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HYPERCYCLIC OPERATORS AND ROTATED ORBITS WITH

POLYNOMIAL PHASES

F. BAYART AND G. COSTAKIS

Abstract. An important result of León-Saavedra and Müller says that the rotations of
hypercyclic operators remain hypercyclic. We provide extensions of this result for orbits
of operators which are rotated by unimodular complex numbers with polynomial phases.
On the other hand, we show that this fails for unimodular complex numbers whose
phases grow to infinity too quickly, say at a geometric rate. A further consequence of
our work is a notable strengthening of a result due to Shkarin which concerns variants
of León-Saavedra and Müller’s result in a non-linear setting.

1. Introduction

Linear dynamical systems have surprising properties. By a linear dynamical system, we
mean a couple (X,T ) where X is a (complex) topological vector space and T ∈ L(X) is a
bounded linear operator on X. We are interested in transitive linear dynamical systems;
namely we ask that T is hypercyclic: there exists x ∈ X, called a hypercyclic vector for
T , such that its T -orbit {T nx; n ≥ 0} is dense in X. We shall denote by HC(T ) the set
of hypercyclic vectors for T . A comprehensive treatment on linear dynamical systems is
carried out in the recent books [3], [8].

Linear dynamical systems have rigid properties which are not shared by general dynam-
ical systems. For instance, Ansari has shown in [1] that, for any hypercyclic operator T
and for any q ≥ 1, T q is hypercyclic and HC(T q) = HC(T ). Some years later, León and
Müller were interested in the rotations of a hypercyclic vector. They proved in [12] that
{T nx; n ≥ 1} is dense in X iff {λT nx; n ≥ 1, λ ∈ T} is dense in X, where T is the unit
circle. In particular, for any θ ∈ R, HC(T ) = HC(eiθT ). For further results along this
line of research we refer to [2], [5], [12], [13], [14], [16].

To understand the influence of “rotations” in linear dynamics it would be desirable to
fully answer the following question.

Question. Let T ∈ L(X) be a hypercylic operator and let x ∈ X. For which sequences

(λn) ⊂ TN do we have {T nx; n ≥ 1} = X if and only if {λnT nx; n ≥ 1} = X?

Let us first show that an affirmative answer to the above question already imposes some
restrictions to the sequence (λn). Suppose T ∈ L(X) is a hypercyclic operator and consider
x ∈ HC(T ). Take any non-zero functional x∗ ∈ X∗ and define λn = |x∗(T nx)|/x∗(T nx) if
x∗(T nx) 6= 0 and λn = 1 if x∗(T nx) = 0. Observe that λn ∈ T for every n ∈ N. We claim
that the set {λnT

nx; n ≥ 1} is not dense in X. To see this, we argue by contradiction and
so assume that {λnT

nx; n ≥ 1} is dense in X. Then, the set {x∗(λnT
nx); n ≥ 1} is dense

in C. However, the last is a contradiction since, by the construction of λn, x
∗(λnT

nx) ≥ 0
for every n ∈ N.

2010 Mathematics Subject Classification. Primary 47A16.

1

http://arxiv.org/abs/1304.0176v1


2 F. BAYART AND G. COSTAKIS

We may also obtain a counterexample if we require moreover that (λn) belongs to a
finite subset of T. Indeed, let T ∈ L(X) be a hypercyclic operator on a Banach space
X and take x ∈ HC(T ). Then define λn = 1 if ‖T nx − x‖ ≥ ‖x‖/2 and λn = −1 if
‖T nx− x‖ < ‖x‖/2. It readily follows that ‖λnT

nx− x‖ ≥ ‖x‖/2 for every n ≥ 1.

On the contrary, the León-Saavedra and Müller result shows that the answer is true
provided (λn) = (einθ), θ ∈ R. Our main result says that the rotations of the orbit by
unimodular complex numbers with linear phases can be replaced by rotations consisting
of unimodular complex numbers with polynomial phases.

Theorem 1.1. Let X be a complex topological vector space, let T ∈ L(X) and let x ∈ X.
The following are equivalent.

(i) x is hypercyclic for T .

(ii) {eiP (n)T nx; n ≥ 1} = X for any polynomial P ∈ R[t].

(iii) {eiP (n)T nx; n ≥ 1}
o
6= ∅ for some polynomial P ∈ R[t].

The equivalence of (ii) and (iii) in this theorem is in fact an extension of Bourdon-
Feldman’s theorem, which says that {T nx; n ≥ 0} is dense if and only if it is somewhere
dense, see [4]. Actually, this result holds even for the projective orbit i.e., if the set
{λT nx; λ ∈ C, n ≥ 0} is somewhere dense then it is everywhere dense. In this case T is
called supercyclic and x is called a supercyclic vector for T . The supercyclic version of
Bourdon-Feldman’s theorem will be used in the proof of Theorem 1.1. That (i) implies
(ii) will depend on an extension of a result of Shkarin which has its own interest.

The problem of rotations of hypercyclic vectors can also be studied for stronger forms
of hypercyclicity. We recall that the lower density of a set of natural numbers A is defined
by

dens(A) := lim inf
N→∞

card(A ∩ [1, N ])

N
·

An operator T ∈ L(X) is called frequently hypercyclic provided there exists x ∈ X such
that, for any U ⊂ X open and nonempty, the set {n ∈ N; T nx ∈ U} has positive lower
density. The vector x is then called frequently hypercyclic for T and the set of T -frequently
hypercyclic vectors will be denoted by FHC(T ).

It has be shown in [3] that frequent hypercyclicity is invariant under rotation: for any
λ ∈ T, FHC(T ) = FHC(λT ). Here is the polynomial version of this property, to be
proved in Section 3 of the paper.

Theorem 1.2. Let X be a complex topological vector space, let T ∈ L(X) and let x ∈ X.
The following are equivalent.

(i) x ∈ FHC(T ).
(ii) For any P ∈ R[t], for any U ⊂ X open and nonempty, {n ∈ N; eiP (n)T nx ∈ U}

has positive lower density.
(iii) There exists P ∈ R[t] such that, for any U ⊂ X open and nonempty, {n ∈

N; eiP (n)T nx ∈ U} has positive lower density.

In Section 4, we investigate other choices of phases. We show that {eif(n)T nx; n ≥ 1}
does not need to be dense for all x ∈ HC(T ) provided f goes sufficiently fast to infinity,
for instance if f has exponential growth. On the contrary, we extend Theorem 1.1 to
sequences which do not grow too quickly to infinity, for instance for sequences like f(n) =

na logb(n+ 1). The polynomial case (Theorem 1.1) plays a crucial role in this extension.



ROTATED ORBITS 3

Finally, in Section 5, we study the link between the problem of rotations of hypercyclic
vectors and the theory of uniformly distributed sequences. In particular, we point out
that the uniform distribution of (f(n)) is not sufficient to ensure that {eif(n)T nx; n ≥ 1}
is dense for any x ∈ HC(T ). Nevertheless, uniform distribution will be a useful tool to
obtain generic statements.

