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Abstract

We prove that every subcubic triangle-free graph has fractional chro-
matic number at most 14/5, thus confirming a conjecture of Heckman and
Thomas [A new proof of the independence ratio of triangle-free cubic graphs.
Discrete Math. 233 (2001), 233–237].

1 Introduction

One of the most celebrated results in Graph Theory is the Four-Color Theorem
(4CT). It states that every planar graph is 4-colorable. It was solved by Appel and
Haken [3, 5, 4] in 1977 and, about twenty years later, Robertson, Sanders, Seymour
and Thomas [18] found a new (and much simpler) proof. However, both of the
proofs require a computer assistance, and finding a fully human-checkable proof is
still one of the main open problems in Graph Theory. An immediate corollary of the
4CT implies that every n-vertex planar graph contains an independent set of size
n/4 (this statement is sometimes called the Erdős-Vizing conjecture). Although
this seems to be an easier problem than the 4CT itself, no proof without the 4CT
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is known. The best known result that does not use the 4CT is due to Albertson [1],
who showed the existence of an independent set of size 2n/9.

An intermediate step between the 4CT and the Erdős-Vizing conjecture is the
fractional version of the 4CT — every planar graph is fractionally 4-colorable. In
fact, fractional colorings were introduced in 1973 [12] as an approach for either
disproving, or giving more evidence to, the 4CT. For a real number k, a graph
G is fractionally k-colorable, if for every assignment of weights to its vertices
there is an independent set that contains at least (1/k)-fraction of the total
weight. In particular, every fractionally k-colorable graph on n vertices contains an
independent set of size at least n/k. The existence of independent sets of certain
ratios in subcubic graphs, i.e., graphs with maximum degree at most 3, led Heckman
and Thomas to pose the following two conjectures (a graph is called triangle-free if
it does not contain a triangle as a subgraph).

Conjecture 1.1 (Heckman and Thomas [10]). Every subcubic triangle-free graph
is fractionally 14/5-colorable.

Conjecture 1.2 (Heckman and Thomas [11]). Every subcubic triangle-free planar
graph is fractionally 8/3-colorable.

The purpose of this work is to establish Conjecture 1.1. We believe that the
method developed in this paper may be relevant for other fractional colouring
problems, and in particular for Conjecture 1.2.

1.1 History of the problem and related results

Unlike for general planar graphs, colorings of triangle-free planar graphs are well
understood. Already in 1959, Grötzsch [8] proved that every triangle-free planar
graph is 3-colorable. Therefore, such a graph on n vertices has to contain an
independent set of size n/3. In 1976, Albertson, Bollobás and Tucker [2] conjectured
that a triangle-free planar graph also has to contain an independent set of size
strictly larger than n/3.

Their conjecture was confirmed in 1993 by Steinberg and Tovey [21], even in a
stronger sense: such a graph admits a 3-coloring where at least bn/3c+ 1 vertices
have the same color. On the other hand, Jones [13] found an infinite family of
triangle-free planar graphs with maximum degree four and no independent set of
size bn/3c+ 2. However, if the maximum degree is at most three, then Albertson
et al. [2] conjectured that an independent set of size much larger than n/3 exists.
Specifically, they asked whether there is a constant s ∈

(
1
3
, 3
8

]
, such that every

subcubic triangle-free planar graph contains an independent set of size sn. We note
that for s > 3/8 the statement would not be true, even for graphs of girth five.
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The strongest possible variant of this conjecture, i.e., for s = 3/8, was finally
confirmed by Heckman and Thomas [11]. However, for s = 5/14, it was implied
by a much earlier result of Staton [20], who actually showed that every subcubic
triangle-free (but not necessarily planar) graph contains an independent set of size
5n/14. Jones [14] then found a simpler proof of this result; an even simpler one is
due to Heckman and Thomas [10]. On the other hand, Fajtlowicz [6] observed that
one cannot prove anything larger than 5n/14. In 2009, Zhu [23] used an approach
similar to that of Heckman and Thomas to demonstrate that every 2-connected
subcubic triangle-free n-vertex graph contains an induced bipartite subgraph of
order at least 5n/7 except the Petersen graph and the dodecahedron — thus
Staton’s bound quickly follows. As we already mentioned, the main result of this
paper is the strengthening of Staton’s theorem to the fractional (weighted) version,
which was conjectured by Heckman and Thomas [10].

This conjecture attracted a considerable amount of attention and it spawned a
number of interesting works in the last few years. In 2009, Hatami and Zhu [9]
showed that for every graph that satisfies the assumptions of Conjecture 1.1, the
fractional chromatic number is at most 3−3/64 ≈ 2.953. (The fractional chromatic
number of a graph is the smallest number k such that the graph is fractionally
k-colorable.) The result of Hatami and Zhu is the first to establish that the
fractional chromatic number of every subcubic triangle-free graph is smaller than 3.
In 2012, Lu and Peng [17] improved the bound to 3− 3/43 ≈ 2.930. There are also
two very recent improvements on the upper bound — but with totally different
approaches. The first one is due to Ferguson, Kaiser and Král’ [7], who showed
that the fractional chromatic number is at most 32/11 ≈ 2.909. The other one is
due to Liu [16], who improved the upper bound to 43/15 ≈ 2.867.

2 Preliminaries

We start with another definition of a fractional coloring that will be used in the paper.
It is equivalent to the one mentioned in the previous section by Linear Programming
Duality; a formal proof is found at the end of this section in Theorem 2.1. There
are also another different (but equivalent) definitions of a fractional coloring and
the fractional chromatic number; for more details see, e.g., the book of Scheinerman
and Ullman [19].

Let G be a graph. A fractional k-coloring is an assignment of measurable
subsets of the interval [0 , 1] to the vertices of G such that each vertex is assigned a
subset of measure 1/k and the subsets assigned to adjacent vertices are disjoint.
The fractional chromatic number of G is the infimum over all positive real numbers
k such that G admits a fractional k-coloring. Note that for finite graphs, such a
real k always exists, the infimum is in fact a minimum, and its value is always
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rational. We let χf (G) be this minimum.
A demand function is a function from V (G) to [0 , 1] with rational values. A

weight function is a function from V (G) to the real numbers. A weight function
is non-negative if all its values are non-negative. For a weight function w and
a set X ⊆ V (G), let w(X) =

∑
v∈X w(v). For a demand function f , let wf =∑

v∈V (G) f(v)w(v).
Let µ be the Lebesgue measure on real numbers. An f-coloring of G is

an assignment ϕ of measurable subsets of [0 , 1] to the vertices of G such that
µ(ϕ(v)) > f(v) for every v ∈ V (G) and such that ϕ(u)∩ϕ(v) = ∅ whenever u and
v are two adjacent vertices of G. A positive integer N is a common denominator for
f if N · f(v) is an integer for every v ∈ V (G). For integers a and b, we define Ja , bK
to be the set {a, a+ 1, . . . , b}, which is empty if a > b; we set JaK = J1 , aK. Let N
be a common denominator for f and ψ a function from V (G) to subsets of JNK.
We say that ψ is an (f,N)-coloring of G if |ψ(v)| > Nf(v) for every v ∈ V (G) and
ψ(u) ∩ ψ(v) = ∅ whenever u and v are adjacent vertices of G.

Let us make a few remarks on these definitions.

• If G has an (f,N)-coloring, then it also has an (f,M)-coloring for every
M divisible by N , obtained by replacing each color by M/N new colors.
Consequently, the following statement, which is occasionally useful in the
proof, holds: if a graph G1 has an (f1, N1)-coloring and a graph G2 has
an (f2, N2)-coloring, then there exists an integer N such that G1 has an
(f1, N)-coloring and G2 has an (f2, N)-coloring.

• For a rational number r, the graph G has fractional chromatic number at
most r if and only if it has an fr-coloring for the function fr that assigns 1/r
to every vertex of G. If rN is an integer, then an (fr, N)-coloring is usually
called an (rN : N)-coloring in the literature.

• In the definition of an (f,N)-coloring, we can require that |ψ(v)| = Nf(v) for
each vertex, as if |ψ(v)| > Nf(v), then we can remove colors from ψ(v). In
particular, throughout the argument, whenever we receive an (f,N)-coloring
from an application of an inductive hypothesis, we assume that the equality
holds for every vertex.

To establish Theorem 3.2, we use several characterizations of f -colorings. For a
graph G, let I(G) be the set of all maximal independent sets. Let fracc be the
following linear program.
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Minimize:
∑
I∈I(G)

x(I)

subject to:
∑
I∈I(G)
v∈I

x(I) > f(v) for v ∈ V (G);

x(I) > 0 for I ∈ I(G).

Furthermore, let fracd be the following program, which is the dual of fracc.

Maximize:
∑

v∈V (G)

f(v) · y(v)

subject to:
∑
v∈I

y(v) 6 1 for I ∈ I(G);

y(v) > 0 for v ∈ V (G).

