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MEYER SETS, TOPOLOGICAL EIGENVALUES, AND CANTOR FIBER

BUNDLES

JOHANNES KELLENDONK AND LORENZO SADUN

Abstract. We introduce two new characterizations of Meyer sets. A repetitive Delone set
in Rd with finite local complexity is topologically conjugate to a Meyer set if and only if it
has d linearly independent topological eigenvalues, which is if and only if it is topologically
conjugate to a bundle over a d-torus with totally disconnected compact fiber and expansive
canonical action. “Conjugate to” is a non-trivial condition, as we show that there exist
sets that are topologically conjugate to Meyer sets but are not themselves Meyer. We also
exhibit a diffractive set that is not Meyer, answering in the negative a question posed by
Lagarias, and exhibit a Meyer set for which the measurable and topological eigenvalues are
different.

1. Introduction

To provide a rigorous mathematical explanation of the observation that certain non peri-

odic media (quasicrystals) show sharp Bragg peaks in their X-ray diffraction, mathematicians

came up with the notion of a pure point diffractive set. This is a point set Λ of Rd to which

can be associated an auto-correlation measure γ whose Fourier transform γ̂ is a pure point

measure [Hof] (see also [Mo2] and references therein). In the model of the material by the

point set, the Bragg peaks correspond exactly to the points in the dual space Rd∗ that have

strictly positive γ̂-measure. This raises the question of which point sets are pure point diffrac-

tive. Whereas an answer in terms of the properties of the autocorrelation measure γ has

been found, namely that this is the case whenever γ is strongly almost periodic [BM, G, LA]

no complete geometric characterization of such point sets is known.

The question can be reformulated as a property of the measurable dynamical system

(Ω,Rd, µ). Here Ω is the hull of Λ, a compact metrizable space consisting of points sets

whose patches look like those of Λ and on which Rd acts by translation, and µ is an invariant

ergodic Borel probability measure that is determined by the patch frequencies. A point

β ∈ Rd∗ is called an eigenvalue (or dynamical eigenvalue) for Λ if there exists an L2-function

f (an eigenfunction) that satisfies the eigenvalue equation

(1) f(ω − t) = e2πiβ(t)f(ω)
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for all t ∈ Rd and µ-almost all ω ∈ Ω.1 Arguments based on work of Dworkin [Dw, LMS, BL]

showed that any Bragg peak gives rise to a dynamical eigenvalue. Moreover, Λ is pure point

diffractive whenever the measurable dynamical system (Ω,Rd, µ) has pure point dynamical

spectrum, that is, whenever L2(Ω, µ) is spanned by eigenfunctions.

Interestingly enough, there are classes of point sets for which pure point diffractivity

becomes a property of topological dynamical systems. An eigenvalue β is called a continuous

or topological eigenvalue if (1) has a continuous solution. When the point set Λ comes from

a substitution it is known that that all eigenvalues are topological [H, So]. Furthermore,

repetitive regular model sets, which are known to be pure point diffractive, also have only

topological eigenvalues [Hof, Sch]. Knowing that an eigenvalue is topological is of advantage

in case that the measure µ is uniquely ergodic, as it allows us to compute the intensity of

the associated Bragg peak by means of a Bombieri-Taylor formula [Le].

However, there do exist diffractive point sets whose measurable eigenvalues are not all

topological (see Section 8). It then makes sense to ask about the topological eigenvalues.

For which point sets are all the eigenvalues continuous?

An experimental material scientist may doubt the usefulness of the mathematical concept

of pure point diffraction for X-ray analysis, since experimental devices only have finite

resolution. Since we can only see Bragg peaks above a given brightness s, we can never

observe a dense set of peaks. At best, we can observe a relatively dense set of peaks, meaning

there is a radius r such that every ball of radius r in R
d∗ contains at least one peak.

Recently, Nicolae Strungaru [St1, St2] showed that Meyer sets have this property for any

s below the maximal intensity of the Bragg peaks. In other words, if you can see at least one

Bragg peak from a Meyer set Λ, and if you increase the sensitivity of your equipment even

slightly, then you will see a relatively dense set of Bragg peaks. From this point of view all

Meyer sets should be regarded as being diffractive, but not in the sense of having pure point

diffraction spectrum. Instead, a point set with relatively dense set of Bragg peaks is called

essentially diffractive [St2].

Dworkin’s argument now yields a necessary criterion of essential diffractivity: Λ must have

d linearly independent (measurable) eigenvalues. We then ask: is this criterion a topological

property for certain classes of point sets? In other words, which point sets have d linearly

independent topological eigenvalues? One of our main results gives a characterization of such

sets:

Theorem 1.1. A repetitive Delone set with finite local complexity has d linearly independent

topological eigenvalues if and only if it is topologically conjugate to a Meyer set. In particular,

each repetitive Meyer set has d linearly independent topological eigenvalues.

1 The dual space Rd∗ is often identified with Rd using a scalar product. Then β(t) is the scalar product
of β with t.
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Our theorem can be combined with a characterization of regular model sets given in [BLM]

to obtain:

Theorem 1.2. A repetitive Delone set with finite local complexity is topologically conjugate

to a repetitive regular model set if and only if its dynamical system is uniquely ergodic and

the continuous eigenfunctions separate almost all points of its hull.

Our analysis draws on the use of pattern equivariant functions and of certain fiber bundles.

Theorem 1.1 is actually proven via a third characterization of repetitive Meyer sets, which

may well have its own benefits:

Theorem 1.3. The dynamical system of a repetitive Delone set of finite local complexity is

topologically conjugate to a bundle over the d-torus with totally disconnected compact fiber

and expansive canonical Rd-action if and only if it is topologically conjugate to the dynamical

system of a Meyer set.

If we add the requirement that the Delone set is not fully periodic then the fiber of the

bundle is a Cantor set.

The above theorems characterize repetitive Delone sets up to topological conjugacy, by

which we mean topological conjugacy of their associated dynamical systems. To obtain a

geometric characterization one needs to understand to what extent the dynamical system of

a Delone set determines the Delone set and which geometric propeties of a Delone set are

preserved under topological conjugacy. For this the following theorem is useful.

Theorem 1.4. Any topological conjugacy between the dynamical systems of Delone sets of

finite local complexity is the composition of a shape conjugation with a mutual local derivation.

Furthermore, the shape conjugation can be chosen to move points by an arbitrarily small

amount.

A natural question is whether a Delone set of finite local complexity (FLC) that is shape

conjugate to a Meyer set must itself be a Meyer set. As a consequence of the above theorem,

any FLC Delone set that is shape conjugate to a Meyer set is arbitrarily close in the Hausdorff

distance to a Meyer set. However, this does not suffice to guarantee that it is Meyer. Indeed,

we provide a counterexample. The Meyer property is invariant under local derivations but

not under shape conjugacy.

It is not surprising that Meyer sets show up as solutions to the topological version of

essential diffractivity. They have been investigated throughout the efforts to describe sets

which are pure point diffractive. Lagarias (see [La3], Problem 4.10) suggested the problem

of proving that a repetitive pure point diffractive set is necessarily Meyer. This turns out

to be false. A recent example of [FS], called the scrambled Fibonacci tiling, provides a

counterexample. It has pure point dynamical spectrum, but none of the eigenfunctions can



4 JOHANNES KELLENDONK AND LORENZO SADUN

be chosen continuous, and hence it is not a Meyer tiling (something that can also be checked

directly).

