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THE RAMSEY NUMBER OF THE CLIQUE AND THE HYPERCUBE

GONZALO FIZ PONTIVEROS, SIMON GRIFFITHS, ROBERT MORRIS, DAVID SAXTON,
AND JOZEF SKOKAN

Abstract. The Ramsey number r(Ks, Qn) is the smallest positive integer N such that
every red-blue colouring of the edges of the complete graph KN on N vertices contains
either a red n-dimensional hypercube, or a blue clique on s vertices. Answering a question
of Burr and Erdős from 1983, and improving on recent results of Conlon, Fox, Lee and
Sudakov, and of the current authors, we show that r(Ks, Qn) = (s−1)

(
2n−1

)
+1 for every

s ∈ N and every sufficiently large n ∈ N.

1. Introduction

One of the the most extensively-studied problems in Combinatorics is that of determining

the Ramsey numbers of graphs, defined as follows. Given graphs G and H, let r(G,H)

denote the minimum integer N such that every red-blue colouring of E(KN) contains either

a blue copy of G or a red copy of H. It follows from the classical theorem of Ramsey [22] that

r(G,H) is finite for every pair of (finite) graphs, but its order of magnitude is known only

in a few special cases. In this paper we answer a question of Burr and Erdős [7] from 1983

by determining r(Ks, Qn), the Ramsey number of the clique on s vertices and the hypercube

on 2n vertices, for every s ∈ N and all sufficiently large n.

The oldest and most famous examples of Ramsey numbers are those involving cliques.

Indeed, it was proved by Erdős and Szekeres [14] and by Erdős [12] over sixty years ago that

2k/2 6 R(k) 6 4k, where we write R(k, `) = r(Kk, K`) and R(k) = R(k, k). Despite extensive

attempts (see, e.g., [25, 26, 9]) these bounds have been improved only very slightly. More

progress has been made in the so-called ‘off-diagonal’ case, where it was proved by Ajtai,

Komlós and Szemerédi [1] and Kim [19] that R(3, k) = Θ
(
k2/ log k

)
(see also [24], and the

recent improvements in [5, 15]). However, for every (fixed) s > 4, even the problem of

determining the correct exponent of k in R(s, k) is wide open.

In this paper we shall study the Ramsey numbers of cliques versus sparse graphs, where

the situation is somewhat simpler, and much more progress has been made. The systematic
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study of this problem was initiated in 1983 by Burr and Erdős [7], who conjectured that

r(Ks, H) = (s− 1)
(
v(H)− 1

)
+ 1 (1)

for every fixed s and all ‘sufficiently sparse’ connected graphs H; in particular, for all such

H with bounded average degree. The lower bound in (1) is easy to see: simply take a blue

Turán graph1, and colour the remaining edges red. We remark that this conjecture was

partly motivated by a result of Chvátal [8], who had proved a few years earlier that (1) holds

for every s ∈ N and every tree H on n vertices.

The Burr-Erdős Conjecture was disproved by Brandt [6], who showed that there exist

bounded degree graphs H with r(K3, H) > c · v(H), for c arbitrarily large. However, the

conjecture is known to hold for a large class of graphs with bounded average degree and

poor expansion properties. More precisely, Burr and Erdős [7] proved it for every graph H

of bounded bandwidth2 and Allen, Brightwell and Skokan [2] extended this result to graphs

of bandwidth at most o(log n/ log log n), and to bounded degree graphs of bandwidth o(n).

Moreover, Nikiforov and Rousseau [21] proved that (1) holds for every O(1)-degenerate

graph which may be disconnected into components of size o(n) by removing at most n1−ε

vertices; as was observed in [11], together with the ‘separator theorem’ of Alon, Seymour

and Thomas [3] this implies that the Burr-Erdős Conjecture holds for every sufficiently large

graph H which avoids a given minor, and hence for every large planar graph. We remark

that in fact the main results of both [2] and [21] are considerably more general than those

stated above; we refer the reader to the original papers for the exact statements.

Combining the results of [2] and [6], the situation for graphs of bounded degree is now

reasonably well-understood: roughly speaking, (1) holds for those graphs which have poor

expansion properties, and fails otherwise. Moreover, by the results of [21], it is known that (1)

holds for a large class of graphs with bounded average degree (but unbounded maximum

degree). In particular, the main theorem of [21] resolved all but one of the specific problems

mentioned in [7]; in this paper, we resolve the final remaining question.

We shall study the n-dimensional hypercube, i.e., the graph with vertex set {0, 1}n and

edges between pairs of vertices which differ in exactly one coordinate. This important fam-

ily of graphs appears naturally in many different contexts, and its properties have been

extensively-studied, including those relating to Ramsey Theory. For example, it is a long-

standing conjecture of Burr and Erdős that r(Qn, Qn) = O(2n), but the best known bounds

(see [10] and [17]) are roughly the square of this function. We note also that Qn has average

degree roughly logN , and bandwidth roughly N/
√

logN , where N = 2n, and hence it is not

covered by the results of either [2] or [21].

1More precisely, take a collection of s−1 disjoint red cliques, each of size n−1, and note that this colouring
contains no connected red graph on n vertices, and no blue graph G of chromatic number s.

2The bandwidth of a graph H is defined to be the minimum ` ∈ N for which there exists an ordering
v1, . . . , vn of the vertices of H such that every edge vivj satisfies |i− j| 6 `.



3

The first important breakthrough in the study of the Ramsey numbers r(Ks, Qn) was

obtained only recently, by Conlon, Fox, Lee and Sudakov [11], who gave an upper bound

which is within a constant factor (depending on s) of the trivial lower bound. We remark

that that we shall use (a modified version of) their method in Section 3, below. In [16], the

ideas of [11] were combined with a technique (‘embedding in snakes’) which utilized the low

bandwidth of Qn, to determine r(K3, Qn) up to a factor of 1 + o(1) as n→∞. In this paper

we shall use a quite different method to completely resolve the problem of Burr and Erdős

for all sufficiently large n. Our main theorem is as follows.

Theorem 1.1. Let s ∈ N. Then

r(Ks, Qn) = (s− 1)(2n − 1) + 1 (2)

for every n > n0(s).

We remark that the proof of Theorem 1.1 moreover easily generalizes to the case in which

the clique Ks is replaced by an arbitrary graph H of chromatic number s (assuming that

n > n0(H) is sufficiently large), see Section 5 for the details. The value of n0(s) given by our

proof grows very quickly, like a tower function of height roughly s2s. No doubt this bound

is very far from best possible, and it would be interesting to determine the smallest function

n = n(s) such that (2) holds; note that it fails badly for n = 2, since one can easily show

that r(Ks, C4) > s3/2+o(1) � s. We remind the reader that it is a famous open problem of

Erdős [13] to prove that r(Ks, C4) 6 s2−ε for all sufficiently large s ∈ N.

The strategy we shall use in order to prove Theorem 1.1 is roughly as follows. Let G

be a two-coloured complete graph with (s − 1)(2n − 1) + 1 vertices and no blue Ks. We

shall almost-partition3 V (G) into a large number of sets which are internally dense in red,

and then attempt to join these by a large number of small, disjoint, red complete bipartite

graphs. If we find a sufficiently large component of connections of this type, then we shall

be able to find a red copy of Qn; otherwise we will be able to almost-partition the vertex set

into s− 1 red cliques. Using this ‘stability theorem’, the result then follows easily.

To be a little more precise, let us consider the case s = 3. We first find an integer a,

a collection of disjoint red cliques of size 2n/ log log a, and a small set X, such that every

vertex sends at most 2n−2a
blue edges to those vertices of G which are not covered by the

red cliques, nor by X. To do so, we simply decrease a until we find a collection with the

right properties, and note that the blue neighbourhood of any vertex is a red clique, since G

contains no blue triangle. We thus obtain an almost-partition into dense red sets. We next

choose m ∼ (log log a)O(1), and attempt to find disjoint red copies of Kt,t between the dense

red sets, where t =
(
m
m/2

)
. If we fail to do so, then by the well-known theorem of Kövári,

Sós and Turán [20], the blue graph between the two sets must be very dense. However, if we

succeed sufficiently often, then we shall be able to find a red copy of Qn. Indeed, using the

3We write ‘almost-partition’ to mean a partition of all but a o(1)-fraction of the vertices.
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density of the red sets, we may greedily complete our copies of Kt,t to red copies of Qm. We

can then define an auxiliary two-colouring (HR, HB), by treating each copy of Qm as a vertex,

and colouring a pair blue if any of the matching edges between corresponding vertices is blue.

Crucially, this colouring contains no blue clique on R2m(3) vertices, where Rr(s) denotes the

r-colour Ramsey number, and is still sufficiently dense in red. By modifying the argument

of [11] (see also [16], where we proved a similar proposition), we can efficiently embed Qn−m
in HR, which immediately gives us a red copy of Qn in the original colouring, as required.