2. Proof of the main result and an extension of a theorem of Shkarin

2.1. The strategy. As mentioned in the introduction, the equivalence between (i) and
(ii) in Theorem 1.1 is already known when P is a polynomial of degree 1. This was first
done when P (n) = 2πnθ with θ = p

q ∈ Q, q ≥ 1. Indeed, in that case, e2πiqnθT qnx = T qnx

and Ansari has shown in [1] that HC(T ) = HC(T q) for any q ≥ 1. If θ does not belong to
Q, this result goes back to the paper [12] by León-Saavedra and Müller: they showed that
for any θ ∈ R, HC(eiθT ) = HC(T ), namely that given x ∈ HC(T ) and any y ∈ X, there
exists a sequence (nk) such that e2πinkθT nkx → y. This was later improved by Shkarin in
[16] who proved the following result (see also [14] for a similar abstract result).

Theorem 2.1. (Shkarin) Let T be a hypercyclic continuous linear operator on a topo-
logical vector space X and let g be a generator of a compact topological group G. Then
{(T nx, gn); n ≥ 1} is dense in X ×G for any x ∈ HC(T ).

In particular, one may apply this result with G = T and g = e2πiθ, which generates T

provided θ /∈ Q. This implies the León-Saavedra and Müller theorem since for any y ∈ X
we may pick a sequence (nk) such that T nkx → y and e2πinkθ → 1.

This observation in the starting point of our investigations. We shall prove by induction
a polynomial variant of Shkarin’s result. Roughly speaking, it will say that, for any
polynomial P ∈ Z[t] and for any (x, y) ∈ HC(T )×X there exists a sequence of positive

integers (nk) such that T nkx → y and gP (nk) → 1G. At a first glance this seems weaker
than Theorem 2.1, since we do not get the density of {(T nx, gP (n)); n ≥ 1}. And of course
we can not do better because we do not require that g is a generator of G. This allows
us to handle the case of a rational phase in the same process. Moreover, this variant is
exactly what is needed to deduce Theorem 1.1. If we further assume that {gP (n); n ≥ 1}
is dense in G, in which case g is necessarily a generator of G, then we will be able to show
the density of {(T nx, gP (n)); n ≥ 1}. Thus, we will obtain the full extension of Shkarin’s
result in our setting.

At this stage we need to introduce notations. Let G be an abelian compact topological
group and let p ≥ 1. For g = (g1, . . . , gp) ∈ Gp, d = (d1, . . . , dp) ∈ Np, and u, v ∈ X, we
set

F g,d
u,v =

{

h ∈ G; (v, h, 1G, . . . , 1G) ∈ Ng,d
u

}

where

Ng,d
u =

{

(T nu, gn
d1

1 , . . . , gn1 , g
nd2

2 , . . . , gn2 , . . . , g
ndp

p , . . . , gnp ); n ≥ 1
}

.

Our variants of Shkarin theorem read as follows.

Theorem 2.2. Let T be a hypercyclic continuous linear operator on a topological vector
space X, let p ≥ 1 and let g1, . . . , gp be elements of a compact topological group G. Let

also d = (d1, . . . , dp) ∈ Np. Then for any u ∈ HC(T ) and any v ∈ X, 1G ∈ F g,d
u,v .
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Theorem 2.3. Let T be a hypercyclic continuous linear operator on a topological vector
space X. Let P ∈ Z[t] and let g ∈ G be such that {gP (n);n ≥ 1} is dense in G. Then
{(T nx, gP (n)); n ≥ 1} is dense in X ×G for any x ∈ HC(T ).

The proof of (iii) implies (i) in Theorem 1.1 will need the following variant of the
Bourdon-Feldman theorem.

Theorem 2.4. Let T ∈ L(X) and let x ∈ X. If {λT nx; λ ∈ T, n ≥ 0}
o

6= ∅ then

{λT nx; λ ∈ T, n ≥ 0} = X.

Before to prove Theorems 2.2, 2.3 and 2.4 let us show how to deduce Theorem 1.1
from them. For simplicity, throughout this section, we will assume that X and G are
metrisable. The same proofs work when X or G are not metrisable, replacing everywhere
sequences by nets. To show that (i) implies (ii), let x ∈ HC(T ), let G = T and let
P (n) = θpn

p + · · · + θ1n (we may always assume that it has no constant term). Setting

gk = eiθk and dk = k for k = 1, . . . , p, we may apply Theorem 2.2. In particular, given
any y ∈ X, one may find a sequence (nk)k such that

T nkx → y, ein
p
k
θp → 1, . . . , einkθ1 → 1.

This clearly implies that eiP (nk)T nkx → y. It remains to prove that (iii) implies (i). (iii)

yields {λT nx; λ ∈ T, n ≥ 0}
o
6= ∅ so, Theorem 2.4 gives {λT nx; λ ∈ T, n ≥ 0} = X and

we conclude by the León-Saavedra and Müller theorem.

2.2. Preparatory lemmas. Let us turn to the proof of Theorem 2.2. We fix an operator
T acting on a topological vector space X and a compact group G. We will need the
following elementary lemma.

Lemma 2.5. Let g, h ∈ G, d ≥ 1, m ≥ 1 and let (nk) be a sequence of integers such that

gnk → 1G, gn
2
k → 1G, . . . , g

nd−1
k → 1G, gn

d
k → h.

Then
g(nk+m)d → hgm

d

.

Proof. Write

g(nk+m)d =
d∏

j=0

gn
j
k(

d

j)m
d−j

= gn
d
k





d−1∏

j=1

(

gn
j
k

)(dj)m
d−j



 gm
d

→ hgm
d

.

�

The sets F g,d
u,v share some properties which are summarized below.

Lemma 2.6. Let u, v, w ∈ X, p ≥ 1, g ∈ Gp, d ∈ Np. The following hold.

(i) F g,d
u,v is closed; F g,d

u,v ⊂ F g,d
Tu,Tv.

(ii) F g,d
u,v F

g,d
v,w ⊂ F g,d

u,w .

(iii) Let (vk) ⊂ X and (hk) ⊂ G be such that vk → v, hk → h and hk ∈ F g,d
u,vk . Then

h ∈ F g,d
u,v .
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Proof. (i) is trivial. (ii) follows from Lemma 2.5. Indeed, for O an open neighbourhood
of 1G in G and h ∈ G, let us denote

Oh = (h.O)×O × · · · × O ⊂ Gd1+···+dp .

Let h1 ∈ F g,d
u,v , h2 ∈ F g,d

v,w and let W × Oh1h2 be an open neighborhood of the point

(w, h1h2, 1G, . . . , 1G) in X ×Gd1+···+dp . Since h2 ∈ F g,d
v,w , there exists m ∈ N such that

Tmv ∈ W and (gm
d1

1 , . . . , gmp ) ∈ Oh2 .