A variation of the scrambled Fibonacci yields a Meyer set that has dense pure point dy-

namical spectrum but only relatively dense topological dynamical spectrum. The dynamical

spectrum has rank 2 while the topological spectrum only has rank 1.

2. Preliminaries

We assume that the reader is familiar with the standard objects and concepts from the

theory of tilings or Delone sets, in particular with the notions of finite local complexity (FLC)

and repetitivity. We also suppose that the construction of the hull ΩΛ and the dynamical

system (ΩΛ,R
d) associated with a tiling or a Delone set Λ ⊂ Rd is known. Where necessary

we assume the existence of frequencies of patches defined by a van Hove sequence and hence

of an ergodic probability measure µ on the hull, see, for instance, [So].

An important well-known concept for us is that of a local derivation (or local map) between

two point sets or tilings. A point set Λ′ is locally derivable from a point set Λ if there exists

R > 0 such that the question of whether a point x belongs to Λ′ can be answered (without

direct reference to x) by inspection of BR(0) ∩ (Λ − x) [BSJ]. This defines a factor map

between the hulls ΩΛ and ΩΛ′ which is called a local derivation. The definition applies

literally to tilings if we identify the tiling with a subset of Rd of boundary points of its tiles.

There are many ways to convert Delone sets to tilings or to convert tilings to Delone sets in

a mutually locally derivable way, i.e. with bijective maps with are in both directions local

derivations. We simply say then that the two objects are MLD. Given a (polyhedral) FLC

tiling T, the set of its vertices is an FLC Delone set which is locally derivable from the tiling.

Given an FLC Delone set Λ, the collection of Voronoi cells is an FLC tiling, and the vertices

of the dual to this Voronoi tiling (the so-called Delone tiling) are precisely the elements of Λ.

We denote by TΛ the Delone tiling of Λ which is clearly mutually locally derivable with Λ.

This paper is written primarily in the language of Delone sets, but we freely use theorems

about tilings.

When we speak about eigenfunctions and eigenvalues for a Delone set Λ (or a tiling), what

we mean are eigenfunctions for the system (ΩΛ,R
d, µ), and when we say that two Delone

sets Λ and Λ′ are topologically conjugate we mean that their dynamical systems (ΩΛ,R
d)

and (ΩΛ′ ,Rd) are topologically conjugate.

3. Meyer sets

A subset Λ ⊂ Rd is called harmonious if any algebraic character on the group 〈Λ〉 generated
by Λ can be arbitrarily well approximated by a continuous character. Continuity refers here

to the relative topology of 〈Λ〉 ⊂ Rd and so a continuous character is of the form e2πiβ for

some β ∈ R
d∗. Very roughly speaking, harmonious sets are (potentially) non-periodic sets
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to which harmonic analysis can still be applied. Harmonious sets play an important role in

Meyer’s book [Me1]. In particular the class of harmonious sets which Meyer called model sets

(see [Mo1]) plays an important role in spectral synthesis [Me1] and in optimal and universal

sampling in information theory [Me1, MM, Me3]. After the discovery of quasicrystals, the

relevance of harmonious sets and model sets to the diffraction was recognized [Me2, Mo1, La1]

and nowadays a relatively dense harmonious set is called a Meyer set. A tiling is a Meyer

tiling if it is MLD to a Meyer set.

Harmonious sets allow for various different characterizations. Some of them are analytical

but there is also a surprisingly simple geometric criterion. Let

Λǫ = {β ∈ R
d∗|∀a ∈ Λ, |1− exp(2πiβ(a))| < ǫ}.

The following conditions are equivalent [Me1, Mo1, La1, La2].

(1) Λ is harmonious, that is, for any group homomorphism φ : 〈Λ〉 → S1 and any ǫ > 0,

there is a β ∈ R
d∗ such that |φ(a)− exp(2πiβ(a))| < ǫ for all a ∈ Λ.

(2) Λǫ is relatively dense for all ǫ > 0.

(3) Λǫ is relatively dense for some 0 < ǫ < 1/2.

(4) Λ− Λ is uniformly discrete.

(5) Λ is uniformly discrete and there exists a finite set F such that Λ− Λ = Λ + F .

(6) Λ is a subset of a model set.

The two characterizations we will use here are (3) and (4). It follows from (4) that a Meyer

set is an FLC Delone set. Furthermore, inside the class of Delone sets (4) is preserved under

local derivation [La2] and so a Delone set which is MLD to a Meyer set is also a Meyer set.

Note that Λ−Λ is always locally finite if Λ is FLC, but the condition that Λ−Λ is uniformly

discrete is very strong: it implies, for instance, that ∆ = Λ − Λ is also a Meyer set [Mo1].

Hence ∆ǫ is relatively dense for all ǫ > 0; that is, for a relatively dense set of β’s we can

then find a plane wave e2πiβ that has nearly the same phase at all points in Λ. This will be

the key to constructing continuous eigenfunctions.

Model sets are point sets obtained from a cut & project scheme [Mo1] with very strong

properties which makes them suitable for the description of quasicrystals, in particular if

they are regular2 [Sch]. To our knowledge, no direct geometric characterization of model sets

is known. Using their associated dynamical systems, regular model sets can be characterized

in the following way:

Theorem 3.1 ([BLM]). (Ω,Rd) is the dynamical system of a repetitive regular model set if

and only if

(1) all elements of Ω are Meyer sets,

(2) (Ω,Rd) is minimal and uniquely ergodic,

2“Regular” means that the boundary of the so-called window (or acceptance domain) has measure zero.
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(3) (Ω,Rd) has pure point dynamical spectrum and all eigenvalues are topological, and

(4) the continuous eigenfunctions separate almost all points of Ω.

Since the maximal equicontinuous factor of a dynamical system is the spectrum of the

algebra generated by its continuous eigenfunctions, the last property is equivalent to the

fact that the factor map πmax : Ω → Ωmax from Ω to its maximal equicontinuous factor

Ωmax is almost everywhere 1:1, and hence induces a measure isomorphism between L2(Ω, µ)

and L2(Ωmax, η) (η is the Haar measure on Ωmax) (see e.g. [BK]). Taking into account that

C(Ωmax) is dense in L2(Ωmax, η), it follows that Property 4 implies Property 3. Moreover,

by Theorem 1.1, Property 3 implies that (Ω,Rd) is topologically conjugate to the dynamical

system of a Meyer set; hence the above theorem simplifies to Theorem 1.2.

4. Pattern equivariant functions and cochains

We recall the definitions of pattern equivariant functions and cochains for uniformly dis-

crete FLC point sets or FLC tilings [K1, Sa].

Let Λ be a uniformly discrete point set or tiling in Rd of finite local complexity. We call a

function f : Rd → C (or into any abelian group A) strongly pattern equivariant if there exists

a radiusR such that f(x) = f(y) for any two points x, y with (Λ−x)∩BR(0) = (Λ−y)∩BR(0).

