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1 Introduction

Let ‖x‖ denote the distance from the real number x to the nearest integer. Given an
irrational α, we are interested in the problem of determining the values of τ for which there
are infinitely many prime solutions, p, to the Diophantine inequality

‖pα‖ ≤ p−τ . (1)

It is an easy consequence of the Generalised Riemann Hypothesis that any τ < 1
3
is ad-

missible. This was proved unconditionally by Matomäki, [6], and is currently the strongest
result known. Progress on this problem began with Vinogradov, [8], who proved that we can
take any τ < 1

5
. Vaughan, [7], simplified the proof whilst improving the exponent to τ < 1

4
.

In both of these works an asymptotic formula for the number of prime solutions is proved.
Harman, [2], introduced a sieve method to the problem. This only gives a lower bound for
the number of solutions but this is sufficient. He increased the size of τ to τ < 3

10
, improving

this in [3] to τ < 7
22
. These results of Harman used identical arithmetic information to the

results of Vaughan; the improvements were in the sieve method. Heath-Brown and Jia, [4],
found new arithmetic information which they were able to use to get τ < 16

49
. Matomäki, by

using results on averages of Kloosterman sums, was able to extend this to handle any τ < 1
3
.

If we only require the solutions of (1) to have at most two prime factors then the problem
is considerably easier as classical sieve methods may be used. In particular Harman, [2,
Theorem 2], states that any τ < 0.46 is sufficient. One reason for a stronger result is that
the parity problem of sieve theory is no longer an issue. In order to circumvent the parity
problem and detect primes it is necessary to prove estimates for bilinear forms, known as
“Type II” sums. Matomäki, [6], describes all the estimates known for τ < 1

3
but none of her

proofs are valid for τ ≥ 1
3
. We will prove a Type II bound in which one may take τ slightly

larger than 1
3
. This estimate is too weak to show the existence of prime solutions to (1). It

does, however, show that there are solutions which have precisely two prime factors. Hence
we can break the parity barrier for some τ > 1

3
.

We are also interested in the set P3(b) of 3-digit palindromes in base b. We say that a
number is palindromic in base b if its digits in base b are the same when reversed. Thus

P3(b) = {j(b2 + 1) + kb : j ∈ (0, b) ∩ Z, k ∈ [0, b) ∩ Z}.
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As we shall see in Section 6, elements in this set correspond closely to solutions of (1) when
τ = 1

3
. We may therefore also conclude that P3(b) contains numbers with precisely two

prime factors provided that b is sufficiently large.
To handle both of these problems simultaneously we work with the following set. For a

natural number q, positive reals x, z and an integer a with (a, q) = 1 we let

A = A(x, q, z, a) = {n ∈ (
x

4
, x] : n ≡ ak (mod q) for some k ∈ [0, z) ∩ Z}.

For a fixed constant τ ∈ (0, 1) we shall only consider the case when

z ∈
[

1

2
q

1−τ
1+τ , 2q

1−τ
1+τ

]

and

x ∈
[

1

2
q

2

1+τ , 2q
2

1+τ

]

.

All implied constants in our results may depend on τ . Observe that zq ≍ x.
Our aim is to estimate Type I and Type II sums for the set A and use them to prove the

following.

Theorem 1.1. Suppose τ < 8
23

is fixed. Let E2 be the set of natural numbers having precisely
2 prime factors. With the above definitions and hypotheses we have

#(A ∩ E2) ≫
z2

log z
,

provided that q is sufficiently large in terms of τ .

A result of this form for τ < 1
3
would follow immediately from Vaughan’s work, [7]. The

key new idea to handle larger τ is our Type II estimate, Theorem 5.1.
This theorem enables us to prove the following results regarding the problems discussed

above.

Theorem 1.2. Let α be irrational. For any τ < 8
23

there exist infinitely many n ∈ E2 such
that

‖nα‖ ≤ n−τ .

Theorem 1.3. For all sufficiently large b we have

#(P3(b) ∩ E2) ≫
b2

log b
.
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2 Notation and Useful Results

We will write e(x) = e2πix and

1A(n) =

{

1 n ∈ A
0 n /∈ A.

We will use the notation n ∼ N to mean N < n ≤ 2N and similarly n ≍ N to mean
aN < n ≤ bN for some a, b > 0. We will also need the Fourier transform f̂ of the function
f , defined by

f̂(x) =

∫ ∞

−∞

f(t)e(−tx) dt.

We will write τ(n) for the number of divisors of n. It is well known that for any ǫ > 0
we have τ(n) ≪ǫ n

ǫ. It is slightly more convenient to work with a weighted version of the
primes so we let

̟(n) =

{

log n n is prime

0 Otherwise.

Finally, we adopt the standard convention that the value of ǫ may be different at each
occurrence. For example, we may write xǫ log x ≪ xǫ and x2ǫ ≪ xǫ.

We require the following forms of the Poisson Summation Formula, which hold for all
compactly supported smooth functions f , all v ∈ R>0 and all u ∈ R:

∑

m∈Z

f(vm+ u) =
1

v

∑

n∈Z

f̂
(n

v

)

e
(un

v

)

, (2)

∑

n∈Z

f
(n

v

)

e
(un

v

)

= v
∑

m∈Z

f̂(vm− u). (3)

3 Reduction of the Problem

As we only require a lower bound we may smooth the function 1A.

