
COCOMPACTLY CUBULATED CRYSTALLOGRAPHIC GROUPS

MARK F. HAGEN

Abstract. We prove that the simplicial boundary of a CAT(0) cube complex admitting a
proper, cocompact action by a virtually Zn group is isomorphic to the hyperoctahedral tri-
angulation of Sn−1, providing a class of groups G for which the simplicial boundary of a
G-cocompact cube complex depends only on G. We also use this result to show that the
cocompactly cubulated crystallographic groups in dimension n are precisely those that are hy-
peroctahedral. We apply this result to answer a question of Wise on cocompactly cubulating
virtually free abelian groups.

1. Introduction

In this paper, we use the notion of the simplicial boundary of a CAT(0) cube complex to study
actions of crystallographic groups on CAT(0) cube complexes. For n ≥ 1, an n-dimensional
crystallographic group G is a discrete subgroup of the Euclidean group Rn oO(n,R) that acts
properly and cocompactly by isometries on En. Bieberbach’s theorems [Bie11, Bie12] tell us
that there is an exact sequence

1→ TG → G
ψ→ PG → 1,

where the translation subgroup TG = G ∩ Rn and the point group (or holonomy group) PG is a
finite subgroup of O(n,R). Moreover, TG is the unique maximal abelian normal subgroup of G.
Bieberbach showed that, for any n, there are finitely many isomorphism classes of n-dimensional
crystallographic groups and, up to conjugation by affine transformations, each crystallographic
group acts in a unique way on En. Conversely, extensions of Zn by finite groups acting faithfully
by isometries on En are crystallographic groups [Zas48]. Because of Zassenhaus’s result, cubula-
tions of crystallographic groups are closely related to the more general question of the possibility
of cocompactly cubulating virtually free abelian groups, and several of our conclusions about
crystallographic groups apply in this more general context.

Our main goal is to characterize the crystallographic groups that a admit proper, cocompact
action on a CAT(0) cube complex X by describing the simplicial boundary ∂MX of X. We then
examine the action of G on the simplicial complex ∂MX to obtain a description of the possible
point groups. Conversely, there is a standard cubulation of crystallographic groups and, if the
point group is of one of the admissible types, then this cubulation is cocompact.

1.1. Hyperoctahedral boundary. The simplicial boundary of a CAT(0) cube complex, in-
troduced in [Hag13a], is an invariant of the 1-skeleton, encoding non-hyperbolic behavior, and
has some features in common with the Tits boundary of a CAT(0) space. An action on a cube
complex always induces an action on the simplicial boundary, but it is unknown, in general,
when ∂MX is a quasi-isometry invariant of X1. In particular, we have the following problem:

For which groups G is it true that ∂MX is isomorphic to ∂MY for any two CAT(0) cube
complexes X and Y on which G acts properly and cocompactly?

Our first result, Theorem 3.1, solves this problem for all virtually-Zn groups:
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Figure 1. Parts of three different periodic tilings of E2. The automorphism group of the tiling
shown at left acts properly and cocompactly on R2, but the automorphism groups of the center
and right tilings do not act properly and cocompactly on cube complexes. They do, however,
act properly on R3.

Theorem A. Let n ≥ 1. If the CAT(0) cube complex X admits a proper, cocompact action by
a virtually-Zn group, then ∂MX is isomorphic to the (n− 1)-dimensional hyperoctahedron Qn.

Theorem A is related to Theorem 3.7, which says that if V is a virtually-Zn group, then V
is cocompactly cubulated if and only if V acts properly and cocompactly on Rn, the standard
tiling of En by n-cubes. This assertion appears as Lemma 16.12 in [Wis], where Wise deduces it
from the Flat Torus Theorem [BH99]. We give an alternative proof, deducing it from Theorem A
using results of Caprace-Sageev [CS11] and [Hag13a].

Although Theorem A applies to a rather specific class of groups and cube complexes, we
present a proof which seems amenable to generalization to the situation in which G is a group
acting properly and cocompactly on two distinct cube complexes, and indeed it seems a similar
approach may answer the above question positively for many cocompactly cubulated groups. In
Section 3, we also sketch a quick proof of Theorem A that uses the somewhat heavy machinery
of [CS11]; however, our actual argument proceeds directly from the definition of the simplicial
boundary.

1.2. Cocompactly cubulated crystallographic groups. The n-dimensional crystallographic
group G is hyperoctahedral, in a sense made precise in Section 2, if PG injects into Aut(Qn) ∼=
O(n,Z) in a way that is consistent with the action of PG on En induced by θ. Theorem 4.1,
which we deduce from Theorem 3.1, is:

Theorem B. The following are equivalent, for an n-dimensional crystallographic group G:

(1) G is hyperoctahedral.
(2) G acts properly and cocompactly on a CAT(0) cube complex.

The conclusion of Theorem 3.7 holds for crystallographic groups by combining Theorem 4.1
with Theorem 5.2: the former says that a cocompactly cubulated crystallographic group G is
hyperoctahedral, after which the latter provides a proper, cocompact action of G on Rn. Thus,
in the special case of crystallographic groups, Theorem 3.7 has a proof that sidesteps some of
the machinery used in the proof below or in [Wis].

The proof of Theorem 5.2 is an application of the version of Sageev’s construction of a G-
cube-complex discussed in [HW10]. To cubulate a crystallographic group G, one uses a natural
collection of geometric walls, which in this case are codimension-1 affine subspaces of En. As
explained in Section 5, one always obtains a proper action of the n-dimensional crystallographic
group G on RN for some N ≥ n (see also Section 16 of [Wis]); if G is hyperoctahedral, then
we find we can take N = n, so that this “standard cubulation” of G is cocompact.
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Remark 1.1. The above cubulation is related to that for Coxeter groups constructed by Niblo-
Reeves [NR03]. Williams gave a condition [Wil99] on the Coxeter group guaranteeing cocom-
pactness of the latter cubulation; Caprace-Mühlherr [CM05] and, independently, Bahls [Bah06]
provided a more easily verified condition on a Coxeter group that is equivalent to cocompact-
ness of the Niblo-Reeves cubulation. For crystallographic groups, the existence of a cocompact
cubulation is equivalent to cocompactness of the “standard cubulation”, by Theorems 4.1 and
Theorem 5.2, or by Theorem 3.7. Since the Niblo-Reeves cubulation coincides with the stan-
dard cubulation for crystallographic Coxeter groups, it is natural to ask whether the existence
of a cocompact cubulation of a Coxeter group is equivalence to cocompactness of the Niblo-
Reeves complex and whether this question be approached by studying the boundary of the
Niblo-Reeves complex.

1.3. Obtaining cocompactness by adding dimensions. The issue of cubulating virtually-
Zn groups is raised in [Wis]. Wise’s consideration of actions of virtually free abelian groups
on cube complexes arose from questions about sparse cube complexes, and the connection to
crystallographic groups comes from an example, due to Dunbar, of a torsion-free 3-dimensional
crystallographic group that does not act properly and cocompactly on a CAT(0) cube complex.
This example is discussed in Section 16 of [Wis], wherein it is also shown that, if V is virtually

Zn and torsion-free, then there exists a virtually free abelian group V̈ containing V and an
integer N ≥ n such that V̈ acts properly and cocompactly on RN . In view of this fact, Wise
asked:

For any virtually Zn group V , does there exist m such that Zm × V is cocompactly cubulated?

We answer this question negatively in Example 5.4, using Theorem B and the standard
cubulation. More specifically, we show in that example that for all m ≥ 0, the group Zm ×W
is not cocompactly cubulated, where

W ∼= 〈a, b, c | [a, b], c6, cac−1 = b, cbc−1 = a−1b〉 ∼= Z2 o Z6.

The main thrust of this example is that a cocompact cubulation of Zm ×W would yield, via
Theorem B, an action of W on a 3-cube with c acting as a 6-fold rotation; this is impossible.
We also answer Wise’s question negatively for the Dunbar example discussed in [Wis, Exam-
ple 16.11]. On the other hand, we obtain the following as a consequence of Corollary 5.3, thus
answering a weaker version of Wise’s question affirmatively:

Corollary C. Let G be an n-dimensional crystallographic group. Then there exists N ≥ n
such that Zm o G is a cocompactly cubulated crystallographic group for all m ≥ N − n and a
suitably-defined action of G on Zm.

In the case of the group W discussed above, we give an action of W on Z so that the resulting
group Z oW acts properly and cocompactly on R3.

1.4. Plan of the paper. Section 2 discusses hyperoctahedra, CAT(0) cube complexes, and
groups acting on these objects, and also reviews the notion of the cube complex dual to a
geometric wallspace and the linear separation property that guarantees properness of the action
on the dual cube complex. Section 2 also contains a self-contained description of the simplicial
boundary of a cube complex. Section 3 is devoted to the proof of Theorem A, and in Section 4,
we prove Theorem 4.1, which establishes that cocompactly cubulated crystallographic groups
are hyperoctahedral. In Section 5, we cocompactly cubulate hyperoctahedral groups and discuss
Corollary C.

Acknowledgments. I am grateful to Dani Wise for reading through this paper with me and
giving valuable criticism, as well as for suggesting this problem and sharing the preprint [Wis],
which contains, among many other things, the discussion that motivated this work. I am also
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2. Preliminaries

2.1. Hyperoctahedral groups.

Definition 2.1 (Hyperoctahedron). The 0-dimensional hyperoctahedron Q1 is the simplicial
complex consisting of two nonadjacent 0-simplices. For n ≥ 1, the n-dimensional hyperoctahe-
dron Qn+1 is the simplicial join of Qn and Q1, i.e. Qn+1 = Qn ?Q1. Here, the simiplicial join
of the flag complexes A,B is the flag complex A ? B determined by the join of the graphs A1

and B1. (Recall that a flag complex is a simplicial complex in which any n+1 pairwise-adjacent
0-simplices span an n-simplex, and that each simplicial graph is the 1-skeleton of a unique flag
complex.) Note that Qn is the link of a 0-cube in Rn and is thus the complex dual to the
boundary of an n-cube.

It is easily seen from the latter characterization of Qn that Aut(Qn) is the automorphism
group of an n-cube. It follows that Aut(Qn) is isomorphic to the wreath product Z2 o Sn, i.e.
to Zn2 o Sn, where Sn acts on Zn2 by permuting the factors. From this characterization, one
shows that Aut(Qn) ∼= O(n,Z), the group of orthogonal matrices whose entries are 0 or ±1. A
lucid survey of the representation theory of Aut(Qn) was provided by Baake in [Baa84], which
contains the details of this and related representations.

2.1.1. Hyperoctahedral crystallographic groups. We view Aut(Qn) as the group O(n,Z) of n×n
signed permutation matrices, i.e. the group of orthogonal matrices with integer entries, which
acts by permutations on {±ėi}ni=1, where {ėi}ni=1 is the standard basis of Rn.

Now, let G be an n-dimensional crystallographic group and let θ : G→ Rn oO(n,R) be the
given faithful, proper, cocompact action on En. Let θ̄ : PG → O(n,R) be the induced faithful
action of PG , so that for each r ∈ En and g ∈ G, there exists a vector τg with

θ(g)(r) = θ̄(ψ(g))(r) + τg.