The rest of the paper is organised as follows. In Section 2 we generalize the idea above

in order to prove a general decomposition theorem for Ks-free graphs, which gives us our

almost-partition of V (G) into dense red sets. In Section 3 we generalize a result from [16],

whose proof is based on the method introduced in [11], to show that we can find a red copy

of Qn in a two-coloured complete graph on
(
1+o(1)

)
2n vertices, as long as the blue edges are

reasonably sparse and Ks-free. It is very important here that s is allowed to go to infinity

with n, at a rate depending on the density of blue edges, since we will apply the result to

colourings with no blue clique on R2m(s) vertices. In Section 4 we prove a more general

embedding lemma, by finding a maximal collection of disjoint red copies of Kt,t, as described

above. This allows us to find either an embedding of Qn into a collection of dense red sets,

or a dense blue (s− 1)-partite graph which covers almost all of V (G). Finally, in Section 5,

we put the pieces together and prove Theorem 1.1.

Notation. For convenience, we collect here some of the notation which we shall use through-

out the paper. If G is a two-coloured complete graph, then we take the colours to be red and

blue, and write GR and GB for the graphs formed by the red and blue edge sets respectively.

We also write NB(u) and dB(u) for the neighbourhood and degree of a vertex in GB, and

eB(X, Y ) and dB(X, Y ) = eB(X, Y )/|X||Y | for the number of blue edges with one endpoint

in X and the other in Y , and for the density of the graph GB[X, Y ], and similarly for GR.

For each d > 0 and x = (x1, . . . , xd) ∈ {0, 1}d, let

Qx =
{
y = (y1, y2, . . . , yn) ∈ {0, 1}n : yi = xi for each 1 6 i 6 d

}
denote the subcube of Qn consisting of points whose initial coordinates agree with x. We

call this an initial subcube of co-dimension d. Notice that if Qx has co-dimension d, then

every vertex v ∈ V (Qx) has exactly d neighbours in V (Qn) \ V (Qx). We say that disjoint

subcubes Q and Q′ are adjacent if there exist vertices v ∈ V (Q) and v′ ∈ V (Q′) which

are adjacent in Qn. Given two vectors x ∈ {0, 1}d and z ∈ {0, 1}d′
, we write x ∼ z if the

subcubes Qx and Qz are adjacent, and note that Qx and Qz are adjacent if and only if x

and z differ in precisely one coordinate in the first min{d, d′} coordinates.

Throughout the paper, log denotes log2, and log(k) denotes the kth iterated logarithm, so

log(1)(n) = log(n) and log(k+1)(n) = log
(

log(k)(n)
)
. We shall also omit ceiling and floor

symbols, and trust that this will cause the reader no confusion.



5

2. A structural description of Ks-free graphs

In this section we shall prove the following key proposition, which states that every Ks-free

graph can be almost-partitioned into sparse sets.

Proposition 2.1. Given ε > 0 and s ∈ N, there exists K ∈ N such that the following holds.

Let N ∈ N, and let a(0), . . . , a(K) ∈ N be a sequence of integers with a(0) = N and

a(i+ 1) 6
ε

8
· a(i) for every 0 6 i 6 K − 1. (3)

Then, for every Ks-free graph G on N vertices, there exists i ∈ [K − 1] and a family U of

disjoint vertex sets such that:

(a) |
⋃
U∈U U | > (1− ε)N .

(b) |U | = a(i) for every U ∈ U .

(c) ∆(G[U ]) 6 a(i+ 1) for every U ∈ U .

We first give an overview of the proof and introduce a little more terminology. For conve-

nience, let us fix throughout the rest of the section ε > 0 and s ∈ N, choose K sufficiently

large, and fix a Ks-free graph G on N vertices and integers a(1), . . . , a(K) satisfying (3).

One natural approach to take, already alluded to in the Introduction, would be to choose

a maximal collection of disjoint independent sets of size b1, then a maximal collection of

triangle-free sets of size b2 in what remains, then a maximal collection of K4-free sets of

size b3, and so on. These sets have the useful property that, inside each set Bj of size bj,

all degrees are at most bj−1. Indeed, since Bj is Kj-free, every neighbourhood must be

Kj−1-free, and so would have been chosen at the previous step if it was sufficiently large.

We shall take roughly this approach, with two important modifications. The first is that,

since we shall in fact need the degrees inside each set to be much smaller than any of the

other sets, we will enforce a ‘degree gap’ by throwing away a small set of vertices at each

step. The second is that, instead of choosing the bjs to be a growing sequence (which seems

more natural, since the restriction on their edges is becoming weaker), we shall choose them

to be decreasing extremely quickly.

We now turn to some more formal preparation. The following definition will be useful.

Definition 2.2. Let 0 6 β 6 1 and let ∅ 6= I ⊆ [K] be an interval. We say that a set

W ⊆ V (G) of vertices is (β, I)-good if, whenever i, j ∈ I with i < j, there exists a family

U = U(i, j) of disjoint subsets of W with the following properties:

(a′)
∣∣⋃

U∈U U
∣∣ > β · |W |.

(b′) |U | = a(i) for every U ∈ U .

(c′) ∆
(
G[U ]

)
6 a(j) for every U ∈ U .
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Note that Proposition 2.1 is equivalent to the statement that V (G) is (1− ε, I)-good for

some interval of the form I = {i, i+ 1}. In order to prove this, we shall define two sequences

of sets,

V (G) = W1 ⊇ W2 ⊇ · · · ⊇ Ws and Ur ⊆ Wr−1 \Wr for r = 2, . . . , s,

and a sequence 0 = i1 < · · · < is 6 K of integers such that, setting

Ir =
{
ir, . . . , ir−1 + ks−r+2

}
for each r ∈ {2, . . . , s} and some fixed k ∈ N defined below, we have:

(i) Wr contains no Kr-free set of size a(ir + ks−r+1) for every r ∈ {2, . . . , s},
(ii)

∣∣⋃s
r=2 Ur

∣∣ > (1− ε/2)N ,

(iii) Ur is (1− ε/2, Ir)-good for every r ∈ {2, . . . , s},
(iv) I2 ⊇ · · · ⊇ Is and |Is| > 2.

Having found such a pair of sequences, we easily obtain a family satisfying (a), (b) and (c)

as follows. Indeed, by (ii)-(iv), there exists a cover of all but at most εN vertices of G by

sets of size a(is) and with maximum internal degrees at most a(is + 1). The purpose of

condition (i) is to allow us to construct the set Ur+1; in particular, note that any Kr+1-free

subset of Wr has maximum degree at most a(ir + ks−r+1).

We need one more important definition, which we shall use to choose the sets Ur. Given

a set W ⊆ V (G) and a, r ∈ N, define

f
(
W,a, r

)
= max

{∣∣∣ ⋃
U∈U

U
∣∣∣ : U is a family of disjoint Kr-free subsets of W of size a

}
,

and say that a family U of disjoint Kr-free a-subsets of W is (W,a, r)-maximal if∣∣∣ ⋃
U∈U

U
∣∣∣ = f

(
W,a, r

)
.

We now turn to the formal proof of the proposition.

Proof of Proposition 2.1. The proposition is trivial when s 6 2 (since e(G) = 0), so let us

assume that s > 3. Set

k =

⌈
8s

ε

⌉
and K = ks,

and let i1 = 0 and W1 = V (G). Trivially, W1 contains no K1-free set of size a(K) > 1. So let

r > 2, and suppose that we have found an integer ir−1 ∈ [K] and a set Wr−1 ⊆ V (G) which

contains no Kr−1-free set of size a(ir−1 + ks−r+2). We will show how to construct ir ∈ [K],

Wr ⊆ Wr−1 and Ur ⊆ Wr−1 \Wr with the required properties.
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Indeed, first define ir − ir−1 to be the least positive multiple of ks−r+1 with the property

that

f
(
Wr−1, a(ir + ks−r+1), r

)
6 f

(
Wr−1, a(ir), r

)
+
εN

4s
. (4)

In words, if increasing ir by ks−r+1 would cause the size of the largest family of disjoint

Kr-free a(ir)-sets to increase by a positive fraction of N , then we do so; otherwise we stop.

Note that

0 6 ir − ir−1 6
4s

ε
· ks−r+1 6

1

2
· ks−r+2, (5)

since otherwise we would have increased ir so many times that f
(
Wr−1, a(ir), r

)
> N , which

is impossible.

Now let Ur be an arbitrary
(
Wr−1, a(ir), r

)
-maximal family, and set

Ur =
⋃
U∈Ur

U and Ir =
{
ir, . . . , ir−1 + ks−r+2

}
.

Claim: Ur is
(
1− ε/2, Ir

)
-good.