Definition 3.1. Let W be a smooth function satisfying the following conditions.

1. If x /∈ [1
4
, 3
4
] then W (x) = 0.

2. If x ∈ [1
3
, 2
3
] then W (x) = 1.

3. For all x, 0 ≤W (x) ≤ 1.

It is a well known fact that many functions, W , satisfying the conditions of this definition
exist. The precise choice of W does not matter but all implied constants may depend on it.
For any B ∈ N we may integrate by parts B times to obtain the standard estimate

|ŵ(x)| ≪B min(1, |x|−B). (4)
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Definition 3.2. Let

Φ(n) =
∑

k
n≡ka (mod q)

W (
k

z
).

Lemma 3.3. If x
4
< n < x then

0 ≤ Φ(n) ≤ 1A(n) ≤ 1.

Therefore, to prove Theorem 1.1 it is sufficient to prove a lower bound for

∑

x
4
<n<x
n∈E2

Φ(n).

Proof. This follows immediately from the definitions of A and Φ.

4 Type I Sums

The Type I estimate we prove, Theorem 4.4, has been known in essence since the work of
Vaughan, [7]. However, it is useful to prove it again to get a result which is valid in our
precise situation. In addition, Vaughan’s proof uses estimates for exponential sums whereas
we use results from the geometry of numbers. The exponential sum approach is possibly
simpler for standard Type I sums but we also need to estimate a variant of such sums,
Theorem 4.8, which is easier with the geometry of numbers.

Throughout this section M,N ≥ 1 satisfy x
4
≤MN ≤ 4x and M ≤ z2−δ for some δ > 0.

This means that
N ≫ x

M
≫ q

z1−δ
.

All our implied constants may depend on δ.
For an integer m let

Ψ(m) = Ψ(m;N) =
∑

n∼N

Φ(mn).

We will consider Ψ(m) as a counting function of points of a certain lattice, λ(m).

Lemma 4.1. Let
λ(m) = {(j, k) ∈ Z

2 : jq + ka ≡ 0 (mod m)}.
The set λ(m) is a lattice in Z

2 with determinant m.

Proof. It is clear that λ(m) is a lattice. Since (a, q) = 1 we know that jq + ka takes on all
integer values as j, k vary over Z2. Thus jq+ ka represents all congruence classes mod m so
the determinant of λ(m) is m.

Define b1(m) to be the shortest nonzero vector in λ(m) and let R1(m) be the Euclidean
length of b1(m). We know, by Minkowski’s Theorem, that R1(m) ≪ √

m.
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Lemma 4.2. With the previous assumptions on M,N, x, z and q we have

Ψ(m) =
NŴ (0)z

q
+O(

z

R1(m)
),

for any m ∼ M .

Proof. From the definitions of Ψ and Φ we get

Ψ(m) =
∑

n∼N

Φ(mn)

=
∑

n∼N

∑

k
mn≡ka (mod q)

W (
k

z
)

=
∑

n∼N

∑

j,k
mn=jq+ka

W (
k

z
)

=
∑

(j,k)∈λ(m)
(jq+ka)/m∼N

W (
k

z
).

Since W is supported on (0, 1) the sum only contains points with k ∈ (0, z). Let

f(t) = #{(j, k) ∈ λ(m) :
jq + ka

m
∼ N, k ∈ (0, t]}.

Summing by parts we get

Ψ(m) = −1

z

∫ z

0

f(t)W ′(
t

z
) dt.

Let

A(t) = {(x, y) ∈ R
2 :

xq + ya

m
∼ N, y ∈ (0, t]}.

By a standard result for counting lattice points we have

f(t) =
area(A(t))

m
+O(

perimeter(A(t))

R1(m)
+ 1).

The vertices of A(t) are

(Nm/q, 0), (2Nm/q, 0), ((Nm− ta)/q, t), ((2Nm− ta)/q, t).

Therefore

area(A(T )) =
Nmt

q
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and

perimeter(A(T )) ≪ NM

q
+ t+

ta

q
≪ z.

It follows that

Ψ(m) = −1

z

∫ z

0

(

Nt

q
+O(

z

R1(m)
+ 1)

)

W ′(
t

z
) dt

= −N
qz

∫ z

0

tW ′(
t

z
) dt+O(

z

R1(m)
+ 1)

=
NŴ (0)z

q
+O(

z

R1(m)
+ 1).

Since R1(m) ≪ √
m≪

√
M ≪ z the result follows.

We need a bound for the number of m for which R1(m) is unusually small.

Lemma 4.3. For any ǫ > 0, any M ≤ z2−δ and any integer l we have

#{m ≤M : R1(m)2 = l} ≪ǫ z
ǫ.

Proof. We know that R1(m)2 ≪ m≪M . Thus the only case to consider is 0 < l ≪M .
If R1(m)2 = l then there exist integers j, k with j2 + k2 = l and m|jq + ka. It follows

that the quantity of interest is bounded by

∑

(j,k)∈Z2

j2+k2=l

#{m : m|jq + ka} ≤
∑

(j,k)∈Z2

j2+k2=l

τ(jq + ka).