Let V be an open neighbourhood of v such that TmV ⊂ W . Since h1 ∈ F g,d
u,v , an application

of Lemma 2.5 gives the existence of an integer n satisfying

• T nu ∈ V =⇒ T n+mu ∈ W ;

• g
(n+m)d1
1 ∈ h1h2O;

• g
(n+m)k

l ∈ O provided l = 1 and k ≤ d1 − 1 or l ≥ 2 and k ≤ dl.

This shows that h1h2 ∈ F g,d
u,w .

The proof of (iii) goes along the same lines. Let V ×Oh be an open neighbourhood of
(v, h, 1G, . . . , 1G) in X × Gd1+···+dp . There exists k ≥ 1 such that (vk, hk, 1G, . . . , 1G) ∈

V × Oh and since hk ∈ F g,d
u,vk , there exists n ≥ 1 such that (T nu, gn

d1

1 , . . . , gp) ∈ V × Oh.

Thus, h ∈ F g,d
u,v . �

For a proof of the following lemma see, for instance, [9].

Lemma 2.7. A closed subsemigroup of a compact topological group is a subgroup.

2.3. Proof of Theorem 2.2. We are now ready for the proof of Theorem 2.2. We
proceed by induction on d1+ · · ·+dp. We first assume that d1+ · · ·+dp = 1 and let g ∈ G,

u ∈ HC(T ), v ∈ X. Define G0 = {gn; n ≥ 0}. G0 is an abelian compact topological
group and g is a generator of G0. By applying Shkarin’s result, {(T nu, gn); n ≥ 1} is

dense in X ×G0. In particular, 1G ∈ F g,d
u,v .

Suppose now that d1 + · · · + dp ≥ 2 and let u ∈ HC(T ), v ∈ X. We set d′ =

(d1− 1, . . . , dp). We consider any x, y ∈ HC(T ). By the induction hypothesis, 1G ∈ F g,d′

x,y .

This yields, by compactness of G, that F g,d
x,y is nonempty. In particular, Lemma 2.6 tells

us that F g,d
x,x is a closed subsemigroup of G, hence a closed subgroup of G. Moreover, if

we use again Lemma 2.6, we observe that
{

F g,d
x,x F

g,d
x,y ⊂ F g,d

x,y

F g,d
x,y F

g,d
y,x ⊂ F g,d

x,x .

Since F g,d
x,y and F g,d

y,x are both nonempty, F g,d
x,y contains a coset of F g,d

x,x and is contained

in a coset of F g,d
x,x . Thus it is a coset of F g,d

x,x (at this point, it is important to notice that
we need that G is abelian).

We apply this for x = u and y = Tu: there exists g ∈ G such that F g,d
u,Tu = gF g,d

u,u . Now,

using again (i) and (ii) of Lemma 2.6, we get






F g,d
Tu,T 2u

⊃ F g,d
u,Tu ⊃ gF g,d

u,u

F g,d
u,T 2u

⊃ F g,d
u,TuF

g,d
Tu,T 2u

⊃ g2F g,d
u,u .
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Since F g,d
u,T 2u

is a coset of F g,d
u,u , this in turn yields F g,d

u,T 2u
= g2F g,d

u,u . Repeating the pro-

cess, we obtain that, for any n ≥ 1, F g,d
u,Tnu = gnF g,d

u,u . Now, we use again the induction

hypothesis, but for d1 + · · · + dp = 1. This gives a sequence (nk) such that gnk → 1G
and T nku → v. By the last part of Lemma 2.6, 1G ∈ F g,d

u,v , which achieves the proof of
Theorem 2.2.

2.4. Proof of Theorem 2.3. Fix x ∈ HC(T ) and let y ∈ X, m ∈ N. Let also d be the
degree of the polynomial P , d ≥ 1. Then Tmx ∈ HC(T ) and by Theorem 2.2 there exists
a sequence of positive integers (nk) such that

T nk(Tmx) → y, gnk → 1G, gn
2
k → 1G, . . . , gn

d
k → 1G.

From the last we deduce that

T nk+mx → y, g(nk+m)j → gm
j

for every j = 0, 1, . . . , d

and this in turn implies T nk+mx → y, gP (nk+m) → gP (m). Thus,

(y, gP (m)) ∈ {(T nx, gP (n)); n ≥ 1} for every pair (y,m) ∈ X ×N.

Since {gP (m);m ≥ 1} is dense in G the conclusion follows.

2.5. An extension of the Bourdon-Feldman result. The next series of lemmas will
be used in the proof of Theorem 2.4. This kind of approach has appeared in [6] and
borrows ideas from [15].

Lemma 2.8. Let x, y be vectors in X. If

{λT nx; λ ∈ T, n ≥ 0}
o
∩ {λT ny; λ ∈ T, n ≥ 0}

o
6= ∅

then

{λT nx; λ ∈ T, n ≥ 0}
o
= {λT ny; λ ∈ T, n ≥ 0}

o
.

Proof. There exist α ∈ T and a positive integer k such that

αT kx ∈ {λT nx; λ ∈ T, n ≥ 0}
o
∩ {λT ny; λ ∈ T, n ≥ 0}

o
.

From the last we deduce that {λT nx; λ ∈ T, n ≥ k} ⊂ {λT ny; λ ∈ T, n ≥ 0} and since

{λT nx; λ ∈ T, n ≤ k}
o
= ∅ the inclusion

{λT nx; λ ∈ T, n ≥ 0}
o
⊂ {λT ny; λ ∈ T, n ≥ 0}

o

follows. Interchanging the roles of x and y in the previous argument we conclude the
reverse inclusion and we are done. �

Lemma 2.9. Let x ∈ X. For every non-zero complex number µ, {λT nx; λ ∈ T, n ≥ 0}
o
=

{λT n(µx); λ ∈ T, n ≥ 0}
o
.

Proof. We first assume that {λT n(x);λ ∈ T, n ≥ 0}
o
6= ∅ and let U be a nonempty open

subset of X such that U ⊂ {λT nx; λ ∈ T, n ≥ 0}
o
. There exist a complex number ρ and

a positive integer m such that

(2.1) ρU ∩ U 6= ∅

and

(2.2) ρm = µ.
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The inclusion ρlU ⊂ {λT n(ρlx);λ ∈ T, n ≥ 0}
o
trivially holds for every non-negative inte-

ger l. Because of (2.1) we get

ρlU ∩ ρl+1U 6= ∅ for every l = 0, 1, 2, . . . .

Hence, for every l = 0, 1, . . . ,m− 1

{λT n(ρlx);λ ∈ T, n ≥ 0}
o
∩ {λT n(ρl+1x);λ ∈ T, n ≥ 0}

o
6= ∅

and by (2.2) and Lemma 2.8 we conclude that

{λT nx; λ ∈ T, n ≥ 0}
o
= {λT n(µx); λ ∈ T, n ≥ 0}

o
.

