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CONTACT HYPERSURFACES IN UNIRULED

SYMPLECTIC MANIFOLDS ALWAYS SEPARATE

CHRIS WENDL

Abstract. We observe that nonzero Gromov-Witten invariants with
marked point constraints in a closed symplectic manifold imply restric-
tions on the homology classes that can be represented by contact hyper-
surfaces. As a special case, contact hypersurfaces must always separate
if the symplectic manifold is uniruled. This removes a superfluous as-
sumption in a result of G. Lu [Lu00], thus implying that all contact
manifolds that embed as contact type hypersurfaces into uniruled sym-
plectic manifolds satisfy the Weinstein conjecture. We prove the main
result using the Cieliebak-Mohnke approach to defining Gromov-Witten
invariants via Donaldson hypersurfaces, thus no semipositivity or virtual
moduli cycles are required.
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1. The statement

1.1. Main result and consequences. In this note, we prove the following.

Main theorem. Suppose (M,ω) is a closed symplectic manifold and V ⊂
M is a real hypersurface that is pseudoconvex for some choice of ω-compatible
almost complex structure on M . Then the rational Gromov-Witten invari-
ants of (M,ω), defined in the sense of [CM07] (see §2.1.1 and §2.1.2), satisfy

GW
(M,ω)
0,m,A(PD[V ] ∪ α1, α2, . . . , αm;β) = 0

for all m ≥ 3, A ∈ H2(M), α1, . . . , αm ∈ H∗(M ;Q) and β ∈ H∗(M0,m;Q).
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2 CHRIS WENDL

Recall that a real hypersurface V in an almost complex manifold (M,J)
is pseudoconvex (also sometimes called J-convex) if the maximal J-
invariant subbundle ξ ⊂ TV is a contact structure whose canonical con-
formal class of symplectic structures tames J |ξ. As an important special
case, when (M,ω) is a symplectic manifold, we say V ⊂ M is a contact

type hypersurface if ω can be written in a neighborhood of V as dλ for
some 1-form λ whose restriction to V is a contact form. In that case, V
is J-convex for any choice of ω-tame almost complex structure J that pre-
serves the contact structure on V , and without loss of generality one can
also arrange J to be ω-compatible.

We will show in §1.2 below that the main theorem has the following
immediate consequence:

Corollary 1.1. Suppose (M,ω) is a closed symplectic manifold that is sym-
plectically uniruled (see Definition 1.5). Then every contact type hypersur-
face in (M,ω) is separating.

Some motivation to prove such a result comes from the Weinstein conjec-
ture, which asserts that any closed contact type hypersurface in a symplectic
manifold has a closed orbit of its characteristic line field. There is a long
history of results that prove this conjecture under various assumptions on
the existence of holomorphic curves in the ambient symplectic manifold,
cf. [HV92,LT00,Lu00]. However, such results have often been proved only
for separating contact hypersurfaces, leaving the question without this ex-
tra assumption open. Our theorem thus shows that the extra assumption is
superfluous, e.g. combining it with Guangcun Lu’s result, we obtain:

Corollary 1.2 (via [Lu00]). If (V, ξ) is a contact manifold that embeds into a
symplectically uniruled symplectic manifold as a contact type hypersurface,
then every contact form for (V, ξ) admits a periodic Reeb orbit, i.e. the
Weinstein conjecture holds for (V, ξ).

For more on symplectic manifolds to which this result applies, see [Hyv12]
and the references therein.

Remark 1.3. Our use of the technique of Cieliebak and Mohnke [CM07]
for defining the Gromov-Witten invariants via Donaldson hypersurfaces im-
poses certain technical restrictions on the scope of the above results: (1) The
setup in [CM07] only handles symplectic manifolds with integral cohomol-
ogy, i.e. [ω] ∈ H2(M ;Z), due to the need for a symplectic hypersurface
Poincaré dual to a large multiple of [ω]. One can obviously generalize this
to the assumption that [ω] is any real multiple of an integral class, and of
course every symplectic form admits a small perturbation that has this prop-
erty. It is likely moreover that the restriction to integral classes can be lifted
entirely by choosing symplectic hypersurfaces that approximate the relevant
homology classes, and indeed, the recent preprint of Ionel and Parker [IP]
claims to define fully deformation-invariant Gromov-Witten invariants for
arbitrary [ω] ∈ H2

dR(M) using similar techniques. For simplicity, we shall
nonetheless assume wherever necessary that [ω] is integral, in order to re-
main fully consistent with [CM07]. (2) Following [MNW13], one can define
a real hypersurface V in a symplectic manifold (M,ω) to be weakly con-

tact if there exists an ω-tame almost complex structure J for which V is
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J-convex. This is equivalent to the condition required in our main theorem
if dimV = 3, but in higher dimensions it appears to be more general. It is
very likely that our main theorem holds under this weaker assumption as
well, and the proof given here will imply this at least in the semipositive
case without coupling to gravity (using the standard setup from [MS04]). A
more general proof will probably be possible in the future using polyfolds
(cf. Remark 1.6). In the non-semipositive case, our reliance on the Don-
aldson hypersurface construction [Don96] necessitates the added restriction
that J is compatible with ω, not just tamed.

1.2. Recollections on Gromov-Witten theory. In this article, we re-
gard the Gromov-Witten invariants of a symplectic manifold (M,ω) as an
association to each pair of integers g,m ≥ 0 with 2g + m ≥ 3 and each
homology class A ∈ H2(M) of a homomorphism

(1.1) GW
(M,ω)
g,m,A : H∗(M ;Q)⊗m ⊗H∗(Mg,m;Q) → Q,

where Mg,m denotes the Deligne-Mumford compactification of the moduli
space of Riemann surfaces with genus g and m marked points. Let

PD : H∗(M ;Q) → H∗(M ;Q)

denote the Poincaré duality isomorphism, or its inverse when convenient.

In the absence of transversality problems, GW
(M,ω)
g,m,A(α1, . . . , αm;β) is inter-

preted as a count of rigid unparametrized J-holomorphic curves of genus g,
for a generic ω-tame almost complex structure J , withmmarked points such
that for i = 1, . . . ,m, the ith marked point is mapped to a generic smooth
representative of PD(αi) ∈ H∗(M), and the underlying conformal structure
of the domain lies in a generic smooth representative of β ∈ H∗(Mg,m). In
practice, the transversality problems that arise in this definition require con-
siderable effort to overcome, and the literature contains various approaches
(e.g. [FO99,LT98,Rua99,Sie,CM07,HWZ]) which may or may not all define
the same invariants.

In order to be concrete and also minimize the technical apparatus needed,
in this paper we shall work with the definition provided by Cieliebak and
Mohnke [CM07] for the g = 0 case, which uses a Donaldson hypersurface as
auxiliary data and thus requires the symplectic form to represent an inte-
gral cohomology class. The essential details of this setup will be reviewed in
§2.1.2, though we shall also attempt to express the main argument in terms
that do not depend on these details. In particular, the reader who would
prefer to avoid serious technical issues by assuming (M,ω) is semipositive
may do so by skipping from §2.1.1 (where we review the main definitions in
the semipositive case) straight to §3. In either case, the theory is defined es-

sentially by constructing a suitably compactified moduli space MA
0,m(M,J)

of stable nodal pseudoholomorphic spheres homologous to A, withmmarked
points, such that the natural evaluation/forgetful map

(1.2) (ev,Φ) = (ev1, . . . , evm,Φ) : MA
0,m(M,J) → Mm ×M0,m

defines a rational pseudocycle in the sense of [MS04, §6.5], meaning that
rational intersection numbers with homology classes in Mm ×M0,m can be
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defined. The homomorphism (1.1) is then defined, up to a combinatorial
constant (see (2.4)), by

(1.3) GW
(M,ω)
0,m,A(α1, . . . , αm;β) = [(ev,Φ)] · (PD(α1)× . . .× PD(αm)× β) .