Proof of claim. Let i, j ∈ Ir with i < j. In order to obtain a refinement Ur(i, j) of Ur which

satisfies (a′) (b′) and (c′), we simply (1 − ε/2)-cover each U ∈ Ur by disjoint sets of size

a(i) arbitrarily. To see that this is possible, simply note that either i = ir, in which case

|U | = a(i), or i > ir, in which case a(i) 6 ε|U |/8 by (3). To see that

∆
(
G[X]

)
6 a

(
ir−1 + ks−r+2

)
6 a(j)

for each X ∈ Ur(i, j), recall that each Y ∈ Ur is Kr-free, and that Wr−1 ⊇ Y ⊇ X contains

no Kr−1-free set of size a(ir−1 + ks−r+2). Thus all internal degrees of X must be at most

a(ir−1 + ks−r+2), as claimed. �

To complete the induction step, we need to remove a small number of additional vertices

from Wr−1, since we shall not be able to control their degrees in the next step. Set W ′
r =

Wr−1 \ Ur and let Xr ⊆ W ′
r be the union of a

(
W ′
r, a(ir + ks−r+1), r

)
-maximal family. We

claim that

|Xr| 6
εN

4s
+
ε|Ur|

8
. (6)

Indeed, since Ur can (as noted above) be (1−ε/8)-covered byKr-free sets of size a(ir+k
s−r+1),

it follows from (4) that

|Xr|+
(

1− ε

8

)
|Ur| 6 f

(
Wr−1, a(ir + ks−r+1), r

)
6 f

(
Wr−1, a(ir), r

)
+
εN

4s
= |Ur|+

εN

4s
.

Set

Wr = W ′
r \Xr = Wr−1 \

(
Ur ∪Xr

)
,

and observe that Wr contains no Kr-free set of size a(ir + ks−r+1), as required.

Finally, let us check that U2, . . . , Us and I2, . . . , Is do indeed satisfy (i)-(iv). We have

already proved (i) and (iii) above. To see that (ii) holds, note first that |Ws| 6 εN/8, since
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G is Ks-free and a(is) 6 εN/8, so Us fails to cover at most this many vertices of Ws−1.

By (6), it follows that∣∣∣∣V (G) \
s⋃
r=2

Ur

∣∣∣∣ 6 εN

8
+

s∑
r=2

|Xr| 6
3εN

8
+
ε

8

s∑
r=2

|Ur| 6
εN

2
.

To verify (iv), simply recall that Ir was defined to be {ir, . . . , ir−1 + ks−r+2}, and note that,

by (5), the sequence ir is increasing and the sequence ir + ks−r+1 is decreasing. Finally,

Is = {is, . . . , is−1 + k2} has cardinality at least k2 − is + is−1 > k2/2 > 2, as required. �

3. An embedding lemma for dense red colourings

In this section we shall adapt the method of Conlon, Fox, Lee and Sudakov [11] to prove

the following proposition.

Proposition 3.1. Given any ε > 0 and k ∈ N, there exists n0 = n0(ε, k) such that the

following holds for every n > n0 and every s 6 log(k+1)(n). If H is a two-coloured complete

graph on (1 + ε)2n vertices with no blue Ks and

dB(u) 6
2n

log(k)(n)
(7)

for every u ∈ V (H), then Qn ⊂ HR.

We remark that the case s = 3 of Proposition 3.1 was proved in [16]. As in that paper,

our strategy will be roughly as follows: for each r ∈ [k + 1], we shall find an almost-

partition of V (H) into 2d(r) dense red sets, for some d(r) defined below, and an assignment

of initial subcubes of Qn of co-dimenson d(r) to these sets, such that there are few blue

edges between pairs of sets which correspond to adjacent subcubes. We shall find such level-

r assignments iteratively (see Lemma 3.3), refining the almost-partition at level r to obtain

that at level r+ 1. Once we have found a level-(k+ 1) assignment, it will be straightforward

(see Lemma 3.4) to embed Qn into HR greedily.

In order to refine an almost-partition A = {A(x)}x∈Qd(r)
at level r, we assign a subset

C(y) ⊂ A(x) ∈ A to each y ∈ Qd(r+1) in turn, where x = y[d(r)] is the d(r)-initial segment

of y. (Thus subcubes of a cube are assigned to subsets of the corresponding set.) We first

remove from A(x) the vertices to which a subcube has already been assigned, and the vertices

which send too many blue edges to any set to which a neighbouring cube has already been

assigned. By our degree conditions, we do not remove too many vertices in this process.

Finally, we use the fact that HB is Ks-free to find a large dense red subset in what remains

of A(x) (see Lemma 3.5).

We now turn to the details, which are straightforward but somewhat technical. Define

d(r) =

{ (
log(k+2−r) n

)3
if r ∈ {1, . . . , k + 2},

0 otherwise,
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and note that d(r + 1) � s · d(r) and 2d(r+1)/s � d(r + 2)5k for every r ∈ {0, . . . , k}.
As described above, after r stages we will have split Qn into 2d(r) subcubes, each of co-

dimension d(r). Given vectors x,x′ ∈ Qd(r), let

t(x,x′) =

{
min

{
p ∈ [r] : x[d(p)] 6= x′[d(p)]

}
if x 6= x′,

r + 1 otherwise,

where x[`] denotes the `-initial segment of x. For convenience, let us set

γ :=
ε

3(k + 2)

and fix (for the rest of this section) a two-coloured complete graph H with no blue Ks and

v(H) =
(

1 + 3
(
k + 2

)
γ
)

2n (8)

where n ∈ N is sufficiently large. Let us assume also that H satisfies (7).

We are now ready for an important definition.

Definition 3.2. Given r ∈ {0, . . . , k + 1}, a level-r assignment of Qn into H is a collection

A = {A(x)}x∈Qd(r)
of disjoint sets of vertices of H, satisfying the following conditions:

(a) |A(x)| =
(

1 + 3
(
k + 2− r

)
γ
)

2n−d(r) for every x ∈ Qd(r).

(b) For every x,x′ ∈ Qd(r) with x = x′ or x ∼ x′, we have

|NB(v) ∩ A(x)| 6 2n−d(r)

d
(
t(x,x′)

)4(k+2−r) for all v ∈ A(x′).

Note that a level-0 assignment always exists, since d(0) = 0 and we may set A(x) = V (H)

for the unique vertex x ∈ Q0 (i.e., the vector of length zero). Condition (a) holds by (8),

and Condition (b) holds by (7), since t(x,x) = 1 and log(k) n�
(

log(k+1) n
)12(k+2)

.

Using this observation, Proposition 3.1 follows easily from the next two lemmas. The first

allows to inductively construct level-r assignments for r ∈ {1, . . . , k + 1}.

Lemma 3.3. Let r ∈ {0, . . . , k}. If A = {A(x)}x∈Qd(r)
is a level-r assignment of Qn into H,

then there exists a level-(r + 1) assignment C = {C(y)}y∈Qd(r+1)
of Qn into H, with

C(y) ⊂ A
(
y[d(r)]

)
for every y ∈ Qd(r+1).

The second lemma allows us to embed Qn into HR via a level-(k + 1) assignment.

Lemma 3.4. If A = {A(x)}x∈Qd(k+1)
is a level-(k + 1) assignment of Qn into H, then there

exists an embedding ϕ of Qn into HR, such that ϕ(Qx) ⊂ A(x) for every x ∈ Qd(k+1).
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Lemma 3.4 follows from a straightforward greedy embedding. We shall prove it first, as a

gentle warm-up for our main task, proving Lemma 3.3.

Proof of Lemma 3.4. Let z1 . . . , z2n be an arbitrary ordering of the vertices of Qn. We claim

that for each j ∈ [2n], there exists a vertex v(j) ∈ A
(
zj[d(k + 1)]

)
such that

v(j) 6∈
⋃

y∈T (j)

NB

(
ϕ(y)

)
,

where T (j) denotes the collection of Qn-neighbours of zj which have already been embedded.4

If such a vertex exists for each j, then setting ϕ(zj) = v(j) gives the desired embedding.

To see that such a vertex v(j) exists, let y ∼ zj be a Qn-neighbour of zj which has already

been embedded as ϕ(y). By Condition (b) in Definition 3.2, we have∣∣NB

(
ϕ(y)

)
∩ A

(
zj[d(k + 1)]

)∣∣ 6 2n−d(k+1)

d
(
t(y[d(k + 1)], zj[d(k + 1)])

)4 .
Now, simply observe that t

(
y[d(k+ 1)], zj[d(k+ 1)]

)
∈ [k+ 2] for every y, zj ∈ Qn, and that

there are at most d(r) vertices y ∈ Qn with y ∼ zj and t
(
y[d(k + 1)], zj[d(k + 1)]

)
= r for

every r ∈ [k + 2], since y and zj differ on exactly one of the first d(r) coordinates. Hence∑
y∈T (j)

∣∣NB

(
ϕ(y)

)
∩ A

(
zj[d(k + 1)]

)∣∣ 6 k+2∑
r=1

d(r) · 2n−d(k+1)

d(r)4
6 γ · 2n−d(k+1), (9)

where the last inequality holds since d(r)� 1 as n→∞ for every r ∈ [k + 2].