If we now assume that {λT n(x);λ ∈ T, n ≥ 0}
o
= ∅, then we shall have

{λT n(µx);λ ∈ T, n ≥ 0}
o
= ∅

for any µ 6= 0, otherwise

{λT n(x);λ ∈ T, n ≥ 0}
o
=

{

λT n

(
1

µ
µx

)

;λ ∈ T, n ≥ 0

}o

would be nonempty. �

Proof of Theorem 2.4. Since {λT nx; λ ∈ T, n ≥ 0}
o
6= ∅, Bourdon-Feldman’s theorem im-

plies that T is supercyclic, in fact x is a supercyclic vector for T . By the density of super-

cyclic vectors there exists a supercyclic vector z for T such that z ∈ {λT nx;λ ∈ T, n ≥ 0}
o
.

Applying Lemma 2.9 we get µz ∈ {λT nx;λ ∈ T, n ≥ 0}
o
for every non-zero complex num-

ber µ. Since z is supercyclic for T and the set {λT nx; λ ∈ T, n ≥ 0} is T -invariant, the
result follows. �

2.6. Consequences and remarks. Theorem 2.1 is a particular case of a more general
result which can be found in [16]. Let us recall that a continuous map T : X → X, where
X is a topological space, is universal provided there exists x ∈ X, called universal vector
for T , such that {T nx; n ≥ 1} is dense in X. We denote by U(T ) the set of universal
vectors for T .

Theorem 2.1 can be extended to nonlinear dynamical systems whose set of universal
vectors satisfies connectedness assumptions. Precisely, Shkarin has proved the following
result:

Let X be a topological space, let T : X → X be a continuous map and
let g be a generator of a compact topological group G. Assume also that
there is a nonempty subset Y of U(T ) such that T (Y ) ⊂ Y and Y is path
connected, locally path connected and simply connected. Then the set
{(T nx, gn); n ≥ 1} is dense in X ×G for any x ∈ Y .

Starting from this result and with exactly the same proof, we can get the following state-
ment.

Let X be a topological space, let T : X → X be a continuous map,
let g1, . . . , gp be elements of a compact topological group G and let d =
(d1, . . . , dp) ∈ Np. Assume also that there is a nonempty subset Y of U(T )
such that T (Y ) ⊂ Y and Y is path connected, locally path connected and

simply connected. Then X × {(1G, . . . , 1G)} ⊂ Ng,d
u for any u ∈ Y .

We shall need later a variant of Theorem 2.3, where we allow the use of several polyno-
mials.
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Corollary 2.10. Let P1, . . . , Pr be real polynomials and let E be the closure of the set
{eiP1(n), . . . , eiPr(n)); n ≥ 1}. Let T ∈ L(X) be hypercyclic and let x ∈ HC(T ). Then
{(T nx, eiP1(n), . . . , eiPr(n)); n ≥ 1} is dense in X × E.

Proof. Let d = max(deg(P1), . . . ,deg(Pr)) and let us write Pp(x) =
∑d

j=0 θj,px
j for p =

1, . . . , r. Let y ∈ X, m ≥ 1 and let (nk) be a sequence of integers such that

T nk(Tmx) → y, ein
l
k
θj,p → 1 for 1 ≤ j, l ≤ d, 1 ≤ p ≤ r.

Then, as in the proof of Theorem 2.3, T nk+m → y and eiPp(nk+m) → eiPp(m) for any p in
{1, . . . , r}. �

This corollary is particularly interesting when the closure of {(eiP1(n), . . . , eiPr(n)); n ≥
1} is equal to Tr. This a well-known phenomenon in the theory of uniformly distributed
sequences.

Definition 2.11. We say that the real polynomials P1, . . . , Pr are πQ-independent pro-
vided for any h ∈ Zr, h 6= 0, the polynomial h1P1 + · · ·+ hrPr does not belong to πQ[t].

A fundamental theorem in the theory of uniformly distributed sequences, see [10], says
that if P1, . . . , Pr is a πQ-independent family of real polynomials, then the sequence
(P1(n), . . . , Pr(n)) is uniformly distributed modulo 1. Hence, {(eiP1(n), . . . , eiPr(n)); n ≥ 1}
is dense in Tr.

Corollary 2.12. Let P1, . . . , Pr be real polynomials which are πQ-independent. Let T ∈
L(X) be hypercyclic and let x ∈ HC(T ). Then {(T nx, eiP1(n), . . . , eiPr(n)); n ≥ 1} is dense
in X × Tr.

3. Rotations of frequently hypercyclic vectors

This section is devoted to the proof of Theorem 1.2. We first need an elementary lemma
on sets with positive lower density. Its proof can be found e.g. in [3, Lemma 6.29].

Lemma 3.1. Let A ⊂ N have positive lower density. Let also I1, . . . , Iq ⊂ N with
⋃q

j=1 Ij = N, and let n1, . . . , nq ∈ N. Then B :=
⋃q

j=1 (nj +A ∩ Ij) has positive lower
density.

As recalled before, if P1, . . . , Pr is a πQ-independent family of real polynomials, then
{(eiP1(n), . . . , eiPr(n)); n ≥ 1} is dense in Tr. We need a variant of this result when there
exist relations between the polynomials.

Proposition 3.2. Let P1, . . . , Pr be real polynomials without constant term. Assume that
there exist p ∈ {1, . . . , r}, integers m and (aj,k)p+1≤j≤r

1≤k≤p
, polynomials (Rj)p+1≤j≤r in πZ[t]

so that

(i) P1, . . . , Pp are πQ-independent;
(ii) For any j in {p + 1, . . . , r},

mPj = aj,1P1 + · · · + aj,pPp +Rj .

Then the closure of {(eiP1(n), . . . , eiPr(n)); n ≥ 0} is equal to
{

(eiθ1 , . . . , eiθr); ∀j ≥ p+ 1, mθj = aj,1θ1 + · · ·+ aj,pθp

}

.
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Proof. Let (θ1, . . . , θr) ∈ Rr be such that mθj = aj,1θ1 + · · · + aj,pθp for j ≥ p + 1. We
define Qj and Tj by

Qj(x) =

{
1
mPj(2mx) if j ≤ p
Pj(2mx) if j ≥ p+ 1

Tj(x) =
1

m
Rj(2mx), j ≥ p+ 1.

We may observe that Tj(n) ∈ 2πZ for any integer n since Rj has no constant term
and belongs to πZ[t]. It is also easy to check that the family (Q1, . . . , Qp) remains πQ-

independent. Hence we can find a sequence of integers (nk) such that eiQj(nk) goes to

eiθj/m for any j in {1, . . . , p}. Now, for j ≥ p+ 1,

Qj = aj,1Q1 + · · ·+ aj,pQp + Tj

so that eiQj(nk) goes to ei(aj,1θ1+···+aj,pθp)/m = eiθj . Finally, we have shown that for any
j ≤ r, eiPj(2mnk) converges to eiθj , which implies the proposition. �

We shall use this proposition under the form of the following corollary.