Remark 1.4. The Gromov-Witten invariants defined in [CM07] do not in-
volve “coupling to gravity,” i.e. they rely on the fact that ev : MA

0,m(M,J) →
Mm is a pseudocycle, but do not deal at all with the forgetful map Φ :
MA

0,m(M,J) → M0,m, associating to a J-holomorphic curve its underlying

conformal structure. It is nonetheless true in the context of [CM07] that
(ev,Φ) is a pseudocycle and hence (1.3) is well defined; the proof of this fact
is almost already implicit in that paper, and we shall spell out the missing
ingredients in Appendix A. Note that in the semipositive case, the standard
approach via domain-dependent almost complex structures suffices to prove
that the evaluation map is a pseudocycle, but not the forgetful map—see
[MS04, pp. 184–186]. Thus the simplified version of our arguments (avoiding
Donaldson hypersurfaces) for the semipositive case will be valid only for the

simplified invariants GW
(M,ω)
0,m,A : H∗(M ;Q)⊗m → Z, which match (1.1) if β

is defined as the fundamental class of M0,m.

We now recall the following standard definition.

Definition 1.5. A closed symplectic manifold (M,ω) is said to be sym-

plectically uniruled if it has a nonzero rational Gromov-Witten invariant
with at least one pointwise constraint, i.e. there exist A ∈ H2(M), an integer
m ≥ 3 and classes α2, . . . , αm ∈ H∗(M ;Q), β ∈ H∗(M0,m;Q) such that

(1.4) GW
(M,ω)
0,m,A(PD[pt], α2, . . . , αm;β) 6= 0,

where [pt] ∈ H0(M) denotes the homology class of a point.

Morally, being symplectically uniruled means one can find a set of con-
straints so that there is always a nonzero count of constrained holomorphic
spheres passing through a generic point.

Proof of Corollary 1.1. If V ⊂ M is a nonseparating hypersurface, then
[V ] 6= 0 ∈ H∗(M ;Q) and one can therefore find a cohomology class α1 ∈
H∗(M ;Q) with 〈α1, [V ]〉 = 1. Hence

PD[V ] ∪ α1 = PD[pt].

Now if V is also pseudoconvex for some compatible almost complex struc-
ture, then the main theorem implies that (1.4) cannot be satisfied for any
choices α2, . . . , αm, β, hence (M,ω) is not uniruled. �

Remark 1.6. An earlier version of the present paper made the optimistic
claim that the arguments given here can be carried out using the polyfold
theory of Hofer-Wysocki-Zehnder [HWZ]. While that is probably true, sub-
sequent discussions with Hofer have led to the conclusion that it is not fully
provable using the technology in its present state: in particular, homologi-
cal intersection theory and Poincaré duality are not currently well enough
understood in the polyfold context to justify anything analogous to Equa-
tion (3.2). I would like to thank Joel Fish and Helmut Hofer for helping
clarify this point.
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1.3. Discussion. We now add a few more remarks on the context of the
main theorem and its corollaries.

1.3.1. Nonseparating hypersurfaces. Nonseparating contact type hypersur-
faces do exist in general, though they are usually not easy to find. A con-
struction in dimension 4 was suggested by Etnyre and outlined in [ABW10,
Example 1.3]: the idea is to start from a symplectic filling with two boundary
components, attach a Weinstein 1-handle to form the boundary connected
sum and then attach a symplectic cap to form a closed symplectic manifold,
which contains both boundary components of the original symplectic filling
as nonseparating contact hypersurfaces. At the time [ABW10] was written,
examples of symplectic fillings with disconnected boundary were known only
up to dimension 6 (due to McDuff [McD91], Geiges [Gei95,Gei94] and Mit-
sumatsu [Mit95]), but recently a construction in all dimensions appeared
in work of the author with Massot and Niederkrüger [MNW13]. It seems
likely that these examples can be combined with the symplectic capping
result of Lisca and Matić [LM97, Theorem 3.2] for Stein fillable contact
manifolds to construct examples of nonseparating contact hypersurfaces in
all dimensions, but we will not pursue this any further here.

Note that it is somewhat easier to find examples of weakly contact hy-
persurfaces that do not separate: for instance, considering the standard
symplectic T4 as a product of two symplectic 2-tori, for any nonseparating
loop γ ⊂ T2 the hypersurface γ × T2 ⊂ T4 admits an obvious foliation by
symplectic 2-tori, and this foliation can be perturbed to any of the tight
contact structures on T3 (cf. [Gir94]). Notice that one cannot use the same
trick to produce a nonseparating weakly contact hypersurface in T2 × S2

with any product symplectic structure, as the latter is uniruled.1 This im-
plies the well known fact (see [ET98]) that the obvious foliation by spheres
on S1 × S2 cannot be perturbed to a contact structure.

1.3.2. Higher genus. The theorem of Lu [Lu00] also establishes the Wein-
stein conjecture for separating contact type hypersurfaces under the more
general assumption

(1.5) GW
(M,ω)
g,m,A(PD([pt]), α2, . . . , αm;β) 6= 0,

i.e. one need not assume g = 0. In fact, using the more recent technology of
“stretching the neck” [BEH+03], one can give a straightforward alternative
proof of Lu’s result which also shows that any nonseparating contact hy-
persurface in a manifold satisfying (1.5) must have a closed characteristic.2

Note however that in the genus zero case, this is a weaker statement than
Corollary 1.2: it asserts that a particular contact form on (V, ξ) ⊂ (M,ω)
admits a closed Reeb orbit, but not that this is true for every possible choice
of contact form. The obvious stretching argument does not appear to imply
this stronger statement in general except when V separates M .

1Actually, the statement of our main theorem for T2
×S2 can be proved by more elemen-

tary means without mentioning Gromov-Witten invariants, cf. [ABW10, Theorem 1.15].
2For this heuristic discussion we are ignoring the usual analytical issues of how to define

the higher genus Gromov-Witten invariants; definitions using the Donaldson hypersurface
idea have appeared in recent work of Gerstenberger [Ger13] and Ionel-Parker [IP].
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It seems unlikely moreover that our main result would hold under the
more general assumption (1.5)—certainly the method of proof given be-
low does not work, as it requires the fact that the relevant holomorphic
curves in M can always be lifted to a cover (since S2 is simply connected).
However, it was pointed out to me by Guangcun Lu that due to relations
among Gromov-Witten invariants (see [Lu06, §7]), certain conditions on
higher genus invariants will imply that (M,ω) is also uniruled, e.g. this is
the case whenever there is a nontrivial invariant of the form

GW
(M,ω)
g,m,A(PD([pt]), α2, . . . , αm; [pt]) 6= 0.

The reason is that this invariant counts curves with a fixed conformal struc-
ture on the domain, so one can derive holomorphic spheres from them by
degenerating the conformal structure to “pinch away” the genus.

Remark 1.7. Note that in the above formulation of the Weinstein conjecture
for closed contact hypersurfaces, the ambient symplectic manifold need not
be closed, e.g. every contact manifold is a contact hypersurface in its own
(noncompact) symplectization. As was shown in [ABW10], there are many
contact manifolds that do not admit any contact type embeddings into any
closed symplectic manifold—as far as I am aware, all contact manifolds
that are currently known to admit such embeddings are also symplectically
fillable.

1.4. Acknowledgments. I would like to thank Guangcun Lu for comments
on a preliminary version of this paper, Kai Cieliebak for feedback on the ap-
pendix, and Patrick Massot, Helmut Hofer, Joel Fish and Jean-Paul Mohsen
for useful conversations. The question considered here was originally brought
to my attention by a talk of Clément Hyvrier about his paper [Hyv12] at
the Sixth Workshop on Symplectic Geometry, Contact Geometry and In-

teractions in Madrid, February 2–4, 2012, funded by the ESF’s CAST pro-
gramme. My approach to the proof owes a slight debt to an observation
made by an anonymous referee for the paper [ABW10]. Likewise, my un-
derstanding of Cieliebak-Mohnke transversality owes a substantial debt to
the CNRS-funded Summer School on Donaldson Hypersurfaces that took
place in La Llagonne, June 17–21, 2013.