Finally, since there are at least∣∣A(zj[d(k + 1)]
)∣∣− 2n−d(k+1) > γ · 2n−d(k+1)

vertices in A
(
zj[d(k+ 1)]

)
which are not already in the image of ϕ, there must exist a vertex

v(j) as claimed. �

We now turn to the proof of Lemma 3.3. We begin with a simple but key lemma, which

follows from the fact that HB is Ks-free.

Lemma 3.5. For every d > 0 and X ⊂ V (H), there exists a set Y ⊂ X such that

|Y | > 2−(s−2)d|X| and |NB(v) ∩ Y | 6 2−d|Y | (10)

for every v ∈ Y .

Proof. Let 0 6 i 6 s− 3, and suppose that we have found a set Xi ⊂ X such that

HB[Xi] is Ks−i-free and |Xi| > 2−id|X|. (11)

When i = 0 this is clearly possible (simply set X0 = X). We claim that either Y = Xi

satisfies (10), or there exists a set Xi+1 ⊂ Xi satisfying (11) for i + 1. Indeed, if (10) does

4That is, T (j) = {zi : i < j and zi ∼ zj}.
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not hold with Y = Xi, then there exists v ∈ Xi with |NB(v) ∩ Xi| > 2−d|Xi|. But in that

case we can set Xi+1 = NB(v) ∩Xi, which is Ks−i−1-free since HB[Xi] is Ks−i-free.

Hence we obtain either a set Y as required, or a set Xs−2 satisfying (11) for i = s−2. But

in the latter case HB[Xs−2] is K2-free, i.e., Xs−2 is a red clique, so we may set Y = Xs−2. �

By choosing a random subset, we can moreover guarantee that the set Y has whatever

size we desire. We record this simple observation as the following lemma.

Lemma 3.6. Let a, d ∈ N and X ⊂ V (H). If log |X| · 2d+3 6 a 6 2−(s−2)d|X|, then there

exists a set Y ⊂ X such that

|Y | = a and |NB(v) ∩ Y | 6 2−d+1|Y | (12)

for every v ∈ Y .

Proof. Let Y ′ be the set obtained via Lemma 3.5, and let Y be a uniformly chosen random

subset of Y ′ of size a. Set p = a/|Y ′| and let B ∼ Bin
(
2−d|Y ′|, p

)
denote the Binomial

random variable. Using the inequalities of Pittel5 and Chernoff (see, e.g., [4]), it follows that

the expected number of vertices v ∈ Y with more than 2−d+1|Y | blue neighbours in Y is at

most

|Y ′|3/2 · P
(
B > 2−d+1a = 2 · E[B]

)
6 |Y ′|3/2 · e−E[B]/4 < 1,

since E[B] > 8 log |Y ′|. Hence there must exist a set Y with no such vertices, as required. �

We now show how to assign the subcubes of Qn to the dense red sets found in Lemma 3.5.

Proof of Lemma 3.3. Let r ∈ {0, . . . , k}, and letA = {A(x)}x∈Qd(r)
be a level-r assignment of

Qn into H. Thus the A(x) are disjoint sets of vertices of H, satisfying Conditions (a) and (b)

of Definition 3.2. Our aim is to construct a level-(r + 1) assignment C = {C(y)}y∈Qd(r+1)
of

Qn into H, with

C(y) ⊂ A
(
y[d(r)]

)
for every y ∈ Qd(r+1).

Let y1, . . . ,y2d(r+1) be an arbitrary ordering of the vectors of Qd(r+1). Our main task will

be to construct, one by one, disjoint sets

C(yj)
′ ⊂ A

(
yj[d(r)]

)
satisfying the following two conditions:

(a′) |C(yj)
′| =

(
1 +

(
3(k + 1− r) + 1

)
γ
)

2n−d(r+1) for every 1 6 j 6 2d(r+1).

5Let m,n ∈ N, and set p = m/n. For any property Q on [n] we have P
(
Q holds for a random m-set

)
6

3
√
m · P

(
Q holds for a random p-subset of [n]

)
.
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(b′) For every i 6 j with yi = yj or yi ∼ yj, and every v ∈ C(yj)
′,∣∣NB(v) ∩ C(yi)

′∣∣ 6 2n−d(r+1)

d
(
t(yi,yj)

)4(k+1−r)+2
.

Once sets C(yj)
′ satisfying (a′) and (b′) have been found, it will be straightforward to find

slightly smaller sets C(yj) ⊂ C(yj)
′ satisfying the slightly stronger Condition (b).

In order to find sets C(yj)
′ as described above, let j > 1 and suppose that we have

already found sets C(y1)
′, . . . , C(yj−1)

′ satisfying (a′) and (b′). We shall find C(yj)
′ inside

U(yj) ⊂ A
(
yj[d(r)]

)
, where

U(yj) := A
(
yj[d(r)]

)
\
⋃
i<j

C(yi)
′,

denotes the set of not yet occupied vertices in A
(
yj[d(r)]

)
. We claim that

|U(yj)| > 2γ · 2n−d(r). (13)

To see this simply note that∣∣{i < j : C(yi)
′ ⊂ A

(
yj[d(r)]

)}∣∣ =
∣∣{i < j : yi[d(r)] = yj[d(r)]

}∣∣ < 2d(r+1)−d(r),

and that(
1 + 3(k + 2− r)γ

)
2n−d(r) − 2d(r+1)−d(r)

(
1 +

(
3(k + 1− r) + 1

)
γ
)

2n−d(r+1) = 2γ · 2n−d(r).

The bound (13) now follows immediately.

In order to find C(yj)
′ ⊂ U(yj) satisfying condition (b′), we must remove from U(yj) all

vertices which have high blue degree to some already-chosen set C(yi)
′ with yi ∼ yj. Let

T (j) =
{

1 6 i 6 j − 1 : yi ∼ yj

}
denote the collection of indices of already-assigned Qd(r+1)-neighbours of yj, and for each

i ∈ T (j), let

Di(yj) =

{
v ∈ U(yj) : |NB(v) ∩ C(yi)

′| > 2n−d(r+1)

d
(
t(yi,yj)

)4(k+1−r)+2

}
. (14)

We claim that

|Di(yj)| 6
2d(r+1)−d(r)

d
(
t(yi,yj)

)2 · ∣∣C(yi)
′∣∣ 6 2n−d(r)+1

d
(
t(yi,yj)

)2 . (15)

Indeed, since yi ∼ yj, it follows that either yi[d(r)] = yj[d(r)] or yi[d(r)] ∼ yj[d(r)], and

hence Condition (b) in Definition 3.2 holds, with x = yj[d(r)], for every v ∈ C(yi)
′. Thus,
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by the definition (14) of Di(yj) and the fact that Di(yj) ⊂ A
(
yj[d(r)]

)
, we have∣∣Di(yj)

∣∣ · 2n−d(r+1)

d
(
t(yi,yj)

)4(k+1−r)+2
6 eB

(
C(yi)

′, Di(yj)
)

6 eB
(
C(yi)

′, A(yj[d(r)])
)
6
∣∣C(yi)

′∣∣ · 2n−d(r)

d
(
t(yi,yj)

)4(k+1−r)+4
.

The first bound in (15) follows immediately; the second follows by Condition (a′).

Now, set

X = U(yj) \
⋃

i∈T (j)

Di(yj).

We claim that

|X| > γ · 2n−d(r) and
∣∣NB(v) ∩ C(yi)

′∣∣ 6 2n−d(r+1)

d
(
t(yi,yj)

)4(k+1−r)+2
(16)

for every i < j such that yi ∼ yj and every v ∈ X. To prove the bound on |X|, recall

from (13) that |U(yj)| > 2γ · 2n−d(r), and observe (cf. (9)) that, by (15), we have∑
i∈T (j)

∣∣Di(yj)
∣∣ 6 r+1∑

p=1

d(p) · 2n−d(r)+1

d(p)2
6 γ · 2n−d(r).

Indeed, note that t(yi,yj) ∈ [r + 1] for every i ∈ T (j), and that there are at most d(p)

elements i ∈ T (j) with yi ∼ yj and t(yi,yj) = p, for every p ∈ [r+ 1]. Once again, the final

inequality holds since n is sufficiently large and d(p) → ∞ as n → ∞ for every p ∈ [r + 1].

The second inequality in (16) follows directly from the definitions of X, Di(yj) and T (j).