Corollary 3.3. Let P1, . . . , Pr be real polynomials without constant term. Then the closure
of {(eiP1(n), . . . , eiPr(n)); n ≥ 1} is invariant under complex conjugation.

Proof. We extract from (P1, . . . , Pr) a maximal family (Pj)j∈J which is πQ-independent.
Without loss of generality, we may assume that J = {1, . . . , p}. This means that the
assumptions of the previous proposition are satisfied. Hence, the result of the proposition
describes the closure of {(eiP1(n), . . . , eiPr(n)); n ≥ 1}. And this closure is clearly invariant
under complex conjugation. �

We turn to the proof of Theorem 1.2. We shall in fact prove a variant of it which looks
significantly stronger, since we control simultaneously several rotated orbits.

Theorem 3.4. Let P1, . . . , Pr be real polynomials without constant terms. Let also T ∈
L(X) be frequently hypercyclic and let x ∈ FHC(T ). Then, for any nonempty open set
U ⊂ X,

{
n ∈ N; ∀l ∈ {1, . . . , r}, eiPl(n)T nx ∈ U

}

has positive lower density.

Proof. We denote by d the maximum of the degree of P1, . . . , Pr and we argue by induction
on d. The case d = 0 is trivial since the polynomials have to be equal to zero. So, let us
assume that the theorem has been proved until rank d − 1 and let us prove it for d ≥ 1.
Let V ⊂ X and let ε > 0 be such that V is open and nonempty and D(1, ε)V ⊂ U , where
D(a, ε) means the disk |z − 1| < ε. Let us set

E =
{
eiP1(k), . . . , eiPr(k)); k ≥ 0

}
⊂ Tr.

By the compactness of E, there exist integers m1, . . . ,mq such that, for any k ≥ 0, one

may find j ∈ {1, . . . , q} so that |eiPl(k) − eiPl(mj )| < ε for any l = 1, . . . , r. We then set,
for j = 1, . . . , q,

Ij =
{
k ≥ 0; ∀l ∈ {1, . . . , r}, |eiPl(k) − eiPl(mj)| < ε

}
.

Therefore,
⋃q

j=1 Ij = N.
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By Corollary 3.3, E is invariant under complex conjugation. In particular, for any
j = 1, . . . , q, (e−iP1(mj ), . . . , e−iPr(mj)) belongs to E. We now apply Corollary 2.10. For
any j = 1, . . . , q, we may find an integer nj such that, for any l ∈ {1, . . . , r},

eiPl(mj)eiPl(nj)T njx ∈ V.

Since T is continuous, there exists an open neighbourhood W of x such that

∀j ∈ {1, . . . , q}, ∀l ∈ {1, . . . , r}, eiPl(mj )eiPl(nj)T njW ⊂ V.

Now, there exist a sequence of polynomials (Qj,l)1≤j≤q
1≤l≤r

with degree at most d − 1 and

without constant term such that, for any j in 1, . . . , q, for any l in 1, . . . , r, for any k ≥ 0,

Pl(nj + k) = Pl(nj) + Pl(k) +Ql,j(k).

We set

A =
{
k ≥ 0; ∀(l, j) ∈ {1, . . . , r} × {1, . . . , q}, eiQl,j(k)T kx ∈ W

}
.

By the induction hypothesis, A has positive lower density. By Lemma 3.1, this remains
true for

B =

q
⋃

j=1

(nj +A ∩ Ij).

Now, pick any n ∈ B. There exist j in {1, . . . , q} and k ∈ A ∩ Ij such that n = nj + k.
This leads to

eiPl(nj+k)T nj+k(x) = eiPl(k)e−iPl(mj)
︸ ︷︷ ︸

∈D(1,ε)

eiPl(mj)eiPl(nj)T nj(eiQj,l(k)T kx)
︸ ︷︷ ︸

∈W
︸ ︷︷ ︸

∈V
︸ ︷︷ ︸

∈U

.

Thus, B ⊂
{
n ∈ N; ∀l ∈ {1, . . . , r}, eiPl(n)T nx ∈ U

}
. �

Proof of Theorem 1.2. That (i) implies (ii) is a direct consequence of the previous the-
orem: when we have a single polynomial, we may allow a constant term since eiθx ∈
FHC(T ) iff x ∈ FHC(T ).

It remains to prove (iii) implies (i). The proof follows the same lines; let U, V ⊂ X be
open and nonempty and let ε > 0 with D(1, ε)V ⊂ U . Let λ1, . . . , λq ∈ T be such that T

is contained in
⋃q

j=1D(λ−1
j , ε). For j = 1, . . . , q, let us set

Ij =
{
k ≥ 0; eiP (k) ∈ D(λ−1

j , ε)
}
.

Moreover, for any j in {1, . . . q}, one may find an integer nj such that T njx ∈ λjV since
the assumption and Theorem 1.1 imply x ∈ HC(T ). Let now W ⊂ X open and nonempty
be such that T nj(W ) ⊂ λjV for any j ∈ {1, . . . , q}. We finally set

A =
{
k ≥ 0; eiP (k)T kx ∈ W}

B =

q
⋃

j=1

(nj +A ∩ Ij).
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A, thus B, have positive lower density. Moreover, if n = nj + k belongs to B, then

T nj+k(x) = e−iP (k)
︸ ︷︷ ︸

∈D(λ−1
j

,ε)

T nj (eiP (k)T kx)
︸ ︷︷ ︸

∈W
︸ ︷︷ ︸

∈λjV
︸ ︷︷ ︸

∈U

.

�

Remark 3.5. Even if the result of Theorem 3.4 looks stronger than condition (ii) of Theo-
rem 1.2, it is the natural statement which comes from our proof. Indeed, if you follow the
proof for a single polynomial, then you have to apply the induction hypothesis for several
polynomials!

4. Other sequences

In this section, we study if Theorem 1.1 remains true when we replace the sequence
(P (n)) by other classical sequences. We first show that this is not the case if the sequence
grows to infinity too quickly. The counterexample is very easy. It is just a backward shift
on ℓ2(Z+). Wy denote by B the unweighted backward shift. As usual (en)n≥0 denotes the
standard basis on ℓ2(Z+).

Proposition 4.1. Let T = 2B acting on ℓ2(Z+) and let (f(n)) be a sequence of positive
integers with f(n+ 1) > af(n), n ∈ N, for some a > 1. Then for every x ∈ HC(T ) there
exists θ ∈ R such that the set

{
e2πif(n)θT nx; n ≥ 1

}
is not dense in ℓ2(Z+).