We denote by tg ∈ TG the translation along τg. Let t1, . . . , tn be a set of generators of TG , and for
1 ≤ i ≤ n, let ṫi denote the translation vector corresponding to ti. Let L = Z[ṫ1, . . . , ṫn] be the
lattice of translations, to that τg ∈ L and, for all ` ∈ L and all g ∈ G, we have θ̄(ψ(g))(`) ∈ L,
i.e. PG preserves the lattice.

Definition 2.2. The n-dimensional crystallographic group G is hyperoctahedral if there are
monomorphisms ι : PG → O(n,Z) and ρ : O(n,Z) → O(n,R) such that ρ ◦ ι = θ̄ and ρ
corresponds to conjugation by some A ∈ GL(n,R), i.e. for all p ∈ PG , we have θ̄(p) = Aι(p)A−1.

Lemma 2.3. Let G be an n-dimensional hyperoctahedral crystallographic group. Then En has
a basis {ṫ}ni=1 such that θ̄(PG) acts by permutations on {±ṫi}ni=1.

Proof. We have hypothesized a faithful action ι : PG → O(n,Z) by permutations on {±ėi}ni=1.
Moreover, there exists A ∈ GL(n,R) such that for all p ∈ PG , we have Aι(p)A−1 = θ̄(p). Let
ṫi = Aėi. Then θ̄(p)(ṫi) = Aι(p)(ėi) = ±ṫj for some j ≤ n, so that θ̄(PG) acts on {±ṫi}ni=1 by
permutations. �

2.2. Cube complexes. A CAT(0) cube complex X is a simply connected CW-complex built
from unit cubes of various dimensions, in such a way that distinct cubes intersect in a common
face or in the empty set, subject to the additional constraint that the link of each 0-cube
of X is a flag complex. A hyperplane H of X is a connected subspace that intersects each
cube c ∼= [−1

2 ,
1
2 ]d either in the empty set or in a subspace obtained by restricting exactly one

coordinate of c to 0. The carrier N(H) of H is the union of all closed cubes c with H ∩ c 6= ∅
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and is a CAT(0) cube complex isomorphic to H× [−1
2 ,

1
2 ]; likewise, H is a CAT(0) cube complex

of dimension strictly lower than that of X, if X is finite-dimensional.
The hyperplane H is also globally separating: X−H has exactly two components, h(H) and

h∗(H), called halfspaces. The distinct hyperplanes H,H ′ cross if each of the four quarterspaces
h(H) ∩ h(H ′), h(H) ∩ h∗(H ′), h∗(H) ∩ h(H ′), h∗(H) ∩ h∗(H ′) is nonempty. Note that H and H ′

cross if and only if H ∩H ′ 6= ∅ and that if H and H ′ cross, then H ∩H ′ is a hyperplane of H
and of H ′. The above facts were proved independently in [Sag95, Che00].

The subspaces A,B ⊂ X are separated by the hyperplane H if there is a halfspace h ∈
{h(H), h∗(H)} such that A ⊂ h and B ⊂ X − h. The 1-cube c is dual to H if the 0-cubes
of c are separated by H or, equivalently, if H ∩ c is the midpoint of c. More generally, if
x, y ∈ X0, then the number of hyperplanes separating x from y coincides with the distance
from x to y in the graph X1. In [Hag07], Haglund showed that the path-metric on X1 extends
to a metric dX on X, whose restriction to each cube is the `1 metric. We shall always use
dX instead of the CAT(0) metric discussed in [Bri91, Gro87, Lea10, Mou87], and in fact shall
almost always consider paths in the 1-skeleton, occasionally using the fact that X1 is a median
graph (see [Che00, EFO07, IK00, Rol98, vdV93]).

A subcomplex Y ⊆ X is isometrically embedded if and only if Y ∩H is connected for each
hyperplane H (this is well-known; see e.g. [Hag13b, Section 2] for the usual proof using disc
diagrams). A combinatorial interval I is the tiling by unit-length 1-cubes of a subinterval of R
whose endpoints, if any, are integers, and a combinatorial path in X is a map γ : I → X1 that
sends 0-cubes to 0-cubes and 1-cubes homeomorphically to 1-cubes. The map γ is therefore an
isometric embedding if the map that assigns to each 1-cube of the image of γ its dual hyperplane
is injective. In such a case, γ is a combinatorial geodesic segment if I is finite, a combinatorial
geodesic ray if I ∼= [0,∞), and a (bi-infinite) combinatorial geodesic if I ∼= R. In each of these
cases, we also use the notation γ to mean the image of the map γ : I → X. If I is unbounded,
we write, e.g., γ : R→ X with the understanding that γ takes integers to 0-cubes and intervals
[k, k + 1], k ∈ Z isometrically to 1-cubes. We say that γ crosses the hyperplane H or that
H crosses γ to mean that the geodesic path γ contains a 1-cube dual to H. More generally,
the hyperplane H crosses the isometrically embedded subcomplex Y ⊆ X if H ∩ Y 6= ∅. In
this case, Y − Y ∩H has exactly two components, namely the intersections of Y with the two
halfspaces in X associated to H.

The subcomplex Y ⊆ X is convex if, for any concatenation ef of 1-cubes of Y that lie on
the boundary path of a (closed) 2-cube s of X, the 2-cube s belongs to Y and, more generally,
if c is a cube of X with a corner in Y , then c ⊆ Y ; convex subcomplexes are therefore CAT(0).
If Y is convex, then Y 1 is a convex subgraph of X1 (or, equivalently, if Y is convex with
respect to the metric dX), i.e. every combinatorial geodesic segment with two endpoints in Y 1

is contained in Y 1. However, there is no ambiguity in simply using the term “convex” to refer to
a subcomplex, since Y is convex in the above sense if and only if it is convex with respect to the
CAT(0) metric [Hag07]. We shall use the fact, proved in [Che00] and [Sag95], that the carrier
of any hyperplane is a convex subcomplex. For a more detailed account of the basic properties
of cube complexes, we refer the reader to, for example, [BC08, Che00, Hag07, Sag95, Wis].

2.3. Cubical isometries. Isometries of X were classified in [Hag07]. Let G act on X and
let g ∈ G. Then either g stabilizes a cube of X, in which case we say that g is elliptic, or
there is a g-invariant combinatorial geodesic α : R → X1, called a (combinatorial) axis for g,
on which g acts as a translation, in which case g is hyperbolic, or there exists a hyperplane
H such that gkH = H and gkh(H) = h∗(H) for some k > 0. If X is finite-dimensional, the
last circumstance implies that there exists n > 0 such that gn is either elliptic or hyperbolic.
Also, it is well-known (and readily verified from the definition of a hyperplane) that if H is a
hyperplane, then gH is again a hyperplane.
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The hyperplane H is G-essential if, for each x ∈ X0 and each n ≥ 0, there exist g, g∗ ∈ G such
that gx ∈ h(H), g∗x ∈ h∗(H), and min {dX(gx,N(H)), dX(g∗x,N(H))} ≥ n. G acts essentially
on X if each hyperplane is G-essential. If the infinite group G acts properly and cocompactly
on X, then there is a convex, G-invariant subcomplex Y ⊆ X on which G acts essentially and
cocompactly; this is the essential core theorem of [CS11], and each hyperplane of X crossing
the essential core Y is G-essential.

2.4. The cube complex dual to a wallspace. The set-theoretic notion of a wallspace is due
to Haglund-Paulin [HP98]. There are various accounts of the duality between CAT(0) cube
complexes and wallspaces; we refer the reader to [CN05, Nic04]. The procedure of passing
from a group action on a wallspace to an action on the dual cube complex generalizes Sageev’s
construction in [Sag95]. At present, however, we use a slightly restricted version of the language
of geometric wallspaces from [HW10].

Let (M,d) be a metric space. A geometric wall W ⊂ M is a subspace such that M −W
has exactly two nonempty connected components h(W ), h∗(W ), called halfspaces, and the wall
W separates p, q ∈ M if p and q lie in distinct halfspaces associated to W . A geometric
wallspace (M,W) consists of a metric space M , together with a collection W of walls such that
#(p, q) < ∞ for all p, q ∈ M , where #(p, q) is the number of walls in W separating M . An
orientation is an assignment W 3 W 7→ x(W ) ∈ {h(W ), h∗(W )} of a halfspace to each wall.
The orientation x is consistent if x(W ) ∩ x(W ′) 6= ∅ for all W,W ′ ∈ W and canonical if for all
p ∈ M and all but finitely many W ∈ W, we have p ∈ x(W ). By associating a 0-cube to each
consistent, canonical orientation, with 0-cubes x and y adjacent if and only if the corresponding
orientations differ on a single hyperplane, we obtain a median graph, which is the 1-skeleton of
a uniquely determined CAT(0) cube complex called the cube complex dual to the wallspace.

Suppose the group G acts by isometries on M , and W is G-invariant in the sense that
gW ∈ W for each geometric wall W and each g ∈ G. Then G acts on the dual cube complex
X. The collection W of walls satisfies the linear separation property if there exist constants
K1,K2 such that for all p, q ∈ M , d(p, q) ≤ K1#(p, q) + K2, and it is shown in [HW10] that,
if G acts metrically properly on M and W satisfies the linear separation property, then G acts
properly on X. In our situation, X is always locally finite, so that G acts metrically properly
on X if and only if the stabilizer of each cube is finite.

Remark 2.4. Each hyperplane H in the CAT(0) cube complex X is a geometric wall whose
complementary components are the halfspaces h(H), h∗(H). It is not hard to see that the
cube complex dual to the wallspace whose underlying set is X and whose walls correspond
in this manner to the hyperplanes is none other than X. Sometimes, it is useful to view the
0-cubes of X as consistent, canonical orientations of the hyperplanes in X, in order to construct
isometrically embedded subcomplexes, as in the proof of Lemma 2.8 and that of Lemma 3.4.

2.5. The simplicial boundary of a cube complex. The simplicial boundary ∂MX of the
locally-finite CAT(0) cube complex X containing no infinite family of pairwise-crossing hyper-
planes was introduced in [Hag13a]. Since the cube complexes considered here admit proper,
cocompact group actions, we can use a more concrete definition of ∂MX than that in [Hag13a]
and give an almost completely self-contained account, suited to our purposes. More precisely,
∂MX is defined in [Hag13a] to be a complex constructed from simplices corresponding to infi-
nite, inseparable, unidirectional sets of hyperplanes that contain no facing triple. Such sets of
hyperplanes are modeled on the set of hyperplanes crossing a combinatorial geodesic ray, but in
some (non-cocompact) situations, there are such sets for which there is no corresponding ray.
In the present paper, we define simplices at infinity in terms of rays only.

Let W be the set of hyperplanes of X, and for each isometrically embedded subcomplex
A ⊆ X, denote by W(A) the set of hyperplanes that cross A, i.e. those hyperplanes H such
that h(H)∩A 6= ∅ and h∗(H)∩A 6= ∅. Let γ, γ′ : [0,∞)→ X be combinatorial geodesic rays. If
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W(γ)−W(γ)∩W(γ′) is finite, i.e. if all but finitely many hyperplanes that cross γ also cross γ′,
then γ′ consumes γ. If γ′ consumes γ and γ consumes γ′, then γ and γ′ are almost-equivalent.
Almost-equivalence is an equivalence relation on the set RX of combinatorial geodesic rays in
X; the class represented by γ is denoted [γ].