Notice that all the coefficients are rational numbers. Therefore, for both programs
there exist optimal solutions that are rational. Moreover, since these two linear
programs are dual of each other, the LP-duality theorem ensures that they have
the same value. (The reader is referred to, e.g., the book by Scheinerman and
Ullman [19] for more details on fractional graph theory.)

The following statement holds by standard arguments; the proof is included for
completeness.

Theorem 2.1. Let G be a graph and f a demand function for G. The following
statements are equivalent.

(a) The graph G has an f -coloring.

(b) There exists a common denominator N for f such that G has an (f,N)-
coloring.

(c) For every weight function w, the graph G contains an independent set X such
that w(X) > wf .

(d) For every non-negative weight function w, the graph G contains an indepen-
dent set X such that w(X) > wf .

Proof. Let us realize that (c) and (d) are indeed equivalent. On the one hand, (c)
trivially implies (d). On the other hand, let w be a weight function. For each
vertex v ∈ V (G), set w′(v) = max{0, w(v)}. By (d), there exists an independent
set I ′ of G such that w′(I ′) >

∑
v∈V (G) f(v)w′(v). Setting I = {v ∈ I ′ : w(v) > 0}

5



yields a (possibly empty) independent set of G with w(I) > wf . Hence, (d) implies
(c).

We now prove that (b)⇒ (a)⇒ (d)⇒ (b).

(b)⇒ (a): Assume that ψ is an (f,N)-coloring of G, where N is a common
denominator for f . Setting

ϕ(v) =
⋃

i∈ψ(v)

[
i− 1

N
,
i

N

)
for each vertex v ∈ V (G) yields an f -coloring of G.

(a)⇒ (d): Let w be a non-negative weight function and assume that G has an
f -coloring ψ. For each set A ⊆ V (G), let

X(A) =
⋂
v∈A

ψ(v) \
⋃

v∈V (G)\A

ψ(v),

where
⋂
v∈∅ ψ(v) is defined to be [0 , 1]. Note that the sets X(A) : A ⊆ V (G)

are pairwise disjoint and their union is [0 , 1]. Let us choose a set I ⊆ V (G)
at random so that Prob[I = A] = µ(X(A)) for each A ⊆ V (G). Since
ψ is an f -coloring of G, we have X(A) = ∅ if A is not an independent
set, and thus I is an independent set with probability 1. Furthermore,
Prob[v ∈ I] =

∑
{v}⊆A⊆V (G) µ(X(A)) = µ(ψ(v)) > f(v) for each v ∈ V (G).

We conclude that

E[w(I)] =
∑

v∈V (G)

Prob[v ∈ I]w(v)

>
∑

v∈V (G)

f(v)w(v) = wf .

Therefore, there exists I ∈ I(G) with w(I) > wf .

(d)⇒ (b): We proceed in two steps. First, we show that, assuming (d), the value
of fracc is at most 1. Next, we infer the existence of an (f,N)-coloring of
G for a common denominator N of f .

Let b be the value of fracd and let y be a corresponding solution. Note
that y is a non-negative weight function for G, and thus by (d), there exists
an independent set I of G such that y(I) > yf = b. Since y is a feasible
solution of fracd, we deduce that b 6 1.

By the LP-duality theorem, fracd and fracc have the same value. Let x
be a rational feasible solution of fracc with value at most 1. Fix a common
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denominator N for f and x. An (f,N)-coloring ψ of G can be built as follows.
Set I ′ = {I ∈ I(G) : x(I) > 0} and let I1, . . . , Ik be the elements of I ′. For
each i ∈ {1, . . . , k}, set

Ti =

s
1 +N ·

i−1∑
j=1

x(Ij) , N ·
i∑

j=1

x(Ij)

{
.

Observe that
∣∣∣⋃k

i=1 Ti

∣∣∣ =
∑k

i=1 |Ti| = N ·
∑k

i=1 x(Ii) 6 N . For each vertex

v ∈ V (G), let I(v) = {i ∈ JkK : v ∈ Ii} and define ψ(v) =
⋃
i∈I(v) Ti.

The obtained function ψ is an (f,N)-coloring of G. Indeed, for each vertex
v ∈ V (G) we have |ψ(v)| > N ·

∑
i∈I(v) x(Ii) > Nf(v). Moreover, if u and

v are two vertices adjacent in G, then I(u) ∩ I(v) = ∅ and, consequently,
ψ(u) ∩ ψ(v) = ∅.

3 The proof

We commonly use the following observation.

Proposition 3.1. Let f be a demand function for a graph G, let N be a common
denominator for f and let ψ be an (f,N)-coloring for G.

1. If xyz is a path in G, then |ψ(x) ∪ ψ(z)| 6 (1 − f(y))N . Equivalently,
|ψ(x) ∩ ψ(z)| > (f(x) + f(z) + f(y)− 1)N .

2. If xvyz is a path in G, then |ψ(x) ∩ ψ(z)| 6 (1− f(v)− f(y))N .

Conversely, if f(a) + f(b) 6 1 for each edge ab of the path and ψ is an (f,N)-
coloring of x and z satisfying the conditions 1. and 2. above, then ψ can be extended
to an (f,N)-coloring of the path xyz or xvyz, respectively.

A graph H is dangerous if H is either a 5-cycle or the graph K ′4 obtained from
K4 by subdividing both edges of its perfect matching twice, see Figure 1. The
vertices of degree two of a dangerous graph are called special. Let G be a subcubic
graph and let B be a subset of its vertices. Let H be a dangerous induced subgraph
of G. A special vertex v of H is B-safe if either v ∈ B or v has degree three in G.
If B is empty, we write just “safe” instead of “∅-safe”. If G is a subcubic graph, a
set B ⊆ V (G) is called a nail if every vertex in B has degree at most two and every
dangerous induced subgraph of G contains at least two B-safe special vertices. For
a subcubic graph G and its nail B, let fGB be the demand function defined as follows:
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Figure 1: Dangerous graphs.

if v ∈ B, then fGB (v) = (7 − degG(v))/14; otherwise fGB (v) = (8 − degG(v))/14.
When the graph G is clear from the context, we drop the superscript and write
just fB for this demand function.

In order to show that every subcubic triangle-free graph has fractional chromatic
number at most 14/5, we prove the following stronger statement.

Theorem 3.2. If G is a subcubic triangle-free graph and B ⊆ V (G) is a nail, then
G has an fB-coloring.

We point out that the motivation for the formulation of Theorem 3.2 as well as
for some parts of its proof comes from the work of Heckman and Thomas [10], in
which an analogous strengthening is used to prove that every subcubic triangle-free
graph on n vertices contains an independent set of size at least 5n/14.

A subcubic triangle-free graph G with a nail B is a minimal counterexample to
Theorem 3.2 if G has no fB-coloring, and for every subcubic triangle-free graph
G′ with a nail B′ such that either |V (G′)| < |V (G)|, or |V (G′)| = |V (G)| and
|B′| < |B|, there exists an fB′-coloring of G′. The proof proceeds by contradiction,
showing that there is no minimal counterexample to Theorem 3.2. Let us first
study the properties of such a hypothetical minimal counterexample.

Lemma 3.3. If a subcubic triangle-free graph G with a nail B is a minimal
counterexample to Theorem 3.2, then G is 2-edge-connected.

Proof. Clearly, G is connected. Suppose that uv ∈ E(G) is a bridge, and let G1

and G2 be the components of G − uv such that u ∈ V (G1) and v ∈ V (G2). Let
B1 = (B ∩ V (G1)) ∪ {u} and B2 = (B ∩ V (G2)) ∪ {v}. Note that B1 is a nail
for G1 and B2 is a nail for G2, and thus by the minimality of G, there exist a
common denominator N for fB1 and fB2 , an (fB1 , N)-coloring ψ1 for G1 and an
(fB2 , N)-coloring ψ2 for G2. Since u ∈ B1 and v ∈ B2, we have fG1

B1
(u) 6 7/14 and

fG2
B2

(v) 6 7/14, thus we can assume (by permuting the colors in ψ2 if necessary)
that ψ1(u) and ψ2(v) are disjoint. It follows that the union of ψ1 and ψ2 is an
(fB, N)-coloring of G, contrary to the assumption that G is a counterexample.
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Figure 2: Colorings of dangerous graphs with minimal nails. The nails consist of
the black vertices.

Lemma 3.4. If a subcubic triangle-free graph G with a nail B is a minimal
counterexample to Theorem 3.2, then G has minimum degree at least two.

Proof. Suppose, on the contrary, that v is a vertex of degree at most one in G. Since
G is 2-edge-connected by Lemma 3.3, it follows that v has degree 0 and V (G) = {v}.
However, ϕ(v) = [0 , 1] is then an fB-coloring of G, since µ(ϕ(v)) = 1 > fB(v).
This contradicts the assumption that G is a counterexample.

Lemma 3.5. If a subcubic triangle-free graph G with a nail B is a minimal
counterexample to Theorem 3.2, then B = ∅.