2. Some preparations

In this section, we shall review some crucial definitions, starting in §2.1
with the construction of the Gromov-Witten pseudocycle in both the semi-
positive and general cases. In §2.2, we will also prove a simple result about
Donaldson hypersurfaces that is needed to carry out our application to con-
tact hypersurfaces in the non-semipositive case.

2.1. Defining the Gromov-Witten pseudocycle. We will now review
the definitions of the moduli spaces that determine the pseudocycle (1.2).
We begin with the semipositive case in §2.1.1 before addressing the general
case in §2.1.2.
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2.1.1. The semipositive case. Recall that a closed 2n-dimensional symplectic
manifold (M,ω) is called semipositive if there are no spherical homology
classes A ∈ π2(M) satisfying

ω(A) > 0 and 3− n ≤ c1(A) < 0.

In particular, this is always satisfied if n = 2 or 3. Under this condition, one
can define integer-valued Gromov-Witten invariants

GW
(M,ω)
0,m,A : H∗(M ;Q)⊗m → Z

for any m ≥ 3 and A ∈ H2(M) by the following prescription explained
in [MS04]. (The original construction of these invariants is due to Ruan
[Rua96].)

Let Jτ (M,ω) denote the space of smooth ω-tame almost complex struc-
tures on M , and define

JS2 :=
{
J ∈ Γ(pr∗2 EndR(TM)) | J(z, ·) ∈ Jτ (M,ω) for all z ∈ S2

}
,

where pr2 : S2 × M → M denotes the projection. We call JS2 the space
of smooth ω-tame domain-dependent almost complex structures (where the
“domain” is S2). Given J ∈ JS2 , a smooth map u : S2 → M is said to be
J-holomorphic if for all z ∈ S2,

(2.1) du(z) + J(z, u(z)) ◦ du(z) ◦ i = 0,

where i is the standard complex structure on S2 = C∪{∞}. For any m ≥ 3
and A ∈ H2(M), we can then define the moduli space

MA
0,m(M,J) = {(u, z)} ,

where u : S2 → M is a J-holomorphic map with [u] = A, and z =
(z4, . . . , zm) is an ordered (m − 3)-tuple of pairwise distinct points in S2 \
{0, 1,∞}. Setting (z1, z2, z3) := (0, 1,∞), the evaluation map is then
defined by

ev = (ev1, . . . , evm) : MA
0,m(M,J) → Mm,

evj(u, z) = u(zj) for j = 1, . . . ,m.

The forgetful map Φ : MA
0,m(M,J) → M0,m is likewise defined by asso-

ciating to (u, z) the equivalence class of conformal structures on S2 with m
marked points positioned at (0, 1,∞, z4, . . . , zm). Note that since we have
fixed the positions of the first three marked points, there is no need to divide
out reparametrizations.

Under the semipositivity condition, one can show using standard index
computations (see [MS04]) that ev : MA

0,m(M,J) → Mm is a pseudocycle

of dimension 2(n− 3) + 2c1(A) + 2m for generic choices of J ∈ JS2 , and for
such choices, the corresponding Gromov-Witten invariant (without coupling
to gravity) can be computed for α1, . . . , αm ∈ H∗(M ;Z) as

(2.2) GW
(M,ω)
0,m,A(α1, . . . , αm) = [ev] · (PD(α1)× . . .× PD(αm)) ∈ Z.

As mentioned already in Remark 1.4, the forgetful map is generally not a
pseudocycle for this definition of the moduli space, and we shall therefore
ignore coupling to gravity in our discussion of the semipositive case.
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The genericity requirement in (2.2) implies that one cannot generally
assume J to be domain-independent. It will be important for our application
however that one can do the next best thing: fix any J1 ∈ Jτ (M,ω), which
we shall refer to henceforward as the reference almost complex structure.
We can regard J1 as an element of JS2 with constant dependence on z ∈ S2,
and the tangent space at J1 to the Fréchet manifold JS2 is then

TJ1JS2 =
{
Y ∈ Γ(pr∗2 EndR(TM)) | Y (z, p)J1(p) + J1(p)Y (z, p) = 0

for all (z, p) ∈ S2 ×M
}
.

After choosing a smooth family of metrics on the manifolds of complex
structures at points in M , we can write any J ∈ JS2 in some C0-small
neighborhood of J1 as J(z, p) = expJ1(p) Y (z, p) for some C0-small section
Y ∈ TJ1JS2 . Genericity then allows us to conclude the following:

Lemma 2.1. There exists a sequence Yk ∈ TJ1JS2 converging to 0 in C∞

such that (2.2) holds with the Gromov-Witten pseudocycle ev : MA
0,m(M,J) →

Mm defined for any J = expJ1 Yk. �

2.1.2. The Cieliebak-Mohnke approach. We now consider (M,ω) to be an
arbitrary closed 2n-dimensional symplectic manifold that satisfies [ω] ∈
H2(M ;Z) but is not necessarily semipositive. The purpose of this section
is to summarize the relevant details of the recipe from [CM07] for defining
the Gromov-Witten invariants.

As auxiliary data, we choose an ω-compatible almost complex structure
J0, and a so-called Donaldson hypersurface of degree D ∈ N:

ZD ⊂ (M,ω) symplectic, such that PD[ZD] = D[ω].

The existence of ZD for large D ≫ 0 is provided by a deep theorem of
Donaldson [Don96], and we can assume moreover that ZD is nearly J0-
holomorphic, in the sense that its Kähler angle (see [Don96, p. 669]) is
arbitrarily small if D is sufficiently large. It follows in particular that for
any ǫ > 0, if D > 0 is sufficiently large, one can find J1 ∈ Jτ (M,ω) with
‖J1 − J0‖C0 < ǫ such that ZD is J1-holomorphic. We shall assume in the
following that such a J1 ∈ Jτ (M,ω) has been chosen and is fixed.

For an integer k ≥ 0, suppose T is a k-labelled tree, i.e. a tree together
with a partition of {1, . . . , k} assigning some subset to each vertex α ∈ T .
We shall write αEβ whenever T contains an edge connecting the vertices
α, β ∈ T , and denote by αj ∈ T the vertex associated to j ∈ {1, . . . , k} by
the labelling. Then if Sα denotes a copy of S2 for each α ∈ T , we can regard
a nodal curve with k marked points modelled on T as a tuple

z =
(
{zαβ ∈ Sα}αEβ , {zj ∈ Sαj

}j∈{1,...,k}
)

such that for each α ∈ T , all the points in this tuple lying on Sα (the special
points) are distinct. We associate to z the nodal Riemann surface

Σz :=
∐

α∈T
Sα

/
zαβ ∼ zβα,

where each component Sα is assumed to carry the standard complex struc-
ture i. The nodal curve z (or equivalently the nodal Riemann surface Σz)
is called stable if for each vertex α ∈ T , there are at least three special
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points; note that this is actually a property of the labelled tree T , so we can
equivalently say z is stable if it is modelled on a stable k-labelled tree. In
this case, z represents an element [z] of the Deligne-Mumford space M0,k.
There is a natural stabilization map z 7→ st(z) that makes any nodal curve
z into a stable nodal curve st(z) by removing vertices with fewer than three
special points and placing marked points on neighboring vertices as neces-
sary; this determines a holomorphic surjection on the corresponding nodal
Riemann surfaces

st : Σz → Σst(z).

For each α ∈ T , denote by JSα a copy of the space JS2 of domain-
dependent almost complex structures defined in the previous section, and
let

JT :=
∏

α∈T
JSα .

For J ∈ JT , a nodal J-holomorphic map with k marked points is
a pair (z,u), where z is a nodal curve with k marked points modelled on
T , and u : Σz → M is a continuous map whose restriction to each sphere
Sα ⊂ Σz is smooth and J-holomorphic (in the sense of (2.1)) with respect
to the Sα-dependent almost complex structure determined by J .