Finally, we apply Lemma 3.6 to X, with a = 2n−d(r+1)+1 and d = d(r + 1)/s, to obtain a

set Y ⊂ X with

|Y | = 2n−d(r+1)+1 and
∣∣NB(v) ∩ Y

∣∣ 6 2n−d(r+1)

d(t(yj,yj))4(k+1−r)+2
(17)

for every v ∈ Y . To see that these values of a and d are compatible, simply note that

|Y | = 2n−d(r+1)+1 � γ · 2n−d(r)−(s−2)d(r+1)/s 6 2−(s−2)d|X|,

since d(r + 1)/s� d(r). To obtain the bound on |NB(v) ∩ Y |, observe that∣∣NB(v) ∩ Y
∣∣ 6 2−d+1|Y | � 2n−d(r+1)

d(r + 2)4(k+1−r)+2
=

2n−d(r+1)

d
(
t(yj,yj)

)4(k+1−r)+2

since 2d(r+1)/s � d(r + 2)5k. We may now choose C(yj)
′ to be an arbitrary subset of Y of

the correct size, since every such set automatically satisfies conditions (a′) and (b′).

We have now constructed sets C(yj)
′ satisfying conditions (a′) and (b′); it only remains to

find subsets C(yj) ⊂ C(yj)
′ satisfying conditions (a) and (b). For each i < j with yi ∼ yj,
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condition (b′) implies that every vertex in C(yj)
′ sends few blue edges to C(yi)

′. However

there may be vertices in C(yi)
′ that send many blue edges to C(yj)

′, which we must remove.

The proof that there are few such vertices is an easy exercise in double-counting, exactly as

above. To spell it out, let

T̂ (j) =
{
j + 1 6 i 6 2d(r+1) : yi ∼ yj

}
denote the collection of indices of Qd(r+1)-neighbours of yj which were assigned later in the

process than yj, and for each i ∈ T̂ (j), let

D̂i(yj) =

{
v ∈ C(yj)

′ : |NB(v) ∩ C(yi)
′| > 2n−d(r+1)

d
(
t(yi,yj)

)4(k+1−r)

}
. (18)

We claim that

|D̂i(yj)| 6
∣∣C(yi)

′
∣∣

d
(
t(yi,yj)

)2 6 2n−d(r+1)+1

d
(
t(yi,yj)

)2 . (19)

Indeed, by (18), Condition (b′), and the fact that D̂i(yj) ⊂ C(yj)
′, we have∣∣D̂i(yj)

∣∣ · 2n−d(r+1)

d
(
t(yi,yj)

)4(k+1−r) 6 eB
(
C(yi)

′, D̂i(yj)
)

6 eB
(
C(yi)

′, C(yj)
′) 6 ∣∣C(yi)

′∣∣ · 2n−d(r+1)

d
(
t(yi,yj)

)4(k+1−r)+2
.

as claimed. Finally, note that∑
i∈T̂ (j)

∣∣D̂i(yj)
∣∣ 6 r+1∑

p=1

d(p) · 2n−d(r+1)+1

d(p)2
6 γ · 2n−d(r+1),

since there are at most d(p) elements i ∈ T̂ (j) with yi ∼ yj and t(yi,yj) = p.

Using Condition (a′), it follows that∣∣∣∣C(yj)
′ \

⋃
i∈T̂ (j)

D̂i(yj)

∣∣∣∣ > (1 + 3
(
k + 1− r

)
γ
)

2n−d(r+1).

Hence, taking C(yj) to be any subset of the correct size, and repeating the above for each

1 6 j 6 2d(r+1) in turn, we obtain a level-(r + 1) assignment, as required. �

We can now easily deduce Proposition 3.1 from Lemmas 3.3 and 3.4.

Proof of Proposition 3.1. As noted earlier, our assumptions onH trivially imply that {V (H)}
is a level-0 assignment of Qn into H, provided n is sufficiently large. Now, applying

Lemma 3.3 for each r ∈ {0, . . . , k} in turn, we obtain a level-(k + 1) assignment of Qn

into H. Finally, by Lemma 3.4, it follows that Qn ⊂ HR, as required. �
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4. Embedding with matchings

In the previous section, we showed how to efficiently embed the hypercube Qn in a dense

red colouring H which is blue Ks-free. In this section we will strengthen Proposition 3.1 in

the following way. We shall show that if V (H) may be partitioned into a reasonably small

family of sets such that HR is dense on each, then either we can still efficiently embed the

hypercube, or H contains a large and dense blue r-partite graph.

More precisely, we shall prove the following proposition.

Proposition 4.1. Given any C, ε > 0 and s, k ∈ N, there exists n0 = n0(C, ε, s, k) ∈ N such

that the following holds whenever n > n0. Set p = log(k+4)(n) and q = log(k)(n).

Let G be a two-coloured complete graph on at most C · 2n vertices with no blue Ks, and

let U be a collection of disjoint sets of vertices such that:

(a) |U | > 2n−p for every U ∈ U .

(b) |∆B(U)| 6 2n−q for every U ∈ U .

Then either there exists a partition U = U1 ∪ · · · ∪ Ur and a set X ⊂ V (G) such that

(i) |X| 6 ε2n and
∑

U∈Ui
|U | 6

(
1 + ε

)
2n for every i ∈ [r], and

(ii) dB
(
Ui \X,Uj \X

)
6 1/n5 for every Ui ∈ Ui and Uj ∈ Uj with i, j ∈ [r] and i 6= j,

or Qn ⊂ GR.

In order to motivate the proof of Proposition 4.1, let us begin by discussing the following

special case. Let |U| = 2, and suppose moreover that U1 and U2 each have size (1 + ε)2n−1.

Suppose that there exists a perfect red matching M between U1 and U2, and consider the

two-colouring of E(K|M |) obtained by identifying the endpoints of M and taking the union

of the blue graphs. Since G contains no blue Ks, this colouring contains no blue KR(s),

where R(s) denotes the Ramsey number of s. Hence, by Proposition 3.1, it contains a

red Qn−1, which (using M to join the two sides) corresponds to a red copy of Qn in the

original colouring. We thus obtain the following result.

Example 4.2. Let G be a two-coloured complete graph with no blue Ks, as in Proposition 4.1,

and suppose that U = {U1, U2}, and that |U1|, |U2| > (1 + ε)2n−1. If G contains a perfect

matching of red edges between U1 and U2, then Qn ⊂ GR.

In order to prove Proposition 4.1, we shall generalize this idea by decomposing Qn as

Qm ×Qn−m (instead of Q1 ×Qn−1), and by allowing the copies of Qm to span several dense

red sets, rather than just two. In order to find such copies of Qm, it will be sufficient to find

many red copies of Kt,t, where t >
(
m
m/2

)
.6 We next give another example, again in the case

|U| = 2, to illustrate this crucial observation.

6We remind the reader of the well-known fact that a graph which contains no copy of Kt,t must necessarily
be rather sparse, see Theorem 4.9 below.
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Example 4.3. Let G be as in Example 4.2. If GR[U1, U2] contains at least (1 + ε)2n−m

disjoint copies of Kt,t, where t =
(
m
m/2

)
and m = o

(
log log q

)
, then Qn ⊂ GR.

Proof. We first attempt to greedily extend each copy of Kt,t, one by one, to a (disjoint) red

copy of Qm with one half in U1 and the other in U2. By assumption (b), at most m2n−q � 2n

vertices are forbidden at each step, and so we will succeed in covering all but o(2n) vertices

of U1 ∪ U2. Next we define a two-colouring H of the complete graph on M = (1 + ε)2n−m

vertices by identifying all points in the same copy of Qm, and colouring an edge blue if any

of the corresponding 2m matching edges7 were blue in G. Note that every vertex has blue

degree at most 2n−q+m in H, and moreover it contains no blue clique on R2m(s) vertices,

where Rr(s) denotes the r-colour Ramsey number of s. Since Rr(s) 6 rrs for every r, s > 2,

it follows by Proposition 3.1 and our choice of m that H contains a red copy of Qn−m, which

corresponds to a red copy of Qn in G, as required. �

In order to prove Proposition 4.1, we shall need to perform a similar embedding into a large

string of sets, not necessarily all the same size, which are connected by many vertex-disjoint

copies of Kt,t. The following definition will be useful.

Definition 4.4. Let V be a collection of disjoint sets of vertices of a two-coloured complete

graph G, let n,m ∈ N and set t =
(
m
m/2

)
. We say that V is an m-path in GR for n if there

exists an ordering (V1, . . . , V`) of the members of V such that, for every 1 6 i < `, the graph

GR[Vi, Vi+1] contains (1 + ε)2n−m vertex-disjoint copies of Kt,t.

The following embedding lemma is the key step in the proof of Proposition 4.1.

Lemma 4.5. Given any ε > 0 and s, k ∈ N, there exists n0 = n0(ε, s, k) ∈ N such that the

following holds whenever n > n0. Let p = log(k+4)(n), q = log(k)(n) and 26p � m� 22p
.

Let G be a two-coloured complete graph with no blue Ks, and let V be a collection of disjoint

sets of vertices of G satisfying the following conditions:

(a)
∑

V ∈V |V | > (1 + 3ε)2n.