Proof. Suppose, on the contrary, that B contains a vertex b. If B′ = B \ {b} were
a nail in G, then by the minimality of G and B, there would exist an fB′-coloring
of G, which would also be an fB-coloring of G. Therefore, we can assume that G
contains a dangerous induced subgraph H with at most one B′-safe vertex. Since G
is 2-edge-connected by Lemma 3.3, it follows that G = H. Consequently, B consists
of exactly two special vertices of G. However, Figure 2 shows all possibilities for G
and B up to isomorphism together with their (fB, 14)-colorings, contradicting the
assumption that G is a counterexample.

In view of the previous lemma, we say that a subcubic triangle-free graph G
is a minimal counterexample to Theorem 3.2 if the empty set is a nail for G and
together they form a minimal counterexample to Theorem 3.2.

9



Lemma 3.6. Let G be a minimal counterexample to Theorem 3.2. If u and v are
adjacent vertices of G of degree two, then there exists a 5-cycle in G containing the
edge uv.

Proof. Suppose, on the contrary, that uv is not contained in a 5-cycle. Let x and
y be the neighbors of u and v, respectively, that are not in {u, v}. Note that x 6= y
since G is triangle-free. Let G′ be the graph obtained from G− {u, v} by adding
the edge xy. Since the edge uv is not contained in a 5-cycle, it follows that G′ is
triangle-free.

If the empty set is a nail for G′, then by the minimality of G, there exists an
(f∅, 14t)-coloring ψ′ of G′ for a positive integer t. The sets ψ′(x) and ψ′(y) are
disjoint; by permuting the colors if necessary, we can assume that ψ′(x) ⊆ J6tK and
ψ′(y) ⊆ J6t+ 1 , 12tK. Then, there exists an (f∅, 14t)-coloring ψ of G, defined by
ψ(z) = ψ′(z) for z 6∈ {u, v}, ψ(u) = J6t+ 1 , 12tK and ψ(v) = J6tK. This contradicts
the assumption that G is a counterexample.

We conclude that ∅ is not a nail for G′. Thus if x and y are adjacent in G,
then both these vertices have degree 3 in G since G is a minimal counterexample.
Therefore, the very same argument as above using {x, y} as a nail for G′ yields an
f∅-coloring for G, a contradiction.

As observed earlier, G′ contains a dangerous induced subgraph H with at most
one safe special vertex. Lemma 3.3 implies that G is 2-edge-connected, and thus
G′ is 2-edge-connected as well. It follows that G′ = H. Consequently, since x and
y are not adjacent, G is one of the graphs depicted in Figure 3, which are exhibited
together with an (f∅, 14)-coloring. This is a contradiction.

Lemma 3.7. Let G be a minimal counterexample to Theorem 3.2. If {uv, xy} is
an edge-cut in G and G1 and G2 are connected components of G− {uv, xy}, then
min{|V (G1)| , |V (G2)|} 6 2.

Proof. Suppose, on the contrary, that min{|V (G1)| , |V (G2)|} > 3. Choose the
labels so that {u, x} ⊂ V (G1).

Suppose first that G1 is a path uzx on three vertices. By Lemma 3.6, the
vertices y and v are adjacent. Since |V (G2)| > 3 and G is 2-edge-connected by
Lemma 3.3, it follows that y and v have degree three in G. Note that B′ = {y, v}
is a nail for G2. By the minimality of G, there exists an (fB′ , 14t)-coloring ψ of G2

for a positive integer t. Since y and v are adjacent, by permuting the colors, we
can assume that ψ(y) = J5tK and ψ(v) = J5t+ 1 , 10tK. Let us extend ψ by defining
ψ(u) = J2tK∪ J10t+1 , 14tK, ψ(z) = J2t+1 , 8tK and ψ(x) = J8t+1 , 14tK. Then ψ is
an (f∅, 14t)-coloring of G, contrary to the assumption that G is a counterexample.

By symmetry, we conclude that neither G1 nor G2 is a path on three vertices;
and more generally, neither G1 nor G2 is a path, as otherwise G would contain
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Figure 3: Colorings of subdivided dangerous graphs.

a 2-edge-cut cutting off a path on three vertices. Therefore, we can choose the
edge-cut {uv, xy} in such a way that both x and v have degree three. Let G′1 be the
graph obtained from G1 by adding a path uabx, and let G′2 be the graph obtained
from G2 by adding a path vcdy, where a, b, c and d are new vertices of degree two.
Since G is 2-edge-connected, we have u 6= x and v 6= y; hence, both G′1 and G′2
are triangle-free. If y has degree three, then let B1 = {a, b}, otherwise let B1 = ∅.
Similarly, if u has degree three, then let B2 = {c, d}, otherwise let B2 = ∅.

Suppose first that B1 is a nail for G′1 and B2 is a nail for G′2. By the minimality
of G, there exist an (fB1 , 14t)-coloring ψ1 of G′1 and an (fB2 , 14t)-coloring ψ2 of
G′2, for a positive integer t. Let nu = |ψ1(u) \ ψ1(x)|, nx = |ψ1(x) \ ψ1(u)|, nux =
|ψ1(u) ∩ ψ1(x)|, and let nv, ny and nvy be defined symmetrically. Proposition 3.1
implies that nux 6 4t and nvy 6 4t. Since x and v have degree three and u and y
have degree at least two, it follows that nx +nux = 5t, nu +nux 6 6t, nv +nvy = 5t
and ny + nvy 6 6t. Furthermore, by the choice of B1 and B2, either nu + nux = 5t
or nvy 6 2t, and either ny + nvy = 5t or nux 6 2t. Therefore,

nux + nvy + max(nu, ny) + max(nv, nx) 6 14t. (1)

Consequently, we can permute the colors for ψ2 so that the sets ψ1(u) ∩ ψ1(x),
ψ2(v)∩ψ2(y), (ψ1(u) \ψ1(x))∪ (ψ2(y) \ψ2(v)) and (ψ1(x) \ψ1(u))∪ (ψ2(v) \ψ2(y))
are pairwise disjoint. Indeed, by (1) the interval [14t] can be partitioned into
four intervals I1, I2, I3, I4 with |I1| = nux, |I2| = nvy, |I3| = max{nu, ny} and
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|I4| > max{nv, nx}. Now, we permute the colors for ψ1 so that ψ1(u) ∩ ψ1(x) = I1,
ψ1(u) \ ψ1(x) ⊆ I3 and ψ1(x) \ ψ1(u) ⊆ I4. In addition, we permute the colors for
ψ2 so that ψ2(v) ∩ ψ2(y) = I2, ψ2(v) \ ψ2(y) ⊆ I4 and ψ2(y) \ ψ2(v) ⊆ I3. Then,
ψ1(u)∩ψ2(v) = ∅ = ψ1(x)∩ψ2(y), thus giving an (f∅, 14t)-coloring of G, which is
a contradiction.

Hence, we can assume that B1 is not a nail for G′1. Since G is 2-edge-connected,
G′1 is 2-edge-connected as well, and thus it is a dangerous graph. Since G1 is
not a path on three vertices, it follows that G′1 is K ′4. Furthermore, B1 = ∅
and thus y has degree two. Note that G1 has an (f{u,x}, 14t)-coloring such that
nux = 4t and nu = nx = t (obtained from the coloring of the bottom left graph
in Figure 2 by removing the black vertices and replacing each color c by t new
colors c1, . . . , ct). Let G′′2 be the graph obtained from G2 by adding a new vertex of
degree two adjacent to y and v. Let us point out that y is not adjacent to v, since
G is 2-edge-connected (recall that y has degree two since B1 = ∅). Hence, G′′2 is
triangle-free. If ∅ is a nail for G′′2, then let us redefine ψ2 as an (f∅, 14t)-coloring
of G′′2, which exists by the minimality of G, and let nv, ny and nvy be defined as
before. Proposition 3.1 yields that nv + ny + nvy 6 8t; hence, (1) holds, and we
obtain a contradiction as in the previous paragraph.

Consequently, ∅ is not a nail for G′′2, and since G′′2 is 2-edge-connected and
G2 is not a path, it follows that G′′2 is K ′4. However, G must then be the graph
depicted in Figure 4 together with its (f∅, 14)-coloring, contrary to the assumption
that G is a counterexample.

Corollary 3.8. Every dangerous induced subgraph in a minimal counterexample
to Theorem 3.2 contains at least three safe special vertices.

Proof. Let H be a dangerous induced subgraph in a minimal counterexample G.
Since ∅ is a nail for G, it follows that H contains at least two safe special vertices u
and v. If H contains exactly two safe special vertices, then the edges of E(G)\E(H)
incident with u and v form a 2-edge-cut. By Lemma 3.7, we know that G consists
of H and a path Q of length two or three joining u and v. Note that u and v
are not adjacent, as otherwise Q would either be part of a triangle or contradict
Lemma 3.6. If H is a 5-cycle, then G has an (f∅, 14)-coloring obtained from the
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Figure 5: A dangerous induced subgraph with two safe vertices.

coloring of the top right graph in Figure 2 by copying the colors of the vertices of
one of the paths between the black vertices to the vertices of Q. Hence, we assume
that H is K ′4. By Lemma 3.6, we conclude that Q has length two. Consequently,
G is the graph depicted in Figure 5. However, this graph has an (f∅, 14)-coloring,
which is a contradiction.

