|int(J) is a diffecomorphism onto its image
for every n € N. Since w(J) does not intersect a periodic attractor and a C? map does not
admit a wandering interval (see [ [15]), there is k > [ > 0 such that f*(J) N fY(J) # 0.
The closure D of the set |J, -, f"* D (f!(J)) is a forward invariant interval for f*=.
Thus, g = f2*=9|p is monotone map of D into itself. Thus, w,(x) C Fix(g) for every
x € D. Since # Fix(g) < oo, we get that there is an attracting fixed point p € D for g.
Hence, O;"(p) is an attracting periodic orbit for f intersecting w;(J), contradicting our
hypothesis. O

Lemma A.3 (Domain shrinking for iterated local diffeomorphisms). Let f: I — I be a C*
map and # Fix(f™) < oo for everyn € N. If Jy, Jo, ... € I is a sequence of open intervals
such that

(1) Upsyw(Jn) does not intersect a periodic attractor and
(2) fm|J, are diffeomorphisms, with m,, tending to oo,

then |J,| — 0 when n tends to infinity.

Proof. Let us suppose, by contradiction, that there is 6 > 0 such that |J,,| > 9, for every
n > 1. Since [ is compact, there is an interval L and an infinite subsequence J,,,, Jpn,, - . -
of intervals such that L C J,,, for every n > 1. Hence, f*|L is a diffeomorphism, for every
¢ > 1, which, by Lemma [A.2] is a contradiction. O

Following M. Martens [14], a union J = |, J; of pairwise disjoint open intervals Jy, Js, . ..
is a nice set, if the forward orbit of the boundaries Uézl 0J; of J do not intersect J.

Lemma A.4 (Nice infinitesimal neighborhoods of critical points). Let f : [ — I be a
multimodal map without periodic attractors. For every small ¢ > 0, there is a nice set
J = Ucecf (Pes ge) N such that ¢ € (pe,q.) C Be(c) for all ¢ € Cy.
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We note that, if {J;} is the set of connected components of a nice set J then

U

JNCr#D

is also a nice set. Let N be the collection of all nice set J = J, (px, gx) such that C; C J
and (pg, qx) N Cy # 0 for all k. We note that, if U,V € N then UNV € N.

Proof. First, let us show that there is a nice set .J such that C; C J. Consider the compact
positive invariant set

A={z€l; fi(z) ¢ B-(Cy) , Vj >0}
For every ¢ € Cy, there is a connected component J.x O B.(c) of I\ A. Let J = Ucecf
Since 0.J = U,ec, 0Jen C A, we get f7(0J) C A for every j > 0. Hence, f7(0J)NJ = (7)

for every j > 0, i.e. J is a nice set and contains C;. Thus, A is not an empty collection.
If ¢ € Cy, elther V D B.(c), for all V € N, or there exists V(c) = Ucecf =(c) € N such

that V.(c) C B(c) and ¢ € Vz(c) for all ¢ € Cy.

Let C7 be the set of ¢ € Cy such that V' O B.(c) for all V€ N. For every ¢ € C5, let
H(c) = int (o Je, where J. is the connected component of .J containing c. Hence, H(c)
is a nice interval and

H(c) C W for all W e N. (A.1)
Claim 3. If ¢y € Cy is non-wandering then co ¢ C5 for all € > 0.

Proof of the claim. Let ¢ > 0 and ¢y € C; be a non-wandering point. Hence, take the
smallest n > 1 such that f*(H(co)) N H(cy) # 0. Either (1) f*(H(co)) ¢ H(co) or (ii)
f"(H(co)) € H(co). -

Case (i). Take ¢ € H(co) such that f"(q) € f"(H(co)) N H(co) and there is a small
interval V, containing ¢ such that f"|V, is a diffeomorphism. For every ¢ € Cy, let U, be the
connected component of int(7)\ {q, -+, f"'(q)} containing c. We get that U =
belongs to N and H(cy) ¢ U,,, because ¢ € H(cy) but ¢ ¢ U,,, contradicting (A.T]).