(b) |V | > 2n−3p for every V ∈ V.

(c) |∆B(V )| 6 2n−q for every V ∈ V.

(d) V is an m-path in GR for n.

Then Qn ⊂ GR.

Given m ∈ N and 0 6 a 6 b 6 m, let us write

Qm[a, b] =
{

x ∈ Qm : a 6 |x| 6 b
}

for the subgraph of the hypercube Qm induced by the layers corresponding to sets of size

between a and b. We shall embed into each set V ∈ V a copy of Qm[a, b] × Qn−m, where a

7That is, the edges required between the two copies of Qm to create a copy of Qm+1.
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and b are chosen so that v
(
Qm[a, b]

)
is proportional to |V |. With this notation in hand, we

are ready to prove the embedding lemma.

Proof of Lemma 4.5. Let ε > 0 and s, k ∈ N be arbitrary, let m,n, p, q ∈ N be as described

in the statement of the lemma, and let G be a two-coloured complete graph with no blue Ks.

Let V be a collection of disjoint vertex sets satisfying conditions (a), (b), (c) and (d) of

the lemma, and let (V1, . . . , V`) be an ordering of the elements of V such that GR[Vi, Vi+1]

contains at least M = (1 + ε)2n−m vertex-disjoint copies of Kt,t for every 1 6 i < `.

The first step is to choose an `′ 6 ` and a sequence of integers

0 6 b(1) < · · · < b(`′) = m

such that, if we set a(1) = 0 and a(i) = b(i− 1) + 1 for each 2 6 i 6 `′, then

|Vi| >
(
1 + 2ε

)
2n−m · v

(
Qm[a(i), b(i)]

)
(20)

for every i ∈ [`′]. We do so greedily, by choosing b(i) to be maximal such that (20) holds.

To see that this works, simply note that,∑
i∈[`]

|Vi| >
(
1 + 3ε

)
2n >

(
1 + 2ε

)
2n−m

(
2m + ` ·

(
m

m/2

))
,

by property (a). The second inequality above holds since we may assume that ` �
√
m;

indeed, this follows from property (b), and our assumption that 23p �
√
m.

Next, for each 1 6 i < `′, choose from G[Vi, Vi+1] a collection of M disjoint copies of the

complete bipartite graph with part sizes
(
m
b(i)

)
and

(
m

a(i+1)

)
, and note that we may do so by

our assumption, together with the fact that
(
m
j

)
6 t for every j ∈ [m]. Let us write

S
(1)
i , . . . , S

(M)
i ⊂ Vi and T

(1)
i , . . . , T

(M)
i ⊂ Vi+1

for the vertex sets of these complete bipartite graphs.

We now greedily extend, for each j ∈ [M ], the graph induced (in GR) by
⋃`′

i=1 S
(j)
i ∪ T

(j)
i

to a red copy of Qm, which we shall call Q
(j)
m . To do so, simply note that by condition (b),

every vertex sends at most 2n−q blue edges into its own part, and hence we will run out of

space only when all but m2n−q = o(|V |) vertices of some set V ∈ V have already been used.

By (20), this will not happen before we have completed all M copies of Qm.

Finally, consider the two-colouring H of KM obtained by identifying the vertices of each

copy of Qm, and placing a blue edge between two vertices if any of the corresponding 2m

matching edges of G were blue. To be precise, set V (H) =
{
Q

(1)
m , . . . , Q

(M)
m

}
and

E(HR) =
{{
Q(i)
m , Q

(j)
m

}
: x(i)x(j) ∈ E(GR) for every x ∈ Qm

}
,

where x(i) denotes the vertex of Q
(i)
m corresponding to x. The crucial observation is that H

contains no blue clique on R2m(s) vertices, since GB is Ks-free. Indeed, we may colour each
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blue edge of H by an arbitrary element x ∈ Qm such that x(i)x(j) ∈ E(GB); it is easy to see

that a monochromatic s-clique in this colouring corresponds to a blue copy of Ks in G.

It only remains to check that H satisfies the conditions of Proposition 3.1. To see this,

recall that Rr(s) 6 rrs (this follows by a simple induction), and observe every vertex in

H has blue degree at most 2n−q+m in H. Moreover, since m = o(log log q), it follows that

R2m(s) � q. Hence, by Proposition 3.1, the two-colouring H contains a red copy of Qn−m,

which corresponds to a red copy of Qn in G, as required. �

We shall next use Lemma 4.5 to find a red copy of Qn in a slightly more general structure.

Note that the disjoint copies of Kt,t in the proof above only covered a small proportion of

the vertices of each set V ∈ V . This motivates the following definition.

Definition 4.6. Let G be a two-coloured complete graph. For each m ∈ N and γ > 0, we

say that a pair {U1, U2} of disjoint sets of vertices of G is (m, γ)-good if

GR[X1, X2] contains a copy of Kt,t, where t =

(
m

m/2

)
for every X1 ⊂ U1 and X2 ⊂ U2 with |Xi| >

(
1− γ

)
|Ui| for each i ∈ {1, 2}.

Given m ∈ N, γ > 0 and a collection U of disjoint sets of vertices in a two-coloured

complete graph G, we say that U is (m, γ)-connected in GR if the graph on vertex set U
whose edges are the (m, γ)-good pairs in

(U
2

)
is connected.

Lemma 4.7. Given ε > 0 and s, k ∈ N, there exists n0 = n0(ε, s, k) such that the following

holds whenever n > n0. Let p = log(k+4)(n), q = log(k)(n), 28p � m� 22p
and γ > m−1/4.

Let G be a two-coloured complete graph with no blue Ks, and let U be a collection of

disjoint sets of vertices of G satisfying the following conditions:

(a)
∑

U∈U |U | > (1 + 3ε)2n.

(b) |U | > 2n−p for every U ∈ U .

(c) |∆B(U)| 6 2n−q for every U ∈ U .

(d) U is (m, γ)-connected in GR.

Then Qn ⊂ GR.

Lemma 4.7 will follow easily from Lemma 4.5 once we have refined the partition U so as

to produce an m-path V . The following straightforward lemma performs this refinement.

Lemma 4.8. Let G be a two-coloured complete graph, let m ∈ N and γ > 0, and let U be a

collection of disjoint sets of vertices which is (m, γ)-connected in GR. If

γ
√
m · |U | � 2n · |U| (21)
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for every U ∈ U , then there exists a refinement V of U , satisfying

|V | > |U |
2|U|

for each V ∈ V with V ⊂ U ∈ U , such that V is an m-path in GR.

Proof. Set u = |U| − 1, and let (W0, . . . ,W2u) be a closed walk on vertex set U that visits

every U ∈ U at least once, and such that (Wi,Wi+1) is (m, γ)-good for each 0 6 i < 2u.

We claim that there exists a collection K of disjoint red copies of Kt,t, where t =
(
m
m/2

)
,

such that each graph GR[Wi,Wi+1] contains exactly (1 + ε)2n−m elements of K. Indeed, by

Definition 4.6 we can simply find the elements of K greedily, noting that, by (21), we use up

at most

(1 + ε)2n−m · t · |U| 6 γ|U |
elements of each set U ∈ U in the process.

Now, for each 0 6 i 6 2u, let V ′i ⊂ Wi and V ′′i ⊂ Wi denote the vertices in Wi of the

elements of K in GR[Wi−1,Wi] and GR[Wi,Wi+1] respectively (noting that V ′0 = V ′′2u = ∅),
and let V = {V0, . . . , V2u} be an arbitrary refinement of U such that:

(a) V ′i ∪ V ′′i ⊂ Vi ⊂ Wi for each 0 6 i 6 2u.

(b) If Wi = Wj, then
∣∣|Vi| − |Vj|∣∣ 6 1.

Since each set U ∈ U appears at most |U| = u + 1 times in the multi-set {W1, . . . ,W2u}, it

follows that |V | > b|U |/(u + 1)c > |U |/2|U| for every V ∈ V with V ⊂ U ∈ U . Moreover,

since the graph GR[Vi, Vi+1] contains at least (1 + ε)2n−m vertex-disjoint copies of Kt,t, it

follows that V is an m-path in GR, as claimed. �

We can now easily deduce Lemma 4.7.

Proof of Lemma 4.7. Let U be a family of disjoint vertex sets as described in the lemma,

and note that (by considering a sub-tree if necessary) we may assume that |U| 6 2p+1. We

have

γ
√
m · |U | � 2n+p+1 > 2n · |U|

for every U ∈ U , and thus, by Lemma 4.8, there exists a refinement V of U , satisfying

|V | > |U |
2|U|

> 2n−3p

for each V ∈ V , such that V is an m-path in GR. By Lemma 4.5, it follows immediately that

Qn ⊂ GR, as required. �

We are almost ready to deduce Proposition 4.1 from Lemma 4.7. The final tool we shall

need is the following theorem of Kövári, Sós and Turán [20], which implies that if a pair

{U, V } is not m-good, then the red bipartite subgraph GR[U, V ] has very few edges.
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Theorem 4.9 (Kövári, Sós and Turán [20]). If G is an N ×N bipartite graph that does not

contain Kt,t as a subgraph, then

e(G) 6 O
(
N2−1/t

)
.