Example 2.5 (Consumption). Consider R2
∼= R1 ×R1. The hyperplanes are all isomorphic

to R1 and have the form Vn = {n+ 1
2}×R1 or Hn = R1×{n+ 1

2}. Let γ be the combinatorial
geodesic ray whose 0-skeleton is {(n, n) : n ≥ 0} and let γ′ be the combinatorial geodesic ray
whose 0-skeleton is {(n, 0) : n ≥ −4}. Then W(γ′) = {Vn : n ≥ −4} and W(γ) = {Vn, Hn :
n ≥ 0}. Hence γ consumes γ′.

The following lemma from [Hag13a] is used freely throughout this paper. A set W ′ of
hyperplanes is inseparable if for all W,W ′ ∈ W ′, if a hyperplane U separates W and W ′, then
U ∈ W ′.
Lemma 2.6. For any x ∈ X, and for any [γ] ∈ RX, there exists a combinatorial geodesic ray
γ′ : [0,∞)→ X such that γ′(0) = x and [γ] = [γ′].

If W ′ ⊆ W(γ) is an inseparable subset such that W(γ) − W ′ is finite, then there exists a
combinatorial geodesic ray γ′ such that [γ′] = [γ] and W(γ′) =W ′.

Given [γ], [γ′] ∈ RX, write [γ] ≤ [γ′] if some (and hence every) representative of γ′ consumes
some (and hence every) representative of γ. From the definition, it follows that ≤ partially
orders RX. The almost-equivalence class [γ] is minimal if, for each geodesic ray γ′ consumed by
γ, we have [γ′] = [γ]. Moreover, if β, γ are combinatorial geodesic rays, then eitherW(γ)∩W(β)
is finite, or W(γ)∩W(γ) =W(σ) for some combinatorial geodesic ray σ, by Lemma 2.7 below.

As discussed in [Che00, Rol98], the 1-skeleton of X is a median graph, which means that for
any three distinct 0-cubes x, y, z, there exists a unique 0-cube m = m(x, y, z) such that the

combinatorial distance between any two of x, y, z is realized by a geodesic segment in X(1) that
passes through m. In terms of hyperplanes, this means that the set of hyperplanes H separating
x from m is exactly the set of H such that H separates x from y and H separates x from z.

Lemma 2.7. Let X be a CAT(0) cube complex and let β, γ : [0,∞) → X be combinatorial
geodesic rays, and suppose that W(γ) ∩ W(β) is infinite. Then there exists a combinatorial
geodesic ray σ such that [σ] ≤ [β] and [σ] ≤ [γ].

Proof. By Lemma 2.6, we may assume that γ(0) = β(0). For each t ≥ 0, let mt be the median
of the 0-cubes β(0), β(t), and γ(t). Let σt be a combinatorial geodesic segment joining mt to
β(0). By the definition of the median, each hyperplane crossing σt separates β(t) and γ(t) from
β(0). Hence W(σt) ⊂ W(γ) ∩W(β). On the other hand, if W crosses both γ and β, then W
separates mt from β(0) for all sufficiently large t, so that

W(γ) ∩W(β) =
⋃
t≥0
W(σt).

Now, σ0 = β(0), and for t ≥ 1, choose σt = σt−1αt, where αt is a combinatorial geodesic
segment joining mt−1 to mt. By induction, σt−1 is a geodesic segment, and αt is a geodesic
segment by definition, so either σt is a geodesic segment joining σ(0) = β(0) to mt, or some
hyperplane H is dual to a 1-cube of σt−1 and a 1-cube of αt. Since H crosses σt−1, both β(t−1)
and γ(t − 1) are separated from β(0) by H, by the definition of the median mt−1. Thus both
β(t) and γ(t) are separated from β(0) by H, whence mt is separated from β(0) by H. In other
words, H separates mt from β(0), and H separates mt−1 from β(0), and H separates mt from
mt−1, since it crosses the geodesic segment αt. This is a contradiction, and each σt is therefore
a geodesic segment.

Now, for all t, we have σt ⊆ σt+1. König’s lemma now supplies us with a combinatorial ray
σ = ∪t≥0σt that is geodesic (since it crosses each hyperplane in at most one 1-cube) and has
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the property that ∪t≥0W(σt) = W(σ). It was shown above that ∪t≥0W(σt) = W(β) ∩W(γ).
By definition, [σ] ≤ [γ] and [σ] ≤ [β]. �

Lemma 2.8. Let X be a CAT(0) cube complex and let β, γ : [0,∞) → X be combinatorial
geodesic rays with β(0) = γ(0). Suppose that for all U ∈ W(β) and V ∈ W(γ), the hyperplanes
U and V cross. Then there exists a combinatorial geodesic ray σ such that [β], [γ] ≤ [σ].

Proof. Let x = β(0) and, for each t ∈ N, let yt = β(t) and zt = γ(t). Define a 0-cube mt

by orienting all hyperplanes, as follows. If W ∈ W(β), let mt(W ) = yt(W ) be the halfspace
associated to W that contains yt. If W ∈ W(γ), let mt(W ) = zt(W ). Otherwise, if W does not
cross β or γ, let mt(W ) = x(W ). Now, mt(W ) 6= x(W ) if and only if W is one of the finitely
many hyperplanes separating x from yt or zt and hence the orientation mt defines a 0-cube,
also denoted mt, provided it orients the hyperplanes consistently, which we now verify.

Let W,W ′ be hyperplanes. If neither W nor W ′ crosses β or γ, then mt(W ) ∩ mt(W
′) =

x(W ) ∩ x(W ′) 6= ∅, since x is a 0-cube. If W crosses γ and W ′ crosses neither β nor γ, then
mt(W

′) = x(W ′) and either W and W ′ cross or W and x lie in the same halfspace associated
to W ′. In either case, mt(W ) ∩mt(W

′) 6= ∅. Finally, if W crosses W ′, then W and W ′ cross,
so that mt(W ) ∩mt(W

′) 6= ∅. Thus mt consistently orients all hyperplanes. Hence there is a
0-cube mt such that a hyperplane W separates x from mt if and only if W separates x from yt
or from zt.

Let σt be a combinatorial geodesic segment joining x to mt. By construction, mt is separated
from x by exactly the set of hyperplanes W that separate x from yt or from zt. Thus⋃

t≥0
W(σt) =W(β) ∪W(γ),

as is illustrated heuristically in Figure 2.
As in the proof of Lemma 2.7, we need a particular choice of σt, made in the following

inductive way. First, σ0 = β(0) = γ(0). Next, for t ≥ 1, let αt be a geodesic segment joining
mt−1 to mt and let σt = σt−1αt. Suppose the hyperplane H crosses αt and σt−1. Since it crosses
σt−1, the hyperplane H separates exactly one of β(t − 1) or γ(t − 1) from β(0); suppose the
former. Then H separates β(t) from β(0), and thus separates mt from β(0). Since H crosses
αt, the 0-cubes mt,mt−1 are separated by H, but both lie in the halfspace associated to H that
does not contain β(0), and this is a contradiction. Hence σt is a geodesic joining β(0) to mt,
and σt ⊆ σt+1 for all t. Arguing as in the proof of Lemma 2.7 now yields the desired σ. �

Remark 2.9 (Isometrically embedded quadrants). Under the hypotheses of Lemma 2.8, the
proof of Theorem 3.23 of [Hag13a] actually yields a copy of R2 in X that contains geodesic rays
almost-equivalent to β, γ, and has isometrically embedded 1-skeleton; this implies Lemma 2.8.
Since we do not require this stronger fact, we have opted for a self-contained and slightly simpler
proof.

To define the simplicial boundary requires the following lemmas.

Lemma 2.10. Suppose that X is locally finite and contains no infinite set of pairwise-crossing
hyperplanes, and let γ ⊂ X be a combinatorial geodesic ray. Then there exists a combinatorial
geodesic ray γ0 such that [γ0] is minimal and [γ0] ≤ [γ].

Proof. Since W(γ) is infinite, and there is no infinite family of pairwise-crossing hyperplanes
in X, there exists a collection {Hn}n≥0 ⊂ W(γ) of hyperplanes such that for all m,n ≥ 0, the
hyperplanes Hm and Hn do not cross. These may be labeled so that for all n, γ(0) is separated
from Hn+1 by Hn. For each n ≥ 0, let {σin}i∈In be the set of combinatorial geodesic segments
joining γ(0) to a closest point of N(Hn). Then W(σin) is the set of hyperplanes that separate
γ(0) from Hn, and since γ contains γ(0) and intersects Hn, each of these hyperplanes must
cross γ, i.e. W(σin) ⊂ W(γ).
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γ

Figure 2. The proof of Lemma 2.8. The bold 0-cubes are the various mt, while the hyperplanes
are dashed line segments.

For n ≥ 0, let Sn be the set of combinatorial geodesic segments σ, with σ(0) = γ(0), that

terminate on N(Hn) and extend to a path of the form σjm for some m ≥ n. In particular, by

considering m = n, we see that each σjn ∈ Sn. Since X is locally finite, each element of Sn can be
extended in at most finitely many ways to an element of Sn+1, and each element of Sn contains a
unique element of Sn−1. Hence König’s lemma yields a sequence σ0 ⊂ σ1 ⊂ . . . of combinatorial
geodesic segments whose union γ0 is a combinatorial geodesic ray with γ0(0) = γ(0). Each

hyperplane H crossing γ0 crosses a path of the form σjn for some n ≥ 0, and thus belongs to
W(γ). Hence [γ0] ≤ [γ], and each Hn crosses γ0.

Now, for all n, if the hyperplane H crosses σn, then H must separate Hn from γ(0). Thus
W(γ0) consists of the set {Hn}, together with those hyperplanes H that separate some Hn

from γ(0). Let β be a combinatorial geodesic ray with [β] ≤ [γ0]. Then each hyperplane
crossing β is either one of the Hn, or separates some Hn from γ(0), or belongs to the finite set
W(β) −W(β) ∩W(γ0). Since every hyperplane crossing γ0 is of one of the former two types,
it follows that [β] = [γ0], so that [γ0] is minimal. �

Lemma 2.11. Suppose that X is locally finite and contains no infinite set of pairwise-crossing
hyperplanes, and let γ ⊆ X be a combinatorial geodesic ray. Then there exists an integer D ≥ 0
and combinatorial geodesic rays γ0, . . . , γD such that for 0 ≤ i ≤ d, the class [γi] is minimal,
[γi] ≤ [γ], and if [σ] ≤ γ is minimal, then [σ] = [γi] for some i.

Proof. By Lemma 2.10 and Lemma 2.6, the set M of geodesic rays β such that β(0) = γ(0),
[β] ≤ [γ], and [β] is minimal, is nonempty. Now, for any β ∈M, let H be a hyperplane crossing
γ but not crossing β. Then for all but finitely many hyperplanes V crossing β, H and V must
cross. Indeed, if V crosses β and γ, and is dual to a 1-cube of γ that is separated in γ from γ(0)
by the 1-cube dual to H, then there is a geodesic triangle ABC, where B is a path in N(V )
starting on β and ending on γ, and A,C are the subpaths of β, γ between γ(0) and N(V ). This
triangle bounds a disc diagram, one of whose dual curves emanates from C and maps to H.
This dual curve must end on B because H does not cross β, and hence H crosses V .