For the remainder of the proof let h = jq+ ka, where j2 + k2 = l. We now use an argument
by contradiction to show that h 6= 0. If h = 0 then k 6= 0 since (j, k) 6= (0, 0). Moreover q|k,
whence |k| ≥ q. However

k ≤
√
l ≪

√
M = o(z) = o(q),

giving a contradiction if q is large enough. We therefore conclude that h 6= 0. In addition
we have

h≪ q
√
l ≪ qz ≪ x,

so that τ(h) ≪ xǫ. Letting r(l) denote the number of ways in which l may be written as the
sum of two squares, the cardinality of the set in the lemma is then

≪ r(l)xǫ ≪ zǫ,

in view of the convention on different values of ǫ.

We may now prove an estimate for Type I sums.
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Theorem 4.4. If αm are complex numbers with |αm| ≤ 1 then, with the previous assumptions
on M,N, x, z and q we have, for any A > 0

∑

m∼M,n∼N

αmΦ(mn) =
Ŵ (0)Nz

q

∑

m∼M

αm +OA(z
2(log z)−A).

Proof. Let

S =
∑

m∼M,n∼N

αmΦ(mn) =
∑

m∼M

αmΨ(m).

Applying Lemma 4.2 we get

S =
NŴ (0)z

q

∑

m∼M

αm +O(z
∑

m∼M

1

R1(m)
).

Using Lemma 4.3 we deduce that

∑

m∼M

1

R1(m)
=

∑

l≪M

1√
l
#{m ∼M,R1(m)2 = l}

≪ǫ zǫ
∑

l≪M

l−
1

2

≪ǫ zǫM
1

2 .

We conclude that

S =
NŴ (0)z

q

∑

m∼M

αm +O(z1+ǫM
1

2 ).

Since M ≪ z2−δ the error term is
O(z2+ǫ−δ/2).

The result follows on taking ǫ < δ
2
.

Observe that if
∑

m∼M

αm ≍M

then the leading term in this estimate has size xz
q
≍ z2. This is larger than the error term.

It is also necessary to bound a Type I sum where
∑

n∼N is replaced by a smooth weight.

Theorem 4.5. Suppose the above conditions on M,N, x, z and q hold. If αm are complex
numbers with |αm| ≤ 1 then, for any A > 0, we have

∑

n
m∼M

αmW
( n

3N

)

Φ(mn) =
3Ŵ (0)2Nz

q

∑

m∼M

αm +OA(z
2(log z)−A).
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Proof. After using partial summation to remove the smooth weightW ( n
3N

), the result follows
by an almost identical proof to that of Theorem 4.4.

Define Ψ1(m) by

Ψ(m) =
Ŵ (0)Nz

q
+Ψ1(m).

We will require the following two lemmas.

Lemma 4.6. For any ǫ > 0 and any M,N, x, q and z satisfying the previous assumptions
we have

∑

m≍M

Ψ1(m)2 ≪ǫ z
2+ǫ.

Proof. From Lemma 4.2 we have

Ψ1(m)2 ≪ǫ
z2

R1(m)2
.

By Lemma 4.3 we get

∑

m≍M

1

R1(m)2
≪

∑

l≪M

1

l
#{m ≍M,R1(m)2 = l}

≪ǫ zǫ
∑

l≪M

l−1

≪ǫ zǫ.

The result follows.

Lemma 4.7. Under the same assumptions as the last lemma we have

∑

m≍M

Ψ(m)2 ≪ Nz3

q
.

Proof. We have

∑

m≍M

Ψ(m)2 =
∑

m≍M

(
NŴ (0)z

q
+Ψ1(m))2

≪
∑

m≍M

N2z2

q2
+

∑

m≍M

ψ1(m)2

≪ǫ
MN2z2

q2
+ z2+ǫ

≪ǫ
Nz3

q
+ z2+ǫ.

Since N ≫ q
z1−δ the first term is larger if we take a small enough ǫ.
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We may now estimate a variant of a Type I sum which will be useful later.

Theorem 4.8. Suppose that the above assumptions on M,N, x, z and q hold. In addition,
assume that N ≤ z2−δ. Then, for any complex numbers βn bounded by 1 and any A > 0,

∑

m
n1,n2∼N

βn1
W

( m

3M

)

Φ(mn1)Φ(mn2) =
3NMŴ (0)3z2

q2

∑

n∼N

βn +OA(
z4(log z)−A

M
).

Proof. Let

S =
∑

m
n1,n2∼N

βn1
W

( m

3M

)

Φ(mn1)Φ(mn2) =
∑

m
n∼N

βnW
( m

3M

)

Φ(mn)Ψ(m).

Writing

Ψ(m) =
Ŵ (0)Nz

q
+Ψ1(m)

we get a contribution from Ŵ (0)Nz
q

of

Ŵ (0)Nz

q

∑

m
n∼N

βnW
( m

3M

)

Φ(mn).

This sum is in a form which can be estimated by Theorem 4.5, with m,n interchanged. All
the conditions needed for that theorem are satisfied since N ≤ z2−δ. The main term is thus

3Ŵ (0)3NMz2

q

∑

n∼N

βn +OA(
z3(log z)−AN

q
).