In other words, for each x, f(x) is determined by the pattern of points within a fixed finite

distance R of x. We can also consider a tiling as a decomposition of Rd into 0-cells, 1-cells,

. . . , and d-cells. A k-cochain assigns a number to each k-cell. Such a cochain is called

strongly pattern equivariant if the value of a k-cell depends only on the pattern of tiles

within a distance R of that k-cell.

An equivalent definition of pattern equivariance involves the description of the hull ΩΛ as

the inverse limit of approximants ΓR that describe the point set Λ (or tiling) out to distance

R around the origin. There is a natural map from Rd to ΓR sending x to the equivalence

class of Λ − x. A function or cochain is strongly pattern equivariant if it is the pullback of

a function or cochain on a fixed approximant ΓR.

Weakly pattern equivariant functions and cochains are defined as limits of strongly pattern

equivariant objects. The precise definition depends on the category that we are working in.

• A continuous function f is weakly pattern equivariant (in the topological sense)

if it can be approximated in the uniform topology by strongly pattern equivariant

continuous functions, i.e. for all ǫ > 0 there exists a strongly pattern equivariant

continuous function h such that ‖f − h‖∞ < ǫ.

• A cochain f on the tiling T derived from Λ is weakly pattern equivariant if it can be

approximated in the sup-norm by strongly pattern equivariant cochains, i.e. for all ǫ >

0 there exists a strongly pattern equivariant cochain h such that supc |f(c)−h(c)| < ǫ.
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4.1. Dynamical eigenfunctions. Pattern equivariant functions can be used to describe

eigenfunctions, i.e. solutions to equations (1).

Lemma 4.1. Let Λ be a repetitive FLC Delone set. β is a topological eigenvalue for Λ if

and only if e2πiβ is weakly pattern equivariant in the topological sense.

Proof. It has been known for some time that weakly pattern equivariant functions in the

topological sense are precisely the restrictions of continuous functions on ΩΛ to the orbits

through Λ.3 Clearly, any continuous solution of (1) restricts to a function proportional to

e2πiβ on the orbit through Λ. �

The following result is useful for determining whether an element β ∈ Rd∗ is a topological

eigenvalue.

Lemma 4.2. Let Λ ∈ Rd be an FLC Delone set and let f : Rd → C be a continuous function.

f is weakly pattern equivariant if and only if it is uniformly continuous and for all ǫ > 0

there exists R > 0 such that (Λ− x) ∩ BR(0) = (Λ− y) ∩ BR(0) implies |f(x)− f(y)| < ǫ.

Proof. A weakly pattern equivariant continuous function extends to a continuous function on

the hull of Λ. Since the hull is compact, this extension is uniformly continuous, implying that

the original function is also uniformly continuous. To see the second property, approximate

f to within ǫ
2
by a strongly pattern equivariant continuous function.

For the converse, let f be a uniformly continuous function satisfying the second property

of the lemma. Pick ǫ > 0 and R > 0 such that (Λ − x) ∩ BR(0) = (Λ − y) ∩ BR(0) implies

|f(x)− f(y)| < ǫ. Without loss of generality we may assume that f is real valued. Define

fǫ(x) := inf{f(y) : (Λ− x) ∩ BR(0) = (Λ− y) ∩ BR(0)}.
Then fǫ is strongly pattern equivariant and |fǫ(x) − f(x)| ≤ ǫ. Moreover, the uniform

continuity of f implies that fǫ is continuous. �

The next two results concern functions F that are a priori only defined on Λ and therefore

may be regarded as 0-cochains on the tiling TΛ. The coboundary δF of F is then a 1-cochain

on TΛ that computes the change in F along an arbitrary chain.

Proposition 4.3. Suppose that Λ is FLC and repetitive. Let F : Λ → R be a bounded

function such that the 1-cochain δF on TΛ is strongly pattern equivariant. Then for all ǫ

there exists a relatively dense set Λǫ which is locally derivable from Λ such that ∀p, q ∈ Λǫ:

|F (p)− F (q)| < ǫ.

Proof. Let 2M = supa,b∈Λ(F (b)− F (a)). Then F takes values in [f0 −M, f0 +M ] for some

f0. Let f = F − f0. Given ǫ > 0 there are a, b such that 2M − ǫ ≤ f(b) − f(a) ≤ 2M .

3This statement is e.g. implicit in [K1] in the proof that weakly pattern equivariant functions in the
topological sense are isomorphic, as a C∗-algebra, to C(ΩΛ).
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Hence M − ǫ ≤ f(b) ≤ M and −M ≤ f(a) ≤ −M + ǫ. Let c be a chain with boundary

b − a. Since δF is strongly pattern equivariant, c is contained in a patch c̃ such that the

value δF (c) depends only on c̃; in other words, whenever c̃ + t occurs in the complex then

δF (c+ t) = δF (c). Let P be the set of t such that c̃+ t occurs in the complex. P is locally

derived from Λ, and by repetitivity P is relatively dense. Taking Λǫ = P + b and p ∈ Λǫ, we

have f(p) = f(p − b + a) + δF (c) ≥ −M + (2M − ǫ) = M − ǫ, hence |f(p)− f(q)| < ǫ for

all p, q ∈ Λǫ. Λǫ is locally derived from Λ and relatively dense. �

Corollary 4.4. Under the conditions of Prop. 4.3 F is weakly pattern equivariant.

Note that boundedness of F is also a necessary criterion since any weakly pattern equi-

variant cochain is bounded.

Proof. Applying Prop. 4.3 to F we find that given any ǫ, there exists a relatively dense set

Λǫ that is locally derivable from Λ such that ∀p, q ∈ Λǫ: |F (p)− F (q)| < ǫ. We partition Λ

into subsets {Va}a for a ∈ Λǫ as follows. Let V(a) be the Voronoi domain of a ∈ Λǫ. In a

generic situation, no point of Λ lies on the boundary of some V(a) and then we can define

Va = V(a) ∩ Λ. In a non-generic situation we can make choices to associate the points on

a boundary to one of the Voronoi domains in a locally derivable way (e.g. by a directional

criterion). As a result, we have obtained a partition of Λ that is locally derivable from Λ.

Now define

Fǫ(a) := inf{F (b) : b ∈ Λǫ}
for a ∈ Λǫ and

Fǫ(x) = Fǫ(a) + δF (c)

for x ∈ Va where c is any 1-chain with boundary x − a. Since δF is strongly pattern

equivariant and the Voronoi domains are bounded we obtain that Fǫ is strongly pattern

equivariant. Furthermore, also F (x) = F (a) + δF (c) so that |F (x)− Fǫ(x)| ≤ ǫ. �

5. Topological conjugacies

5.1. Shape deformations and shape conjugacies. Consider two FLC polyhedral tilings

T and T′. Each tiling is determined by its edges and by the location of a single vertex.

Deforming the edges deforms the shapes and sizes of the tiles. T′ is a (shape) deformation

of T if T and T′ have the same combinatorics, and if the vectors that give the displacements

along the edges of T′ are obtained in a local way from the corresponding edges of T. That

is, there exists R > 0 such that the displacement along edge e′ of T′, corresponding to

edge e of T, depends only on BR(e) ∩T. This does not mean that inspection of BR(e) ∩T

allows one to determine the location of e′, only the relative position of the two endpoints.