Recall next that since M0,k+1 is a smooth manifold for any k ≥ 2, we can

consider M0,k+1-dependent almost complex structures

J ∈ Γ(pr∗2 EndR(TM)) such that J([z], ·) ∈ Jτ (M,ω),

where as usual we denote the projection pr2 : M0,k+1×M → M . For k ≥ 3,
this has a convenient interpretation using the canonical projection

π : M0,k+1 → M0,k

which forgets the last marked point and stabilizes the result. Namely, for any
nodal curve zwith k marked points, π−1([st(z)]) can be identified canonically
with the nodal curve Σst(z), i.e. we parametrize π−1([st(z)]) via the position
of the extra marked point. Thus if z is modelled on the k-labelled tree T , we
can associate to z and the family J above a Σz-dependent almost complex
structure

Jz ∈ JT , Jz(z, ·) := J([st(z), st(z)], ·),
where we use [st(z), st(z)] as shorthand for the element of π−1([st(z)]) ∈
Mk+1 corresponding to st(z) ∈ Σst(z) under the above identification. For
technical reasons, it is important to consider only families J that are co-

herent in the sense defined in [CM07, §3], and we shall denote the space
of smooth M0,k+1-dependent ω-tame almost complex structures satisfying
this condition by

Jk+1 =
{
J : M0,k+1 → Jτ (M,ω) | J is coherent

}
.

For our purposes, all that we will need to know about the coherence condi-
tion is stated in the following lemma, which follows immediately from the
definition in [CM07, §3].
Lemma 2.2. For any J ∈ Jk+1, if z is a nodal curve modelled on the
k-labelled tree T , then for each α ∈ T , the restriction of the family

Σz → Jτ (M,ω) : z 7→ Jz(z, ·)
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to Sα depends only on z ∈ Sα and the special points of z on Sα. �

We can now define the moduli spaces needed for the Gromov-Witten
invariants. Given an integer m ≥ 0 and A ∈ H2(M), let

ℓ := A · [ZD] = Dω(A) ∈ N.

We may easily assume ℓ > 3 by making D ∈ N sufficiently large (in general
it will be much larger). Choose J ∈ Jℓ+1 with the property that

J([z], ·) ≡ J1 in a neighborhood of ZD, for all [z] ∈ M0,ℓ+1.

Using the canonical projection πm : M0,m+ℓ+1 → M0,ℓ+1 that forgets the
first m marked points and then stabilizes, we can associate to J a coherent
M0,m+ℓ+1-dependent almost complex structure π∗

mJ . Then for any nodal
curve z modelled on an (m+ℓ)-labelled tree T , we regard a map u : Σz → M
as J-holomorphic if it satisfies the Cauchy-Riemann equation (2.1) for the
Σz-dependent almost complex structure (π∗

mJ)z. Given homology classes

{Aα ∈ H2(M)}α∈T such that
∑

α∈T
Aα = A,

the pair (T, {Aα}) is called a weighted tree, and it is called stable if every
vertex α ∈ T with Aα = 0 has at least three special points, i.e. marked points

plus adjacent vertices. We define M̃{Aα}
T (M,J ;ZD) to be the space of pairs

(z,u) as above such that [u|Sα ] = Aα for each α ∈ T and u maps each of
the last ℓ marked points into ZD. Note that since ZD is J-holomorphic (as
J matches J1 near ZD), all isolated intersections of u with ZD are positive;
in particular, whenever z has no nodes and A 6= 0, the relation ℓ = A · [ZD]
implies that either the image of u is contained in ZD or the intersections of
u with ZD occur only at the last ℓ marked points. The former is excluded
under suitable assumptions on J and for sufficiently large D ∈ N, due to
[CM07, Propositions 8.13 and 8.14].

Remark 2.3. The class of holomorphic curves defined above has the crucial
property that all isolated intersections with ZD are positive, not only the
guaranteed intersections at the last ℓmarked points. Since the count of these
intersections is controlled topologically, positivity provides the necessary
lower bound on the number of marked points on components of nodal curves,
guaranteeing that such curves have stable domains (see [CM07] for details).

We write (z,u) ∼ (z′,u′) if there exists a biholomorphic isomorphism
between the nodal curves z and z′ such that u and u′ are correspond-
ingly related by reparametrization. We then define the moduli space of
J-holomorphic curves modelled on (T, {Aα}) as

M{Aα}
T (M,J ;ZD) = M̃{Aα}

T (M,J ;ZD)
/
∼,

along with the evaluation map,

ev = (ev1, . . . , evm) : M{Aα}
T (M,J ;ZD) → Mm,

which evaluates u at its first m marked points. If m ≥ 3, we can also define
the forgetful map

Φ : M{Aα}
T (M,J ;ZD) → M0,m,
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which forgets both the map u and the last ℓ marked points of z, and then
stabilizes the resulting nodal curve with m marked points. The top stratum
is the component

MA
0,m+ℓ(M,J ;ZD) := M{Aα}

T (M,J ;ZD), where |T | = 1,

consisting of equivalence classes [(z,u)] such that z has no nodes; in this
case u : S2 → M is simply a pseudoholomorphic sphere, for some domain-
dependent almost complex structure determined by J and the positions of

its last ℓ marked points. The union of the spaces M{Aα}
T (M,J ;ZD) for all

stable weighted trees (T, {Aα}) with
∑

α Aα = A carries a natural topology
as a metrizable Hausdorff space, the Gromov topology, and we denote by

MA
0,m+ℓ(M,J ;ZD) ⊂

⋃

(T, {Aα}) stable

M{Aα}
T (M,J ;ZD)

the closure of MA
0,m+ℓ(M,J ;ZD) in this space.

If m ≥ 3, then for suitable choices of J ∈ Jℓ+1 matching the reference
structure J1 near ZD,

(2.3) (ev,Φ) : MA
0,m+ℓ(M,J ;ZD) → Mm ×M0,m

is a pseudocycle of dimension

dimMA
0,m+ℓ(M,J ;ZD) = 2(n− 3) + 2c1(A) + 2m,

and the resulting rational Gromov-Witten invariants

GW
(M,ω)
0,m,A : H∗(M ;Q)⊗m ⊗H∗(M0,m;Q) → Q,

GW
(M,ω)
0,m,A(α1, . . . , αm, β) =

1

ℓ!
[(ev,Φ)] · (PD(α1)× . . .× PD(αm)× β)

(2.4)

are independent of all choices. If one excludes the forgetful map and β ∈
H∗

(
M0,m

)
from this statement, then it is simply the main result of [CM07]

(and is also valid for any m ≥ 0). We will explain in Appendix A how the
arguments of Cieliebak and Mohnke can be modified to include the forgetful
map in the discussion.

As alluded to above, the constructions in [CM07] require some extra as-
sumptions on J ∈ Jℓ+1 in order to define the Gromov-Witten invariants, but
the details of these assumptions will not concern us beyond the following
analogue of Lemma 2.1. Recall that we have fixed a reference almost complex
structure J1 for which the Donaldson hypersurface ZD is J1-holomorphic.
We can trivially regard J1 as an element of Jℓ+1 with constant dependence
on M0,ℓ+1. Then any other element of Jℓ+1 that is C0-close to J1 can be
written as

J = expJ1 Y

for some Y ∈ TJ1Jℓ+1, where the latter is the Fréchet space of coherent (see
[CM07, §3]) smooth sections of pr∗2 EndR(TM) → M0,ℓ+1 ×M satisfying

Y ([z], p)J1(p) + J1(p)Y ([z], p) = 0 for all ([z], p) ∈ M0,ℓ+1 ×M.
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Lemma 2.4. There exists a sequence Yk ∈ TJ1Jℓ+1 converging to 0 in C∞

such that (2.4) holds with the Gromov-Witten pseudocycle (2.3) defined for
any J = expJ1 Yk. �

2.2. Donaldson hypersurfaces transverse to a contact hypersurface.

In order to apply the Gromov-Witten invariants of [CM07] to a situation
involving pseudoconvex hypersurfaces, we need the following additional fact
about Donaldson hypersurfaces.

Proposition 2.5. Suppose (M,ω) is a closed 2n-dimensional symplectic
manifold with [ω] ∈ H2(M ;Z), J0 is an ω-compatible almost complex struc-
ture, and V ⊂ M is a closed (2n − 1)-dimensional J0-convex hypersurface
with induced contact structure

ξ = TV ∩ J0(TV ) ⊂ TV.