Therefore, if β, β′ ∈M and [β] 6= [β′], then for all but finitely many H ∈ W(β), H ′ ∈ W(β′),
the hyperplanes H,H ′ cross. In fact, the above argument, together with the proof of [Hag13a,
Lemma 6.4] shows β, β′ can be chosen within their equivalence classes in such a way that H,H ′

cross whenever H crosses β but not β′ and H crosses β′ but not β.
Suppose that the set [M] of equivalence classes of rays in M is infinite. Suppose also that

for some n ≥ 1, we have β1, . . . , βn ∈M with the following properties:

(1) [βi] 6= [βj ] for i 6= j.
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Figure 3. The “generic” case is shown at left. At right are two interesting special cases.

(2) If H crosses βi and H ′ crosses βj , with i 6= j, then either H and H ′ cross, or at least
one of H,H ′ crosses both βi and βj .

(3) For i 6= j, the setW(βi)∩W(βj) is equal to the set of hyperplanes that cross a geodesic
path Pi,j = βi ∩ βj whose initial point is γ(0).

(4) Pi−1,i ⊆ Pi,i+1 and Pi,j ⊆ Pi,j′ for 2 ≤ i < j′ ≤ j ≤ n.

Some such collections of rays are illustrated in Figure 3. Note that the above conditions are
vacuously satisfied when n = 1.

Now, sinceM contains infinitely many equivalence classes of rays, there exists β′n+1 that is in-
equivalent to βi for 1 ≤ i ≤ n. The folding argument used in the proof of [Hag13a, Lemma 3.22]
shows that the set {[β1], . . . , [βn], [β′n+1]} is represented by a set of n+ 1 combinatorial geodesic
rays, each crossing the exact same set of hyperplanes as some βi or β′n+1, satisfying the proper-
ties listed above. We thus have a set {[βn]}n∈N of distinct equivalence classes of rays such that
Wn−1 ∩Wn ⊆ Wn ∩Wn+1 for n ≥ 2, where Wn = W(βn), and Wn ∩Wm′ ⊆ Wn ∩Wm when
n < m ≤ m′. Note that by minimality of the βi, each of the preceding intersections is finite.

For each n ≥ 1, let Hn ∈ Wn be a hyperplane that does not belong to Wn+1. Such an
Hn exists since |Wm ∩ Wn| < ∞ for m 6= n. For any m > n, Hn does not lie in Wm, since
Wm∩Wn ⊆ Wn+1∩Wn. On the other hand, Hn 6∈ Wk for k < m, sinceWn∩Wn−1 ⊆ Wn∩Wn+1.
Thus Hm 6= Hn for m 6= n, and moreover these two hyperplanes cross, since two hyperplanes in
Wm ∪Wn cross unless both belong to the intersection of those sets. It follows that X contains
an infinite set of pairwise-crossing hyperplanes, a contradiction. Thus |[M]| = D + 1 for some
integer D ≥ 0. �

Remark 2.12. Note that we have required that any collection of pairwise crossing hyperplanes
in X is finite, but we have not required a uniform upper bound on the cardinality of such
collections, i.e. we do not need X to have finite dimension. Throughout this paper, we always
impose the former requirement on sets of pairwise-crossing hyperplanes. Finite-dimensionality
comes into play in the next section, where there is a cocompact group action.

Definition 2.13 (Invisible set). Let γ be a combinatorial geodesic ray and let γ0, . . . , γD be
geodesic rays provided by Lemma 2.11. If U(γ) =W(γ)−∪Di=0W(γi) is infinite, we call U(γ) an
invisible set for γ. If U(γ) and U(γ′) are invisible sets for the rays γ, γ′, then they are equivalent
if their symmetric difference is finite. One can show that if U(γ) is an invisible set for a ray γ′,
then [γ′] = [γ], but we shall not use this fact here.

The simplicial boundary ∂MX is defined as follows. First, for each minimal [γ] ∈ RX, there
is a 0-simplex in ∂MX. If γ0, . . . , γD are rays representing equivalence classes corresponding to
0-simplices, then these 0-simplices span a D-simplex if there is a ray γ such that [γi] ≤ [γ] for
0 ≤ i ≤ D. If W(γ) contains an invisible set, then we add a (D + 1)-simplex that is the join
of the above D-simplex with the 0-simplex corresponding to the invisible set U(γ). Hence each
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Figure 4. The simplicial boundary of an eighth-flat is a 1-simplex, one of whose 0-simplices
is “invisible” in the cube complex. Hyperplanes are shown as dotted line segments.

equivalence class of rays in X determines a finite-dimensional simplex of ∂MX, by Lemma 2.11.
Moreover, since each invisible set is a subset of W(γ) for some ray γ, each maximal simplex of
∂MX is determined by an equivalence class of rays, and is therefore finite-dimensional.

Remark 2.14 (Invisible simplices). By definition, ∂MX may contain simplices that do not arise
as almost-equivalence classes of combinatorial geodesic rays. For example, if X is the cubical
sector shown in Figure 4, then ∂MX is a 1-simplex corresponding to the almost-equivalence
class of diagonal geodesic rays that cross all but finitely many of the hyperplanes. One of the
0-simplices is represented by the horizontal geodesic ray whose set of dual hyperplanes is exactly
the set of vertical hyperplanes in X, but since no ray crosses only horizontal hyperplanes, the
other 0-simplex does not correspond to a class of rays. Crucially, by Theorem 3.19 of [Hag13a],
maximal simplices of the simplicial boundary are visible, and the proof of that theorem also
ensures that each invisible simplex is contained in a unique maximal simplex.

Example 2.15. If X is an infinite, locally finite tree, then any two geodesic rays are either
almost-equivalent, or neither consumes the other. Hence ∂MX is a discrete set of 0-simplices.
More generally, it is shown in [Hag13a] that if X is infinite and hyperbolic, then ∂MX is a
discrete set of 0-simplices. If X is the standard tiling of [0,∞)2 by 2-cubes, then ∂MX is a 1-
simplex. If X is the standard tiling of [0,∞)×R by 2-cubes, then ∂MX is a subdivided interval
of length 2. If X is the standard tiling of R2 by 2-cubes, then ∂MX is a 4-cycle.

Lemma 2.16 describes the simplicial boundary of the standard tiling of Euclidean space by
cubes, and follows from Theorem 3.28 of [Hag13a].

Lemma 2.16. Let n ≥ 1 and let Rn be the standard tiling of En by n-cubes. Then ∂MRn is
isomorphic to the (n− 1)-dimensional hyperoctahedron Qn.

Remark 2.17. By regarding ∂MX as being constructed from right-angled spherical simplices in
which 1-simplices have length π

2 , one realizes ∂MX as a CAT(1) space. It is shown in [Hag13a,
Proposition 3.37] that if X is fully visible, then ∂MX, as a CAT(1) space, isometrically embeds
in the Tits boundary of X (when the latter is endowed with the piecewise-Euclidean CAT(0)
metric in which all cubes are Euclidean unit cubes).

Part of the utility of the simplicial boundary comes from the fact that an action of a group
G on X induces an action of G on ∂MX.

Proposition 2.18. Suppose G acts on the CAT(0) cube complex X. Then G acts by simplicial
automorphisms on ∂MX.

Proof. Let g ∈ G and let γ : [0,∞) → X be a combinatorial geodesic ray. Then gγ is also a
combinatorial geodesic ray, since G acts by isometries. Now, if γ′ is a geodesic ray for which
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Figure 5. Part of a Z-cocompact CAT(0) cube complex. Each combinatorial geodesic ray is
almost-equivalent to one of the two dashed rays.

|W(γ) ∩W(γ′)| <∞, then since G acts on the set of hyperplanes, the set

W(gγ) ∩W(gγ′) = gW(γ) ∩ gW(γ′) = g(W(γ) ∩W(γ′))

is finite, being a translate of a finite set. Hence [gγ] = [gγ′], i.e. the G-action on the set of
combinatorial geodesic rays preserves almost-equivalence classes, and so we define a G-action
on RX by g[γ] = [gγ]. Analogous considerations show that, for all g ∈ G and all [γ], [γ′] ∈ RX,
if [γ] ≤ [γ′], then g[γ] ≤ g[γ′], and thus G preserves the partial order ≤. Hence G acts by
simplicial automorphisms on ∂MX. �

One can check that elliptic elements of G may act trivially or nontrivially on ∂MX, but that
if g ∈ G acts as a hyperbolic isometry of X, then there are two distinct simplices of ∂MX,
corresponding to the ends of an axis for g, each of which is stabilized by g.

2.5.1. Boundaries of cubulations of virtually-Z groups. The following fact forms the base case
in our inductive proof of Theorem 3.1 by describing the simplicial boundary of a cocompact
cubulation of a virtually Z group.

Lemma 2.19. Let the group G act properly and cocompactly on a CAT(0) cube complex X that
is quasi-isometric to R. Then ∂MX consists of two non-adjacent 0-simplices.

An example of a cube complex of the type described in Lemma 2.19 is shown in Figure 5.

Proof of Lemma 2.19. X is quasi-isometric to R and to G, and thus G is 2-ended. Hence there is
a finite-index infinite cyclic subgroup G′ ≤ G, generated by an element b, and G′ acts properly
and cocompactly on X. The element b cannot be elliptic, and, by passing if necessary to a
further finite-index cyclic subgroup, we may assume that b is combinatorially hyperbolic. Let
β : R→ X be a combinatorial geodesic axis for b, and write

β+ = β([0,∞)), β− = β((−∞, 0]).

Let v+ be the simplex of ∂MX represented by β+ and let v− be the simplex represented by β−.
Now, since β is a geodesic, no hyperplane crosses β+ and β−, so that v+ and v− are distinct
simplices.

Let γ : [0,∞) → X be a combinatorial geodesic ray. Let κ ≥ 0 be the quasi-surjectivity
constant of the map β : R→ X. For all t ≥ 0,

dX(γ(t), β(t)) ≤ κ.
Hence γ lies in the κ-neighborhood of β+ or β−. Without loss of generality, we can assume that
dX(γ(t), β+) ≤ κ for all t ≥ 0.

Let U ∈ W(γ)−W(β+) be dual to the 1-cube γ([s, s+ 1]). Then U separates γ([s+ 1,∞))
from β+, or U separates γ(0) from β+(0). Hence |W(γ) −W(β+)| ≤ κ + dX(γ(0), β+(0)). On
the other hand, suppose that V ∈ W(β+) −W(γ). Then either V separates γ(0) from β+(0),
or V separates γ from an infinite sub-ray of β+, and we conclude that |W(γ)4W(β+)| ≤
2κ + 2dX(γ(0), β+(0)), so that [γ] = [β+]. Hence every combinatorial geodesic ray is almost-
equivalent to either β+ or β−, and thus v+ and v− are distinct 0-simplices whose disjoint union
is the whole of ∂MX. �
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3. Hyperoctahedral boundary

In this section, which is devoted to the proof of Theorem A, G is a group that acts properly
and cocompactly on a CAT(0) cube complex X and contains a finite-index subgroup TG

∼= Zn
for some n ≥ 1. Let H be a G-essential hyperplane, and let H be the carrier of H. Let
Gn−1 = StabX(H), and let Tn−1 = Gn−1 ∩ TG . We have in mind the case where G is an
n-dimensional crystallographic group and TG is the translation subgroup. In fact, it will be
convenient to reduce to this case.