Lemma 3.9. If G is a minimal counterexample to Theorem 3.2, then no two
vertices of G of degree two are adjacent.

Proof. Suppose, on the contrary, that u and v are adjacent vertices of degree two
in G. It follows from Lemma 3.6 that G contains a 5-cycle xuvyz. Further, x, y
and z have degree three by Corollary 3.8. Let a, b and c be the neighbors of x, y
and z, respectively, outside of the 5-cycle (where possibly a = b).

Let us now consider the case where a has degree two. Note that, in this case,
a 6= b as G is 2-edge-connected. Let d be the neighbor of a distinct from x. If d
has degree two, then by Lemma 3.6, the path xad is a part of a 5-cycle. Since G is
2-edge-connected, it follows that d is adjacent to c. Then G contains a 2-edge-cut
formed by the edges incident with y and c. By Lemma 3.7, G is one of the graphs
in the top of Figure 6. This is a contradiction, as the figure also shows that these
graphs are (f∅, 14)-colorable. Hence, d has degree three. Let G′ = G− {u, v} and
B′ = {x, y}. Then B′ is a nail for G′. By the minimality of G, there exists an
(fB′ , 14t)-coloring ψ′ of G′ for a positive integer t. Let L = J14tK \ ψ′(z). Note
that |L| = 9t and ψ′(y) ⊆ L. Since the path daxz is colored and fB′(a) = 6/14
and fB′(x) = 5/14, Proposition 3.1 implies that |ψ′(d) ∩ ψ′(z)| 6 3t, and thus
|ψ′(d) ∩ L| > 2t. We construct an (f∅, 14t)-coloring ψ of G as follows. We let ψ be
equal to ψ′ on all vertices but a, x, u and v. Let M be a subset of ψ(d) ∩ L of size
exactly 2t. Let M ′ be a subset of ψ′(y) of size exactly 2t containing M ∩ψ′(y). We
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choose ψ(x) of size 5t so that M ∪M ′ ⊂ ψ(x) ⊆M ∪M ′∪ (L\ψ′(y)). Observe that
|ψ(x) ∩ ψ(d)| > |M | = 2t and |ψ(x) ∩ ψ(y)| = |M ′| = 2t; hence, Proposition 3.1
implies that we can choose ψ(a), ψ(u) and ψ(v) so that ψ is an (f∅, 14t)-coloring
of G. This is a contradiction.

By symmetry, it follows that both a and b have degree three. If a = b, then
the edges incident with a and z form a 2-edge-cut in G, so Lemma 3.7 yields that
G consists of the 5-cycle xuvyz, the vertex a adjacent to x and y, and a path Q
of length two or three joining a with z. If Q had length three, then G would be
K ′4, contrary to the assumption that ∅ is a nail for G. So Q has length two and
hence G is the bottom graph in Figure 6, which has an (f∅, 14)-coloring. This is a
contradiction; hence, a 6= b.

Suppose now that c has degree two, and let s be the neighbor of c distinct
from z. If s has degree two, then using Lemma 3.6 and symmetry, we can assume
that s is adjacent to a. Then the edges incident with a and y form a 2-edge-cut.
However, this contradicts Lemma 3.7 since b has degree three. Hence, s has degree
three. Let G′ be the graph obtained from G − {u, v, x, y, z, c} by adding a path
aopb with two new vertices of degree two. Note that B′ = {o, p, s} is a nail for G′.
By the minimality of G, there exists an (fB′ , 14t)-coloring ψ of G′ for a positive
integer t. Let Lx = J14tK \ ψ(a) and Ly = J14tK \ ψ(b). Thus, |Lx| = |Ly| = 9t,
and Proposition 3.1 applied to the path aopb implies that |Lx ∪ Ly| > 10t. Since
|Lx ∪ Ly| 6 14t, we also know that |Lx ∩ Ly| > 4t. Choose M as an arbitrary
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subset of ψ(s) of size exactly 2t. Observe that we can choose ψ(x) in Lx \M
and ψ(y) in Ly \M , each of size 5t, so that |ψ(x) ∩ ψ(y)| = 2t: first choose a
set M ′ of 2t colors in (Lx ∩ Ly) \M ; next, choose disjoint sets of size 3t from
Lx \ (M ∪M ′) and Ly \ (M ∪M ′), which is possible as each of these sets has size
at least 3t (in fact, at least 5t) and their union has size at least 6t. Notice that
|(ψ(x) ∪ ψ(y)) ∩ ψ(s)| 6 |ψ(s) \M | 6 3t. By Proposition 3.1, ψ extends to an
(f∅, 14t)-coloring of G (to color z and c, apply the Proposition to a path of length
three with ends colored by ψ(s) and ψ(x) ∪ ψ(y)), which is a contradiction.

Therefore, c has degree three. Let G′ = G − {u, v, y}. Suppose first that ∅
is a nail for G′. By the minimality of G, there exists an (fG

′
∅ , 14t)-coloring ψ′

of G′ for a positive integer t. Let Lx = J14tK \ ψ′(a), Ly = J14tK \ ψ′(b) and
Lz = J14tK \ ψ′(c). Note that |Lx| = |Lz| = 9t and |Ly| = 8t. Also, Proposition 3.1
implies that |Lx ∪ Lz| > 12t. Arbitrarily choose a set M in Lz \ Lx of size exactly
3t. Note that |Lz \M | = 6t and |Ly \M | > 5t; hence, there exists a set Z in
Lz \M of size exactly 2t such that |Ly \ (M ∪ Z)| > 4t. Let Y be a subset of
Ly \ (M ∪ Z) of size exactly 4t. If |Z \ Lx| > t, then let Y ′ = ∅; otherwise notice
that |Lx ∪ Z ∪M | < 13t and choose Y ′ in J14tK \ (Lx ∪ Z ∪M) of size exactly t.
Last, choose a set T of size 3t so that Y ′ ⊂ T ⊂ Y ∪ Y ′.

Let ψ be an (f∅, 14t)-coloring of G defined as follows. We set ψ(p) = ψ′(p)
for p ∈ V (G) \ {x, y, z, u, v, b}, ψ(z) = M ∪ Z, ψ(u) = M ∪ T and we let ψ(y)
be any set of 5t colors such that Y ∪ Y ′ ⊂ ψ(y) ⊂ J14tK \ (M ∪ Z). Thus
|ψ(u) ∩ ψ(y)| > |T | = 3t, hence we can choose ψ(v) in J14tK \ (ψ(u) ∪ ψ(y)) of size
6t. The choice of Y ′ and T implies that either |Z \ Lx| > t or |T \ Lx| > t; hence
|Lx \ (ψ(u) ∪ ψ(z))| = |Lx \ (T ∪ Z)| > |Lx|− |T |− |Z|+ t = 5t. Choose a set ψ(x)
in Lx \ (ψ(u)∪ψ(z)) of size exactly 5t. Also note that |ψ(y) \ Ly| 6 |ψ(y) \ Y | = t,
and select ψ(b) ⊆ ψ′(b) \ (ψ(y) \ Ly) of size 5t (let us point out that fG

′
∅ (b) = 6/14

while fG∅ (b) = 5/14). The existence of the coloring ψ contradicts the assumption
that G is a counterexample.

Finally, let us consider the case that ∅ is not a nail for G′. Therefore, G′

contains a dangerous induced subgraph H with at most one safe special vertex. By
Corollary 3.8, H has at least three special vertices that are safe in G. It follows
that H contains at least two of x, z and b. In particular, H contains x or z, and
since x and z have degree two in G′, we infer that H contains both of them. Since
a and c have degree three in G′, we deduce that H is K ′4. Let s1 and s2 be the
special vertices of H distinct from x and z. If both s1 and s2 have degree three
in G, then since ∅ is not a nail for G′, one of them, si, is adjacent to y (that is,
si = b); it follows that s3−i is incident with a bridge in G, contrary to Lemma 3.3.
Hence, we can assume that s2 has degree two in G. By Corollary 3.8, the vertex
s1 has degree three in G. Recalling that b also has degree three in G, we infer
that either G is the graph depicted in Figure 7, or G has a 2-edge-cut formed by
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the edge yb and one of the edges incident to s1. The latter case is excluded as it
would contradict Lemma 3.7, since b has degree three in G. The former case would
imply that G is (f∅, 14)-colorable, as demonstrated in Figure 7. This contradiction
concludes the proof.

Lemma 3.10. No minimal counterexample to Theorem 3.2 contains K ′4 as an
induced subgraph.