Proof. Let x ∈ HC(T ). Choose N ≥ 1 such that
∑

j≥N+1 a
−j ≤ 1/4 and define the set

A =
{
n ∈ N; ∃λ ∈ T, ‖λT nx− eN‖ < 1/2

}
.

Observe that if n belongs to A, then n+k does not belong to A for any k ≤ N . Indeed, one
can write T nx = µeN + y with ‖y‖ ≤ 1/2 and |µ| = 1, so that T n+kx = µ2keN−k + T ky.
This yields, for any λ ∈ T,

‖λT n+kx− eN‖ = ‖λµ2keN−k − eN + T ky‖

≥ 2k − 2k−1 ≥ 1.

We define a sequence (αn) as follows:

• αn = 0 provided n /∈ A;
• if n ∈ A, we set θn−1 =

∑n−1
j=0

αj

f(j) . We then choose αn ∈ {0, 1/2} such that

ℜe
(

e2πi(f(n)θn−1+αn)e∗N (T nx)
)

≤ 0.

We finally define θ =
∑

n≥0
αn

f(n) and we claim that {e2πif(n)θT nx; n ≥ 1} is not dense in

ℓ2(Z+). Precisely, let us show that eN does not belong to the closure of {e2πif(n)θT nx; n ≥
1}. Indeed, when n does not belong to A, we are sure that ‖e2πif(n)θT nx − eN‖ ≥ 1/2.
Otherwise, when n belongs to A, we can write

‖e2πif(n)θT nx− eN‖ ≥ |e∗N (e2πif(n)θT nx)− 1|.

Now,

e∗N (e2πif(n)θT nx) = e2πi(f(n)θn−1+αn)e∗N (T nx)e
2πif(n)

(

∑

j≥n+1

αj

f(j)

)

= e2πi(f(n)θn−1+αn)e∗N (T nx)e
2πif(n)

(

∑

j≥n+N+1

αj

f(j)

)

.
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We set z = e2πi(f(n)θn−1+αn)e∗N (T nx) and β = 2πf(n)
(
∑

j≥n+N+1
αj

f(j)

)

. By the construc-

tion of αn, ℜe(z) ≤ 0. Moreover, it is easy to check that β ∈ [0, π/4]:

0 ≤ 2πf(n)




∑

j≥n+N+1

αj

f(j)



 ≤ πf(n)
∑

j≥N+n+1

1

aj−nf(n)
≤

π

4
.

Thus, e∗N (e2πif(n)θT nx) does not belong to the cone {ρeiγ ; ρ > 0, |γ| ≤ π/4}. In particular,
there exists δ > 0 such that

‖e2πif(n)θT nx− eN‖ ≥ δ.

�

Remark 4.2. In the previous proposition one cannot conclude the stronger assertion that
there exists θ ∈ R such that for every x ∈ HC(2B) the set {e2πif(n)θ(2B)nx; n ≥ 1} is
not dense in ℓ2(Z+). The reason for this is very simple and comes from the fact that 2B
is hypercyclic in a very strong sense, namely it satisfies the hypercyclicity criterion. For a
comprehensive discussion on the hypercyclicity criterion and its several equivalent forms
we refer to [3], [8]. To explain now briefly, take any operator S ∈ L(X) satisfying the
hypercyclicity criterion and let (λn) be any sequence of unimodular complex numbers. It
is then immediate that the sequence of operators (λnS

n) also satisfies the hypercyclicity
criterion; hence, the set of y ∈ X such that {λnS

ny;n ≥ 1} is dense in X is Gδ and
dense in X. By an appeal of Baire’s category theorem one can find x ∈ HC(S) such

that {λnSnx; n ≥ 0} = X. Applying the last for S := 2B ∈ L(ℓ2(Z+)) and λn :=
e2πif(n)θ, n ≥ 1 we see that for every θ ∈ R there exists x ∈ HC(2B) such that the set

{e2πif(n)θ(2B)nx; n ≥ 1} is dense in ℓ2(Z+).

On the contrary, we have an analog to Theorem 1.1 for sequences which grow slowly to
infinity. The growth condition which comes into play here is based on the increases of the
function.

Theorem 4.3. Let X be a Banach space, let T ∈ L(X), let x ∈ X and let (f(n)) be a
sequence of real numbers satisfying the following condition: there exist an integer d ≥ 0,
sequences (gl(n))n for 0 ≤ l ≤ d and (εk(n))n for any k ≥ 1, such that, for any n, k ≥ 1,

f(n+ k)− f(n) =

d∑

l=0

gl(n)k
l + εk(n)

and, for a fixed k ≥ 1, |εk(n)|
n→+∞
−−−−−→ 0. Then the following are equivalent.

(i) x ∈ HC(T );

(ii) {eif(n)T nx; n ≥ 1} is dense in X.

Proof. We just need to prove that (i) =⇒ (ii). We are going to apply Theorem 1.1
(observe that a polynomial P satisfies the assumptions of Theorem 4.3 with d = deg(P )
and εk(n) = 0!) and a compactness argument.

Lemma 4.4. Let d ≥ 0, x ∈ HC(T ), y ∈ X and ε > 0. There exists K ≥ 1 such that,
for any P ∈ Rd[t], for any µ ∈ T, there exists k ≤ K such that

‖eiP (k)T kx− µy‖ < ε.(4.1)
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Proof of Lemma 4.4. Let us observe that if (P, µ) satisfies (4.1) for a fixed k, this inequality
is also satisfied with the same k for any (Q,λ) in a neighbourhood of (P, µ). Moreover, by
Theorem 1.1, given any (P, µ) ∈ Rd[t]×T, we know that we may always find an integer k
such that (4.1) is true. Define now

Rπ
d [t] =






P =

d∑

j=0

θjt
j ; θj ∈ [0, 2π]






.

Rπ
d [t] is a compact subset of Rd[t]. Moreover, for any P ∈ Rd[t], there exists some Q ∈ Rπ

d [t]

such that eiQ(k) = eiP (k) for any k ∈ Z. Hence, Lemma 4.4 follows from the compactness
of Rπ

d [t]× T. �

We come back to the proof of Theorem 4.3. We fix ε > 0 and y ∈ X. We apply Lemma
4.4 to the 4-tuple (d, x, y, ε). We then set δ = ε/‖T‖K . Since x ∈ HC(T ), there exist
n ≥ 1 as large as necessary and αn ∈ T such that

eif(n)T nx = αnx+ z, ‖z‖ < δ.

Then, there exists k ≤ K such that, setting Pn(k) =
∑d

l=0 gl(n)k
l,

eiPn(k)T kx = α−1
n y + z′, ‖z′‖ < ε.

Thus,

eif(n+k)T n+kx = ei
(
f(n+k)−f(n)

)

T k
(
eif(n)T nx

)

= eiεk(n)eiPn(k)T k
(
αnx+ z

)

= eiεk(n)
(
y + αnz

′ + eiPn(k)T kz
)
.