Theorem 3.1. Let G be a group with a finite-index subgroup TG
∼= Zn, with n ≥ 1. If G acts

properly and cocompactly on the CAT(0) cube complex X, then the simplicial boundary of X is
isomorphic to Qn, the (n− 1)-dimensional hyperoctahedron.

Proof. The claim follows from Lemma 2.19 when n = 1. For n ≥ 2, we first note that we
can assume that G is an n-dimensional crystallographic group; this is needed in the proof
of Lemma 3.4, where we require a G-equivariant quasi-isometry X → En. The assumption
that G is crystallographic is justified by noting that G has a finite-index subgroup G′ with a
geometric action on En – at minimum, TG is such a subgroup. The subgroup G′ acts properly
and cocompactly on X if G does, and the desired conclusion is a statement about X. We
thus henceforth assume that G is an n-dimensional crystallographic group whose translation
subgroup TG is the kernel of the epimorphism ψ : G→ PG , where PG is the point group.

We have ∂MH ∼= Qn−1, by induction, since, by Lemma 3.3, H is a CAT(0) cube complex on
which Tn−1 acts properly and cocompactly. By Lemma 3.4, ∂MX ∼= ∂MH ?Q1

∼= Qn. �

Remark 3.2. There is an alternative proof of Theorem 3.1 using the rank-rigidity theorem
of [CS11], along with results in [Hag13a]. Indeed, if Zn acts properly and cocompactly on
X, then since Zn contains no rank-one element for n ≥ 1, the Zn-essential core of X is a
product X1 ×Xn−1 of CAT(0) cube complexes, whose simplicial boundary is ∂MX1 ? ∂MXn−1,
by Theorem 3.28 of [Hag13a]. Lemma 2.19 shows that, if n = 1, then the essential core has
simplicial boundary Q1, and it follows by induction that the essential core of X has simplicial
boundary Qn. The final step is to verify that passing to the essential core does not affect
the simplicial boundary. The proof we give below is self-contained, however, and seems more
readily adaptable to other classes of groups and cube complexes.

3.1. The inductive step. Let n ≥ 2 and let the n-dimensional crystallographic group G act
properly and cocompactly on X. The first step is to show that the CAT(0) cube complex H
admits a proper, cocompact action by an (n− 1)-dimensional crystallographic group:

Lemma 3.3. Tn−1 is a finite-index subgroup of Gn−1, and Tn−1 ∼= Zn−1. Moreover, Tn−1 acts
cocompactly on H.

Proof. By definition, the kernel of ψ|Gn−1 is Tn−1, and hence Tn−1 has finite index in Gn−1.
This proves the first assertion.
TG acts properly and cocompactly on X, since TG is a finite-index subgroup of G. Since H

is G-essential and TG has finite index, H is TG-essential. Now, with respect to the TG-action
on X, the stabilizer of H is exactly Tn−1. Indeed, Tn−1 stabilizes H by definition; on the other
hand, if t ∈ TG − Tn−1, then t 6∈ Gn−1 = StabX(H).

Since TG
∼= Zn, we have Tn−1 ∼= Zk for some k ≤ n. Either Tn−1 is a codimension-1 subgroup

or Tn−1 has finite index in TG . Thus k ≥ n − 1. Suppose that Tn−1 has finite index in TG .
Then there exists N ∈ Z such that for all t ∈ TG , we have tN ∈ Tn−1, i.e. TN (H) = H. This
implies that X lies in a uniform neighborhood of H, contradicting G-essentiality of H. Hence
Tn−1 has infinite index in TG , whence k = n − 1. This proves the second assertion. Lastly, H
is a convex subcomplex of X, and thus Gn−1 acts on H cocompactly. Since Tn−1 ≤f.i. Gn−1,
the induced action of Tn−1 on H is cocompact. �
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Lemma 3.4. ∂MX ∼= ∂MH ?Q1.

Proof. The proof has two parts: we first decompose ∂MX along a subcomplex isomorphic to
∂MH, and then show that each of the pieces is isomorphic to the join of ∂MH with a single
0-simplex. For use in the latter part of the proof, denote by η : X → En a G-equivariant
(λ, µ)-quasi-isometry that is κ-quasi-surjective, for some λ ≥ 1, µ, κ ≥ 0.

Decomposing ∂MX along ∂MH: Since H is a convex subcomplex of X, there is a subcomplex
A ⊂ ∂MX, isomorphic to ∂MH, that consists of those simplices represented by rays in H (see
Theorem 3.14 of [Hag13a]). Moreover, since C = h(H) ∪H and h∗(H) ∪H = C∗ are convex
subcomplexes of X, the same theorem implies that there are subcomplexes E,E∗ of ∂MX such
that E ∼= ∂MC consists of simplices with representative rays in C and E∗ ∼= ∂MC∗ consists
of simplices with representative rays in C∗. (We can always define A to be the subcomplex
consisting of all simplices represented by rays in H, but we need convexity to ensure that H
has a well-defined simplicial boundary.)

Now, ∂MX = E∪E∗ and E∩E∗ = A. Indeed, let γ : [0,∞)→ X be a combinatorial geodesic
ray. Since γ contains at most one 1-cube dual to H, all but finitely many 0-cubes of γ lie in C,
or all but finitely many 0-cubes of γ lie in C∗, since γ contains a sub-ray that lies entirely in
one of the halfspaces associated to H. Hence the simplex of ∂MX represented by γ belongs to
E or E∗, whence ∂MX = E ∪ E∗.

On the other hand, suppose that γ represents a simplex v of E ∩ E∗. By definition, there
exist combinatorial geodesic rays α and α∗ such that [α] = [α∗] represents v and α ⊂ C and
α∗ ⊂ C∗. Without loss of generality, W(α) = W(α∗) and H separates α from α∗. Let U be
a hyperplane that crosses α. Since H separates α from α∗ and U is dual to a 1-cube of α∗, it
follows that U crosses H. Let V be the finite set of hyperplanes that separate α(0) from H.
If V ∈ V, then V cannot be dual to a 1-cube of α, since V does not cross H, and hence V
separates α from H. This forces V to cross each U ∈ W(α). For each integer t ≥ 0, define
an orientation xt of the hyperplanes of X as follows. First, if W is a hyperplane that does not
belong to W(α) or to V, let xt(W ) = α(0)(W ) be the halfspace containing α(0). If W ∈ W(α),
let xt(W ) = α(t)(W ) be the halfspace containing the 0-cube α(t). If W ∈ V, let xt(W ) be the
halfspace containing H, i.e. the halfspace not containing α(t). Equivalently, xt orients each
W ∈ V toward the unique 0-cube of H that is closest to α(0) (this 0-cube exists because convex
subgraphs of median graphs are gated [Che00]).

Since the consistent orientation W 7→ α(t)(W ) of all hyperplanes differs from xt only on
V, it suffices to check that xt(W ) ∩ xt(W ′) 6= ∅ whenever W ∈ V. This is guaranteed when
W ′ ∈ W(α), since W and W ′ cross in that case. If W ′ ∈ V, then xt orients W and W ′ toward
the gate x0 of α(0) in H, and thus xt(W ) ∩ xt(W ′) 6= ∅. Finally, if W ′ does not belong to V,
then α(0) lies in the same halfspace associated to W ′ as does x0, so that xt(W

′) = x0(W
′).

Either W and W ′ cross, or W ⊂ x0(W ′), since x0(W
′) contains any geodesic segment joining x0

to α(0), by convexity of halfspaces. Thus xt orients W ′ toward W , so that xt(W )∩xt(W ′) 6= ∅.
Thus xt is a consistent orientation of all hyperplanes. Furthermore, xt differs from x0, and
hence from α(0), on finitely many hyperplanes, and thus xt, being consistent and canonical, is
a 0-cube of X. By construction, xt ∈ H for all t.

For all t ≥ 0, the 0-cubes xt and xt+1 are adjacent, since the corresponding orientations
differ only on the hyperplane Wt separating α(t) from α(t+ 1). Moreover, if the hyperplane W
separates xs from xs+1 and xt from xt+1 for some s, t ≥ 1, then s = t, since α is a geodesic ray.
Hence the map β(t) = xt determines a combinatorial geodesic ray β : [0,∞) → H such that
W(β) = W(α). Hence [β] = [α] = [γ], whence v ⊂ A. This proves that E ∩ E∗ ⊆ A, and also
establishes the following fact, which we shall use later in the proof:

Let γ : [0,∞)→ X be a combinatorial geodesic ray, and suppose there exists R <∞ such that
dX(γ(t),H) ≤ R for all t ≥ 0. Then the simplex of ∂MX represented by γ lies in A.
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Figure 6. A heuristic picture of the carrier H and the ray γ. Each hyperplane crossing γ
crosses H (for example, the hyperplane labeled B), and finitely many hyperplanes, like A,
separate H from γ.

Indeed, if γ lies in the R-neighborhood of H, then all but finitely many hyperplanes crossing γ
also cross H, and we may argue as before to produce a ray in H that is almost-equivalent to
γ: by removing a finite initial segment from γ if necessary, we can assume that W(γ) ⊆ W(H)
and thus that every hyperplane that separates some γ(t) from H also separates γ(0) from H
and hence crosses each hyperplane in W(γ). See Figure 6.

Conversely, if γ : [0,∞) → H is a combinatorial geodesic ray, then γ ⊂ C ∩ C∗, so that
v ⊂ E ∩ E∗ by definition.

The additional simplices: To complete the proof of the lemma, it therefore suffices to
show that there exists a 0-simplex v ∈ ∂MX such that E = A ? v, and a 0-simplex v∗ 6= v such
that E∗ = A ? v∗. From this, the above discussion shows that ∂MX = A ? (v t v′) ∼= ∂MH ?Q1.

The Tn−1-invariant hyperplane X ⊂ En: Let t1, . . . , tn−1 be a set of linearly independent
translations that generate Tn−1, and let h0 ∈ H. Let X ∼= Rn−1 be the Tn−1-invariant affine
subspace of En containing the points η(h0), t1(η(h0)), . . . , tn−1(η(h0)).

There exists S < ∞ such that X ⊆ NS(η(H)) and η(H) ⊆ NS(X). Indeed, there exists
r1 ≥ 0 such that dX(h, Tn−1(h0)) ≤ r1 for all h ∈ H, since Tn−1 acts cocompactly on H. Let
h ∈ H and choose t ∈ Tn−1 such that dX(h, t(h0)) ≤ r1. Since t(h0) ∈ X, the distance in En
from η(h) to X is at most

‖η(h)− η(th0)‖ ≤ λr1 + µ.

Similarly, if x ∈ X, then the distance in En from x to η(H) is at most

‖tη(h0)− x‖ ≤ r2,

where r22 ≥
∑n−1

i=1 ‖ti‖2 and t ∈ Tn−1 is chosen, using the cocompactness of the Tn−1-action on
X, to satisfy the preceding inequality. Hence S = max{λr1 + µ, r2} suffices.