Proof. Suppose, on the contrary, that a minimal counterexample G contains K ′4
as an induced subgraph. That is, G contains a 4-cycle uvxy of vertices of degree
three together with paths uabx and vcdy. By Corollary 3.8, we can assume that b,
c and d have degree three in G.

Suppose first that we can choose the subgraph so that a has degree two. Let b′

be the neighbor of b distinct from a and x. Since we consider K ′4 as an induced
subgraph of G, we have c 6= b′ 6= d. Let G′ = G−{u, v, x, y, a, b} and B′ = {c, d, b′}.
Since B′ is a nail for G′, the minimality of G implies that there exists an (fB′ , 14t)-
coloring ψ of G′ for a positive integer t. By permuting the colors, we can assume
that ψ(c) = J5tK and ψ(d) = J5t+ 1 , 10tK.

Note that |ψ(b′)| 6 6t. To extend ψ to an (f∅, 14t)-coloring of G, it suf-
fices to show that one can choose sets ψ(b), ψ(v), ψ(y) ⊂ J14tK of size 5t disjoint
from ψ(b′), ψ(c) and ψ(d), respectively, in such a way that |ψ(v) ∩ ψ(y)| = 4t,
|(ψ(v) ∪ ψ(y)) ∪ ψ(b)| = 9t and |(ψ(v) ∪ ψ(y)) ∩ ψ(b)| = 2t. Indeed, if this is possi-
ble, then ψ can be further extended to a, u and x by Proposition 3.1, which contra-
dicts the assumption that G is a counterexample. It remains to show why the afore-
mentioned sets exist. We consider two cases. First, if |ψ(b′) ∩ J10t+ 1 , 14tK| 6 2t,
then choose ψ(b) in J14tK \ ψ(b′) of size 5t so that |ψ(b) ∩ J10t+ 1 , 14tK| = 2t;
furthermore, choose ψ(v) and ψ(y) of size 5t so that they are disjoint with ψ(c)
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and ψ(d), respectively, and satisfy ψ(v)∩ψ(y) = J10t+ 1 , 14tK and (ψ(v)∪ψ(y))∩
ψ(b) ⊂ J10t + 1 , 14tK. Second, if |ψ(b′) ∩ J10t+ 1 , 14tK| > 2t, then note that
|ψ(b′) ∩ J10tK| < 4t; hence, we can choose ψ(b) in J10tK \ ψ(b′) of size 5t so that
|ψ(b) ∩ J5tK| > t and |ψ(b) ∩ J5t+ 1 , 10tK| > t; next, we choose ψ(v) and ψ(y)
of size 5t so that they are disjoint from ψ(c) and ψ(d), respectively, and satisfy
ψ(v) ∩ ψ(y) = J10t+ 1 , 14tK and (ψ(v) ∪ ψ(y)) ∩ J10tK ⊂ ψ(b).

The contradiction that we obtained in the previous paragraph shows that a
cannot have degree two. Consequently, we can assume that for every occurrence
of K ′4 as an induced subgraph in G, all the special vertices are safe. Let G′ =
G−{u, v, x, y} and suppose first that ∅ is a nail for G′. Then, the minimality of G
ensures that there exists an (fG

′
∅ , 14t)-coloring ψ′ of G′ for a positive integer t. Let

Lu = J14tK \ ψ(a), Lx = J14tK \ ψ(b), Lv = J14tK \ ψ(c) and Ly = J14tK \ ψ(d), and
note that |Lu| = |Lv| = |Lx| = |Ly| = 8t. By Tuza and Voigt [22, Theorem 2], there
exist sets Au ⊂ Lu, Av ⊂ Lv, Ax ⊂ Lx and Ay ⊂ Ly such that |Au| = |Av| = |Ax| =
|Ay| = 4t and Ax∪Au is disjoint from Ay∪Av. Let Mu = J14tK\(Au∪Av∪Ay), Mv =
J14tK\ (Av∪Au∪Ax), Mx = J14tK\ (Ax∪Av∪Ay) and My = J14tK\ (Ay∪Au∪Ax).
Each of these sets having size at least 2t, applying again the result of Tuza and
Voigt [22], we infer the existence of sets Bu ⊂Mu, Bv ⊂Mv, Bx ⊂Mx and By ⊂My

such that |Bu| = |Bv| = |Bx| = |By| = t and Bx ∪ Bu is disjoint from By ∪ Bv.
Let ψ be defined as follows: ψ(z) = ψ′(z) for z ∈ V (G) \ {a, b, c, d, u, v, x, y},
ψ(a) = ψ′(a) \ Bu, ψ(b) = ψ′(b) \ Bx, ψ(c) = ψ′(c) \ Bv, ψ(d) = ψ′(d) \ By,
ψ(u) = Au ∪Bu, ψ(v) = Av ∪Bv, ψ(x) = Ax ∪Bx and ψ(y) = Ay ∪By. Then ψ is
an (fG∅ , 14t)-coloring of G (notice that fG

′
∅ (z) = 6/14, while fG∅ (z) = 5/14 whenever

z ∈ {a, b, c, d}). This contradicts the assumption that G is a counterexample.
Finally, it remains to consider the case where G′ contains a dangerous induced

subgraph H with at most one safe special vertex. As H contains at least two safe
vertices in G, we can assume by symmetry that H contains a. Since a has degree
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two in G′, the subgraph H contains b as well. Suppose now that H also contains at
least one of c and d (and thus both of them). Then H must be isomorphic to K ′4.
Indeed, since the subgraph of G induced by {u, v, x, y, a, b, c, d} is isomorphic to
K ′4, it follows that {a, b, c, d} induces a matching, and thus H cannot be a 5-cycle.
We conclude that H is isomorphic to K ′4, G

′ = H and G is the graph depicted in
Figure 8. However, then G is (f∅, 14)-colorable, which is a contradiction.

Hence, neither c nor d belongs to H, and thus H contains a special vertex that
is unsafe in G. Since the case that G contains K ′4 with an unsafe special vertex has
already been excluded, it follows that H is a 5-cycle abb′sa′, where (by Lemma 3.9)
a′ and b′ have degree two and s has degree three. Let G1 = G−{u, v, x, y, a, b, a′, b′}
and B1 = {c, d}. Note that s has degree 1 in G1. As B1 is a nail for G1, the
minimality of G ensures the existence of an (fB1 , 14t)-coloring ψ1 of G1 for a
positive integer t. By permuting the colors, we can assume that ψ(c) = J5tK
and ψ(d) = J5t + 1 , 10tK. Let us extend ψ to G as follows. First, we delete
from ψ(s) an arbitrary subset of 2t colors, so that ψ(s) has now size 5t. Set
ψ(v) = J9t + 1 , 14tK and ψ(y) = JtK ∪ J10t + 1 , 14tK. Arbitrarily choose disjoint
sets Ma in ψ(s) \ J9t + 1 , 12tK and Mb in ψ(s) \ JtK ∪ J12t + 1 , 14tK each of size
2t. Choose two disjoint subsets ψ(a) and ψ(b) of J14tK, each of size 5t, so that
Ma ∪ JtK ∪ J12t + 1 , 14tK ⊆ ψ(a) and Mb ∪ J9t + 1 , 12tK ⊆ ψ(b). Note that
|Jt+ 1 , 9tK \ ψ(z)| > 6t for z ∈ {a, b}; hence, we can choose for ψ(u) and ψ(x) two
sets of size 5t, both in Jt + 1 , 9tK and disjoint from ψ(a) and ψ(b), respectively.
Furthermore, note that |ψ(a) ∪ ψ(s)| 6 8t and |ψ(b) ∪ ψ(s)| 6 8t. It follows that
ψ can be extended to a′ and b′ by Proposition 3.1. The obtained mapping ψ is an
(f∅, 14t)-coloring of G, which is a contradiction.

Lemma 3.11. Let G be a minimal counterexample to Theorem 3.2. Let v be a
vertex of G and let x and y be two neighbors of v. Suppose that x and y have degree
two, and let x′ and y′ be their neighbors, respectively, distinct from v. Then x′ 6= y′

and x′ is adjacent to y′.

Proof. The vertices v, x′ and y′ have degree three by Lemma 3.9. If x′ = y′, then let
G′ = G− x and B′ = {x′, v}. Since B′ is a nail for G′, the minimality of G ensures
that there exists an fG

′

B′ -coloring ψ of G′. We can extend ψ to an fG∅ -coloring of G
by setting ψ(x) = ψ(y), contradicting the assumption that G is a counterexample.