Then for all D ∈ N sufficiently large, there exists a Donaldson hypersurface
ZD ⊂ (M,ω) of degree D that intersects V transversely in a contact sub-
manifold of (V, ξ). Moreover, for any ǫ > 0, if D ∈ N is sufficiently large,
then one can find ZD with the above property and an ω-tame almost complex
structure J1 on M such that

(1) ZD is J1-holomorphic;
(2) V is J1-convex with ξ = TV ∩ J1(TV );
(3) ‖J1 − J0‖C0 < ǫ.

The proposition is a straightforward application of Mohsen’s relative ver-
sion [Moh] of an estimated transversality result of Donaldson and Auroux
[Don96, Aur97]. To explain this, we must recall some details from the
asymptotically holomorphic methods of Donaldson and Auroux, as used
by Mohsen.

We first need to define a quantitative measurement of the distance of
a real subspace of a complex vector space from being complex. Suppose
(E, J) is a finite-dimensional complex vector space with Hermitian inner

product g, and write |v| :=
√

g(v, v) for v ∈ E. Then for any real-linear
subspace E′ ⊂ E of even dimension, define

Θg(E
′;E, J) := max

v∈E′, |v|=1
dist

(
Jv,E′)

= max
v∈E′, |v|=1

(
min
w∈E′

|Jv − w|
)
.

It will be useful to note that this definition depends on the Hermitian metric
only up to positive rescaling, i.e.

(2.5) Θcg(E
′;E, J) = Θg(E

′;E, J) for all c > 0.

It also depends continuously on all the data, thus if B is a compact space
and (E, J) → B is a complex vector bundle of finite rank with Hermitian
bundle metric g, then for any real subbundle E′ ⊂ E of even rank, we can
similarly define

Θg(E
′;E, J) := max

p∈B
Θg(E

′
p;Ep, J) ≥ 0.
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Observe that if ω is any symplectic structure on (E, J) that tames J , then
any sufficiently small perturbation of a complex subbundle is automatically
also a symplectic subbundle, thus we have the following.

Lemma 2.6. Suppose B is a compact space and (E, J) → B is a complex
vector bundle of finite rank, equipped with a Hermitian bundle metric g. In
each of the following statements, assume E′ ⊂ E is a real subbundle of even
rank.

(a) E′ is a complex subbundle of (E, J) if and only if Θg(E
′;E, J) = 0.

(b) For any C0-open neighborhood UJ of J in the space of smooth com-
plex structures on E, there exists a number c > 0 such that every
E′ ⊂ E with Θg(E

′;E, J) < c is a complex subbundle of (E, J ′) for
some J ′ ∈ UJ .

(c) For any symplectic structure ω on E → B that tames J , there exists
a number c′ > 0 such that every E′ ⊂ E satisfying Θg(E

′;E, J) < c′

is a symplectic subbundle of (E,ω).

�

In order to relate the above definition to questions of estimated transver-
sality, we define (following [Moh]) for any real-linear map A : V → W
between finite-dimensional Euclidean vector spaces, the surjectivity mod-

ulus

Surj(A) := min
λ∈W ∗\{0}

‖λ ◦ A‖
‖λ‖ ≥ 0.

Lemma 2.7. The surjectivity modulus has the following properties.

(a) Surj(A) > 0 if and only if A is surjective, and in this case

Surj(A) ≥ sup

{
1

‖B‖

∣∣∣∣ B : W → V is a right inverse of A

}
.

(b) For any two real-linear maps A,B : V → W ,

Surj(A+B) ≥ Surj(A)− ‖B‖.

(c) Suppose (V, J, g) and (V ′, J ′, g′) are finite-dimensional Hermitian
vector spaces and A = A1,0 + A0,1 : V → V ′ is real-linear, where
A1,0 and A0,1 denote the complex linear and antilinear parts respec-
tively. Then

(2.6) Θg(kerA;V, J) ≤ 2
‖A0,1‖
Surj(A)

.

Proof. The first two properties are proved by straightforward computations.
The following proof of the third property was explained to me by Jean-Paul
Mohsen.

Let V ∗
kerA = {µ ∈ V ∗ | µ|kerA = 0}, which is precisely the space of dual

vectors on V of the form {µ = λ◦A ∈ V ∗ | λ ∈ W ∗}. Now suppose v ∈ kerA
and |v| = 1. The distance of Jv from kerA is the norm of its second part
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under the orthogonal decomposition V = (kerA)⊕ (kerA)⊥, hence

dist(Jv, kerA) = max
w∈(kerA)⊥\{0}

|〈w, Jv〉|
|w| = max

µ∈V ∗
kerA

\{0}

|µ(Jv)|
‖µ‖

= max
λ∈W ∗\{0}

|λ ◦ A(Jv)|
‖λ ◦ A‖ .

Now, using the fact that Av = 0 and that A1,0 commutes while A0,1 anti-
commutes with the complex structures, we have

A(Jv) = A1,0Jv +A0,1Jv = J ′A1,0v − J ′A0,1v = −2J ′A0,1v,

hence |A(Jv)| ≤ 2‖A0,1‖, implying

dist(Jv, kerA) ≤ max
λ∈W ∗\{0}

2‖λ‖ · ‖A0,1‖
‖λ ◦ A‖ = 2

‖A0,1‖
Surj(A)

.

�

Next, assume (M,ω) is a closed symplectic manifold with [ω] ∈ H2(M ;Z),
and J0 is an ω-compatible almost complex structure. This determines the
sequence of Riemannian metrics

g := ω(·, J ·), gD := D · g for D ∈ N

on M . Let L → M denote a complex line bundle with c1(L) = [ω], equipped
with a Hermitian metric 〈 , 〉 and a Hermitian connection ∇ whose curvature
2-form is −2πiω. For D ∈ N, we also consider the D-fold tensor power
L⊗D → M , with its induced Hermitian metric and Hermitian connection,
also denoted by 〈 , 〉 and ∇ respectively; the latter has curvature −2πiDω.
For sections s : M → L⊗D, we denote by ∂s and ∂̄s respectively the complex
linear and antilinear parts of the covariant derivative ∇s. We will always
define C0-norms of ∇s and related tensors with respect to the metrics gD
on TM and 〈 , 〉 on L⊗D, e.g.

‖∇s(p)‖gD := max
X∈TpM\{0}

|∇Xs|
|X|gD

for p ∈ M,

‖∇s‖gD := sup
p∈M

‖∇s(p)‖gD ,

where |X|gD :=
√

gD(X,X) for X ∈ TpX and |v| :=
√

〈v, v〉 for v ∈ L⊗D
p .

The surjectivity modulus of ∇s(p) at points p ∈ M will also be defined
relative to this choice of metrics, which we shall indicate via the notation

SurjgD(∇s(p)) := min
06=λ∈HomR(L⊗D

p ,R)

‖λ ◦ ∇s(p)‖gD
‖λ‖ .

This means SurjgD(∇s(p)) = 1√
D
Surjg(∇s(p)).

The next two definitions are essentially due to Auroux [Aur97], though
we have made minor modifications to fit them into the framework of [Moh].
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Definition 2.8. Given constants C > 0 and r ∈ N, we say that a sequence
of sections sD : M → L⊗D (for large D ∈ N) is C-asymptotically holo-

morphic up to order r ∈ N if for all D sufficiently large,

‖sD‖gD ≤ C, ‖∇msD‖gD ≤ C, ‖∇m−1∂̄sD‖gD ≤ C√
D

for each m = 1, . . . , r.
(2.7)

Definition 2.9. Given a constant η > 0 and a submanifold V ⊂ M , we say
that a sequence of sections sD : M → L⊗D (for largeD ∈ N) is η-transverse
along V if for all sufficiently large D,

|sD(p)| < η ⇒ SurjgD
(
∇sD(p)|TpV

)
≥ η for all p ∈ V .