Since sup0≤k≤K |εk(n)| goes to 0 as n goes to infinity, we get
∥
∥eif(n+k)T n+kx− y

∥
∥ < 3ε,

provided n has been chosen large enough. �

This theorem covers the cases of many sequences which do not grow too quickly to
infinity, like f(n) = na logb(n + 1), (a, b) ∈ R2, or finite linear combinations of such
functions. Interestingly, we may also observe that Theorem 2.2 does not extend to this
level of generality.

Example 4.5. Let T = 2B acting on ℓ2(Z+). There exists x ∈ HC(T ) such that (e0, 1)

does not belong to {(T nx, ei log(n)); n ≥ 1}.

Proof. Observe that

ℜe(ei log(n)) ≥ 0 ⇐⇒ n ∈
⋃

k≥0

[exp(2kπ − π/2), exp(2kπ + π/2)] ⇐⇒ n ∈
⋃

k≥0

(ak, bk)

where (ak) and (bk) are sequences of integers satisfying ak+1 − bk → +∞. Let (xk) be
a dense subset of ℓ2(Z+) such that for any k ≥ 1, ‖xk‖ ≤ k and xk has a finite support
contained in [0, ak+1 − bk − 1]. We set

x =
∑

j≥1

1

2bj2
Sb

j2xj ,
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where S is the forward shift. Provided n ∈
⋃

k(ak, bk), we know that ‖T nx − e0‖ ≥ 1

since 〈T nx, e0〉 = 0. In particular, (e0, 1) does not belong to {(T nx, ei log(n)); n ≥ 1}.
Nevertheless, x is a hypercyclic vector for T . Indeed,

‖T b
k2x− xk‖ ≤

∑

j≥k+1

∥
∥
∥
∥

1

2bj2−b
k2
Sb

j2−b
k2xj

∥
∥
∥
∥
≤

∑

j≥k+1

j

2bj2−b
k2

≤
∑

j≥k+1

j

2j
k→+∞
−−−−→ 0.

�

As a consequence of Theorem 4.3, given T ∈ L(X) and a sequence of real numbers (f(n))
such that f(n+1)−f(n) → 0, then x ∈ HC(T ) if and only if {e2πif(n)T nx; n ≥ 1} is dense
in X. Rephrasing this, we can say that for every sequence (λn) ⊂ T with λn+1/λn → 1,
x ∈ HC(T ) if and only if {λnT

nx; n ≥ 1} is dense in X. One now may wonder whether
the assumption “(λn) ⊂ T” can be dropped. However, this is not the case. Indeed, León-
Saavedra proved in [11] that there exists a hypercyclic operator T ∈ L(X) such that for
every x ∈ X the set {λnT

nx; n ≥ 1} is not dense in X where λn = 1/n, n = 1, 2, . . . and
of course λn+1/λn → 1. In general, if we keep the assumption λn+1/λn → 1 but we move
away form the unit circle T, that is λn ∈ C, then none of the implications (ii) =⇒ (i),
(iii) =⇒ (ii) in Theorem 1.1 hold. This follows by Propositions 2.4 and 2.5 from [7]. On
the other hand, under the additional assumption that T ∈ L(X) is hypercyclic it is known
[6] that for (λn) a sequence of non-zero complex numbers with λn+1/λn → 1 and x ∈ X,
if the set {λnT

nx; n ≥ 1} is somewhere dense then it is everywhere dense.

5. Uniformly distributed sequences and generic statements

In Section 4 we showed that Theorem 1.1 is no longer true for sequences of unimodular
complex numbers whose phases grow to infinity at a geometric rate, see Proposition 4.1.
In particular, denoting by B the unweighted backward shift on ℓ2(Z+) then, for every
x ∈ HC(2B) there exists θ ∈ R such that the set

{
e2πi2

nθ(2B)nx; n ≥ 1
}
is not dense

in ℓ2(Z+). In this section we shall establish results, both in measure and category, going
to the opposite direction. For instance, a consequence of our result, Proposition 5.2, is
that for every x ∈ HC(2B) the set of θ’s in R such that

{
e2πi2

nθ(2B)nx; n ≥ 1
}
is dense

in ℓ2(Z+) is residual and of full Lebesgue measure in R. This is in sharp contrast with
Proposition 4.1. Such kind of behavior comes as a natural consequence from the general
metric theorem of Koksma, see Theorem 4.3 in Chapter 1 of [10]. Koksma’s theorem
generalizes the beautiful result of Weyl [10]: if (nk) is a distinct sequence of integers then
the sequence (nkθ) is uniformly distributed for almost every θ ∈ R . Here, we shall need
the following corollary of Koksma’s theorem, see Corollary 4.3 in Chapter 1 of [10], which
we state as a theorem.

Theorem 5.1. (Koksma) Let (f(n)) be a sequence of real numbers such that for some
δ > 0, |f(n) − f(m)| > δ for n 6= m. Then the sequence (f(n)θ) is uniformly distributed
for almost every θ ∈ R.

Proposition 5.2. Let X be a Banach space and let T ∈ L(X) be a hypercyclic operator.
Let also (f(n)) be a sequence of real numbers such that for some δ > 0, |f(n)− f(m)| > δ
for n 6= m. Then for every x ∈ HC(T ) there exists a residual subset A of R with full

measure such that for every θ ∈ A the set {(T nx, e2πif(n)θ); n ≥ 1} is dense in X × T.
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Proof. Take x ∈ HC(T ). Let {xj; j ∈ N}, {tl; l ∈ N} be dense subsets of X and T

respectively and define A :=
⋂

j,l,s∈N

⋃

n∈NAj,l,s,n, where

Aj,l,s,n := {θ ∈ R; |e2πif(n)θ − tl| < 1/s and ‖T nx− xj‖ < 1/s},

for j, l, s, n ∈ N. Clearly, for every θ ∈ A the set {(T nx, e2πif(n)θ); n ≥ 1} is dense in
X × T. Let us first prove that A is residual in R. It is easy to see that Aj,l,s,n is open
in R and by Baire’s category theorem it remains to show that for every j, l, s ∈ N the set
∪n∈NAj,l,s,n is dense in R. To this end, fix j, l, s ∈ N and let α ∈ R, ǫ > 0. Consider the
following set of positive integers {n1 < n2 < · · · } := {n ∈ N; ‖T nx − xj‖ < 1/s}. By
Theorem 5.1 the sequence (f(nk)θ) is uniformly distributed for almost every θ ∈ R. In

particular, there exists θ ∈ R with |θ−α| < ǫ such that the set {e2πif(nk)θ; k ∈ N} is dense

in T. Thus, |α − θ| < ǫ, |e2πif(nm)θ − tl| < 1/s and ‖T nmx− xj‖ < 1/s for some positive
integer m. This shows the density result. In the above, it is implicit that for j, l, s ∈ N

the set
⋃

n∈NAj,l,s,n has full measure. Hence, A has full measure. �

In view of the above, one may be tempted to ask the following question.