On writing N ≪ zq
M

the error here is

OA(
z4(log z)−A

M
).

The contribution from Ψ1(m) is

∑

m
n∼N

βnW
( m

3M

)

Φ(mn)Ψ1(m).

Trivially estimating the βn by 1 this is majorised by

∑

m

W
( m

3M

)

Ψ(m)|Ψ1(m)|.

9



Since W (x) ≤ 1 for all x we may remove the factor W ( m
3M

) and apply Cauchy’s inequality
to get a bound of

(
∑

m≍M

Ψ(m)2)1/2(
∑

m≍M

Ψ1(m)2)1/2.

Applying the previous two lemmas this is

≪ǫ N
1/2z5/2+ǫq−1/2 ≪ z3+ǫ

√
M
.

Since M ≤ z2−δ the error here is

z3+ǫ
√
M

M
≤ z4+ǫ−δ/2

M
.

The result follows on taking ǫ < δ
2
.

Observe that if
∑

n∼N

βn ≍ N

then the main term in this last theorem has size

N2Mz2

q2
≍ z4

M
.

5 Type II Sums

We will prove the following Type II result.

Theorem 5.1. Let αm be complex numbers bounded by 1. Suppose that x
4
≤ MN ≤ 4x and

max(z,
q

z1−δ
) ≤ N ≤ z

16

15
−δ

for some δ > 0. Then, for every A > 0, we have
∑

m∼M,n∼N

αm(̟(n)− 1)Φ(mn) ≪ z2(log z)−A,

where the implied constant depends on both A and δ.

Observe that the restrictions on M,N in this theorem imply that

M ≪ z2−δ.

The hypothesis that N ≥ z is only used once in our argument, in the proof of Lemma 5.8.
When τ > 1

3
this assumption is weaker than

N ≥ q

z1−δ
.
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Let
S =

∑

m∼M,n∼N

αmβnΦ(mn),

where
βn = ̟(n)− 1.

We wish to show that S = O(z2(log z)−A). Our arguments can be modified to handle
arbitrary βn, although the range of N is then much smaller. However, this introduces some
additional technicalities. Since our Type II estimate does not cover a sufficiently large
range of N to detect primes we have chosen to give the details only for the specific choice
βn = ̟(n)− 1.

Vaughan, [7], used exponential sum methods to establish Type II estimates which are
only valid when xτ < N < x1−2τ . This range is empty when τ ≥ 1

3
. Heath-Brown and

Jia, [4], introduced a new method which reduces the problem to the estimation of certain
Kloosterman sums. Matomäki, [6], used the same reduction but then used stronger bounds
on the resulting averages of Kloosterman sums and was thus able to get enough Type II
information to detect primes for any τ < 1

3
. The range of N in the Type II bounds found

by Heath-Brown, Jia and Matomäki remains nonempty as τ → 1
3
. However, it is not valid

for τ ≥ 1
3
as the reduction to Kloosterman sums gives an error which is too large in this

case. Our method is essentially an extension of that of Heath-Brown and Jia which avoids
this problem.

Lemma 5.2. We have S = O(
√
MS1) where

S1 =
∑

n1,n2∼N

βn1
βn2

∑

m

W
( m

3M

)

Φ(mn1)Φ(mn2).

It follows that a bound of

S1 = O(
z4(log z)−A

M
).

will be sufficient.

Proof. Applying Cauchy’s inequality gives

S2 ≤
∑

m∼M

|αm|2
∑

m∼M

(
∑

n∼N

βnΦ(mn))
2.

By definition of the function W we know that W
(

m
3M

)

= 1 when m ∼M . Therefore

S2 ≪ M
∑

m

W
( m

3M

)

(
∑

n∼N

βnΦ(mn))
2

= M
∑

n1,n2∼N

βn1
βn2

∑

m

W
( m

3M

)

Φ(mn1)Φ(mn2)

= MS1.
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On putting βn = ̟(n)− 1 into S1 we will get three sums all of which must be evaluated
asymptotically. However, on combining the sums, all the main terms will cancel and we will
get the required result. Specifically let

S1 = S1,1 − 2S1,2 + S1,3

where
S1,1 =

∑

n1,n2∼N

̟(n1)̟(n2)
∑

m

W
( m

3M

)

Φ(mn1)Φ(mn2),

S1,2 =
∑

n1,n2∼N

̟(n1)
∑

m

W
( m

3M

)

Φ(mn1)Φ(mn2)

and
S1,3 =

∑

n1,n2∼N

∑

m

W
( m

3M

)

Φ(mn1)Φ(mn2).

We begin by dealing with the sums S1,2 and S1,3.

Lemma 5.3. With our assumptions on M,N, x, q and z we have, for i = 2, 3 that

S1,i =
3N2MŴ (0)3z2

q2
+ OA

(

z4(log z)−A

M

)

.

Proof. We have
N ≤ z

16

15
−δ ≤ z2−δ.

We may therefore use Theorem 4.8 with βn = ̟(n) or βn = 1. These coefficients are only
bounded by logn but this can be absorbed into the error term. In either case we have

∑

n∼N

βn = N +O(N(logN)−A)

so the result follows.