Case (ii). Since f"(H (o)) C H(co), g = f" |75y is a multimodal map and f"(9H (o)) C
OH (cp). Since there is no periodic attractor for g, there is a periodic point ¢ € H(cy) for the
map g. For every ¢ € Cy, let U, be the connected component of int(1) \ {q, -+, f™ (q)}
containing ¢, where m is the period of ¢ with respect to f. We get that U = Ucecf

belongs to N and H/(co) ¢ U,,, because ¢ € H(cp) but q ¢ U, contradicting (A)). O

ceCy

Now, we consider the case of the wandering critical points. Let ¢ > 0 and ¢y be a
wandering critical point. From Lemma [A.2] there is n > 1 and a non-wandering ¢ € C;
such that ¢ € f"(H(co)). By the claim above, ¢ ¢ C7. Thus, there is V' = Ucecf V.e N
such that OVzN f"(H (co)) # 0. Let ¢ € H(co) be such that f(¢q) € OVz and there is a small

interval V, containing ¢ such that f"|V is a diffeomorphism. For every ¢ € Cy consider U,
the connected component of V. \ {q,- -, f*(q)} containing ¢. Thus U = Ucecf U. € N and

H(co) ¢ U.,, contradicting (A.T]). O
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Lemma A.5 (Fatness of repellors). Let f be C" a multimodal map with r > 3 and no
periodic attractors and no neutral points.

(1) If f is infinitely renormalizable around a critical point ¢, then there is a renormal-
ization interval J(c) such that O, .(PR(f)) is dense in B(J(c)).
(2) If f is no renormalizable inside a renormalizable interval J, then a,.(PR(f)) con-

tains B(J).

Proof. Let us prove (1). Since f is infinitely renormalizable around ¢, there is an infinite
sequence of intervals Ji, J, ... such that J,,; is strictly contained in .J,, and there is a
sequence My, My, ... such that f|J, is a multimodal map and ¢ € f"(J,). By taking
Jp sufficiently small, we assume that for every critical point ¢ € J; with ¢ # ¢, there is a
sequence Iy, Iy, . .. such that my,l, < m,,; and ¢ € f™(J,.,). Let p, be a periodic point
contained in the boundary 0.J,, of J,,. Hence p,, is a repellor and the set S = U,>10c(pn)
contains ¢ € dS. Let us prove that S is dense in the smallest interval set that contains S.
By contradiction, suppose that S is not a dense set. Hence, there is an open interval K
such that K C J;\ S and 9K C S. By forward invariance of S under f™, f™*(K) c J;\S
and 9f™*(K) C S for every k. By Lemma [A2] there is k; such that f™*(K) contains
some critical point ¢ € J;. Hence, there is n large enough and [,, such that f™ln(J, 1) C
fmk(K). Hence, there is ky such that fm=+1(J,. ) C f™*(K). Since ¢ € f™+1(J,y1),
we get ¢ € f™k2(K). Noting that p, converges to ¢, we obtain that f™*2(K) contain
some p,, for n large, which contradicts that f™*2(K) c J; \ S. Hence, S is dense in the
smallest interval set that contains S. Since ¢ € 05 is a turning point, S is dense in a
small neighborhood of ¢. Hence, there is a renormalization interval J(c), small enough,
containing ¢ that is contained in the closure of S.

Let us prove (2). Since J is a renormalization interval, there is m such that f™|J is a
multimodal map. Let p € J be a periodic repellor with period k of the map f™|J. Since
ane(p) is a closed set, it is enough to prove that a,.(p) is dense in J. By contradiction,
suppose that a,.(p) is not a dense set. Hence, there is an open interval K such that
K C J\ ane(p) and OK C ae(p). By forward invariance of ay,.(p) under f™, fm™(K) C
Ji \ ane(p) and Of™(K) C ane(p) for every k. By Lemma [A2] there is a sequence
ki, ko, ... such that K, = f™(K) contains some critical point ¢, € J. Since, the set of
critical points in J is finite, there is a critical point ¢ € J and k;, < ki, such that K, and
K, contain the critical point ¢ € J. Hence, K;; N K, # (). Since

0K, C ane(p) , 0Ky, C ane(p) , Kiy Nane(p) =0 and K, N age(p) = 0,

we obtain that K;, = K;,. In particular, f™*—*1)|K; is a multimodal and kK, is strictly
contained in J which contradicts that f is no renormalizable inside of the renormalizable
interval J. Hence, a,.(p) contains the closure of J. Hence, by definition of alpha limit,
ane(p) contains B(J). O
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