For any (M,ω) and J0 as above, Donaldson [Don96] constructs a se-
quence of sections sD : M → L⊗D that are, for some K, η > 0, K-
asymptotically holomorphic up to order 2 and globally η-transverse (i.e. η-
transverse along M). It follows via (2.5) and Lemma 2.7(c) that for suffi-
ciently large D ∈ N, ZD := s−1

D (0) ⊂ M are smooth submanifolds with

Θg(TZD;TM |ZD
, J0) = ΘgD(TZD;TM |ZD

, J0)

≤ max
p∈ZD

2‖∂̄sD(p)‖gD
SurjgD (∇s(p))

≤ 2
K/

√
D

η
→ 0 as D → ∞.

Thus by Lemma 2.6, the submanifolds ZD ⊂ (M,ω) are symplectic and
uniformly close to being J0-holomorphic for sufficiently large D. These are
the Donaldson hypersurfaces that we made use of in the previous section;
indeed, they satisfy PD[ZD] = c1(L

⊗D) = Dc1(L) = D[ω] ∈ H2(M).
For our purposes, the relevant case of Mohsen’s extension of the Donaldson-

Auroux transversality theorem can now be stated as follows.

Proposition 2.10 ([Moh, Théorème 2.2]). Assume (M,ω) is a closed 2n-
dimensional symplectic manifold with an ω-compatible almost complex struc-
ture J0, V ⊂ M is a closed submanifold of dimension 2n − 1, and ξ ⊂ TV
denotes the J0-complex subbundle

ξ := TV ∩ J0(TV ).

Then given any K > 0, ǫ > 0 and mmax ∈ N, there exist D0 ∈ N and η > 0
such that the following holds. For any sequence of sections sD : M → L⊗D

(for large D) which are K-asymptotically holomorphic up to order 2, there
exists a sequence (for large D) of sections tD : M → L⊗D such that, for all
D ≥ D0, the sequence tD is ǫ-asymptotically holomorphic up to order mmax,
and the sequence s′D := sD + tD is η-transverse along V , and also satisfies

p ∈ V and |s′D(p)| < η ⇒ SurjgD
(
∇s′D(p)|ξp

)
≥ η.

�

Proof of Proposition 2.5. Assume V ⊂ M is J0-convex, and let sD : M →
L⊗D denote the K-asymptotically holomorphic and globally η-transverse
sequence of sections provided by [Don96]. Pick ǫ ∈ (0, η), and let tD :
M → L⊗D denote the ǫ-asymptotically holomorphic sequence provided by
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Proposition 2.10, giving rise to the perturbed sections s′D := sD + tD and
zero-sets ZD := (s′D)

−1(0) ⊂ M . Using Lemma 2.7(b), we may assume
s′D is also K-asymptotically holomorphic and η-transverse after making the
substitutions K 7→ K + ǫ > 0 and η 7→ η − ǫ > 0, and by shrinking η > 0
further if necessary, Proposition 2.10 also guarantees

SurjgD
(
∇s′D(p)|ξp

)
≥ η

for all p ∈ ZD∩V . This implies that for sufficiently large D, ZD ⊂ (M,ω) is
a symplectic submanifold and intersects both V and the distribution ξ ⊂ TV
transversely, hence the submanifold

ΣD := ZD ∩ V ⊂ V

inherits a smooth oriented hyperplane bundle

ξD := TZD ∩ ξ ⊂ TΣD.

Regarding ξD as a real subbundle of the complex vector bundle (ξ|ΣD
, J0),

Lemma 2.7(c) and (2.5) now imply

Θg (ξD; ξ|ΣD
, J0) ≤ max

p∈ΣD

2‖∂̄s′D(p)|ξp‖gD
SurjgD

(
∇s′D(p)|ξp

) ≤ 2K

η
√
D

→ 0

as D → ∞. Since V is J0-convex, there exists a contact form α on V
such that ξ = kerα and dα|ξ is a symplectic vector bundle structure that
tames J0. Applying Lemma 2.6, we therefore conclude from the above that
(ξD, dα) is a symplectic subbundle of (ξ|ΣD

, dα) for sufficiently large D,
implying that α|TΣD

is contact, so ΣD ⊂ (V, ξ) is a contact submanifold.
Moreover, the complex structure J0|ξ along ΣD admits a C0-small pertur-
bation to a complex structure J1 on ξ along ΣD for which ξD is J1-invariant.
Following the extension procedure of [CM07, §8], J1 can then be extended
to an almost complex structure on M that preserves ξ along V , preserves
TZD and is C0-close to J0 for sufficiently large D. Note that having J1
be C0-close to J0 implies that J1|ξ is also tamed by dα|ξ without loss of
generality, thus V is J1-convex. �

3. The proof

We now proceed to the proof of the main theorem.
Suppose (M,ω) is a closed and connected symplectic manifold with an

almost complex structure J such that either of the following conditions are
satisfied:

• (M,ω) is semipositive and J is ω-tame;
• [ω] ∈ H2(M ;Z) and J is ω-compatible.

We will assume the Gromov-Witten invariants to be defined via the pre-
scriptions in §2.1.1 or §2.1.2 accordingly. Suppose V ⊂ M is a J-convex
hypersurface. Arguing by contradiction, we assume there is a nontrivial
Gromov-Witten invariant of the form

(3.1) GW
(M,ω)
0,m,A(PD[V ] ∪ α1, α2, . . . , αm;β) 6= 0

for somem ≥ 3, A ∈ H2(M), α1, . . . , αm ∈ H∗(M ;Q) and β ∈ H∗(M0,m;Q).
The essential idea of the proof will be show that (3.1) implies the existence
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of a pseudoholomorphic sphere that touches V tangentially from the wrong
side, thus contradicting pseudoconvexity.

Remark 3.1. In the following we will give a unified argument that applies
to both the semipositive and non-semipositive cases, referring as necessary
to the slightly different sets of definitions in §2.1.1 and §2.1.2. For the
semipositive case, some statements would need to be modified in obvious
ways by removing all references to β ∈ H∗(M0,m) and the forgetful map
(see Remark 1.4).

We must now choose a perturbed almost complex structure J1 that is
suitably adapted to the definition of the Gromov-Witten invariants. In the
semipositive case, it suffices to set J1 = J . If (M,ω) is not semipositive,
then we have assumed [ω] ∈ H2(M ;Z) and can therefore find a sequence of
Donaldson hypersurfaces ZD of large degrees D ∈ N as described in §2.1.2.
By Proposition 2.5, after making the degree sufficiently large, we can find a
smooth ω-tame almost complex structure J1 that is arbitrarily C0-close to
J while making ZD a J1-holomorphic hypersurface and V simultaneously a
J1-convex hypersurface. We shall treat J1 as the reference almost complex
structure used in Lemmas 2.1 and 2.4.

Let J ′ denote a generic domain-dependent or Mℓ+1-dependent pertur-
bation of J1 as described in §2.1.1 or §2.1.2 respectively, giving rise to the
moduli spaceMA

0,m(M,J ′) of J ′-holomorphic spheres homologous to A, with

the associated evaluation/forgetful pseudocycle

(ev,Φ) = (ev1, . . . , evm,Φ) : MA
0,m(M,J ′) → Mm ×M0,m.

In the non-semipositive case, we are assuming as in §2.1.2 that J ′ matches
J1 near ZD and the elements of MA

0,m(M,J ′) have extra marked points
constrained to lie in ZD under evaluation, but these details will play no role
in what follows and we will therefore suppress them in the notation. The
condition (3.1) now means

[(ev,Φ)] ·
(
([V ] · PD(α1))× PD(α2)× . . . × PD(αm)× β

)
6= 0.

Lemma 3.2. There exists a smooth loop

ℓ : S1 → MA
0,m(M,J ′)

such that (ev1 ◦ ℓ)∗[S1] · [V ] 6= 0.

Proof. We lose no generality by supposing that the classes α1, . . . , αm ∈
H∗(M ;Q) and β ∈ H∗

(
M0,m

)
are each homogeneous, i.e. they have well-

defined degrees. By a theorem of Thom [Tho54], there are rational numbers
c0, . . . , cm 6= 0 and smooth submanifolds ᾱ1, . . . , ᾱm ⊂ M and β̄ ⊂ M0,m

such that

c0[β̄] = β ∈ H∗(M0,m;Q),

ci[ᾱi] = PD(αi) ∈ H∗(M ;Q) for i = 1, . . . ,m.

