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Abstract

We determine the homeomorphism (resp. diffeomorphism) types of
those 2-connected 7-manifolds (resp. smooth 2-connected 7-manifolds)
that admit regular circle actions (resp. smooth regular circle actions).
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1 Introduction

In this paper all manifolds under consideration are closed, oriented and
topological, unless otherwise stated. Moreover, all homeomorphisms and
diffeomorphisms are to be orientation preserving. Given a positive integer n
let Sn (resp. Dn+1) be the diffeomorphism type of the unit n–sphere (resp.
the unit (n + 1)–disk) in (n+ 1)–dimensional Euclidean space Rn+1.

Definition 1.1. A circle action S1 × M → M on a manifold M is called
regular if this action is free and the orbit space N := M/S1 (with quotient
topology) is a manifold.

Similarly, a smooth circle action S1×M → M on a smooth manifold M
is called regular if this action is free (see [26, p.38, Proposition 5.2]).

For a given manifold M one can ask
Problem 1.2. Does M admit a regular circle action?

Solutions to Problem 1.2 can have direct implications in contact topol-
ogy. For example, the Boothby-Wang theorem implies that the existence

∗The author’s research is partially supported by 973 Program 2011CB302400 and NSFC

11131008.
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of a smooth regular circle action on a smooth manifold M is a necessary
condition to the existence of a regular contact form on M (see [8, p.341]).

Problem 1.2 has been solved for all 1–connected 5–manifolds by Duan
and Liang [6]. In particular, it was shown that all 1–connected 4–manifolds
with second Betti number r can be realized as the orbit spaces of some
regular circle actions on the single 5–manifold #r−1S

2 × S3, the connected
sums of r–1 copies of the product S2 × S3. In this paper we study Problem
1.2 for the 2–connected 7–manifolds.

Our main result is stated in terms of a family M c
l,k, c ∈ {0, 1} , l, k ∈ Z

of 2–connected 7–manifolds. The manifolds M0
l,k are the total spaces of

the S3–bundles πM : M0
l,k → S4 with characteristic map [fl,k] ∈ π3(SO4)

defined by

fl,k(u)v = ul+kvu−l, v ∈ R4, u ∈ S3

where the space R4 and the sphere S3 are identified with the algebra of
quaternions and the space of unit quaternions respectively, and where quater-
nion multiplication is understood on the right hand side of the formula.
Complete classification on the manifolds M0

l,k has been obtained by Mil-
nor [19], Crowley and Escher [3].

The manifoldM1
l,k is an analogue of the manifoldM0

l,k in the non–smooth

category when k ≡ 0mod 2. Write STOP (M0
l,k) for the set of all equivalence

classes [M,h] of the pairs (M,h) with h : M → M0
l,k a homotopy equivalence

of 7–manifolds. Two such pairs (M,h) and (M
′

, h
′

) are called equivalent if
there is a homeomorphism f : M → M

′

such that h is homotopic to h
′

◦ f
(see [18, Chapter 2]). Adapting the arguments of [3, Section 5] from the PL
case to the TOP case we have the composition of isomorphisms

STOP (M0
l,k)

η
→ [M0

l,k, G/TOP ]
d
→ H4(M0

l,k;π4(G/TOP )) ∼= H4(M0
l,k),

where the space G (resp. TOP ) is the direct limit of the set of self homo-
topy equivalences of Sn−1 (resp. the topological monoid of origin-preserving
homeomorphisms of Rn), η is the one to one correspondence in the surgery
exact sequence (see [18, p.40-44]) and where the isomorphism d is induced

by the primary obstruction to null-homotopy. Write
[
M1

l,k, hM

]
for the ele-

ment (d ◦ η)−1(π∗
M (ι)) ∈ STOP (M0

l,k) where ι ∈ H4(S4) is the generator as

in [3] and H4(M0
l,k)

∼= Zk is generated by π∗
M (ι). Clearly, the 7-manifold

M1
l,k is 2–connected and unique up to homeomorphism.
The group Γ7 of exotic 7–spheres is cyclic of order 28 with generator

M0
1,1 [7, Section 6]. Let Σr := rM0

1,1 ∈ Γ7, r ∈ Z. Our main result is stated
below, where N is the set of all nonnegative integers.