Now let t ∈ TG be a translation. Then there exists R < ∞ such that each of H and t(H)
lies in the uniform R-neighborhood in X of the other. Indeed, since η(H) and X lie in uniform
S-neighborhoods of one another in En, and η is a quasi-isometry, it suffices to exhibit R′ <∞
such that X and t(X) lie in uniform R′-neighborhoods of one another. Having shown that such
an R′ exists, it is evident that R = λ(R′ + 2S + µ) suffices. But since t ∈ TG , it is obvious that
X and t(X) are parallel codimension-1 hyperplanes in En, and so R′ ≤ ‖t(0)‖.

The translation b: Let b ∈ TG − Tn−1 be a translation chosen so that for all x, x′ ∈ X,
we have ‖b(x)− x′‖ > 2S. For example, let b′ be a translation along the unit normal vector to
X and let b be some high power of b′. If H ∩ b(H) 6= ∅, then there exist h, h′ ∈ H such that
h = t(h′) and thus η(h) = tη(h′). Now bη(h′) lies at distance at most S from b(X), and η(h)
lies at distance at most S from X, so that ‖b(x) − x′‖ ≤ 2S, a contradiction. Thus b(H), the
carrier of b(H), is disjoint from H and lies in h(H) or h∗(H). We can assume the former, by
replacing b with b−1 if necessary. Moreover, there exists Q <∞ such that for all h ∈ H, there
exists h′, h′′ ∈ H with dX(h, t(h′)) ≤ Q and dX(t(h), h′′) ≤ Q.
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H b(H) b2(H)

Figure 7. The carrier H and some of its 〈b〉-translates. The arrow on each translate of H
points into the corresponding translate of h(H).

β1

β2

β3 β

Figure 8. At left are some of the segments βp, shown in bold. As at right, cocompactness of
the Tn−1-action on H guarantees that there is a geodesic ray β containing some βp for all p ≥ 0.

Hence {bp(H)}p≥0 is an infinite collection of hyperplanes in C whose carriers are pairwise
disjoint, such that bp(H) lies in the Q-neighborhood of bp+1(H) for all p ≥ 0, and vice versa.
Moreover, by passing to a high power if necessary, we can assume that b is a hyperbolic isometry
of X, and thus that b(h(H)) ⊂ h(H). Therefore, {bp(h(H))}p≥0 is totally ordered by inclusion:
bp+1(h(H)) ⊂ bp(h(H)) for all p ≥ 0, so that, if p < q < r, then bq(H) separates bp(H) and
br(H). See Figure 7.

Intersections of halfspaces: Let p < q be integers, and consider the smallest subcomplex
Y of X containing the region bp(h(H)) ∩ bq(h∗(H)) “between” bp(H) and bq(H). Since η is
a quasi-isometry sending bp(H) and bq(H) to parallel hyperplanes in En, we see that Y is
contained in the regular Q(q − p)-neighborhood of H. This fact plays a role below.

The 0-simplex v: For each p ≥ 0, let βp be a combinatorial geodesic segment joining some
ap ∈ H0 ∩ h∗(H) to some cp ∈ bp(H0) ∩ bph∗(H). Let ap, cp and βp be chosen so that βp is a
short as possible. Then the set of hyperplanes dual to 1-cubes of βp consists of H, together
with those hyperplanes that separate H from bp(H), because H is convex. In particular, βp
contains a 1-cube dual to bq(H) if and only if 0 ≤ q < p.

Now, since Tn−1 acts cocompactly on H, there exists a finite set F of 0-cubes in H such that,
for all p ≥ 0, we can choose βp in such a way that βp(0) ∈ F . Hence, by König’s lemma, there
exists a combinatorial geodesic ray β : [0,∞) → C such that the initial 1-cube of β is dual to
H, and β contains a 1-cube dual to bp(H) for all p ≥ 0, and the hyperplane U crosses β if and
only if U = H or U separates two elements of {bp(H)}p≥0. The latter property implies that [β]
is minimal, and hence the simplex v of E represented by β is a 0-simplex.

Since β contains 1-cubes dual to infinitely many hyperplanes that do not cross H, v ∈ E−A.
See Figure 8. Note also that bv = v, sinceW(β) consists of the b-almost-invariant set {bp(H)}p≥0
together with any hyperplane separating two elements of that set. In particular, no hyperplane
crossing H can cross β. However, β itself need not lie on a combinatorial geodesic axis for b.

Proof that E ⊆ A ? v: Let γ : [0,∞) → C be a combinatorial geodesic ray with γ(0) =
β(0) ∈ H. Denote by u the simplex of E represented by γ. We must verify that u ⊆ A ? v.
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Now either u ⊂ A, or bp(H) crosses γ for all sufficiently large p ≥ 0. Indeed, either bp(H)
crosses γ for all p ≥ 0, or there exists π ≥ 0 such that bπ+1(H) does not cross γ. In the latter
case, γ ⊂ C ∩ bπ+1(h∗(H)), i.e. γ lies “between” H and bπ+1(H). It was shown above that the
smallest subcomplex containing h(H)∩bπ+1(h∗(H)) lies in NQ(π+1)(H). Hence γ ⊂ NQ(π+1)(H)
and it was shown above that this implies that u is a simplex of A and thus lies in A ? v. See
Figure 9.

II

I

Figure 9. The ray I crosses H but fails to cross all but finitely many 〈b〉-translates of H, and
hence lies in a uniform neighborhood of H. The ray labeled II could cross all bp(H).

Hence suppose that bp(H) crosses γ for all p ≥ 0. Then the set W(γ) ∩W(β) is infinite. By
Lemma 2.7, there exists a geodesic ray σ such that [σ] ≤ [β] and [σ] ≤ [γ]. Since [β] is minimal,
[σ] = [β] and thus [β] ≤ [γ], i.e. v ⊆ u. In particular, if u is a 0-simplex, then u = v. This
shows that v is the only 0-simplex of E −A, whence E is isomorphic to a subcomplex of A ? v.

Proof that A ? v ⊆ E: Let a be a (visible) simplex of A. First, using Lemma 2.6, choose
a combinatorial geodesic ray γ : [0,∞) → H, representing a, so that γ(0) = β(0). Next, since
H ∼= [−1

2 ,
1
2 ]×H, we can modify γ within its almost-equivalence class, without changing γ(0),

so that γ ⊂ h∗(H). Indeed, if H− ∼= {−1
2} ×H is the copy of H on the h∗(H) side of H, we

can if necessary project γ to H−.
Consider the combinatorial geodesic ray γ′p = bp(γ). Let xp be the initial 0-cube of the 1-

cube of β dual to bp(H), and let γp : [0,∞)→ bp(H) be a combinatorial geodesic ray such that
[γp] = [γ] and γp(0) = xp. For example, γp can be produced by applying Lemma 2.6 to bp(γ)
and the sub-ray of β beginning at xp. It is easily seen that γ and bp(γ) fellow-travel, since b
acts as a translation on En.

Let Up ⊂ W(γ) be the set of hyperplanes U that cross γ and do not cross bp+1(H), and let
U =

⋃
p≥0 Up. By Lemma 3.5, |U| <∞ and thus, by Lemma 3.6, we have rays β′, γ′ such that

[β′] = [β], [γ′] = [γ], and γ′(0) = β′(0), and W(γ′) ⊆ W(γ) − U . Now, if U ∈ W(γ′), then
U crosses each bp(H), and hence U crosses each V ∈ W(β′). By Lemma 2.8, there exists a
geodesic ray σ such that [β] ≤ [σ] and [γ] ≤ [σ]. Hence a and v are both contained in the
simplex u of E represented by σ, whence there is a simplex a ? v ⊆ E. Hence A ? v ⊆ E.

Conclusion: We have shown that E = A ? v. Arguing in the same way in C∗ shows that
there is a 0-simplex v∗ of E∗ − A such that E∗ = A ? v∗. Hence ∂MX = E ∪ E∗ ∼= A ? (v t v∗)
and the proof is complete. �

Lemma 3.5. U is finite.

Proof. For all Ui ∈ Up and all t ∈ Tn−1, the hyperplane tUi crosses tH = H, since Ui crosses H
by virtue of being dual to a 1-cube of γ. On the other hand, tUi does not cross tbp(H) = bp(H),
since Ui does not cross bp(H). Thus tUi ∈ Up for all t ∈ Tn−1.

Since γ ⊂ NpQ(bp(H)) for each p ≥ 0, we have that |Up| < ∞ for all p ≥ 0. Therefore, if U
is infinite, then for all p ≥ 0, there is a hyperplane Up dual to a 1-cube of γ that crosses bp(H)
and does not cross bp+1(H). By cocompactness of the Tn−1-action on H, there is a translation
tp ∈ Tn−1 such that tpU

p is dual to a 1-cube cp that lies within some fixed distance f of γ(0).
But then the f -neighborhood of γ(0) in H contains 1-cubes dual to infinitely many Tn−1-distinct
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hyperplanes, contradicting local finiteness of X. Hence U is finite, and there exists π ≥ 0 such
that Up = Uπ for all p ≥ π. �

In the next lemma, we use disc diagrams in X. Discussions of minimal-area diagrams in the
same language as is used here can be found in [Hag13b] and [Wis]. The lemma is stated in more
generality than required in the present context, but it is easy to verify that the hypotheses are
satisfied by X,H, β, γ from the proof of Lemma 3.4.

Lemma 3.6. Let X be a CAT(0) cube complex containing a hyperplane H, with carrier H.
Suppose that there is a hyperbolic element b ∈ Aut(X) such that 〈b〉H is a pairwise-disjoint
collection of hyperplanes. For each p ∈ Z, let h(bp(H)) be the halfspace of X associated to
bp(H) that contains bp+1(H) and let h∗(bp(H)) be the complementary halfspace.

Let γ → H be a combinatorial geodesic ray in h∗(H), and let β → X be a combinatorial
geodesic ray such that β(0) = γ(0) and such that the hyperplane bp(H) crosses β for p ≥ 0, and
the hyperplane U crosses β only if U = H or U separates two elements of 〈b〉H.

For each p ≥ 0, let Up be the set of hyperplanes that cross γ but not bp+1(H), and let
U = ∪p≥0Up. Finally, suppose that there exists π ≥ 0 such that Up = Uπ for p ≥ π.

There exist rays β′, γ′ such that [β′] = [β], [γ′] = [γ], and γ′(0) = β′(0), and W(γ′) ⊆
W(γ)− U , and W(β′) ⊆ W(β).

Proof. We shall modify γ within its almost-equivalence class, without changing its initial 0-
cube, to produce a ray γ′ with W(γ′) =W(γ)−U , and take β′ = β, reaching a conclusion that
is stronger than the statement of the lemma (which is all we need). If U = ∅, we are done.

First, choose any p ≥ π and choose δ sufficiently large that for all U ∈ U , the 1-cube of γ

dual to U is γ([k, k+ 1]), where k ≤ δ− 1. For any q > δ, let γ̂ = γ([0, q]) and let β̂ = β([0, p]).
The hyperplane V dual to the terminal 1-cube of γ̂ necessarily belongs to W(γ) − U , and
therefore crosses bp(H). Let γ̂p be a shortest geodesic segment in bp(H) joining xp to a 0-cube
of bp(H)∩N(V ), and let ω be a shortest geodesic segment in N(V ) joining γ(q) to the terminal
0-cube of γ̂p.