We claim that after generic smooth perturbations of these submanifolds, we
may assume the pseudocycle (ev,Φ) is weakly transverse to ᾱ1× . . .×ᾱm× β̄
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in the sense of [MS04, Definition 6.5.10]. Indeed, we can perturb ᾱ1 such
that ev1 is weakly transverse to ᾱ1, so by [MS04, Lemma 6.5.14],

ev2 |ev−1
1

(ᾱ1)
: ev−1

1 (ᾱ1) → M

is a pseudocycle of dimension dimMA
0,m(M,J ′)− degα1. After perturbing

ᾱ2, we may also assume this new pseudocycle is weakly transverse to ᾱ2,
which means (ev1, ev2) is now weakly transverse to ᾱ1 × ᾱ2. Repeating this
procedurem+1 times proves the claim. With this established, we can define
the constrained moduli space

M′ := (ev,Φ)−1(ᾱ1 × . . . × ᾱm × β̄),

so that (ev,Φ)|M′ is a 1-dimensional pseudocycle, which means M′ is a
compact 1-dimensional submanifold of MA

0,m(M,J ′). Now choose a generic

smooth perturbation V ′ of V ⊂ M such that

ᾱ1 ⋔ V ′ and ev1 |M′ ⋔ V ′.

We then have

c0 . . .cm

(
(ev1)∗[M′] · [V ]

)
=

[(ev,Φ)] ·
(
([V ] · PD(α1))× PD(α2)× . . .× PD(αm)× β

)
6= 0.

(3.2)

Any connected component of M′ on which the above intersection number
is nonzero is then a smooth loop with the stated property. �

In order to apply this lemma in proving the main result, we shall borrow
an idea from [ABW10]. Observe that by (3.1), [V ] ∈ H∗(M ;Q) must be
nontrivial, so V is nonseparating. One can therefore construct a connected
infinite cover of M , defined by cutting M open along V to produce a cobor-
dism with boundary −V ⊔ V , and then gluing together an infinite chain of
copies {Mn}n∈Z of this cobordism. Denote for each n ∈ Z the boundary of
the cobordism Mn by

∂Mn = −V −
n ⊔ V +

n ,

then each V ±
n has a neighborhood in Mn naturally identified with a suit-

able half-neighborhood of V in M , and we use these identifications to glue
Mn to Mn+1 along V +

n = V −
n+1. This produces a smooth, connected and

noncompact manifold (see Figure 1)

M̃ =
⋃

n∈Z
Mn,

which has a natural smooth covering projection

π : M̃ → M

and is separated by infinitely many copies of the hypersurface V , which we
shall denote by

Vn := V +
n ⊂ M̃.

Let
J̃1 := π∗J1

denote the natural lift of the reference almost complex structure J1 to the

cover M̃ , for which the hypersurfaces Vn are all J̃1-convex.
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Figure 1. The cover π : M̃ → M defined for a nonseparat-
ing hypersurface V ⊂ M .

By Lemma 2.1 or 2.4, we can find a sequence Jk of generic structures for
which Lemma 3.2 holds with J ′ := Jk, producing loops

ℓk : S1 → MA
0,m(M,Jk) with (ev1 ◦ ℓk)∗[S1] · [V ] 6= 0 for all k,

and we may assume moreover that Jk converges in C∞ as k → ∞ to the
domain-independent almost complex structure J1. For each k and each
τ ∈ S1, ℓk(τ) ∈ MA

0,m(M,Jk) is an equivalence class of spheres u : S2 →
M satisfying a domain-dependent Cauchy-Riemann equation as in (2.1).

Since S2 is simply connected, each of the loops ℓk can be lifted to M̃ as
a continuous family of holomorphic spheres {ukτ}τ∈R, and the nontrivial
intersection of ev1 ◦ ℓk with V implies that evaluation of ukτ at the first

marked point traces a noncompact path in M̃ intersecting Mn for every
n ∈ Z. It follows that for each k, there exists a parameter value τk∗ ∈ R for
which the image of uk

τk∗
touches V0 but not the interior of M1.

We now have a sequence of curves uk := uk
τk∗

∈ MA
0,m(M,Jk) which

admit lifts to M̃ that touch V0 but not the interior of M1. This is not
yet a contradiction, because the Cauchy-Riemann equation satisfied by each
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uk involves a domain-dependent almost complex structure. As k → ∞,
however, Gromov compactness gives a subsequence of uk converging to a
nodal J1-holomorphic sphere, and at least one component of this nodal curve

lifts to a nontrivial J̃1-holomorphic sphere in M̃ that touches V0 tangentially

from below. Since V0 is a J̃1-convex hypersurface, this is a contradiction and
thus concludes the proof.

Appendix A. The forgetful map is a pseudocycle

The purpose of this appendix is to justify the statement, made in §2.1.2,
that for suitably chosen data, the evaluation/forgetful map

(ev,Φ) : MA
0,m+ℓ(M,J ;ZD) → Mm ×M0,m

as defined in the setting of Cieliebak and Mohnke [CM07] is a pseudocycle,
and its rational cobordism class (after dividing by ℓ!) is independent of
the choices. This is proved in [CM07] for ev : MA

0,m+ℓ(M,J ;ZD) → Mm,
without accounting for the forgetful map, though the arguments necessary
for proving the more general statement are almost already present in [CM07],
so we shall merely sketch the necessary modifications.

In the following, we will often refer to holomorphic curves that carry dis-
tinct sets of ordinary and extra marked points; for curves in the space
MA

0,m+ℓ(M,J ;ZD), this means the first m and last ℓ marked points respec-

tively. Recall that the forgetful map Φ : M0,m+ℓ(M,J ;ZD) → M0,m is
defined by forgetting not only the map into M but also the extra marked
points, and then stabilizing.

Remark A.1. Although Φ maps the top stratum MA
0,m+ℓ(M,J ;ZD) into

the top stratum M0,m of M0,m, it will not generally define a pseudocycle
MA

0,m+ℓ(M,J ;ZD) → M0,m, mainly because M0,m itself is not compact.

We assume as in §2.1.2 that J0 is a compatible almost complex structure
on the closed and connected 2n-dimensional symplectic manifold (M,ω),
and ZD ⊂ M is a nearly J0-holomorphic Donaldson hypersurface of large
degree D ∈ N. If D is sufficiently large and J ∈ Jℓ+1 is chosen appropriately
(e.g. it must be C0-close to J0 and match a reference domain-independent
structure J1 near ZD, whose restriction to ZD is generic), then [CM07] shows

that the natural compactification MA
0,m+ℓ(M,J ;ZD) of MA

0,m+ℓ(M,J ;ZD)

consists of strata M{Aα}
T (M,J ;ZD) modelled on weighted (m + ℓ)-labelled

trees (T, {Aα}) that are ℓ-stable, i.e. they are stable even after removing
the m ordinary (but keeping the ℓ extra) marked points. Moreover, none
of the nonconstant components of such nodal curves are contained in ZD.
The pseudocycle property for (ev,Φ) is based on the observation that on

any stratum M{Aα}
T (M,J ;ZD) ⊂ MA

0,m+ℓ(M,J ;ZD) for which T has more
than one vertex, the restriction of (ev,Φ) factors as a composition

(A.1) M{Aα}
T (M,J ;ZD) → M{Aα}

T ′ (M,J ;ZD) → Mm ×M0,m,

where the space in the middle is a smooth manifold that either has dimen-
sion at most dimMA

0,m+ℓ(M,J ;ZD)−2 or factors through another manifold
that does. The reason we need this factorization instead of just considering
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M{Aα}
T (M,J ;ZD) itself is that the latter sometimes has artificially large di-

mension, due to the presence of multiple extra marked points in the same
constant component. But since these extra marked points play no role in
defining the evaluation and forgetful map, we can fix this problem by re-
moving them, which leads to the factorization above. The remainder of this
appendix will be concerned with the definition and essential properties of