We can encode this by a vector-valued 1-form α on T, namely, α(e) = ve′ where ve′ is the

displacement vector along edge e′. The requirement that ve′ depends only on BR(e) ∩ T
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means that α is strongly pattern equivariant. Note that shape deformations automatically

preserve finite local complexity.

There are two canonical ways to turn a shape deformation between two specific tilings T,

T′ into a continuous surjection ΩT → ΩT′. The first method preserves canonical transver-

sality and applies to all shape deformations [SW, K2]. For simplicity we suppose that T

has a vertex x0 on the origin 0 ∈ Rd. Consider the vector-valued 0-cochain F̃ satisfying

δF̃ = α and F̃ (x0) = 0. Let h : Rd → Rd be a piecewise-linear extension4 of F̃ to Rd, and

let φ1(T − x) = T′ − h(x). This map is uniformly continuous on the orbit of T, and so

extends to a continuous surjection φ1 : ΩT → ΩT′ . Note that φ1 does not commute with

translations, precisely because the distances between vertices in T′ are different from the

distances between vertices in T.

The second method only applies to very special shape deformations (namely those that

are called asymptotically negligible in [CS2, K2]). Let F = F̃ − id. F is the vector-valued 0-

cochain on T whose value at an arbitrary vertex x ∈ T is x′−x, where x′ is the corresponding
vertex of T′. If F is weakly pattern equivariant, then F extends to a continuous map on

ΩT implying that φ2(T − x) = T′ − x is also uniformly continuous. φ2 thus extends to

a continuous surjection φ2 : ΩT → ΩT′. In fact, if T1 ∈ ΩT, then φ2(T1) is the tiling

obtained by moving each vertex x of T1 by F (x). By construction, this map commutes with

translations and hence is a topological semi-conjugacy. We call this a shape semi-conjugacy,

and if φ2 is invertible a shape conjugacy. If F is strongly pattern equivariant, then the shape

semi-conjugacy is a local derivation. Local derivations preserve the Meyer property, but we

will see that general shape deformations do not.

The 0-cochain F is determined by the tilings T and T′, but we can equally well construct

shape semi-conjugacies directly from cochains. Let F be any weakly pattern equivariant

vector-valued 0-cochain taking values that are less than half the separation of vertices in T,

such that δF is strongly pattern equivariant. Then we can construct T′ from T by moving

each vertex x of T by F (x) and preserving the combinatorics. It follows from the above that

there is a semi-conjugacy φ2 from ΩT to ΩT′. If F is small enough then this procedure can

be inverted [K2] so that φ2 is a shape conjugacy.

The following theorem implies Theorem 1.4, showing that shape conjugacies are essentially

the only topological conjugacies that are not mutual local derivations.

Theorem 5.1. Let Λ and Λ′ be FLC Delone sets which are pointed topologically conjugate,

i.e. there exists a topological conjugacy φ : ΩΛ → ΩΛ′ with φ(Λ) = Λ′. For each ǫ > 0 there

exists a mutual local derivation ψǫ and a shape conjugacy sǫ such that φ = sǫ ◦ ψǫ and sǫ

moves the location of each point in each pattern by less than ǫ.

4Identifying the vertices of T with a subset of Rd we view F̃ as a map on this subset.
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Proof. Let R′ be the minimum distance between distinct points of Λ′, and pick ǫ < R′/3.

Since φ is uniformly continuous, there exists a δ such that any two tilings within distance δ

map to tilings within ǫ of one another. Here we use the common distance between patterns:

Λ1 and Λ2 have distance at most δ if their patterns in a ball of radius 1/δ agree up to a

translation of size at most δ. Thus by uniform continuity of φ there exists an R = 1/δ such

that the locations of the points in Λ′ in a ball of radius 1/ǫ around x ∈ Rd are determined

to within ǫ by the pattern of Λ in a ball of radius R around those points. In particular,

each point in Λ′ (say at location x0) is associated with a pattern of radius R around x0 in

Λ. Translate these patterns by −x0 to yield a set S of point patterns on the ball of radius

R around the origin. Note that if we have two such point patterns P1,2 with P1 = P2 − y,

then either |y| < ǫ or |y| > R′ − ǫ. (The latter can happen if P1 determines the existence of

several points of Λ′.) Since R′ − ǫ is strictly greater than 2ǫ, there is an equivalence relation

on S that two patterns are equivalent if they are translates by less than ǫ.

Since Λ is FLC, there are only finitely many equivalence classes in S. Pick representatives

{P1, . . . , Pn} of the equivalence classes. Define a point pattern Λǫ in the following way: Λǫ

has a point at x if and only if one of the patterns Pi + x appears in Λ. By construction

Λǫ is locally derivable from Λ. Moreover, the points of Λǫ are in 1-1 correspondence with

the points of Λ′, and each point in Λǫ is within ǫ of the corresponding point of Λ′. Let

ψǫ : ΩΛ → ΩΛǫ
be the local derivation defined by the above procedure.

We show that Λǫ is actually MLD with Λ and ψǫ is a mutual local derivation. In fact,

since φ is a topological conjugacy, the pattern of Λ on a ball of radius R is determined, up to

translation by ǫ, by the pattern of Λ′ on a bigger ball, say of radius R′′. This means that the

pattern Pi + x in Λ that generated a point x ∈ Λǫ can be determined from a ball of radius

R′′ + ǫ around x in Λ′. Thus ψǫ is injective. Since ψǫ is an injective local derivation, ψǫ is a

mutual local derivation.

We claim that the map sǫ = φ ◦ ψ−1
ǫ is a shape conjucagy. Let F be the 0-cochain on

TΛǫ
whose value on each point x ∈ Λǫ is the displacement to the corresponding point in Λ′.

By the above, Λǫ and Λ are at most distance ǫ apart. So if ǫ is small enough then TΛǫ
and

TΛ′ have the same combinatorics.5 We show that the coboundary δF is strongly pattern

equivariant: Since Λǫ and Λ are MLD, a pattern in a quite large ball in Λǫ determines the

pattern in a large ball in Λ. We also saw that uniform continuity of φ implies that a large ball

in Λ determines the pattern in Λ′ up to a small overall translation. But overall translations

don’t matter for coboundaries and so the very large ball in Λǫ determines δF exactly.

Since F is bounded and δF is strongly pattern equivariant, it follows from Cor. 4.4 that

F is weakly pattern equivariant, and hence that sǫ is a shape conjugacy. �

5Except in the situation that Λ′ has accidentally high symmetries, causing the Voronoi cells of Λ′ to meet
in non-generic ways. In such cases a small perturbation of Λ′ can change the combinatorics of the Voronoi
tiling, and hence of the Delone tiling. Such cases can be dealt with by working with a (subsequential) limit
tiling limǫ→0 TΛǫ

, whose vertices are still Λ′, instead of with TΛ′ .
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In view of the preceding discussion we can also formulate the last theorem in the following

way: Two FLC Delone sets Λ and Λ′ are pointed topologically conjugate if and only if for

each ǫ > 0 there exists a FLC Delone set Λǫ such that

(1) Λ and Λǫ are mutually locally derivable,

(2) Λ′ and Λǫ are mutually asymptotically negligible shape deformations,

(3) within ǫ-distance of each point of Λ′ lies a point of Λǫ and vice versa.