Let D → X be a minimal-area disc diagram bounded by γ̂ω(γ̂p)
−1(β̂)−1, with ω chosen so as

to minimize the area of D among all such diagrams with γ̂, γ̂p, β̂ fixed and ω allowed to vary.
Let K be a dual curve in D emanating from γ̂ and mapping to a hyperplane U ∈ U . Since γ
is a geodesic, K cannot end on γ̂. Since U does not cross bp(H), K cannot end on γ̂p. Since
U is not dual to a 1-cube of β – observe that W(β) ∩W(γ) = ∅ since no hyperplane crossing
H crosses β – the unique possibility is that K ends on ω, and hence U crosses V . Such a dual
curve K is shown in Figure 10. Let ζq be the path in D which travels along γ, starting at γ(0),
until reaching the initial 0-cube of the 1-cube dual to K, and then travels geodesically along a
path in the carrier of K, until reaching ω, in such a way as never to cross K. See Figure 10.
Let γ′q be the image in X of ζq under the map D → X. Any hyperplane crossing γ′q corresponds
to a dual curve in D that crosses ζq. Now, by minimality of the area of D, every dual curve
crossing ζq crosses γ, and hence any two such dual curves map to distinct hyperplanes. Thus
γ′q is a geodesic segment. Moreover, any dual curve in D that travels from γ̂ to γ̂p is necessarily
dual to a 1-cube of ζq. Thus every W ∈ W − U crosses γ′q for all sufficiently large q. Applying
König’s lemma to the set of all γ′q, as q grows arbitrarily large, yields a geodesic ray γ′ such
that γ′(0) = β(0) andW(γ)−U ⊆ W(γ′) ⊆ W(γ)−{U}. Since U is finite, we reach the desired
γ′ after finitely many repetitions of this argument. �

3.2. Application to actions on Rn. The next theorem is an application of Theorem 3.7, but
is independent of the results in the next section. It is proved by different means in [Wis].

Theorem 3.7. For n ≥ 1, let G be a virtually Zn group acting properly and cocompactly on a
CAT(0) cube complex. Then G acts properly and cocompactly on Rn.
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γ̂

γ̂p

A

B

C

β̂

ω

Figure 10. The diagram D. The rectangular ladder is the carrier of the dual curve K; the
path ABC is the path ζq. No dual curve emanating from ω can cross K, as the dashed one
does; hence every dual curve crossing ζq ends, like the solid one, on γ̂.

Proof. The proof has several steps; the first step could also be accomplished using the rank-
rigidity theorem of [CS11]; here we describe a proof using a fact about the simplicial boundary.

Decomposing X as a cubical product: Without loss of generality, G acts essentially on
X. Hence Theorem 3.1, together with Theorem 3.30 of [Hag13a], implies that X ∼= X1×. . .×Xn,
where each Xi is a CAT(0) cube complex quasi-isometric to R1, and the inclusion Xi ↪→ X
induces the inclusion of a copy of a factor Q1 ⊂ ∂MX ∼= Q1 ? . . . ? Q1. Indeed, ∂MX ∼= Qn by
Theorem 3.1; to apply [Hag13a, Theorem 3.30] then requires only that each simplex of ∂MX
be visible. However, the proof of Theorem 3.1 shows that each 0-simplex of ∂MX arises from a
combinatorial geodesic ray, as required.

Regarding X as the above product, we choose a basepoint xi ∈ Xi for each i. Abusing
notation, we shall refer to the subcomplex Xi ×

∏
i 6=j{xj} ⊂ X as Xi.

Aut(Xi)-invariant lines: For each i ≤ n, let Gi = StabX(Xi). Since Gi acts essentially
on Xi and Xi is quasi-isometric to R1, any three pairwise-disjoint hyperplanes of Xi have the
property that one separates the other two. This, together with the fact that Gi acts properly
and cocompactly on Xi, allows us to invoke [CS11, Theorem 7.2] and conclude that there is a
(not necessarily combinatorial) CAT(0) geodesic line αi ⊆ Xi that is Gi-invariant (and in fact
Aut(Xi)-invariant).

Aut(X)-invariant Rn: Without loss of generality, the basepoint was chosen in each factor
so that for each i, we have xi ∈ αi. Thus X contains a flat

∏
i αi that contains the point

x = (x1, . . . , xn). By [CS11, Proposition 2.6], Aut(X) preserves the product decomposition of
X, possibly permuting isomorphic factors. Since each αi is Aut(Xi)-invariant,

∏
i αi is Aut(X)-

invariant. Declare each point in the Aut(X)-invariant set
∏n
i=1 (Aut(Xi)x) to be a 0-cell, with

two 0-cells adjacent if and only if they belong to a common Aut(X)-translate of some αi. The
resulting Aut(X)-invariant graph is easily seen to be the 1-skeleton of Rn. We thus have a
G-invariant (not necessarily combinatorial) embedded copy of Rn in X. Since G acts properly
and cocompactly on X, the action on Rn is proper and cocompact. �
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4. The action of G on ∂MX

Let G be an n-dimensional crystallographic group acting properly and cocompactly on the
CAT(0) cube complex X and recall that η : X → En denotes a G-equivariant, (λ, µ)-quasi-
isometry. By Theorem 3.1 and Proposition 2.18, there is an exact sequence

1→ K → G→ Aut(Qn),

where K is the normal subgroup of G consisting of those elements that act as the identity on
∂MX ∼= Qn. The main theorem of this section is:

Theorem 4.1. Let G be an n-dimensional crystallographic group, with n ≥ 1. If G acts properly
and cocompactly on a CAT(0) cube complex X, then there is an exact sequence

1→ Zn → G→ Aut(Qn),

and, moreover, G is hyperoctahedral.

Before proving Theorem 4.1, we require two lemmas:

Lemma 4.2. TG ≤ K.

Proof. Let t ∈ TG and let γ : [0,∞) → X be a combinatorial geodesic ray. Now, for all s ≥ 0,
we have dX(γ(s), t(γ(s)) ≤ λ (‖η(γ(s))− t(η(γ(s)))‖+ µ) ≤ λ (‖t(0)‖+ µ) . Thus γ and t(γ)
fellow-travel in X, so that W(γ)4W(t(γ)) is finite, i.e. [γ] = t[γ]. �

Lemma 4.3. Let g ∈ G fix ∂MX. Then g ∈ TG.

Proof. Let H,H,C,C∗ ⊂ X and A,E,E∗, v, v∗ ⊂ ∂MX be as in the proof of Lemma 3.4, so
that ∂MX ∼= A ? (v t v∗). If n = 1, then A = ∅ and either g ∈ G acts as a translation in R, or g
exchanges v and v∗. Hence K ≤ TG .

Suppose that n ≥ 2, so that A 6= ∅, and let g ∈ K. By induction, if g ∈ Gn−1 ∩K, then g ∈
Tn−1. Hence suppose that gH 6= H. Now, g fixes A and fixes the two 0-simplices v, v∗. Recall
that X ⊂ R is a copy of Rn−1 whose stabilizer is Gn−1 and which lies at finite Hausdorff distance
from η(H). Assume that g(X) 6= X and that ψ(g) is a non-identity orthogonal transformation.
Now, if g(X) is not parallel to X, then applying the quasi-inverse of η shows that for each N ,
there exists hN ∈ H such that dX(H, g(hN )) ≥ N . Therefore, by cocompactness, there exists
a combinatorial geodesic ray γ in H such that for all N ≥ 0, there exists sN ≥ 0 for which
dX(gγ(sN ),H) ≥ N . Hence γ is crossed by infinitely many hyperplanes that do not cross H,
and thus γ does not represent a simplex in A, a contradiction. Hence g ∈ TG .

If X and g(X) are parallel, then H and g(H) lie at finite Hausdorff distance in X, and, since
g fixes A, every minimal geodesic ray in H fellow-travels with its g-translate. Applying η shows
that g moves every point in En a uniformly bounded distance, whence g ∈ TG . �

We are now ready to prove Theorem 4.1. The second assertion could also be deduced from
Theorem 3.7, but here we deduce it directly from Theorem 3.1, avoiding the action on Rn.

Proof of Theorem 4.1. The exact sequence: By Lemma 4.2, TG ≤ K. By Lemma 4.3, K ≤
TG , whence K ∼= TG

∼= Zn and PG
∼= G/K is isomorphic to a subgroup of Aut(Qn). It remains

to verify that G is hyperoctahedral.
A monomorphism PG → O(n,Z): Let I : G → Aut(∂MX) ∼= Aut(Qn) be the induced

action on the simplicial boundary, whose kernel is TG . Note that for a simplex v of ∂MX
corresponding to an almost-equivalence class [γ], the simplex I(g)(v) corresponds to [g(γ)].

Let {±vi}ni=1 be the set of 0-simplices of ∂MX, labeled so that for each i, the simplex −vi is
the unique 0-simplex that is not adjacent to +vi. A simplex u of ∂MX is uniquely expressible
as a vector ~u = (zu,i)

n
i=1 with zu,i ∈ {−1, 0, 1}, where zu,i = ±1 exactly when ±vi ∈ u, and 0
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otherwise. For each g ∈ G, we represent I(g) as an n × n signed permutation matrix Mg, so
that I(g)(~u) = Mg~u. The map ψ(g) 7→Mg defines a monomorphism ι : PG → O(n,Z).

A monomorphism O(n,Z) → O(n,R): Let η′ : En → X be a G-equivariant quasi-inverse
for η. For any geodesic ray L : [0,∞)→ En with L(0) = 0, there exists a combinatorial geodesic
ray γL : [0,∞)→ X such that η′(L) and γL fellow-travel at distance κ for some κ independent
of L. Let vL be the simplex of ∂MX represented by γL. Note that, since combinatorial geodesics
that fellow-travel are almost-equivalent, vL does not depend on the particular choice of γL.

Now, for any L and any g ∈ G, let L′ = θ̄(ψ(g))(L) + τg, so that gη′(L) = η′(gL) =
η′(θ̄(ψ(g))(L)+τg) = η′(L′), which fellow-travels with gγL and γL′ , where γL′ is a combinatorial
geodesic ray that fellow-travels with η′(θ̄(ψ(g))(L)). Thus [γL′ ] = [g(γL)], i.e. I(g)(vL) =
[g(γL′)]

We now define a monomorphism ρ : O(n,Z)→ O(n,R) such that ρ ◦ ι = θ̄. Let M ∈ O(n,Z)
be a signed permutation matrix. For each i, let γ+i be a combinatorial geodesic ray representing

+vi and define γ−i likewise for −vi. Since v+i and v−i are non-adjacent 0-simplices, these rays
can be chosen so that their union is equal to the image of a combinatorial geodesic σi : R→ X
(see [Hag13a, Theorem 3.24]).

For each i, there exists a unique (oriented) line Li in En such that Li(0) = 0 and η(σi)
fellow-travels with Li. Uniqueness is obvious, since any two such lines Li and L◦i must fellow-
travel, and any two distinct lines through the origin in En either coincide or fail to fellow-travel.
We now construct Li. Let x be the initial point of γi. Without loss of generality, since TG

acts cocompactly, the hyperplane H dual to the initial 1-cube of γi is essential and has the
property that for some g ∈ TG , the hyperplanes H and gH are disjoint and both cross γi.