M{Aα}
T ′ (M,J ;ZD).
As in [CM07], we will use the term ghost tree to mean a maximal subtree

T ′′ of a weighted tree (T, {Aα}) with the property that Aα = 0 for all α ∈
T ′′. Similarly, a ghost bubble on a nodal J-holomorphic curve [(z,u)] ∈
M{Aα}

T (M,J ;ZD) is the constant holomorphic curve obtained by restricting
u to any component Sα ⊂ Σz with Aα = 0. We shall define the manifold

M{Aα}
T ′ (M,J ;ZD) roughly as the space of nodal curves that one obtains from

elements of M{Aα}
T (M,J ;ZD) by forgetting all but one of the extra marked

points on each ghost tree and stabilizing as necessary, but keeping all other
information, including the conformal structures on the ghost bubbles with
their ordinary marked points. This can be defined more formally as follows.
Suppose ℓ′ ≤ ℓ is the number of extra marked points on vertices α ∈ T with
Aα 6= 0 plus the number of ghost trees in T that have at least one extra
marked point. Then we associate to T a stable (m+ ℓ′)-labelled tree T ′ via
the following procedure:

(1) On each ghost tree in T , keep all ordinary marked points and the
first extra marked point (if any) but remove all other extra marked
points;

(2) Stabilize by removing any vertices that now have fewer than 3 special
points and adjusting neighboring edges accordingly. (Note that since
T is stable, this step can only affect vertices α ∈ T with Aα = 0.)

By Lemma 2.2, any coherent almost complex structure J ∈ Jℓ+1 determines
for every nodal curve z modelled on T a Σz-dependent almost complex
structure Jz whose restriction to each component Sα ⊂ Σz depends only
on the special points on Sα. It follows that if z is modelled on T ′, then J
uniquely determines a domain dependent almost complex structure on any
component Sα ⊂ Σz with Aα 6= 0 (cf. the discussion preceding Corollary 5.9
in [CM07]). We can extend this to a Σz-dependent almost complex structure

Jz ∈ JT ′

by setting Jz|Sα for each α ∈ T ′ with Aα = 0 to match the fixed domain-
independent reference almost complex structure J1. In this way, we can
speak of nodal J-holomorphic maps (z,u) modelled on the weighted (m+ℓ′)-
labelled tree (T ′, {Aα}); note that the definition of Jz on components Sα

with Aα = 0 plays no role here since u is necessarily constant on such

components. Denote by M̃{Aα}
T ′ (M,J ;ZD) the space of such maps for which

the ℓ′ extra marked points are all mapped into ZD, and denote its quotient
by the group of biholomorphic isomorphisms by

M{Aα}
T ′ (M,J ;ZD) := M̃{Aα}

T ′ (M,J ;ZD)/ ∼ .
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There is a natural projection

M{Aα}
T (M,J ;ZD) → M{Aα}

T ′ (M,J ;ZD)

defined by forgetting ℓ − ℓ′ of the extra marked points and then collaps-
ing constant components as necessary in order to stabilize the domain.
Since all the ordinary marked points are retained in this process, the fac-
torization (A.1) of (ev,Φ) is well defined. The pseudocycle property now
mostly follows from the following lemma, whose proof is exactly the same
as [CM07, Lemma 5.6, Prop. 5.7 and Cor. 5.8].

Lemma A.2. For generic J , if e(T ′) denotes the number of edges in the

tree T ′, then M{Aα}
T ′ (M,J ;ZD) is a smooth manifold with

dimM{Aα}
T ′ (M,J ;ZD) = 2(n − 3) + 2c1(A) + 2m− 2e(T ′)

= dimMA
0,m+ℓ(M,J ;ZD)− 2e(T ′).

�

We must still deal with the possibility that T has more than one vertex

but T ′ has only one, in which case M{Aα}
T ′ (M,J ;ZD) can be regarded as a

space of smooth (non-nodal) curves MA
0,m+ℓ′(M,J ;ZD) constrained to send

their ℓ′ extra marked points into ZD.
3 This space has dimension equal to

that of MA
0,m+ℓ(M,J ;ZD), but we claim that for generic J , if T has more

than one vertex, then curves in MA
0,m+ℓ′(M,J ;ZD) that arise in this way

from elements of M{Aα}
T (M,J ;ZD) lie in a subset of codimension at least 2.

The crucial point here is that such a curve will never belong to the open
subset

MA,∗
0,m+ℓ′(M,J ;ZD) ⊂ MA

0,m+ℓ′(M,J ;ZD)

consisting of curves whose intersections with ZD at the ℓ′ extra marked
points are all transverse, and for generic J , [CM07, §6] shows that the
complement of this subset is a finite union of smooth submanifolds hav-
ing dimension at most dimMA

0,m+ℓ′(M,J ;ZD) − 2. To see that curves in

MA,∗
0,m+ℓ′(M,J ;ZD) are excluded, observe that the curves in question arise

precisely in situations where removing the relevant extra marked points from
ghost bubbles in T makes all of them unstable—in particular, (T, {Aα}) must
in this case consist of the following:

• A unique vertex α0 that has all m of the ordinary marked points
and Aα0

= A 6= 0;
• One or more ghost trees that each have no ordinary marked points
but at least two of the extra marked points.

The resulting curve in MA
0,m+ℓ′(M,J ;ZD) is not contained in ZD but has

ℓ′ marked points at which it must intersect ZD, and if all of these ℓ′ inter-
sections are transverse, then the fact that A · [ZD] = ℓ > ℓ′ implies there
must be additional intersections separate from the extra marked points.
But since these curves are assumed to arise from objects in the closure of

3Since technically J belongs to Jℓ+1 and not Jℓ′+1, the definition of J-holomorphicity
for curves in M

A
0,m+ℓ′(M,J ;ZD) is a bit subtle and must be understood in the same sense

as the preceding discussion of M
{Aα}
T ′ (M,J ;ZD).
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MA
0,m+ℓ(M,J ;ZD), the latter implies (via positivity of intersections) the

existence of curves in MA
0,m+ℓ(M,J ;ZD) that have intersections with ZD

outside their extra marked points, and that is impossible. This proves:

Lemma A.3. For generic J , if T has more than one vertex and T ′ has only
one, then the restriction of (ev,Φ) to M{Aα}

T (M,J ;ZD) factors as

M{Aα}
T (M,J ;ZD) → MA

0,m+ℓ′(M,J ;ZD) \MA,∗
0,m+ℓ′(M,J ;ZD)

→ Mm ×M0,m,

where the space in the middle is a finite union of manifolds having dimension
at most dimMA

0,m+ℓ(M,J ;ZD)− 2. �

It follows from Lemmas A.2 and A.3 that for generic J , (ev,Φ) is a pseudo-
cycle as claimed. Using these same factorizations, one can similarly adapt
the proof of [CM07, Theorem 1.3] to show that the rational pseudocycle
defined by 1

ℓ!(ev,Φ) is independent of the choices (J0, ZD, J) up to ratio-
nal cobordism. This involves defining corresponding moduli spaces for 1-
parameter families of data, as well as moduli spaces of curves with two sets
of extra marked points constrained by two Donaldson hypersurfaces of dif-
fering degrees—the idea in each case is to factor (ev,Φ) as above through
moduli spaces in which each ghost tree carries at most one extra marked
point. Such moduli spaces always have small enough dimension to establish
the pseudocycle condition.
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variétés et hypersurfaces. Preprint arXiv:1307.0837.
[Rua96] Y. Ruan, Topological sigma model and Donaldson-type invariants in Gromov

theory, Duke Math. J. 83 (1996), no. 2, 461–500.
[Rua99] , Virtual neighborhoods and pseudo-holomorphic curves, Proceedings of

6th Gökova Geometry-Topology Conference, 1999, pp. 161–231.
[Sie] B. Siebert, Gromov-Witten invariants of general symplectic manifolds. Preprint

arXiv:9608005.
[Tho54] R. Thom, Quelques propriétés globales des variétés différentiables, Comment.
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