6. Cantor bundles over tori with canonical R
d-action

It has been known for quite some time that the hull of any FLC tiling is homeomorphic to

a fiber bundle over the d-torus whose typical fiber is a compact totally disconnected space

such as a Cantor set [SW]. This means that there is a continuous surjection X
π→ Td onto the

d-torus such that the pre-images π−1(t), t ∈ T
d, are all homeomorphic to a single compact

totally disconnected space F , the so-called typical fiber, and that X is locally a product i.e.

every point has a neighbourhood U such that π−1(U) is homeomorphic to F ×U . However,

the construction of [SW] is based on deforming the tiling to a tiling by cubes. It yields a

homeomorphism but in general not a topological conjugacy.

Let X
π→ Td be any fiber bundle over the d-torus. We say that a (continuous) action of

Rd on the bundle X is canonical if there exists a regular lattice L ⊂ Rd such that π becomes

Rd-equivariant (hence a factor map) when we identify Td = Rd/L and equip it with the

action induced by translation on Rd (called a rotation action). Note that if the fiber of the

bundle is totally disconnected then, once we have fixed the lattice L, the canonical action

becomes unique.

Any fiber bundle over a d-torus with canonical Rd-action has d independent topological

eigenvalues. Indeed, the pull-back under π of any continuous eigenfunction of the rotation

action on Td is a continuous eigenfunction of (X,Rd). In particular the group of eigenvalues

of (Td,Rd) (which is a lattice in Rd∗) is a subgroup of the group of eigenvalues of (X,Rd).

In the above context of a fiber bundle over a d-torus with canonical Rd-action we say that

the action is expansive if the induced action on a fiber is expansive, that is, there exists a

constant ǫ > 0 such that for any x, y ∈ π−1([0]), supt∈L d(t · x, t · y) ≤ ǫ implies x = y.

The largest such constant is called the expansivity constant. Here d is a metric that induces

the topology. Whereas the expansivity constant will depend on the choice of d, the mere

fact that the Rd-action is expansive does not. There do exist Cantor bundles, such as the

dyadic solenoid over the circle, with non-expansive canonical dynamics, but these are not

homeomorphic to FLC tiling spaces.

If the Rd action on X is topologically transitive and π : X → Td is a factor map, then

the action by rotation on the torus must be transitive as well. For dimensional reasons

the action by rotation must then also be locally free. Since the action of Rd on X is then

locally free as well, the fibers π−1([t]) must be transversal to it. Furthermore the action
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of t ∈ Rd provides a homeomorphism between π−1([s]) and π−1([s − t]) and so all fibers

are homeomorphic. Letting Ξ denote the fiber on [0] we see that for small enough open

balls U ∈ Td, Ξ × U ∋ (ξ, [t]) 7→ t · ξ ∈ π−1(U) (we lift the ball U to a ball in Rd) is a

homeomorphism providing a local trivialization for a bundle structure defined by π. Thus,

once we have established that π is a factor map onto a rotation action, the only issue will

be to show that some pre-image has the topological characterization we want and that the

dynamics is expansive. We will do this in the next section.

7. Proof of Theorems 1.1 and 1.3

We prove the following three statements in turn. Taken together, they imply both Theo-

rem 1.1 and Theorem 1.3.

(1) A repetitive Meyer set in Rd has a relatively dense set of topological eigenvalues. In

particular, it has d linearly independent topological eigenvalues.

(2) If an FLC Delone set has d linearly independent topological eigenvalues, then it is

topologically conjugate to a bundle over the d torus with totally disconnected compact

fiber and expansive canonical Rd action. If the Delone set is repetitive, then the Rd

action is minimal.

(3) A bundle with totally disconnected compact fiber over the d torus with minimal,

expansive canonical Rd action is topologically conjugate to the dynamical system of

a repetitive Meyer set.

Proof of Statement 1. Let Λ be a Meyer set and pick 0 < ǫ < 1 and a0 ∈ Λ. Using Lemma 4.1

we will establish that each β ∈ ∆ǫ is a continuous eigenvalue by showing that f(x) :=

exp(2πiβ(x − a0)) is weakly pattern equivariant. Since ∆ǫ is relatively dense this then

proves Statement 1.

Since | exp(2πiβ(a− a0))− 1| < ǫ < 1 for all a ∈ Λ, the real part of f(a) is positive for all

a ∈ Λ. There is then a function θ : Λ → (−π/2, π/2) such that f(a) = eiθ(a) for all a ∈ Λ.

Consider the 1-cochain α = δθ on TΛ. It satisfies −π < α(c) < π for each edge c. We claim

that α = δθ is strongly pattern equivariant. Since exp(iα)(c) = eiθ(b)−iθ(a) = exp(2πiβ(b−a)),
where a, b are the boundary vertices of c, we see that exp(iα) is determined by the length and

the direction of c and is thus strongly pattern equivariant. But since −π < α(c) < π, α is

itself strongly pattern equivariant. Hence δθ satisfies the conditions of Prop. 4.3. Hence for all

η > 0 there exists Λη, locally derivable from Λ, such that ∀a, b ∈ Λη we have |θ(a)−θ(b)| < η.

Since f(a) = eiθ(a) we conclude that for all η > 0 there exists Λη, locally derivable from Λ,

such that ∀a, b ∈ Λη we have |f(a)− f(b)| < η.

We claim that f satisfies the conditions of Lemma 4.2, which then proves Statement 1.

Clearly f is uniformly continuous. Λη being locally derivable from Λ means that there exists

a finite set {p1, · · · , pk} of patches pi such that Λη = {x ∈ Λ : ∃i : pi ⊂ Λ − x}. Let R

be large enough so that each R-ball contains some patch pi. Then, given x there are i and
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t ∈ BR(0) such that pi ⊂ (Λ − x − t) ∩ BR(0). In particular this means that x + t ∈ Λη.

Hence if (Λ − x) ∩ BR(0) = (Λ − y) ∩ BR(0) then |f(x)− f(y)| = |f(x+ t) − f(y + t)| < η

as x+ t and y + t belong to Λη. �

Note that we have proved considerably more than just the relative density of the topo-

logical eigenvalues. The topological eigenvalues form a group, so the set of topological

eigenvalues contains the group generated by ∆ǫ. In many (but not all) cases, this group is

the same as the set of measurable eigenvalues. In these cases, all eigenvalues are topological!

This gives a new perspective on why the eigenfunctions for substitution tilings and for model

sets can always be chosen continuous.

Proof of statement 2. The d topological eigenvalues βi generate a lattice L∗ ⊂ R
d∗. Let

L ⊂ Rd be the dual (or reciprocal) lattice to L∗. The d eigenfunctions are periodic with

period L, and their values give a map π(ω) = (β1(ω), · · · , βd(ω)) ∈ Rd/L from the hull Ω to

the torus Td = Rd/L. By (1) π is Rd-equivariant if we consider the rotation action on Td.