Next we deal with the contribution to S1,1 from pairs with n1 = n2. This is
∑

n∼N

̟(n)2
∑

m

W
( m

3M

)

Φ(mn)2.

All the terms are positive and Φ takes values in [0, 1] so this is at most
∑

n∼N

̟(n)2
∑

m

W
( m

3M

)

Φ(mn).

Using Theorem 4.5 we may bound this Type I sum by O(z2 logN). Since M ≪ z2−δ this is

O( z
4(log z)−A

M
).

The remaining terms in S1,1 have n1 6= n2. Since the coefficients ̟(n) are supported on
primes all such pairs actually satisfy (n1, n2) = 1. We therefore consider

S2 =
∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)
∑

m

W
( m

3M

)

Φ(mn1)Φ(mn2).
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5.1 Harmonic Analysis of the Sum S2

Let
T =

∑

m

W
( m

3M

)

Φ(mn1)Φ(mn2).

Since (a, q) = 1 there exists an a satisfying

aa ≡ 1 (mod q).

Lemma 5.4. We have

T =
3Mz2

q2

∑

k1,k2

Ŵ (
k1z

q
)Ŵ (

k2z

q
)
∑

m

Ŵ

(

3M

(

m− a(k1n1 + k2n2)

q

))

.

Proof. The definition of Φ gives

Φ(n) =
∑

k
k≡na (mod q)

W (
k

z
)

=
∑

m

W

(

qm+ na

z

)

.

Applying the Poisson Summation Formula in the form (2) we therefore get

Φ(n) =
z

q

∑

k

Ŵ

(

kz

q

)

e

(

nak

q

)

,

so that

T =
z2

q2

∑

k1,k2

Ŵ

(

k1z

q

)

Ŵ

(

k2z

q

)

∑

m

W
( m

3M

)

e

(

ma(k1n1 + k2n2)

q

)

.

We can now use the Poisson Summation Formula (3) to obtain

∑

m

W
( m

3M

)

e

(

ma(k1n1 + k2n2)

q

)

= 3M
∑

m

Ŵ

(

3Mm− 3Ma(k1n1 + k2n2)

q

)

.

The result follows on substituting this into the above expression for T .

Let S3 be the subsum of S2 coming from terms with k1n1 + k2n2 = 0. Since (n1, n2) = 1
any solution of this may be written uniquely as k1 = n2h and k2 = −n2h for some h ∈ Z.
Therefore

S3 =
3Mz2

q2

∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)
∑

h,m

Ŵ (
n2hz

q
)Ŵ (

−n1hz

q
)Ŵ (3Mm).

13



Lemma 5.5. For any A > 0 we have, under the previous assumptions on M,N, x, q and z,
that

S3 =
3MN2z2Ŵ (0)3

q2
+OA(

z4(log z)−A

M
).

Proof. Our assumptions imply that for ni ∼ N we have

niz

q
≫ Nz

q
≫ zδ

and that
M ≫ zδ.

It follows, using the bound (4), that the contribution to S3 from terms with h 6= 0 or m 6= 0
is negligible. Specifically, for any B ∈ N we have

S3 =
3Mz2Ŵ (0)3

q2

∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2) +OB(z
−B).

Observe that

Mz2

q2

∑

n∼N

̟(n)2 ≪ MNz2 logN

q2
≪ z3 logN

q
≪A

z4(log z)−A

M
,

where the last inequality uses that M ≪ z2−δ ≤ qz1−δ. We deduce that

S3 =
3Mz2Ŵ (0)3

q2

∑

n1,n2∼N

̟(n1)̟(n2) +OA(
z4(log z)−A

M
).

The result follows on applying the Prime Number Theorem to the sum

∑

n∼N

̟(n).

Let S4 be the sum of the remaining terms from S2, those with k1n1 + k2n2 6= 0. Thus

S4 =
∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)T1,

where

T1 =
3Mz2

q2

∑

k1,k2
k1n1+k2n2 6=0

Ŵ (
k1z

q
)Ŵ (

k2z

q
)
∑

m

Ŵ

(

3M

(

m− a(k1n1 + k2n2)

q

))

.

14



For any integers m, k1, k2 there exists a unique integer k such that

m− a(k1n1 + k2n2)

q
=
k

q
.

There is then a unique integer j such that

k1n1 + k2n2 = jq − ka.

Writing c = jq − ka it follows that

T1 =
3Mz2

q2

∑

j,k,k1,k2
k1n1+k2n2=c 6=0

Ŵ (
k1z

q
)Ŵ (

k2z

q
)Ŵ (

3Mk

q
).

If we let

F (n1, n2; c) =
∑

k1,k2
k1n1+k2n2=c

Ŵ (
k1z

q
)Ŵ (

k2z

q
)

then

S4 =
3Mz2

q2

∑

j,k
c 6=0

Ŵ (
3Mk

q
)

∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)F (n1, n2; c).

5.2 Transforming the Function F

To deal with the sum S4 we begin by applying Poisson Summation to the function F .