Therefore, x′ 6= y′. Let u be the neighbor of v distinct from x and y. Our next
goal is to prove that u must have degree three. Suppose, on the contrary, that
u has degree two, and let u′ be the neighbor of u distinct from v. Then u′ has
degree 3 and, by symmetry, we infer that x′ 6= u′ 6= y′. Let G′ = G− {u, v, x, y}
and let B′ = {u′, x′, y′}. Since B′ is a nail for G′, the minimality of G implies
the existence of an (fG

′

B′ , 14t)-coloring ψ of G′ for a positive integer t. Note that
|ψ(u′)| = |ψ(x′)| = |ψ(y′)| = 5t. For i ∈ {1, 2, 3}, let Si be the set of elements
of J14tK that belong to exactly i of the sets ψ(u′), ψ(x′) and ψ(y′). Note that
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|S1| + |S2| + |S3| 6 14t and |S1| + 2 |S2| + 3 |S3| = 15t, so |S2| + 2 |S3| > t. Let
M ⊂ S2 ∪ S3 be an arbitrary set such that |M ∩ S2|+ 2 |M ∩ S3| > t and |M | 6 t.
Choose Mu ⊂ ψ(u′) \M , Mx ⊂ ψ(x′) \M and My ⊂ ψ(y′) \M arbitrarily so
that |M ∩ ψ(u′)|+ |Mu| = |M ∩ ψ(x′)|+ |Mx| = |M ∩ ψ(y′)|+ |My| = 2t, and let
L = M ∪Mu ∪Mx ∪My. Thus

|L| 6 |M |+ |Mu|+ |Mx|+ |My|
= 6t+ |M | − |M ∩ ψ(u′)| − |M ∩ ψ(x′)| − |M ∩ ψ(y′)|
= 6t+ |M | − 2 |M ∩ S2| − 3 |M ∩ S3|
= 6t− |M ∩ S2| − 2 |M ∩ S3|
6 5t.

Let us choose ψ(v) in J14tK of size 5t such that L ⊆ ψ(v). Note that |ψ(v) ∩ ψ(z)| >
2t for z ∈ {u′, x′, y′}; hence, ψ can be extended to u, x and y by Proposition 3.1.
This yields an f∅-coloring of G, which is a contradiction. Therefore, u has degree
three.

Now suppose, for a contradiction, that x′ is not adjacent to y′ in G. Then, the
graph G′ obtained from G by removing x and adding the edge x′y is triangle-free.
Let us show that ∅ is a nail for G′. Consider a dangerous induced subgraph H
of G′. If H had at most one safe special vertex in G′, then G′ would contain two
adjacent vertices a and b of degree two. Note that v is the only vertex of G′ of
degree two that has degree three in G, and that both neighbors of v in G′ have
degree three. It follows that a and b have degree two in G as well. Furthermore, y
has degree three in G′, thus the edge ab is distinct from x′y. Therefore, a and b
would be adjacent vertices of degree two in G, contrary to Lemma 3.9.

By the minimality of G, there exists an (fG
′

∅ , 14t)-coloring ψ′ of G′ for a positive
integer t. Let us show that |(ψ′(x′) ∪ ψ′(y′)) ∩ ψ′(u)| 6 3t. Indeed, Proposition 3.1
applied to the path uvy ensures that |ψ′(u) ∩ ψ′(y)| > 2t. Thus, as |ψ′(u)| = 5t, it
follows that |ψ′(u) \ ψ′(y)| 6 3t. Noting that ψ′(y) is disjoint from each of ψ′(x′)
and ψ′(y′), we see that ψ′(u) ∩ (ψ′(x′) ∪ ψ′(y′)) is contained in ψ′(u) \ ψ′(y), which
yields the announced inequality.

Choose arbitrary sets Mx in ψ′(x′)\ψ′(u) and My in ψ′(y′)\ψ′(u), each of size 2t.
We define a coloring ψ of G as follows. Set ψ(z) = ψ′(z) for each z ∈ V (G)\{x, y, v}.
Choose ψ(v) in J14tK \ ψ(u) of size 5t so that Mx ∪My ⊂ ψ(v). It holds that
|ψ(x′) ∩ ψ(v)| > |Mx| = 2t and |ψ(y′) ∩ ψ(v)| > 2t; hence, ψ can be extended to x
and y by Proposition 3.1. Observe that ψ is an (fG∅ , 14t)-coloring of G, which is a
contradiction.

Lemma 3.12. If G is a minimal counterexample to Theorem 3.2, then every vertex
of G has at most one neighbor of degree two.
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Proof. Suppose, on the contrary, that a vertex v of G has two distinct neighbors x
and y of degree two in G. Let x′ and y′ be the neighbors of x and y, respectively,
distinct from v. Lemma 3.11 implies that vxx′y′y is a 5-cycle. Moreover, Lemma 3.9
implies that x′, y′ and v all have degree three. Let u be the neighbor of v distinct
from x and y. If u had degree two, then by Lemma 3.11, its neighbor distinct from
v would be adjacent both to x′ and y′, and G would contain a triangle. Hence,
u has degree three. Let a and b be the neighbors of x′ and y′, respectively, not
belonging to the path xx′y′y (where possibly a = u or b = u).

If a has degree two, then Lemma 3.11 yields that a is adjacent to u. By
Lemmas 3.7 and 3.9, it follows that either b = u, or b has degree two and is adjacent
to u as well. However, G would then be one of the graphs in Figure 9, which are
both (f∅, 14)-colorable. Therefore, a has degree three and, by symmetry, so does b.

Let G′ = G − {x, y, v} and B′ = {x′, y′, u}. Since B′ is a nail for G′, the
minimality of G ensures the existence of an (fB′ , 14t)-coloring ψ′ of G′ for a positive
integer t. Let Lv = J14tK \ ψ′(u). As |Lv| = 9t and |ψ′(a)| = |ψ′(b)| = 5t, we can
choose disjoint sets Ma in Lv \ ψ′(a) and Mb in Lv \ ψ′(b) each of size 2t. We
define a coloring ψ of G as follows. For z ∈ V (G) \ {v, x, x′, y, y′}, set ψ(z) = ψ′(z).
Proposition 3.1 yields that |ψ′(a) ∩ ψ′(b)| 6 4t, and thus we can choose ψ(x′) in
J14tK \ (ψ′(a) ∪Mb) of size 5t so that Ma ⊂ ψ(x′) and |(ψ′(b) \ ψ′(a)) ∩ ψ(x′)| > t.
Let Ly′ = J14tK\(ψ(x′)∪ψ(b)). Note that Mb ⊂ Ly′ and |Ly′| > 5t. Choose ψ(y′) in
Ly′ of size 5t so that Mb ⊂ ψ(y′), and ψ(v) in Lv of size 5t so that Ma∪Mb ⊂ ψ(v).
It follows that |ψ(v) ∩ ψ(x′)| > |Ma| = 2t and |ψ(v) ∩ ψ(y′)| > |Mb| = 2t; hence ψ
can be extended to x and y as well, by Proposition 3.1. However, ψ is then an
(f∅, 14t)-coloring of G, which is a contradiction.

The following is a direct consequence of Lemmas 3.9 and 3.12.

Corollary 3.13. In a minimal counterexample to Theorem 3.2, every 5-cycle
contains at least four safe vertices.
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45BCDE

Figure 10: A configuration from Lemma 3.14.

We continue our study of the structure of minimal counterexamples that contain
vertices of degree two.

Lemma 3.14. Let G be a minimal counterexample to Theorem 3.2 and let v ∈ V (G)
have degree two. Let x and y be the neighbors of v; let the neighbors of x distinct
from v be a and b, and let the neighbors of y distinct from v be c and d. Then the
following hold.

1. ∅ is a nail for G− v, as well as for G− {v, x, y}.

2. The vertices a, b, c and d are pairwise distinct.

3. We let fG,v be the function defined by fG,v(z) = f∅(z) for z ∈ V (G) \
{v, x, y, a, b, c, d}, fG,v(z) = 4/14 for z ∈ {a, b, c, d}, fG,v(x) = fG,v(y) =
8/14 and fG,v(v) = 2/14. Then G has an fG,v-coloring.

Proof. Note that a, b, c and d have degree three by Lemma 3.12. Let us consider
each part of the statement separately.

1. Let G′ be either G− v or G− {v, x, y} and suppose that H is a dangerous
induced subgraph of G′ containing at most one safe vertex. Lemma 3.10 implies
that H is a 5-cycle. By Corollary 3.13, at least four of its vertices are safe in G. It
follows that H contains at least three vertices that have degree two in G′ and degree
three in G. There are only two such vertices if G′ = G − v. Hence, we assume
that G′ = G − {v, x, y}. If all vertices of H are safe in G, then a, b, c, d ∈ V (H);
however, the vertex of H distinct from a, b, c and d is then incident with a bridge
in G, contrary to Lemma 3.3.

Let us now consider the case where H contains exactly four vertices of degree
three in G. By symmetry, we can assume that a, b, c ∈ V (H) (let us note that a, b,
c and d are pairwise distinct, as three of them belong to H and have degree exactly
two). Let u be the vertex of H distinct from a, b and c that is safe in G. If u 6= d,
then the edge yd together with an edge incident with u form a 2-edge-cut in G.
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Thus, Lemma 3.7 implies that d has degree two in G, contrary to Lemma 3.12. It
follows that u = d and G is the graph depicted in Figure 10. However, G is then
(f∅, 14)-colorable, which is a contradiction.