The hull is thus a bundle over the d-torus with canonical Rd-action.

Let Ξ = π−1([0]). It is compact as Ω is compact. We wish to show that it is totally

disconnected. For that we only use that the hull of an FLC tiling is a matchbox manifold,

i.e. there is a finite open covering {Ũi}i∈I of Ω such that Ũi
∼= Ci × Ui where Ci are totally

disconnected compact sets and Ui open balls of Rd and the Rd-action is given locally by

translation in the second coordinate: t·(c, u) = (c, u−t) provided u−t ∈ Ui. Let Ξi := Ξ∩Ũi.

We explained above that Ξ is transversal to the action. This means that return vectors to

Ξ have a length which is bounded from below by some strictly positive number l. If we

choose the sets Ui to be of diameter smaller than l then Ξi intersects the plaquettes {c}×Ui

at most once. Hence the projection pr1 : Ci × Ui → Ci onto the first factor restricts to a

continuous bijection between Ξi and its image pr1(Ξi). Since Ξi is compact this bijection

is bi-continuous. Since pr1(Ξi) is a compact subset of a totally disconnected space it is

itself totally disconnected. Thus Ξi is totally disconnected. Since finite unions of totally

disconnected sets are totally disconnected, Ξ =
⋃

i Ξi is totally disconnected.

We next show expansivity. For this we choose the standard tiling metric on the hull Ω. By

finite local complexity, if two tilings agree exactly at a spot and the nearest neighbor tiles

do not agree exactly, then the nearest neighbor tiles either differ in label or differ in position

by at least a fixed quantity ǫ. If two tilings T1,2 ∈ Ξ, then either d(T1,T2) ≥ ǫ/2 or there is

a translate T′
1 of T1 by less than ǫ/2 such that T′

1 and T2 agree exactly at the origin. But

then T′
1 and T2 disagree by at least ǫ at the nearest tile where they don’t agree exactly, so

translates of T′
1 and T2 differ by at least ǫ, so translates of T1 and T2 disagree by at least

ǫ/2. This proves that the Zd action on Ξ is expansive with expansivity constant ǫ/2r, where

r is the diameter of a fundamental domain of L. The last statement is well known. �
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It is not difficult to see that if the Delone set is repetitive and does not have d independent

periods, then the fiber of the bundle has no isolated points and so is a Cantor set. Indeed,

by minimality Ξ consists either of a single (necessarily finite) orbit, or has no isolated points.

The first case arises precisely if the tiling is totally periodic, with d independent periods.

We remark that the expansivity of the action could also be concluded from the work of

Benedetti-Gambaudo [BG] who define the concept of expansivity more generally for tiling

dynamical systems on homogeneous spaces using solenoids.

Proof of Statement 3. Let Ξ be the totally disconnected compact fiber over [0] ∈ T
d (a point

we can actually choose) of the bundle Ω → Td. The canonical expansive action induces an

expansive action of L ∼= Zd on Ξ. Let ǫ be the expansivity radius. Pick a finite clopen cover

of Ξ by sets of diameter less than ǫ, and label these sets with a finite alphabet A = {1, . . . , n}.
To each element ξ ∈ Ξ associate an element uξ ∈ AZd

, where uξ(t) labels which clopen set

contains t · ξ. The map from Ξ → AZd

is injective, so we can view Ξ as a subshift of AZd

.

This then makes Ω topologically conjugate to a tiling space where each tile is a decorated

fundamental domain of the lattice L. The decoration is given by a letter of the alphabet A
but each letter i may as well be encoded by a finite set Ai. Let then Λ be the set of vertices

of that tiling together with the points of the sets which decorate the tiles. Then Λ is MLD

with the tiling and furthermore Λ ⊂ L+
⋃n

i=1Ai showing that it is Meyer.

Minimality of the bundle implies minimality of the dynamical system of Λ and hence its

repetitivity. �

Combining Theorem 1.1 with Theorem 5.1 we obtain the following corollary.

Corollary 7.1. Let Λ be an FLC repetitive Delone set with d independent topological eigen-

values. For each ǫ > 0 there is a Meyer set Λǫ such that dist(Λ,Λǫ) ≤ ǫ, where dist denotes

Hausdorff distance between sets of Rd.

This does not imply that Λ is itself Meyer, as the minimal distance between points of

Λǫ − Λǫ depends on ǫ.

8. Counterexamples

In this section we provide examples of point sets with unusual behavior that at first

sight seems surprising and was partly suspected to be impossible. Indeed we provide first a

counterexample to Lagarias’ Problem 4.10 [La3], namely a repetitive FLC Delone set which

is pure point diffractive but not Meyer. This example can already be found in [FS]: it is

the scrambled Fibonacci tiling with tile lengths φ and 1. A variation of this tiling with tile

lengths all equal yields an example of a repetitive Meyer set which is pure point diffractive

but has non-topological eigenvalues. This is actually a special case of general phenomenon:

any letter substitution can be suspended to a (possibly decorated) tiling whose tiles have

equal length and so is a Meyer tiling. Then the dynamical spectrum of the Z-action on
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the shift space coincides with the dynamical spectrum of the R-action on the continuous

hull. Bratteli diagram techniques can then be used to determine whether an eigenvalue is

topological or not [CDHM, BDM1, BDM2].

For the reader’s convenience, we sketch the construction of [FS] in a form that allows

variations in tile lengths, and include proofs of some results found in [FS]. The construction

is similar in spirit to an S-adic system, although not technically S-adic itself.

8.1. Scrambled Fibonacci sequences. Let σ, P1 : A → A∗ be two maps on the alphabet

A. Both maps are extended in the usual way as morphisms on A∗. Let P2 = P1 ◦ σ. Then

one obtains P2(a) upon replacing each letter o in σ(a) by the word P1(o). We may also think

of σ as a rule to compose (or fuse) words of the first generation {P1(o), o ∈ A} to form words

of the next generation P2(a).

Now suppose that we have a family of substitutions {σ(n)}n∈N and let P0 = id. The

composition Pn = Pn−1 ◦σ(n) then describes the fusion of words of generation n−1 to words

of generation n. This is an example of a fusion rule [FS].6 The sequence space associated to

the fusion rule is the subset X of AZ of doubly infinite sequences whose factors are sub-words

of some Pn(o), o ∈ A, n ∈ N. Words of the form Pn(o) are called nth order superletters.

If all σ(n) are equal to a fixed substitution σ then X is the substitution sequence space

associated to σ.

For concreteness we will consider the Fibonacci substitution σ on A = {a, b} defined by

σ(a) = ab, σ(b) = a and denote Fn = Pn, i.e. Fn = σn. We denote its sequence space X by

XF . Recall that Fn(a) contains fn+1 letters a and fn letters b while Fn(b) contains fn letters

a and fn−1 letters b. Here fn is the nth Fibonacci number defined iteratively by f0 = 0,

f1 = 1 and fn+1 = fn + fn−1.

Let N(n) be a strictly and fast increasing function on N and ∆(n) = N(n) − N(n − 1).