Lemma 5.6. Let n1 be an inverse of n1 modulo n2, which exists since (n1, n2) = 1. We have

F (n1, n2) =
1

n2

∑

l

ĝ

(

l

n2
;n1, n2, c

)

e

(

cn1l

n2

)

,

where

g(t;n1, n2, c) = Ŵ

(

tz

q

)

Ŵ

(

(c− tn1)z

n2q

)

and ĝ is the Fourier transform of g with respect to the single variable t.

Proof. We are interested in pairs k1, k2 satisfying the equation

k1n1 + k2n2 = c.

For a given k1 this has at most 1 solution which exists if and only if

k1n1 ≡ c (mod n2).

15



Since (n1, n2) = 1 this condition is equivalent to

k1 ≡ cn1 (mod n2).

If this congruence holds then the corresponding k2 is given by

k2 =
c− k1n1

n2
.

We therefore have

F (n1, n2) =
∑

k
k≡cn1 (mod n2)

Ŵ

(

kz

q

)

Ŵ

(

(c− kn1)z

n2q

)

.

Now, if we let

g(t;n1, n2, c) = Ŵ

(

tz

q

)

Ŵ

(

(c− tn1)z

n2q

)

,

then by the Poisson Summation Formula, (2), we get

F (n1, n2) =
1

n2

∑

l

ĝ

(

l

n2

)

e

(

cn1l

n2

)

.

Applying this lemma to the sum S4 we deduce that

S4 =
3Mz2

q2

∑

j,k,l
c 6=0

Ŵ (
3Mk

q
)

∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)
1

n2
ĝ

(

l

n2
;n1, n2, c

)

e

(

cn1l

n2

)

.

The sums considered by Heath-Brown and Jia, as well as by Matomäki, are essentially just
the k = 0 terms of S4.

5.3 Terms with l = 0

We will need the following result concerning the function ĝ.

Lemma 5.7. For all t and all n1, n2 ∼ N we have ĝ(t) ≪ q
z
. Furthermore, if |t| ≥ 4z

q
then

ĝ(t) = 0.

Proof. Recall that

g(t) = Ŵ

(

tz

q

)

Ŵ

(

(c− tn1)z

n2q

)

= g1(t)g2(t),

say. It follows that

ĝ(t) = (ĝ1 ⋆ ĝ2)(t) =

∫ ∞

−∞

ĝ1(x)ĝ2(t− x) dx.

16



We have

g1(t) = Ŵ (
tz

q
)

so
ĝ1(t) =

q

z
W (−tq/z).

We also have

g2(t) = Ŵ

(

(c− tn1)z

n2q

)

so

ĝ2(t) =
n2q

n1z
W (

n2qt

n1z
)e(

−ctq
n2z

).

Therefore, for all t we deduce that

|ĝi(t)| ≪
q

z
.

Furthermore, if |t| ≥ 2z
q
, then

ĝi(t) = 0.

It follows that for all t we have

ĝ(t) =

∫ ∞

−∞

ĝ1(x)ĝ2(t− x) dx≪
∫

|x|≤ 2z
q

(q/z)2 dx≪ q

z
.

In addition, if |t| ≥ 4z
q
then for any x either

|x| ≥ 2z

q

or

|t− x| ≥ 2z

q
.

It follows that ĝ(t) = 0.

Let S5 be the subsum of S4 containing the terms with l = 0, that is

S5 =
3Mz2

q2

∑

j,k
c 6=0

Ŵ (
3Mk

q
)

∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)
1

n2
ĝ(0;n1, n2, c).

It is convenient to reinstate the terms with c = 0. These correspond to pairs (j, k) with
k = hq, j = ha so their contribution is

3Mz2

q2

∑

h

Ŵ (3Mh)
∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)
1

n2

ĝ(0;n1, n2, 0).

17



From the estimate (4) we may deduce that for any B ∈ N the contribution to this from
terms with h 6= 0 is OB(z

−B). Using the estimate for ĝ given in Lemma 5.7 we may bound
the h = 0 terms by

MNz

q
≪ z2 ≪A

z4(log z)−A

M
,

since M ≪ z2−δ. It is therefore enough to bound

S6 =
3Mz2

q2

∑

j,k

Ŵ (
3Mk

q
)

∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)
1

n2

ĝ(0;n1, n2, c).

We may move the sum over j inside the other summations to transform this to

S6 =
3Mz2

q2

∑

k

Ŵ (
3Mk

q
)

∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)
1

n2

∑

j

ĝ(0;n1, n2, c).

Inserting the definition of ĝ and reordering we see that

S6 =
3Mz2

q2

∑

k

Ŵ (
3Mk

q
)

∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)
1

n2

∫ ∞

−∞

Ŵ

(

tz

q

)

∑

j

Ŵ

(

(c− tn1)z

n2q

)

dt.

Lemma 5.8. For all t ∈ R, N ≥ z and n1, n2 ∼ N we have
∑

j

Ŵ

(

(c− tn1)z

n2q

)

= 0.

Proof. The sum is
∑

j

Ŵ

(

(jq − ka− tn1)z

n2q

)

.

We may apply the Poisson Summation Formula, (2), to obtain

n2

z

∑

j

W (
n2j

z
)e(γj),

for a γ which depends on all the outer variables.
Since N ≥ z we have

n2

z
≥ N

z
≥ 1.

However, W is supported on [1
4
, 3
4
] and thus for all n ∈ N we have

W (
n2n

z
) = 0.