We can now prove Proposition 4.1.

Proof of Proposition 4.1. Let C, ε > 0 and s, k ∈ N be arbitrary, and let n, p, q ∈ N be as

described in the statement of the lemma. Let G be a two-coloured complete graph on at

most C · 2n vertices with no blue Ks and no red Qn, and let U be a collection of disjoint sets

of vertices such that (a) and (b) hold. Set m = 29p and γ = 2−2p, and let

U = U1 ∪ · · · ∪ Ur
be a partition of U into (m, γ)-components.8

Suppose first that there exists j ∈ [r] such that
∑

U∈Uj
|U | > (1+3ε)2n. Since Uj is (m, γ)-

connected in GR, it follows by Lemma 4.7 that Qn ⊂ GR, which contradicts our choice of G.

Thus we have
∑

U∈Uj
|U | 6 (1 + 3ε)2n for each j ∈ [r].

We claim that there exists a set X satisfying conditions (i) and (ii) of the proposition. In

order to prove this, we shall define, for each pair of sets U,W ∈ U which are not in the same

(m, γ)-component, sets XW (U) ⊂ U and XU(W ) ⊂ W such that the graph

G[U \XW (U),W \XU(W )]

is dense in blue. To do so, observe first that the pair (U,W ) is not (m, γ)-good, since

otherwise U and W would be in the same (m, γ)-component. By Definition 4.6, it follows

that there exist sets YW (U) ⊂ U and YU(W ) ⊂ W , with

|YW (U)| >
(
1− γ

)
|U | and |YU(W )| >

(
1− γ

)
|W |, (22)

such that GR[YW (U), YU(W )] does not contain a copy of Kt,t. By the Kövári-Sós-Turán

bound (Theorem 4.9), and since |U | > 2n−p � 2n/2 for every U ∈ U , it follows that

dR
(
YW (U), YU(W )

)
� 2−n/2t � 2−n/2

m+1 � 1

n5
.

Set XW (U) = U \YW (U) for each such pair U and W , and for each i ∈ [r] and U ∈ Ui, define

X(U) =
⋃

W∈U\Ui

XW (U).

Noting that |U| 6 C · 2p (by (a) and our bound on v(G)), and using (22), it follows that

|X(U)| 6 γ|U | · |U| 6 γ|U | · C · 2p � |U |, (23)

for each U ∈ U , and hence X :=
⋃
U∈U X(U) satisfies conditions (i) and (ii), as required. �

8That is, let {U1, . . . ,Ur} be the collection of its maximal (m, γ)-connected sets.
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5. The proof of Theorem 1.1

Combining the results of Sections 2 and 4, it is now easy to deduce Theorem 1.1. We

begin by proving a stability theorem.

Theorem 5.1. For every ε > 0 and s ∈ N, there exists δ = δ(s) > 0 and n0 = n0(ε, s) ∈ N
such that the following holds for every n > n0.

Let G be a two-coloured complete graph on N > (1− δ)(s− 1)2n vertices with no blue Ks.

Then either there exists a partition of V (G) = S0 ∪ S1 ∪ · · · ∪ Ss−1 such that:

(a) |S0| 6 ε2n and |Sj| 6
(
1 + ε

)
2n for every j ∈ [s− 1],

(b) GR[Sj] is a red clique for every 1 6 j 6 s− 1,

(c) dR(Si, Sj) 6 1/n2 for every 1 6 i < j 6 s− 1,

(d) |NB(v) ∩ Sj| 6 |Sj|/n2 for every v ∈ S0 and some j = j(v) ∈ [r],

or Qn ⊂ GR.

Proof. Set δ = 1/2s and assume, without loss of generality, that ε > 0 is sufficiently small.

Note that we may assume also that N 6
(
s− 1 + εs

)
2n, since if N is at least this large then

the theorem states that Qn ⊂ GR, and so we may restrict our attention to a subset of the

vertices. Let K = K(ε2, s) be the constant given by Proposition 2.1.

We first claim that there exists k 6 4K − 3 and a collection U of disjoint vertex sets of G

such that, writing p = log(k+4)(n) and q = log(k)(n), we have

(i) |
⋃
U∈U U | >

(
1− ε2

)
v(G).

(ii) |U | > 2n−p for every U ∈ U .

(iii) ∆(GB[U ]) 6 2n−q for every U ∈ U .

To see this, set a(0) = N and

a(K − i) =
2n

log(4i)(n)

for each 1 6 i 6 K − 1, and note that a(i + 1) 6 (ε/8)a(i) for every 0 6 i 6 K − 2,

since n > n0. By Proposition 2.1, it follows that there exists i ∈ [K − 1] and a collection U
of disjoint vertex sets of G satisfying (i), (ii) and (iii), with k = 4i+ 1, as claimed.

We next apply Proposition 4.1 to the collection U . Assuming that Qn 6⊂ GR, it follows

that there exists a partition U = U1 ∪ · · · ∪ Ur and a set X ⊂ V (G) such that

(iv) |X| 6 ε2n−1 and
∑

U∈Ui
|U | 6

(
1 + ε

)
2n for every i ∈ [r].

(v) dB
(
U \X,W \X

)
6 1/n5 for every U ∈ Ui and W ∈ Uj with i, j ∈ [r] and i 6= j.

By (i) and (iv), and the pigeonhole principle, it follows that r > s−1. We claim that in fact

r = s − 1, and that each set
⋃
U∈Ui

U contains a very large clique; both facts will follow by

essentially the same argument. In brief, if either property fails to hold then we shall remove

vertices of high red degree and use the greedy algorithm to find a blue copy of Ks.
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Indeed, for each pair of disjoint vertex sets S, T ⊂ V (G), let

YT (S) =
{
v ∈ S : |NR(v) ∩ T | > |T |/n3

}
denote the ‘vertices of high red degree’ in S with respect to T and, for each U ∈ Ui, let

Y (U) =
⋃

W∈U\Ui

YW\X
(
U \X

)
denote the vertices of U \X which send many red edges to some set in a different part. We

claim that

|Y (U)| 6 |U |
n

(24)

for every U ∈ U . Indeed, it follows from property (ii) and our assumption that N = O(s ·2n)

that |U| = O(s · 2p) � n, and from property (v) that |YW\X(U \ X)| 6 |U |/n2 for every

U ∈ Ui and W ∈ Uj with i, j ∈ [r] and i 6= j.

Now, suppose that r > s. Let U1 ∈ U1, . . . , Us ∈ Us, and choose vertices

vj ∈ Uj \
(
X ∪ Y (Uj) ∪NR(v1) ∪ · · · ∪NR(vj−1)

)
(25)

for each j ∈ [s]. To see that this is possible, recall that |NR(vi) ∩ Uj| 6 |Uj|/n3 for every

i < j, which holds since vi 6∈ Y (Ui), and by (24), and note that moreover |X ∩ U | � |U |
for each U ∈ U , by (23). (Alternatively, we can simply throw out (into S0) all sets U which

have a too-large intersection with X.) Clearly the vertices {v1, . . . , vs} span a blue copy of

Ks in G, which contradicts our assumption that GB is Ks-free.

Hence we may assume that r = s− 1. Set

Sj :=
⋃
U∈Uj

(
U \

(
X ∪ Y (U)

))
(26)

for each j ∈ [s− 1], and suppose that there is a blue edge {v1, v2} in the set S1, say. Then,

by exactly the same argument as before, we can choose vertices

vj+1 ∈ Sj \
(
NR(v1) ∪ · · · ∪NR(vj)

)
(27)

for 2 6 j 6 s − 1, and once again the vertices {v1, . . . , vs} span a blue copy of Ks in G.

Hence property (b) holds, and (c) follows easily from (v), together with (24) and (26).

Finally, let us set

S0 = V (G) \
(
S1 ∪ · · · ∪ Ss−1

)
, (28)

and check that the conditions (a) and (d) hold. Indeed, by (24) and since |U| = O(s·2p)� n,

and using properties (i) and (iv), we have

|S0| 6 ε2v(G) + |X|+
∑
U∈U

|Y (U)| 6 ε2n

and |Sj| 6 (1 + ε)2n for every j ∈ [s − 1]. Moreover, if there exists a vertex v ∈ S0 with

|NB(v) ∩ Sj| > |Sj|/n2 for every j ∈ [r], then we can choose vertices v2 ∈ S1, . . . , vs ∈ Ss−1,
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as in (27), so that {v, v2, . . . , vs} spans a blue Ks, which is a contradiction. This completes

the proof of the stability theorem. �

In order to deduce Theorem 1.1 from Theorem 5.1, we shall need the following easy lemma.