2. Suppose, on the contrary, that a = c. Let G′ = G − v. As argued, ∅
is a nail for G′, so the minimality of G ensures the existence of an (fG

′
∅ , 14t)-

coloring ψ′ of G′ for a positive integer t. Note that fG
′

∅ (x) = 6/14 = fG
′

∅ (y), while
fG∅ (x) = 5/14 = fG∅ (y). Let M be an arbitrary subset of J14tK \ ψ′(a) of size t.
Define a coloring ψ of G as follows. For z ∈ V (G) \ {x, v, y}, set ψ(z) = ψ′(z);
furthermore, set ψ(x) = ψ′(x) \M , ψ(y) = ψ′(y) \M and ψ(v) = ψ′(a)∪M . Then
ψ is an (fG∅ , 14t)-coloring of G, which is a contradiction.

3. Again, let G′ = G − v and let ψ′ be an (fG
′

∅ , 14t)-coloring of G′. As
|ψ′(x)| = 6t = |ψ′(y)|, there exists a subset M of J14tK \ (ψ′(x) ∪ ψ′(y)) of size 2t.
Let Sa = ψ′(a)\ (ψ′(b)∪M), Sb = ψ′(b)\ (ψ′(a)∪M) and Sab = (ψ′(a)∩ψ′(b))\M ;
note that 3t 6 |Sa|+ |Sab| 6 5t and 3t 6 |Sb|+ |Sab| 6 5t. Furthermore, since ψ′(x)
has size 6t and is disjoint from M ∪ψ′(a)∪ψ′(b), it follows that 14t− |M | − |Sa| −
|Sab| − |Sb| > 6t, i.e., |Sa|+ |Sab|+ |Sb| 6 6t. Our next goal is to choose a set X in
J14tK \M of size 8t such that |X ∩ ψ′(a)| 6 t and |X ∩ ψ′(b)| 6 t. To this end, we
consider several cases, regarding the sizes of Sa and Sb. If |Sa| > t and |Sb| > t,
then choose X so that |X ∩ Sa| = |X ∩ Sb| = t and X ∩ Sab = ∅. Otherwise, by
symmetry, we can assume that |Sa| < t; consequently, |Sab| > 3t − |Sa| > 2t. If
|Sb| > t, then let X consist of 7t elements of J14tK \ (M ∪ ψ′(b)) and t elements
of Sb. Finally, if both Sa and Sb have less than t elements, supposing |Sa| 6
|Sb| < t, then let X consist of Sa ∪ Sb together with t− |Sb| elements of Sab and
8t−|Sa|− |Sb|− (t−|Sb|) = 7t−|Sa| elements of J14tK \ (M ∪ψ′(a)∪ψ′(b)); this is
possible, since |J14tK \ (M ∪ ψ′(a) ∪ ψ′(b))| = 12t− |Sa| − (|Sb|+ |Sab|) > 7t− |Sa|.
In each case, |X ∩ ψ′(z)| 6 t for z ∈ {a, b}, as desired. Symmetrically, there exists
a set Y in J14tK \M such that |Y ∩ ψ′(z)| 6 t for z ∈ {c, d}.

An (fG,v, 14t)-coloring of G is now obtained as follows. Set ψ(z) = ψ′(z) for
z ∈ V (G) \ {a, b, c, d, v, x, y}, ψ(x) = X, ψ(v) = M , ψ(y) = Y , ψ(a) = ψ′(a) \X,
ψ(b) = ψ′(b) \X, ψ(c) = ψ′(c) \ Y and ψ(d) = ψ′(d) \ Y .

Lemma 3.15. Every minimal counterexample to Theorem 3.2 is 3-regular.

Proof. Suppose, on the contrary, that G is a minimal counterexample containing
a vertex v of degree two. By Lemmas 3.9 and 3.12, all the other vertices of G at
distance at most two from v have degree three. Let x and y be the neighbors of v;
let the neighbors of x distinct from v be a and b, and let the neighbors of y distinct
from v be c and d. By Lemma 3.14, the vertices a, b, c and d are pairwise distinct.

In order to obtain a contradiction, we show that G is f∅-colorable. To do so,
we use the equivalent statement given by Theorem 2.1(d). Let us consider an
arbitrary non-negative weight function w for G. We need to show that G contains
an independent set X with w(X) > wf∅ . Let w2 = w(a) + w(b) + w(c) + w(d).

22



Assertion 1. G contains an independent set X0 satisfying

w(X0) > wf∅ +
1

14
(w2 − 3w(x)− 3w(y) + 4w(v)).

To prove Assertion *, we discuss several cases depending on the values of w on
vertices at distance at most two from v. By symmetry, we assume that w(x) 6 w(y).
Let G′ = G− {v, x, y}, and recall that ∅ is a nail for G′ by Lemma 3.14.

Suppose first that w(y) 6 w(v). Note that

wfG′
∅

= wfG∅ +
1

14
(6w(a)− 5w(a) + 6w(b)− 5w(b) + 6w(c)− 5w(c)

+ 6w(d)− 5w(d)− 5w(x)− 5w(y)− 6w(v))

= wfG∅ +
1

14
(w2 − 5w(x)− 5w(y)− 6w(v)).

By the minimality of G, there exists an independent set P of G′ with w(P ) > wfG′
∅

.

Let X0 = P ∪ {v} and note that X0 is an independent set of G such that

w(X0) = w(P ) + w(v) > wfG′
∅

+ w(v)

= wfG∅ +
1

14
(w2 − 5w(x)− 5w(y)− 6w(v)) + w(v)

= wfG∅ +
1

14
(w2 − 5w(x)− 5w(y) + 8w(v))

= wfG∅ +
1

14
(w2 − 3w(x)− 3w(y) + 4w(v)) +

2

14
(w(v)− w(x))

+
2

14
(w(v)− w(y))

> wfG∅ +
1

14
(w2 − 3w(x)− 3w(y) + 4w(v)).

Next, suppose that w(x) 6 w(v) < w(y). Let w′ be the (not necessarily non-
negative) weight function defined as follows: set w′(z) = w(z) for z ∈ V (G) \
{c, d, v, x, y}, w′(c) = w(c)− w(y) + w(v) and w′(d) = w(d)− w(y) + w(v). Note
that

w′
fG

′
∅

= wfG∅ +
1

14
(6w′(a)− 5w(a) + 6w′(b)− 5w(b) + 6w′(c)− 5w(c)

+ 6w′(d)− 5w(d)− 5w(x)− 5w(y)− 6w(v))

= wfG∅ +
1

14
(w2 − 5w(x)− 17w(y) + 6w(v)).

By the minimality of G and Theorem 2.1(c), there exists an independent set
P of G′ with w′(P ) > w′

fG
′

∅
. Let X0 be defined as follows: if {c, d} ∩ P 6=
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∅, then let X0 = P ∪ {v}, otherwise let X0 = P ∪ {y}. In the latter case,
w(X0) = w′(P ) + w(y). In the former case (supposing c ∈ P ), it holds that
w(X0) > w′(P ) + (w(c)−w′(c)) +w(v) = w′(P ) +w(y) (the inequality holds, since
if d also belongs to P , then the right side changes by w(d)−w′(d) = w(y)−w(v) > 0).
It follows that

w(X0) > w′(P ) + w(y) > w′
fG

′
∅

+ w(y)

= wfG∅ +
1

14
(w2 − 5w(x)− 17w(y) + 6w(v)) + w(y)

= wfG∅ +
1

14
(w2 − 5w(x)− 3w(y) + 6w(v))

= wfG∅ +
1

14
(w2 − 3w(x)− 3w(y) + 4w(v) + 2(w(v)− w(x))

> wfG∅ +
1

14
(w2 − 3w(x)− 3w(y) + 4w(v)).

Finally, assume that w(v) < w(x) 6 w(y). Let w′ be the (not necessarily
non-negative) weight function defined as follows: set w′(z) = w(z) for z ∈ V (G) \
{a, b, c, d, v, x, y}, w′(a) = w(a) − w(x) + w(v), w′(b) = w(b) − w(x) + w(v),
w′(c) = w(c)− w(y) + w(v) and w′(d) = w(d)− w(y) + w(v). Note that

w′
fG

′
∅

= wfG∅ +
1

14
(6w′(a)− 5w(a) + 6w′(b)− 5w(b) + 6w′(c)− 5w(c)

+ 6w′(d)− 5w(d)− 5w(x)− 5w(y)− 6w(v))

= wfG∅ +
1

14
(w2 − 17w(x)− 17w(y) + 18w(v)).