Now, for 0 ≤ k < k′ < k′′, the hyperplane gk
′
H separates gk

′′
H from gkH. Otherwise, these

three essential hyperplanes would form a facing triple leading to three pairwise-nonadjacent
0-simplices in ∂MX, which is easily seen to be impossible in a hyperoctahedron. Hence gkH
crosses γi for all k ≥ 0. Applying this argument again on the other side of H shows that σi can
be chosen to be an axis for g, and we take Li to be the line in En in the direction of τg.

Let ṫi be the unit vector in the positive Li-direction. Then the ṫi form a basis for Rn.
Indeed, let E ⊆ En be the subspace spanned by {ṫi}ni=1. If E ( En, then there are 0-cubes in
X arbitrarily far from η′(E), and hence either there are either simplices of ∂MX that are not
spanned by {±vi}ni=1 or some +vi is adjacent to −vi. Each of these situations is impossible,
whence {ṫi}ni=1 is a basis.

Let A ∈ GL(n,R) be the matrix so that ṫi = Aėi for each i, where {ėi}ni=1 is the standard
basis. Then for each signed permutation matrix M , the matrix AMA−1 is an isometry of En
that acts as a permutation of {±ṫi}ni=1. The matrix A is uniquely determined by {ṫi} and so
AMA−1 is uniquely determined by M and the {±vi}ni=1. Let ρ(M) = AMA−1; this defines a
monomorphism ρ : O(n,Z)→ O(n,R).

Conclusion: With M as above, for each i, there is a combinatorial geodesic σ′i in X corre-
sponding to the pair (M(−vi),M(+vi)), and η(σ′i) fellow-travels with a unique line L′i through
the origin in En. Now, since M is an automorphism of the boundary, and Li and L′i are uniquely
determined by +vi and M( ~+vi), we see that L′i = Lj or −Lj for some j ≤ n.

Hence, for g ∈ G, we have ρ(ι(ψ(g))) = AMgA
−1. On the other hand, for all i, we have

that AMgA
−1(Li) = ±Lj for some j, and η′(±Lj) fellow-travels with σj . But η′(θ̄(ψ(g))(Li)

fellow-travels with σj , which represents the simplices ±vj = ι(ψ(g))(±vi). Hence ρ ◦ ι = θ̄, and
ι corresponds to conjugation by A ∈ GL(n,R), i.e. G is hyperoctahedral. �

5. Constructing actions on Rn

5.1. The standard cubulation of a crystallographic group. The next lemma involves
a well-known construction (see, e.g. Section 16 of [Wis]), and we include a proof only for
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completeness. By a result of Zassenhaus (see [Rat06]), the conclusion of Lemma 5.1 also holds
for torsion-free virtually free abelian groups, and this is the form in which it is given in [Wis].

Lemma 5.1. Let G be an n-dimensional crystallographic group. Then G acts properly on the
CAT(0) cube complex RN for some n ≤ N ≤ n|PG |.

Proof. Let {~ti}ni=1 be a basis for Rn. For each i, let Xi = Span{~tj}j 6=i, which is invariant under
the translation tj for all j 6= i. Define a wall by declaring h∗(Xi) to be a component of En−Xi

that contains the origin, and h(Xi) = Xi ∪ (En − h∗(Xi)). Let W be the set of walls consisting
of all G-translates of these n geometric walls.
G acts on the cube complex X dual to the wallspace (En,W), and it remains to verify

that this action is proper. For r1, r2 ∈ En, write r1 − r2 =
∑n

i=1 νi~ti, where ν1, . . . , νn ∈ R.
For each i, at least b|νi|c ≥ |νi| − 1 distinct TG-translates of Xi separate r1 from r2, so that
#(r1, r2) ≥

∑n
i=1 |νi| − n. Therefore,

‖r1 − r2‖2 =

n∑
i=1

ν2i ‖~ti‖2 ≤ max
i
‖~ti‖2

(
n∑
i=1

|νi|

)2

≤ max
i
‖~ti‖2 (#(r1, r2) + n)2 ,

so that the wallspace (En −
⋃n
i=1G(Xi),W) satisfies the linear separation property. Since G

acts metrically properly on En, it follows that G acts properly on X.
Note that, for each i and each t, t′ ∈ TG , the walls t(Xi) and t′(Xi) do not cross, and TG(Xi)

is a collection of parallel codimension-1 hyperplanes in En such that the cube complex dual to
(En, TG(Xi)) is isomorphic to R1. Moreover, for any g, g′ ∈ G and i, j ≤ n, the walls g(Xi) and
g′(Xj) are parallel if and only if i = j and g′g−1 ∈ TG ; otherwise, the corresponding hyperplanes
of X cross. Hence X is isomorphic to the product of N copies of R1, i.e. X ∼= RN , where N is
equal to the cardinality of the image of PG({~ti/‖~ti‖}ni=1) under the map Sn−1 → Sn−1/Z2. �

5.2. Cocompactness when the point group is hyperoctahedral. The next theorem com-
bines with Theorem 4.1 to prove that cocompactly cubulated crystallographic groups act prop-
erly and cocompactly on Rn, without using Theorem 3.7.

Theorem 5.2. Let G be an n-dimensional hyperoctahedral crystallographic group. Then G acts
properly and with a single orbit of n-cubes on Rn.

Proof. Let Xi be the codimension-1 subspaces given by applying the construction of walls in
the proof of Lemma 5.1 to a basis {~ti}ni=1 of En upon which PG acts by signed permutations;
such a basis exists by Lemma 2.3. For any g ∈ G, we have g(Xi) = θ̄(ψ(g))(Xi)+τg. Now, since

θ̄(ψ(g))(~ti) = ±~tj for some j, this implies that g(Xi) ∈ TG(Xj). Proceeding exactly as in the
proof of Lemma 5.1 shows that G acts properly on the CAT(0) cube complex Rn dual to the
wallspace whose walls are

⋃n
i=1 TG(Xi). It is easily verified that there is one TG-orbit of maximal

families of pairwise-crossing walls, and hence G acts on Rn with one orbit of n-cubes. �

5.3. Stabilization. From Lemma 5.1, we get Corollary C, by adding to the proof of Lemma 16.8
of [Wis] the additional information that the groups involved are crystallographic.

Corollary 5.3. Let G be an n-dimensional crystallographic group. Then there exists m ≥ 0
and φ : G → GL(m,Z) such that Zm oφ G is a crystallographic group that acts properly and
cocompactly on a CAT(0) cube complex.

Proof. By Lemma 5.1, there exists N ≥ n such that G acts properly on RN . Let G̈ = Aut(RN ),

so that we have a homomorphism G→ G̈ with finite kernel. Now, G̈ is the automorphism group
of a cocompact lattice in EN , namely the 0-skeleton of RN , and thus G̈ is an N -dimensional
hyperoctahedral crystallographic group. Let K = ker(G → G̈), and let F ∼= En be a G-
invariant subspace of EN . Since K acts trivially on EN , the action of K on F is trivial, and
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thus K = {1} since G acts faithfully on F, being n-dimensional crystallographic. Hence G ≤ G̈.

Also, G̈ contains a maximal subgroup S ∼= Zm generated by m = N − n linearly independent
translations, each orthogonal to F, such that S ∩ TG = {1}. Now S × TG

∼= ZN is a subgroup

of G̈ consisting of translations, and, since TG is normal in G, for any s ∈ S and g ∈ G, we have

that gsg−1 ∈ S ∪ TG , since g ∈ G̈ and G̈ is crystallographic, and gsg−1 6∈ TG , since g ∈ G.

Hence the resulting semidirect product Ĝ ∼= S o G ≤ G̈ acts properly on RN , extending the
cocompact action of S × TG . �

Corollary C from the Introduction follows easily: if Zm × G is cocompactly cubulated for
suitably chosen m, then ZM × (ZmoG) ∼= ZM+moG is cocompactly cubulated for all M ≥ 0.

We conclude by solving Problem 16.10 of [Wis], in which Wise asked whether G̈ can be
chosen, for any virtually-Zn group G, to have the form Zm ×G. This is not the case:

Example 5.4. Let W ∼= 〈a, b, c | [a, b], c6, cac−1 = b, cbc−1 = a−1b〉 ∼= Z2 oZ6. As indicated at
left in Figure 11, W acts on the tiling of E2 by regular hexagons; the translations a, b are along
the illustrated vectors, and c is the 6-fold rotation taking a to b.

Suppose for some m ≥ 0 that Zm ×W acts properly and cocompactly on a CAT(0) cube
complex X. Hence Zm ×W acts with a single orbit of (m + 2)-cubes on Rm+2. Identifying
Rm+2 with Em+2 and applying Bieberbach’s theorem shows that the action of Zm × W on
Em+2 preserves the tiling by (m + 2)-cubes, and W stabilizes a 2-dimensional subspace F
and fixes pointwise an m-dimensional subspace P orthogonal to F. This induces an action of
PW = PZm×W on an (m + 2)-cube C with an m-dimensional subspace S fixed by PW . The
subspace S is orthogonal to a hexagon H ⊂ C that contains the origin and on which c acts as a
6-fold rotation. Thus PW permutes the diagonals of C orthogonal to C, so since S is fixed, there
is only one such diagonal. Therefore c acts as a 6-fold rotation of a 3-cube, which is impossible;
every order-6 automorphism of a 3-cube is a rotation-reflection.

Figure 11. At left is the W -invariant tiling. The central picture suggests the orientation-
reversing PW -action on a 3-cube. At right is part of R3, suggesting the Z oW -action: c takes
one darkened square to the other and the Z semidirect factor acts as translation along the line
through the point x and the barycenter of the central cube.

By contrast, let W act on Z by a(1) = b(1) = 1 and c(1) = −1. The resulting semidirect
product Z oW acts properly and cocompactly on R3. Indeed, as shown in the middle picture
in Figure 11, Z6 acts as an orientation-reversing automorphism of a 3-cube – in the notation
of Figure 11, c is the permutation (123456)(78). The plane containing the barycenters of the
3-cubes shown in Figure 11 is stabilized by c, which acts as a 6-fold rotation. The generator
of the Z factor acts as a translation orthogonal to this plane, and c acts on the axis of this
translation by reversing signs. Hence the action of PW induces the given action of 〈c〉 on Z.

Finally, Example 16.11 of [Wis], due to Dunbar, provides a torsion-free, 3-dimensional crys-
tallographic group D that is not cocompactly cubulated. The group D is obtained from the
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above presentation of W by dropping the relation c6. Thus D is virtually Z3, and c acts as a
“screw motion”, translating and rotating by π

3 along an axis orthogonal to an 〈a, b〉-invariant
plane. In fact, no Zm×D is cocompactly cubulated: if Zm×D is cocompactly cubulated, then
it acts with a single orbit of (m + 3)-cubes on Rm+3, and there is a D-invariant copy F of E3

containing a 〈a, b〉-invariant plane F0. Moreover, F ∼= F0 × F1, where F1 is the screw-axis for
c. As before, this implies that the point group PZm×D ∼= PD

∼= Z6 acts on an (m + 3)-cube
C, stabilizing a 3-dimensional subspace H = C ∩ F and acting trivially on an m-dimensional
subspace S. Arguing as above, one now finds that the image of c in PD

∼= Z6, which acts
trivially on the screw-axis, acts as a 6-fold rotation of a 3-cube, which is impossible.

Morally, adding dimensions only aids cocompact cubulation if the point group is allowed to
act nontrivially, if necessary, on the group of translations in the new directions.
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