It follows from this that S6 = 0 and therefore that

S5 ≪A
z4(log z)−A

M
.

18



5.4 The Remaining Terms

Let S7 be the subsum of S4 containing all the remaining terms, that is to say, all those with
l 6= 0. Thus

S7 =
3Mz2

q2

∑

j,k,l
c 6=0,l 6=0

Ŵ (
3Mk

q
)

∑

n1,n2∼N
(n1,n2)=1

̟(n1)̟(n2)
1

n2
ĝ

(

l

n2
;n1, n2, c

)

e

(

cn1l

n2

)

.

We now truncate the sums over j, k, l to finite ranges.

Lemma 5.9. Suppose η > 0. The contribution to S7 from (j, k, l) for which any of

|l| ≥ 8Nz

q
,

|k| ≥ qzη

M
or

|j| ≥ Nz−1+2η

hold is OB,η(z
−B) for any B ∈ N.

Proof. From Lemma 5.7 we know that if |t| ≥ 4z
q
then ĝ(t) = 0. It follows that terms with

|l| ≥ 8Nz

q

make no contribution to the sum.
Let R be the set of (j, k) for which

|k| ≥ qzη

M

or
|j| ≥ Nz−1+2η .

To complete the proof it is sufficient to give a bound of OB(z
−B) for

∑

(j,k)∈R

∣

∣

∣

∣

Ŵ (
3Mk

q
)ĝ

(

l

n2
;n1, n2, c

)
∣

∣

∣

∣

.

By definition of ĝ this is at most

∫ ∞

−∞

∑

(j,k)∈R

∣

∣

∣

∣

Ŵ (
3Mk

q
)Ŵ

(

tz

q

)

Ŵ

(

(jq − ka− tn1)z

n2q

)
∣

∣

∣

∣

dt.
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We make repeated use of the estimate (4). This shows that any part of the above where Ŵ
is evaluated at a point x with |x| ≥ zη may be bounded by OB(z

−B). From the factor Ŵ ( tz
q
)

we see that such a bound holds when

|t| ≥ q

z1−η

and from the factor Ŵ (3Mk
q

) it holds when

|k| ≥ qzη

M
.

Finally we assume that

|t| < q

z1−η

and

|k| < qzη

M
.

In this case we have
|j| ≥ Nz−1+2η .

For sufficiently large q these assumptions imply that

(jq − ka− tn1)z

n2q
≫ zη.

A bound of OB(z
−B) therefore holds for all parts of the sum.

Let S8 be the sum S7 with the following ranges of summation:

0 < |l| < 8Nz

q
,

|k| < qzη

M
and

|j| < Nz−1+2η .

The last lemma shows that, for a fixed η > 0, we only need to bound S8. We ignore any
potential cancellation in the outer sums so we write

S8 ≪
Mz2 logN

q2N

∑

|j|<Nz−1+2η, |k|< qzη

M
, 0<|l|< 8Nz

q

c 6=0

S9

where

S9 =
∑

n2∼N

|
∑

n1∼N
(n1,n2)=1

̟(n1)ĝ

(

l

n2
;n1, n2, c

)

e

(

cn1l

n2

)

|.
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Let h(n1, n2) be the weight in this sum:

h(n1, n2) = ĝ

(

l

n2

)

=

∫ ∞

−∞

Ŵ

(

tz

q

)

Ŵ

(

(c− tn1)z

n2q

)

e(− tl

n2
) dt.

Lemma 5.10. The function h depends smoothly on n1 and n2. For n1, n2 ∼ N and the
same η as above, we have

h(n1, n2) ≪
q

z
and

hn1
(n1, n2) ≪η

q

Nz1−η
.

Proof. Since W is smooth, it follows that g depends smoothly on n1, n2 and therefore so
does ĝ and hence so does h. The bound for h follows from that for ĝ given in Lemma 5.7.

Differentiating we get

hn1
(n1, n2) =

∫ ∞

−∞

Ŵ

(

tz

q

) −tz
n2q

Ŵ ′

(

(c− tn1)z

n2q

)

e(− tl

n2
) dt.

The contribution to the integral from |t| ≥ q
z1−η/2 can be shown to be sufficiently small. The

remainder of the integral is then bounded by
∫

|t|≤ q

z1−η/2

tz

Nq
dt ≤

∫

|t|≤ q

z1−η/2

zη/2

N
dt≪ q

Nz1−η
.

We may now use partial summation to remove the weight h(n1, n2) from S9. We deduce
that

S9 ≪η
q

z1−η
S10

where

S10 = max
N ′∼N

∑

n2∼N

|
∑

N≤n1<N ′

(n1,n2)=1

̟(n1)e

(

cn1l

n2

)

|.

We will estimate S10 using our bound, [5, Theorem 1.3]. For any ǫ > 0 this gives

S10 ≪ǫ

(

1 +
|cl|
N2

)
1

2

N2−α−ǫ,

with the specific value α = 1
8
. Since

0 < |cl| ≪ N2z2η

we deduce that
S10 ≪ǫ z

ηN2−α+ǫ.