Let An = FN(n), which we may also write as An = An−1 ◦ σ∆(n), viewing An(o) as the nth

order superletters to the fusion rule {σ∆(n)}n∈N. The sequence space XF can now also be

described as the subset of doubly infinite sequences in AZ whose factors are sub-words of

some An(a), a ∈ A, n ∈ N.

Extend the alphabet with an extra letter Ã = A ∪ {e}. Let κ denote an arbitrary odd

natural number. Define the fusion rule by the following family, σ̃(n) : Ã → Ã∗

σ̃(n)(x) =







σ∆(n)(x) if x ∈ A, n odd

σ
∆(n)
e (x) if x ∈ A, n even

σ
∆(n)
r (b) if x = e

where σ
∆(n)
e (x) is the word obtained from σ∆(n)(x) by replacing the last letter b with e, and

σ
∆(n)
r (b) is the word obtained from σ∆(n)(b) by rearranging all the a’s in front of the b’s, that

is σ
∆(n)
r (b) = af∆(n)bf∆(n)−1 . We denote by Sn(x) the nth order superletters of this fusion rule.

6Even in one dimension this is not the most general type of fusion rule, but it is the one we need.
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That is, for κ odd,

Sκ(o) = Sκ−1 ◦ σ∆(κ)(o), for o ∈ A, Sκ(e) = Sκ−1 ◦ σ∆(κ)
r (b)(2)

Sκ+1(o) = Sκ ◦ σ∆(κ+1)
e (o), for o ∈ A, Sκ+1(e) = Sκ ◦ σ∆(κ+1)

r (b)(3)

The subset XS of doubly infinite sequences in ÃZ whose factors are sub-words of some Sn(x),

n ∈ N is by definition the space of scrambled Fibonacci sequences. Note that none of the

1-superletters contain the letter e, so this is in fact a subset of AZ. In fact, none of the

odd-order superletters ever contain an even-order superletter of type e, so the definition of

Sκ+1(e) is in fact irrelevant.

In other words, the scrambling consists of two steps. At each odd level we introduce a

germ Sκ(e) made from two periodic pieces. The presence of Sκ(e) superletters with κ large

will serve to eliminate topological eigenvalues. At even levels we insert a single Sk(e) into

Sk+1(b). As long as ∆(κ + 1) grows quickly enough, this makes the e-superletters too rare

to affect the measurable dynamics, and in fact tiling spaces based on XS will prove to be

measurable conjugate to those based on XF .

We say that a fusion rule {Sn} is recognizable if for each n, each sequence in XS can be

uniquely decomposed into a concatenation of sequences of superletters Sn(x). For substitu-

tion tilings, recognizability is an automatic consequence of non-periodicity. For fusions, it

must be checked separately.

Proposition 8.1 ([FS]). The scrambled Fibonacci fusion rule is recognizable.

Proof. We prove this by induction. Let ξ ∈ XS. Let κ be odd and assume that ξ can

uniquely be written as a sequence of (κ− 1)-superletters (this is trivially true for κ = 1). It

is easy to see that σ∆(κ)(o) starts with a and does not contain a b2. Thus we can identify the

powers Sκ−1(b)
f∆(κ)−1 in ξ and regroup Sκ−1(a)

f∆(κ)Sκ−1(b)
f∆(κ)−1 to Sκ(e). The remaining

Sκ−1(a)’s and Sκ−1(b)’s can be regrouped by applying ∆(κ) times the procedure known from

inverting the Fibonacci substitution, namely first regroup all words ab to a and then replace

the remaining a’s (not the new ones!) by b. As for the Fibonacci substitution one sees that

this is the only way to regroup.

We now show that we can group the sequence into (κ + 1)-superletters. Having grouped

the sequence into κ-superletters, one can identify the Sκ+1(b)’s by the presence of an Sκ(e).

The remaining κ + 1-supertiles are all of type a, since even-order superletters of type e do

not appear. �

Let ξ(n) denote the nth order superletter that contains ξ(0). (By recognizability, this is

uniquely defined.) Let X∗
S ⊂ XS be the set of all sequences ξ such that (a) the union of the

words ξ(n) is all of ξ, and not just a half-line, and (b) only finitely many ξ(n)’s are of type e.

For each ξ ∈ X∗
S, let n0 be the largest value of n for which ξ(n) is of type e (or zero if none

of these superletters are of type e.)
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We may define a shift equivariant map

ψ : X∗
S → XF

in the following way: ψ(ξ) = limn→∞ ψn(ξ) where, for n ≥ n0, ψn(ξ) is obtained from ξ by

replacing ξ(n) with the corresponding Fibonacci superletter An(o), where ξ
(n) is of type o.

Note that ψn+1(ξ) and ψn(ξ) agree on the image of ξ(n), since neither ξ(n) nor ξ(n+1) is of

type e. The limit is taken in the product topology. Shift-equivariance is guaranteed by the

fact that the union of the ξ(n)’s is all of ξ.

We cannot expect ψ to be continuous, nor do we have a reasonable extension of ψ to all of

XS. However, ψ is measurable. With appropriate conditions on N(n), X∗
S has full measure

with respect to the (unique [FS]) invariant Borel probability measure on XS. In fact, the

frequency of the superletter Sκ(e) in any sequence ξ ∈ XS is bounded by φ−∆(κ+1), since

there is only one Sκ(e) per Sκ+1(b). As a result:

Lemma 8.2 ([FS]). Let µ be an ergodic shift invariant Borel probability measure on XS. If
∑

k odd φ
−∆(k+1) <∞ then X∗

S has full µ-measure.

Corollary 8.3 ([FS]). Under the assumptions of the last lemma, ψ defines a conjugacy

between the shift measure dynamical systems (XS, µ,Z) and (XF ,Z) equipped with the unique

ergodic Borel probability measure. In particular, (XS,Z) is uniquely ergodic.

We recall also from [FS] that the shift dynamical system (XS,Z) is minimal.

8.2. Scrambled Fibonacci tilings. We now make tilings out of sequences by suspending

the letters to intervals which we call tiles. We give the tile corresponding to a length L

and the tile corresponding to b length S. Images of superletters are called supertiles. We

will denote the corresponding tiling spaces by ΩL,S
F and ΩL,S

S . As for the discrete systems

on obtains that if
∑

κ odd φ
−∆(κ+1) < ∞ then (ΩL,S

S ,R) is uniquely ergodic and measure

conjugate to (ΩL,S
F ,R) so that in particular their dynamical spectra coincide. Furthermore,

if Lφ+S = L′φ+S ′ then deformation theory shows that (ΩL,S
F ,R) is topologically conjugate

to (ΩL′,S′

F ,R) [RS]. We are asking which eigenvalues of (ΩL,S
S ,R) are topological and the

answer will depend on the values of L, S. To answer this question we make use of the

following corollary to Lemma 4.2. By a return vector between n-supertiles we mean a vector

v such that in some high order supertile we find the n-supertile Sn(o) at position x and at

position x+v. For a real number r let ‖r‖ denotes the distance from r to the nearest integer.

Corollary 8.4. β is a topological eigenvalue if and only if for all ǫ > 0 there exists an n0

such that for all return vectors v between supertiles of order n ≥ n0 one has ‖β(v)‖ ≤ ǫ.