Lemma 5.2. Let G be a two-coloured complete graph, and let X, Y ⊂ V (G) be disjoint

vertex sets with |X|+ |Y | > 2n and |Y | 6 2n−3. Suppose that GR[X] is a clique, and that

|NB(v) ∩X| 6 |X|/n2

for every v ∈ Y . Then Qn ⊂ GR.

Proof. We construct an embedding ϕ of Qn into GR by embedding the lowermost even layers

of Qn into Y , and then embedding the remaining vertices into X, as follows:

1. Let 0 6 ` < n/4 be such that

`−1∑
i=0

(
n

2i

)
6 |Y | <

∑̀
i=0

(
n

2i

)
,

and embed the first ` even layers of the hypercube arbitrarily into Y . If some vertices

of Y remain unused, embed part of the (`+ 1)st even layer into them.

2. For each x ∈ Qn with ϕ(x) 6∈ Y and ‖x‖ 6 2`+ 1 6 n/2, select an unused vertex of

X which avoids the blue neighbourhoods (in G) of its neighbours in Qn. That is,

ϕ(x) ∈ X \
⋃
y∼x

NB

(
ϕ(y)

)
,

where y ranges over the Qn-neighbours of x which have already been embedded.

Since x has at most n such neighbours, and each has at most |X|/n2 blue neighbours

in X, it follows that we will never run out of vertices.

3. Embed the remaining elements of Qn into the remaining elements of X arbitrarily.

It is easy to see that this gives an embedding of Qn into GR, as required. �

We are finally ready to determine the Ramsey number r(Ks, Qn).

Proof of Theorem 1.1. Let G be a two-coloured complete graph on (s−1)(2n−1)+1 vertices

that does not contain a blue Ks; we claim that Qn ⊂ GR. By Theorem 5.1, either Qn ⊂ GR

or there exists a partition of V (G) = S0 ∪ S1 ∪ · · · ∪ Ss−1 satisfying properties (a)-(d) of

that theorem. By property (d), we may assign each vertex v ∈ S0 to a set Sj such that

|NB(v) ∩ Sj| 6 |Sj|/n2. We thus obtain a partition

V (G) = T1 ∪ · · · ∪ Ts−1

such that Tj is the union of a red clique Sj and a set with low blue degree into that clique.

By the pigeonhole principle, we must have |Tj| > 2n for some j ∈ [s− 1]. By Lemma 5.2, it

follows that Qn ⊂ GR[Tj], as required. �
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We end the paper by noting that our proof can easily be modified to prove the following

generalization of Theorem 1.1. Given a graph H with chromatic number s, let σ(H) denote

the size of the smallest colour class in any s-colouring of H.

Theorem 5.3. Let H be a graph. Then

r(H,Qn) =
(
χ(H)− 1

)(
2n − 1

)
+ σ(H) (29)

for every n > n0(H).

Note that the lower bound in (29) is trivial, since a blue complete s-partite graph with

s− 1 parts of size 2n − 1 and one part of size σ(H)− 1 contains no blue copy of H, and no

red copy of Qn. In order to prove Theorem 5.3 we have two tasks: we must prove a version

of Theorem 5.1 for blue H-free colourings, and we must prove a corresponding embedding

lemma. We begin by stating the generalized stability theorem.

Theorem 5.4. For every ε > 0 and C > 2, and every graph H with chromatic number s,

there exist δ > 0 and n0 = n0(C, ε,H) ∈ N such that the following holds for every n > n0.

Let G be a two-coloured complete graph on N > (1− δ)(s−1)2n vertices with no blue copy

of H. Then either there exists a partition of V (G) = S0 ∪ S1 ∪ · · · ∪ Ss−1 such that:

(a) |S0| 6 ε2n and |Sj| 6
(
1 + ε

)
2n for every j ∈ [s− 1],

(b) ∆B(Sj) 6 1/nC for every 1 6 j 6 s− 1,

(c) dR(Si, Sj) 6 1/nC for every 1 6 i < j 6 s− 1,

(d) |NB(v) ∩ Sj| > |Sj|/n2 for every j ∈ [r] for at most nC vertices v ∈ S0,

or Qn ⊂ GR.

The proof of Theorem 5.4 is very similar to that of Theorem 5.1. Indeed, since an H-free

graph is obviously Kv(H)-free, we may still apply Propositions 2.1 and 4.1 to the blue graph

and the collection U , respectively. Moreover, using the greedy algorithm exactly as in (25),

if r > s then one easily obtains a copy of H, simply by choosing v(H) vertices at each step

instead of only one. Similarly, if S1 contains a blue complete bipartite graph with v(H)

vertices in each part, then we can again find a blue copy of H, as in (27). It follows, by

Theorem 4.9, that dB(Sj) 6 1/nC for every 1 6 j 6 s− 1, as required.

We thus obtain properties (a), (b) and (c), as before. In order to prove property (d),

we need the following claim, which follows via a simple application of dependent random

choice (see [18] for an excellent survey of this technique). Let G be as in the statement of

Theorem 5.4, let S0, . . . , Ss−1 be the sets defined as in (26) and (28), and set

A :=
{
v ∈ S0 : |NB(v) ∩ Sj| > 2n/n2 for every j ∈ [s− 1]

}
.

The claim says that either A is small, or there exists a subset of A of size σ(H) with

sufficiently large common blue neighbourhood in each set Sj that we can find a blue copy of

H using the greedy algorithm. Let us assume, as we may, that C is sufficiently large.
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Claim. Either |A| 6 nC, or there exists a set X ⊂ A with |X| = σ(H) such that∣∣∣∣ ⋂
v∈X

NB(v) ∩ Sj
∣∣∣∣ > 2n

nC−1
(30)

for every j ∈ [s− 1].

Proof. With foresight, set t = b(log |A|)/(2s log n)c, and choose t elements of each set Sj
uniformly at random, with repetition. Let X ′ be the common blue neighbourhood of these

vertices in A. We claim that, with positive probability, there exists a set X ⊂ X ′ with the

required properties.

To see this, let us first calculate the expected size of X ′. By our choice of t, it is∑
v∈A

s−1∏
j=1

(
|NB(v) ∩ Sj|
|Sj|

)t
> |A| · n−2(s−1)t � σ(H),

assuming that |A| > nC . Next, let us write Y for the collection of subsets of X ′ of size σ(H)

which have at most 2n/nC−1 common neighbours in some Sj. We easily see that

E[|Y |] 6
(
|A|
σ(H)

)(
1

nC−1

)t
6 |A|σ(H)n−Ct/2 � 1

if |A| > nC , again by our choice of t. Thus E
[
|X ′| − |Y |

]
> σ(H), and it follows that

|X ′| − |Y | > σ(H) holds with positive probability. Finally, given such a set X ′, we simply

choose any σ(H)-subset X ⊂ X ′ which avoids at least one element of each member of Y . �

It is easy to see that, using the greedy algorithm exactly as before, if there is a set X ⊂ A

as in the claim, then H ⊂ GB. Hence we may assume that |A| 6 nC , as claimed. This

completes the proof of Theorem 5.4.

In order to deduce Theorem 5.3, first let T0 ⊂ A denote the set of vertices of S0 which have

red degree at most ε2n into every set Sj. Note that if |T0| > σ(H) then these vertices form

a set X satisfying (30) (assuming ε was chosen sufficiently small), in which case H ⊂ GB, as

noted above. Now, by the definition of A, we may partition the vertices of S0\A according to

the set Sj into which they send at most 2n/n2 blue edges, and the vertices of A\T0 according

to the set Sj into which they send at least ε2n red edges. We thus obtain a partition

V (G) = T0 ∪ T1 ∪ · · · ∪ Ts−1

where |T0| 6 σ(H) − 1, and for each j we have Tj = Sj ∪ Zj ∪ Aj, where Zj ⊂ S0 \ A and

Aj ⊂ A \ T0 are the parts of the partitions described above corresponding to Sj.

By the pigeonhole principle, some set Tj must contain at least 2n elements; it only remains

to show that Qn ⊂ GR[Tj]. We embed greedily, first placing the (at most nC) vertices of Aj
into even layers at pairwise distance at least three from one another, then embedding the

vertices of Zj, and finally those of Sj (embedding neighbours of ϕ(Aj) first, then neighbours
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of ϕ(Zj), then the rest), as in Lemma 5.2. The fact that Sj is no longer a red clique (but

rather a very dense red set) can be dealt with by a standard ‘vertex-switching’ argument, first

introduced in [23], and used (for example) in [2, Lemma 21]. Briefly, given any embedding

of Qn into V (G), and any blue edge of G corresponding to an edge of Qn, we can find two

vertices of G such that, if we swap their pre-images, then we obtain an embedding with fewer

blue edges. This completes the proof of Theorem 5.3.
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