We will eventually choose η in such a way that the factor zη in this bound has no effect on
the quality of our final result. It is the value of α which determines the size of the admissible
range for N and hence the limitation on τ .
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Lemma 5.11. Under the previous assumptions on M,N, x, q and z we have

S7 ≪A
z4(log z)−A

M
,

for any fixed A > 0.

Proof. We deduce from our bound for S10 that

S9 ≪ǫ
q

z1−2η
N2−α+ǫ

and therefore that

S8 ≪ǫ
N3−αz1+5η+ǫ

q
.

By assumption we have

N ≤ z
16

15
−δ = z

2

2−α
−δ.

It follows that

MS8 ≪ǫ
MN3−αz1+5η+ǫ

q

≪ N2−αz2+5η+ǫ

≤ z4−δ(2−α)+5η+ǫ.

We can choose ǫ, η sufficiently small so that

5η + ǫ < δ(2− α),

whence

S8 ≪δ
z4(log z)−A

M
.

The bound for S7 follows.

Recall that we are assuming N ≫ q
z1−δ . Observe that

q

z
< z

2

2−α

if and only if

q < z
4−α
2−α .

We note that
4− α

2− α

1− τ

1 + τ
> 1

if and only if τ < 1
3−α

= 8
23
. We therefore impose the condition τ < 8

23
in order to ensure

that our range for N is nonempty.
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It should be noted that in this section we have made nontrivial use of the fact that our
coefficients are the indicator function of the primes. If we want to estimate a general Type
II sum with coefficients βn then different bounds must be used. Specifically, if we use Duke,
Friedlander and Iwaniec’s result, [1, Theorem 2], then we can take α = 1

48
. This is much

worse than the value 1
8
which we have for our special coefficients; although even that is

considerably weaker than α = 1
2
, which we conjecture should be best possible.

5.5 Completing the Proof of Theorem 5.1

The result follows on combining all the above estimates. We have

S1 = S1,1 − 2S1,2 + S1,3

= S1,1 −
3N2MŴ (0)3z2

q2
+OA

(

z4(log z)−A

M

)

= S2 −
3N2MŴ (0)3z2

q2
+OA

(

z4(log z)−A

M

)

= S3 + S4 −
3N2MŴ (0)3z2

q2
+OA

(

z4(log z)−A

M

)

= S4 +OA

(

z4(log z)−A

M

)

= S5 + S7 +OA

(

z4(log z)−A

M

)

= OA

(

z4(log z)−A

M

)

.

It follows that
S = OA(z

2(log z)−A),

as required.

6 Proof of the Theorems

6.1 Proof of Theorem 1.1

Suppose MN = x
4
and M ≤ z2−δ, for some δ > 0. For any A > 0 we have

∑

m∼M

̟(m) =M +OA(M(logM)−A).

It follows by Theorem 4.4 that

∑

m∼M,n∼N

̟(m)Φ(mn) =
Ŵ (0)

4
z2 +Oδ,A(z

2(log z)−A);
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the fact that ̟(n) is only bounded by logn does not matter as this factor can be absorbed
into the error term.

Suppose, in addition, that

max(z,
q

z1−δ
) ≤ N ≤ z

16

15
−δ.

It follows from Theorem 5.1 that for any A > 0 we have
∑

m∼M,n∼N

̟(m)(̟(n)− 1)Φ(mn) ≪A,δ z
2(log z)−A.

Combining these two estimates we immediately deduce that

∑

m∼M,n∼N

̟(m)̟(n)Φ(mn) =
Ŵ (0)

4
z2 +OA,δ(z

2(log z)−a).

If m and n are prime then ̟(m)̟(n) ≍ (log z)2. It follows that for sufficiently large q we
have

∑

m∼M,n∼N
mn∈E2

Φ(mn) ≫ z2

(log z)2
.

For τ < 8
23

there are exponents a(τ) < b(τ) such that the above bound holds for any range
(M, 2M ] ⊆ (za(τ), zb(τ)]. There are therefore ≫τ log z dyadic ranges available. Theorem 1.1
follows.

6.2 Proof of Theorem 1.2

Suppose α is irrational and τ < 8
23
. By replacing τ by τ + ǫ for a sufficiently small ǫ > 0 it

is enough to show that there are infinitely many n ∈ E2 with

‖nα‖ ≪ n−τ .

Let c
q
be a convergent in the continued fraction expansion of α with a sufficiently large

denominator. We therefore have

|α− c

q
| ≤ 1

q2
.

If we let x = q
2

1+τ , z = x
q
and a = c then any n ∈ A satisfies

an ≡ k (mod q) for some k ∈ [0, z].

We therefore have
‖an
q
‖ ≤ z

q
.

It follows that
‖nα‖ ≤ ‖(α− c

q
)n‖ + ‖an

q
‖ ≪ n−τ .

Since there are infinitely many convergents to α it is thus sufficient to show that A contains
members of E2. This follows from Theorem 1.1.
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6.3 Proof of Theorem 1.3

Recall that
P3(b) = {j(b2 + 1) + kb : j ∈ (0, b) ∩ Z, k ∈ [0, b) ∩ Z}.

We take τ = 1
3
, q = b2 + 1, z = b, x = b3 and a = b. The set A is then contained in P3(b) so

the result follows from Theorem 1.1.
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