By the minimality of G and Theorem 2.1(c), there exists an independent set P of
G′ with w′(P ) > w′

fG
′

∅
. We now show that there exists an independent set X0 of

G such that w(X0) > w′(P ) + w(x) + w(y)− w(v). Indeed, if {a, b} ∩ P 6= ∅ and
{c, d} ∩ P 6= ∅ (supposing a ∈ P and c ∈ P ), then set X0 = P ∪ {v}. It follows
that

w(X0) > w′(P ) + (w(a)− w′(a)) + (w(c)− w′(c)) + w(v)

= w′(P ) + w(x) + w(y)− w(v),

as wanted. If {a, b} ∩ P 6= ∅ (supposing a ∈ P ) and {c, d} ∩ P = ∅, then
let X0 = P ∪ {y}. It follows that w(X0) > w′(P ) + (w(a) − w′(a)) + w(y) =
w′(P )+w(x)+w(y)−w(v), as wanted. Similarly, if {a, b}∩P = ∅ and {c, d}∩P 6= ∅,
then let X0 = P ∪ {x} and observe that w(X0) > w′(P ) + w(x) + w(y) − w(v).
Last, if {a, b} ∩ P = ∅ and {c, d} ∩ P = ∅, then let X0 = P ∪ {x, y}. It follows
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that w(X0) = w′(P ) + w(x) + w(y) > w′(P ) + w(x) + w(y)− w(v). In conclusion,

w(X0) > w′(P ) + w(x) + w(y)− w(v)

> w′
fG

′
∅

+ w(x) + w(y)− w(v)

= wfG∅ +
1

14
(w2 − 17w(x)− 17w(y) + 18w(v)) + w(x) + w(y)− w(v)

= wfG∅ +
1

14
(w2 − 3w(x)− 3w(y) + 4w(v)).

Therefore, in all the cases the set X0 has the required weight. This concludes
the proof of Assertion *.

By Lemma 3.14, the graph G has an (fG,v, 14t)-coloring ψ for a positive integer
t. For i ∈ J14tK, let Xi = {z ∈ V (G) : i ∈ ψ(z)}; note that Xi is an independent
set of G and

1

14t

14t∑
i=1

w(Xi) =
∑

z∈V (G)

fG,v(z)w(z)

=
∑

z∈{a,b,c,d,x,y,v}

(fG,v(z)− f∅(z))w(z) +
∑

z∈V (G)

f∅(z)w(z)

=
1

14
(−w2 + 3w(x) + 3w(y)− 4w(v)) +

∑
z∈V (G)

f∅(z)w(z)

= wf∅ +
1

14
(−w2 + 3w(x) + 3w(y)− 4w(v)).

Together with Assertion *, this implies that w(Xi) > wf∅ for some i ∈ J0 , 14tK.
Since this holds for every non-negative weight function for G, we conclude that G
has an fG∅ -coloring, which is a contradiction.

Lemma 3.16. Every minimal counterexample to Theorem 3.2 has girth at least
five.

Proof. Suppose, on the contrary, that G is a minimal counterexample that contains
a 4-cycle uvxy. Let a, c, b and d be the neighbors of u, v, x and y, respectively,
outside this 4-cycle.

Since G is triangle-free, {a, b} ∩ {c, d} = ∅. If a = b, then u and x have the
same neighborhood in G but they are not adjacent. The set B = {a, v, y} being
a nail for G − u, the minimality of G implies that G − u has an fB-coloring ψ.
Setting ψ(u) = ψ(x) yields an f∅-coloring of G, which is a contradiction.

Therefore, a 6= b and, symmetrically, c 6= d. It follows that a, b, c and d are
pairwise distinct. Let G′ = G−{u, v, x, y}. Consider a dangerous induced subgraph
H of G′. Lemma 3.10 implies that H is a 5-cycle. Furthermore, by Lemma 3.3, not
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all of a, b, c and d belong to V (H), as otherwise the vertex of H distinct from a, b, c
and d would be incident with a bridge. Therefore, H contains at least two vertices of
degree three in G′. It follows that ∅ is a nail for G′. By the minimality of G, there
exists an (fG

′
∅ , 14t)-coloring ψ′ of G′ for a positive integer t. Let Au, Av, Ax, Ay,

Bu, Bv, Bx and By be defined in the same way as in the proof of Lemma 3.10. Let
ψ be the coloring of G defined by ψ(z) = ψ′(z) for z ∈ V (G) \ {a, b, c, d, u, v, x, y},
ψ(a) = ψ′(a) \ Bu, ψ(b) = ψ′(b) \ Bx, ψ(c) = ψ′(c) \ Bv, ψ(d) = ψ′(d) \ By,
ψ(u) = Au ∪Bu, ψ(v) = Av ∪Bv, ψ(x) = Ax ∪Bx and ψ(y) = Ay ∪By. Then ψ is
an (fG∅ , 14t)-coloring of G, which is a contradiction.

Finally, we are ready to prove our main result.

of Theorem 3.2. If Theorem 3.2 were false, there would exist a subcubic triangle-
free graph G with a nail B forming a minimal counterexample to Theorem 3.2.
Then, Lemma 3.5 implies that B = ∅, while Lemmas 3.15 and 3.16 yield that G is
3-regular and contains no 4-cycles.

Let w be any non-negative weight function for G. For u, v ∈ V (G), let d(u, v)
be the length of a shortest path between u and v. For a vertex v ∈ V (G), let

Wv = 9w(v)− 5
∑

u : d(u,v)=1

w(u) +
∑

u : d(u,v)=2

w(u).

Since G is 3-regular and has girth at least five, for each u ∈ V (G), there are
exactly three vertices v with d(u, v) = 1 and exactly six vertices with d(u, v) = 2;
consequently,∑

v∈V (G)

Wv = 9
∑

v∈V (G)

w(v)− 5
∑

v∈V (G)

∑
u : d(u,v)=1

w(u) +
∑

v∈V (G)

∑
u : d(u,v)=2

w(u)

= 9
∑

v∈V (G)

w(v)− 5
∑

u∈V (G)

∑
v : d(u,v)=1

w(u) +
∑

u∈V (G)

∑
v : d(u,v)=2

w(u)

= 9
∑

v∈V (G)

w(v)− 5
∑

u∈V (G)

3w(u) +
∑

u∈V (G)

6w(u)

= (9− 15 + 6)
∑

v∈V (G)

w(v)

= 0.

Therefore, there exists a vertex v ∈ V (G) such that Wv > 0. Let u1, u2 and u3
be the neighbors of v, and let x1, . . . , x6 be the six vertices of G at distance exactly
2 from v. Set G′ = G− {v, u1, u2, u3}. Consider a dangerous induced subgraph H
of G. By Lemma 3.10, we know that H is a 5-cycle. Let S = V (H) ∩ {x1, . . . , x6}.
If |S| > 4, then at least two of the vertices in S have a common neighbor among
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u1, u2 and u3. By symmetry, assume that u1 is adjacent to both x1 and x2.
Since G is triangle-free, x1 is not adjacent to x2, and thus these two vertices also
have a common neighbor in H. Consequently, G contains a 4-cycle, which is a
contradiction. Therefore, each dangerous induced subgraph of G′ contains at least
two special vertices of degree three. It follows that ∅ is a nail for G′.

Note that

wfG′
∅

= wfG∅ +
1

14

(
6

6∑
i=1

w(xi)− 5
6∑
i=1

w(xi)− 5
3∑
i=1

w(ui)− 5w(v)

)
= wfG∅ +

1

14
(Wv − 14w(v)).

By the minimality of G and Theorem 2.1, there exists an independent set P of G′

such that w(P ) > wfG′
∅

. Let X = P ∪ {v}. Then

w(X) = w(P ) + w(v)

> wfG′
∅

+ w(v)

= wfG∅ +
1

14
(Wv − 14w(v)) + w(v)

= wfG∅ +
1

14
Wv

> wfG∅ .

Therefore, for every non-negative weight function w for G, there exists an
independent set X of G such that w(X) > wfG∅ . By Theorem 2.1, we conclude

that G has an fG∅ -coloring. This is a contradiction, showing that there exists no
counterexample to Theorem 3.2.

4 Conclusion

We believe that the method developed in this paper may be relevant for other frac-
tional colouring problems, and in particular for Conjecture 1.2. However, a straight-
forward attempt to combine our ideas with those of Heckman and Thomas [11]
fails, since they use the integrality of the independence number which permits to
round up the obtained lower bounds.

In order to prove Theorem 3.2, we used several equivalent definitions of
(weighted) fractional colorings. As a consequence, our proof is not constructive and
the following question is open.

Problem 4.1. Does there exist a polynomial-time algorithm to find a fractional
14/5-coloring of a given input subcubic triangle-free graph?
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We pause here to note that, in general, even if a graph is known to have
fractional chromatic number at most r and, thus, an (rN : N)-coloring for some
integer N , it is not even clear whether such a coloring can be written in polynomial
space. Indeed, all such values of N may be exponential in the number of vertices,
as is the case, e.g., for the Mycielski graphs [15]. This issue would be avoided if
the answer to the following question is positive.

Problem 4.2. Does there exist an integer t such that every subcubic triangle-free
graph has a (14t : 5t)-coloring?
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