This corollary applies to the Fibonacci tiling and to the scrambled Fibonacci tilings for

all values of L, S. For the Fibonacci tiling with L = φ and S = 1 it is known that all

eigenvalues are topological and then one can read also from the corollary that a necessary
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and sufficient condition for β ∈ R∗ = R to be an eigenvalue is ‖βφn‖ → 0 which is equivalent

to β ∈ 1√
5
Z[φ]. After rescaling the tiles by

√
5 and doing a shape change that preserves

φL+ S, we get that the group of eigenvalues for (Ω1,1
F ,Z) is Z[φ].

Theorem 8.5 ([FS]). Suppose that ∆(κ) ≥ N(κ−1) for odd κ and that
∑

κ odd φ
−∆(κ+1) <∞.

If L = φ and S = 1 then the only topological eigenvalue is 0.

Proof. Suppose that β ∈ R
∗ = R is a topological eigenvalue. By Corollary 8.4, the maximum

value of ‖βv‖, where v is a return vector to κ−1-supertiles of type a, must go to zero as κ→
∞. Likewise, ‖5βv‖ ≤ 5‖βv‖ must go to zero. Note that the scrambling was made in such a

way that Sn(a) has the same length as FN(n)(a), namely φN(n)+1. Since Sκ(e) contains f∆(κ)

consecutive Sκ−1(a)’s, and since ∆(κ) ≥ N(κ− 1), v can take on the particular values v1 =

fN(κ−1)−1|Sκ−1(a)| = fN(κ−1)−1φ
N(κ−1)+1 and v2 = fN(κ−1)−2|Sκ−1(a)| = fN(κ−1)−2φ

N(κ−1)+1.

Using the identity fn = (φn − (−φ)−n)/
√
5 = (φn − (−φ)−n)(φ+ φ−1)/5, we obtain

‖5βvm‖ = ‖β(φ2 + 1)(φ2N(κ−1)−m − (−1)N(κ−1)−mφm)‖,

where m = 1 or 2. Since β is a measurable eigenvalue, ‖βφn‖ → 0 as n → ∞. This means

that ‖βvm‖ can only go to zero if β(φ2 + 1)φm ∈ Z. However, φ is irrational, so this cannot

be true for both m = 1 and m = 2 unless β = 0. �

Corollary 8.6. Suppose that ∆(κ) ≥ N(κ − 1) for odd κ and that
∑

κ odd φ
−∆(κ+1) < ∞.

Then the scrambled Fibonacci tiling with lengths |a| = φ and |b| = 1 is repetitive and pure

point diffractive but not Meyer.

Theorem 8.7. Suppose that ∆(κ) ≥ N(κ − 1) for κ odd and that
∑

κ odd φ
−∆(κ+1) < ∞. If

L = S = 1 then the group of topological eigenvalues is Z.

Proof. Since L = S = 1 all return vectors are integers and hence any integer β is a topological

eigenvalue. To prove that the rest of the dynamical spectrum is not topological we use the

same idea as for the preceding theorem. The difference is that now

|Sκ−1(a)| = fN(κ−1)+1 + fN(κ−1) =
1√
5
(φN(κ−1)+2 − (−φ)−N(κ−1)−2).

Accordingly we obtain as necessary criterion for β to be a topological eigenvalue that

‖5βvm‖ = ‖β(φN(κ−1)−m − (−φ)−N(κ−1)+m)(φN(κ−1)+2 − (−φ)−N(κ−1)−2)‖ κ→+∞−→ 0

for m = 1 or 2. Since ‖βφn‖ → 0 as n→ ±∞, we conclude that β(φ−m−2+(−1)mφm+2) ∈ Z

for m = 1 or m = 2. Since β(φ−3−φ3) = −4β and β(φ−4+φ4) = 7β are integers, β ∈ Z. �

Corollary 8.8. Suppose that ∆(κ) ≥ N(κ − 1) for odd κ and that
∑

κ odd φ
−∆(κ+1) < ∞.

Then the scrambled Fibonacci tiling with equal tile lengths is a repetitive pure point diffractive

Meyer tiling having some eigenvalues that are not topological. The topological eigenvalues

form a direct summand subgroup of rank 1 in the full group of eigenvalues which has rank 2.
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8.3. A non-Meyer shape change of a Meyer tiling.

Theorem 8.9. There are FLC sets that are topologically conjugate to Meyer sets but are

not themselves Meyer.

Proof. Consider the irreducible substitution σ on three letters, with σ(a) = abca, σ(b) = abb,

and σ(c) = ac. Since each substituted letter begins with a, the first cohomology of the

resulting tiling space is the direct limit of the transpose of the subsitution matrix M =




2 1 1
1 2 0
1 0 1



 [BD]. The eigenvalues of this matrix are λ1 ≈ 3.247, λ2 ≈ 1.555, and λ3 ≈ .1981.

Call the eigenvectors ξ1, ξ2 and ξ3. Since the third eigenvalue is less than 1 in magnitude, the

corresponding eigenvector is represented by a weakly exact cochain that describes a shape

conjugacy [CS2]. The first and second eigenvalues are greater than 1, and no combination

of the two can be represented by a weakly exact cochain.

Pick a bi-infinite sequence coming from the substitution, and consider two tilings corre-

sponding to that sequence. In one, all of the tiles have length 1. In the other, the tile

lengths are





1
1
1



 plus a small multiple of the third eigenvector, chosen so that the resulting

tile lengths are not rationally related. The left endpoints of the a tiles give us point sets Λ

and Λ′.

Since Λ is a subset of the integer lattice, it is Meyer. Λ′ is topologically conjugate to Λ.

We will show that Λ′ is not Meyer.

For each finite word w in our space of sequences, let ℓ(w) be the “population vector” in

Z3 that counts the number of a’s, b’s and c’s in w. Consider the possible population vectors

of words of length n. The deviation from the average population for a word of length n is

governed by eigenvalues λ2 and λ3. Since |λ3| < 1, there is an upper bound to the inner

product of ℓ(w) with ξ3. However, since λ2 > 1, the range of possible inner products with ξ2

increases with n, going as nln(λ2)/ ln(λ1). Thus the number of possible population vectors for

a given length n is bounded above and below by constants times nln(λ2)/ ln(λ1). 7 Since the

lengths of the different tiles are irrationally related, each population vector gives a different

spacing (in the tiling) between letters that are n apart (in the sequence). This means that

the number of spacings between letters that are at most n apart grows faster than n. By

the pigeonhole principle, the set of possible spacings of letters cannot be uniformly discrete,

so the set of all tile vertices is not Meyer.

The same argument applies to substituted letters, implying that the left endpoints of the

1-supertiles are not a Meyer set. However, every 1-supertile begins with an “a” tile, so the

7If you apply the substitution k times, the length of a word grows as λk
1 , while the deviation of the

population from the average population grows as λk
2 . For a rigorous proof of the nln(λ2)/ ln(λ1) law for

substitutions on two letters, see [KSS]. The same proof works for any substitution where there are exactly
two eigenvalues bigger than 1.
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left endpoints of the 1-supertiles are a subset of Λ′. Since a relatively dense subset of a Meyer

set is Meyer, Λ′ cannot be Meyer. �
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