Question. Let X be a Banach space, let T ∈ L(X) be hypercyclic and let x ∈ HC(T ).
Consider a sequence of real numbers (f(n)) such that the sequence (f(n)θ) is uniformly

distributed for some θ ∈ R. Is it true that {e2πif(n)T nx; n ≥ 1} is dense in X?

Although in many cases the above question admits an affirmative reply, for instance
when f(n) is a polynomial in n, the answer in general is no! To see this, fix a hypercyclic
vector x ∈ ℓ2(Z+) for 2B ∈ L(ℓ2(Z+)), where B is the unweighted backward shift. By

Proposition 4.1 there exists θ′ ∈ R such that the set
{
e2πi2

nθ′(2B)nx;n ≥ 1
}
is not dense

in ℓ2(Z+). Define now f(n) = 2nθ′. Now, on the one hand, by Theorem 5.1 there exists
θ ∈ R such that the sequence (f(n)θ) is uniformly distributed and, on the other hand,
{
e2πif(n)(2B)nx; n ≥ 1

}
is not dense in ℓ2(Z+). Regarding the previous question it is

important to note that there are sequences of real numbers (f(n)) such that for no θ ∈ R

the sequence (f(n)θ) is uniformly distributed and yet {e2πif(n)T nx; n ≥ 1} = X for every
x ∈ HC(T ). This is the case for the sequence f(n) = log(n), n = 1, 2, . . .. Indeed, this
follows by Theorem 4.3 and the fact that for every θ ∈ R the sequence (log(n)θ) is not
uniformly distributed, see Examples 2.4, 2.5 in Chapter 1 of [10]. It is clear now that the
right question along this line is the following.

Question. Let X be a Banach space, let T ∈ L(X) be hypercyclic and let x ∈ HC(T ).
Consider a sequence of real numbers (f(n)) which is uniformly distributed. Is it true that

the set {e2πif(n)T nx; n ≥ 1} is dense in X?

In turn, the answer to this question is negative.

Proposition 5.3. Let T = 2B acting on X = ℓ2(Z+). There exists a uniformly distributed

sequence of real numbers (f(n)) and a vector x ∈ HC(T ) such that {e2πif(n)T nx; n ≥ 1}
is not dense in X.

Proof. We start from any uniformly distributed sequence (g(n)). The idea of the proof
is to change slightly the sequence (g(n)) to a sequence (f(n)) which remains uniformly
distributed and such that e2πif(n) can be arbitrarily chosen for n belonging to some subset
A ⊂ N containing arbitrarily large intervals. We define simultaneously x ∈ HC(T ) such
that {

e∗0(T
nx) = 0 provided n /∈ A

ℜe
(
e∗0(e

2πif(n)T nx)
)

≥ 0 provided n ∈ A.
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Hence, {e2πif(n)T nx; n ≥ 1} will not be dense in X.
We now proceed with the details. Let (nk) be an increasing sequence of integers such

that n1 = 1, nk+1 > nk + (k + 1) for any k ≥ 1 and k2/nk → 0. Let (xk) be a dense
sequence in ℓ2(Z+) such that, for any k ≥ 1, ‖xk‖ ≤ k and xk has finite support contained
in [0, k]. We set

x =
∑

j≥1

1

2nj
Snjxj

and we observe that x ∈ HC(T ). Indeed,

‖T nkx− xk‖ =

∥
∥
∥
∥
∥
∥

∑

j>k

1

2nj−nk
Snj−nkxj

∥
∥
∥
∥
∥
∥

≤
∑

j>k

j

2j
k→+∞
−−−−→ 0.

We then define (f(n)) by

• f(n) = g(n) provided n /∈
⋃

k≥1[nk, nk + k];

• f(n) is any positive real number such that ℜe
(
e∗0(e

2πif(n)T nx)
)

≥ 0 provided
n ∈

⋃

k≥1[nk, nk + k].

As already observed, {e2πif(n)T nx; n ≥ 1} cannot be dense in ℓ2(Z+). Thus it remains
to show that (f(n)) is uniformly distributed. Let I be a subarc of T and let n ≥ 1. Let
k ≥ 1 be such that nk ≤ n < nk+1. Then, since f(j) and g(j) may only differ for j ≤ n if

j belongs to
⋃k

l=1[nl, nl + l] which has cardinality less than (k + 1)2,

−
(k + 1)2

n
+

1

n
card

({

1 ≤ j ≤ n; e2πig(j) ∈ I
})

≤
1

n
card

({

1 ≤ j ≤ n; e2πif(j) ∈ I
})

and

1

n
card

({

1 ≤ j ≤ n; e2πif(j) ∈ I
})

≤
1

n
card

({

1 ≤ j ≤ n; e2πig(j) ∈ I
})

+
(k + 1)2

n
.

Since k2/n ≤ k2/nk goes to zero, (f(n)) remains uniformly distributed. �

We conclude the paper with a generic result which is related to the question we asked

in the introduction. The space TN is endowed with the metric d(Λ,M) =
∑+∞

n=1
|λn−µn|

2n

for Λ = (λn) ∈ TN, M = (µn) ∈ TN, and becomes a complete metric space.

Proposition 5.4. Let X be a Banach space and let T ∈ L(X) be a hypercyclic operator.
Then for every x ∈ HC(T ) there exists a residual subset B of TN such that for every
(λ1, λ2, . . .) ∈ B the set {λnT

nx; n ≥ 1} is dense in X.

Proof. Fix x ∈ HC(T ). Let {xj ; j ∈ N} be a dense set in X and define the set Bj,s,n :=

{Λ = (λm) ∈ TN; ‖λnT
nx − xj‖ < 1/s} for j, s, n ∈ N. It is straightforward to check

that Bj,s,n is open in TN for every j, s, n ∈ N. We then define B :=
⋂

j,s∈N

⋃

n∈NBj,s,n.

Observe that if Λ = (λn) ∈ B then the set {λnT
nx; n ≥ 1} is dense in X. Hence, in view

of Baire’s category theorem it suffices to show that for every j, s ∈ N the set
⋃

n∈NBj,s,n

is dense in TN. Fix j, s ∈ N and let M = (µn) ∈ TN, ǫ > 0. There exists a positive integer
N such that

∑+∞
n=N+1

2
2n < ǫ. Define the vector Λ := (µ1, . . . , µN , 1, 1, 1, . . .) ∈ TN. From

the above we get d(Λ,M) < ǫ and ‖λnT
nx−xj‖ = ‖T nx−xj‖ < 1/s for some n ∈ N with

n > N . Hence, the set
⋃

n∈NBj,s,n is dense in TN. �



ROTATED ORBITS 17

References

[1] S. I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), 374-383.
[2] F. Bayart and S. Grivaux, Frequently hypercyclic operators, Trans. Amer. Math. Soc. 358 (2006),

5083-5117
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