Theorem 1.3. All homeomorphism classes of the 2–connected 7–manifolds
that admit regular circle actions are represented by
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#2rS
3 × S4#M c

6m,(1+c)k, c ∈ {0, 1} , r ∈ N and m,k ∈ Z.

All diffeomorphism classes of the smooth 2–connected 7–manifolds that
admit smooth regular circle actions are represented by

#2rS
3 × S4#M0

6(a+1)m,(a+1)k#Σ(1−a)m, a ∈ {0, 1}, r ∈ N, m,k ∈ Z.

In the course to establish Theorem 1.3 we obtain also a classification of
the 6–manifolds that can appear as the orbit spaces of some regular circle
actions on 2–connected 7–manifolds, see Lemmas 2.1 and 2.2 in Section 2.
In addition, Theorem 1.3 has some direct consequences which are discussed
in Section 4.

2 The homeomorphism types of the orbit spaces

In this section we determine the homeomorphism types of those 6–manifolds
which can appear as the orbit spaces of some regular circle actions on 2–
connected 7–manifolds.

A 2–connected 7–manifold M with a regular circle action defines a prin-
cipal S1–bundle M → N with base space N = M/S1 [9]. Fixing an orien-
tation on S1 once and for all, and let N be furnished with the orientation
compactible with that on M . From the homotopy exact sequence

0 → π2(M) → π2(N) → π1(S
1) → π1(M) → π1(N) → 0

of the fibration one finds that

π1(N) = 0; π2(N) ∼= π1(S
1) ∼= Z.

Consequently N is a 1–connected 6–manifold with H2(N) ∼= Z.
Conversely, for a 1–connected 6–manifold N with H2(N) ∼= Z let t ∈

H2(N) ∼= Z be a generator and let

S1 →֒ Nt → N

be the oriented circle bundle over N with Euler class t. From the homotopy
exact sequence of this fibration we find that Nt is 2–connected with the
canonical orientation as the total space of the circle bundle. Summarizing
we get

Lemma 2.1. Let S1 ×M → M be a regular circle action on a 2–connected
7–manifold M with orbit space N . Then N is a 1–connected 6–manifold
with H2(N) ∼= Z.

Conversely, every 1–connected 6–manifold N with H2(N) ∼= Z can be
realized as the orbit space of some regular circle action on a 2–connected
7–manifold.�
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In view of Lemma 2.1 the classification of those 1–connected 6–manifolds
N with H2(N) ∼= Z amounts to a crucial step toward a solution to Problem
1.2. In terms of the known invariants for 1–connected 6–manifolds due to
Jupp [14] and Wall [27] we can enumerate all these manifolds in the next
result.

Denote by Θ the set of equivalence classes [N, t] of the pairs (N, t) with
N a 1–connected 6–manifold whose integral cohomology satisfies

Hr(N) =

{
Z if r = 0, 2, 4, 6;
0 otherwise,

and with t ∈ H2(N) a fixed generator. Two elements (N1, t1), (N2, t2) are
called equivalent if there is a homeomorphism f : N1 → N2 such that
f∗t2 = t1. For each (N, t) fix a generator x ∈ H4(N) such that the value
〈t ∪ x, [N ]〉 of the product t ∪ x on the fundamental class [N ] is equal to 1.
Consider the functions

k, p : Θ → Z; ε : Θ → {0, 1}; δ : Θ → {0, 1}

determined by the following properties

i) t2 = k([N, t])x;

ii) the second Stiefel-Whitney class w2(N) and the first Pontrja-
gin class p1(N) of N are given by ε([N, t])t mod2 and p([N, t])x,
respectively;

iii) the class ∆(N) ≡ δ([N, t])xmod 2 ∈ H4(N ;Z2) is the Kirby-
Siebenmann invariant of N ,

where the Kirby-Siebenmann invariant ∆(V ) of a manifold V is the obstruc-
tion to lift the classifying map V → BTOP for the stable tangent bundle of
V to BPL, and where BTOP and BPL are the classifying spaces for the
stable TOP bundles and PL bundles, respectively [15].

Lemma 2.2. For each 1–connected 6–manifold M with H2(M) ∼= Z there
exists an r ∈ N and an element [N, t] ∈ Θ such that M ∼= #rS

3 × S3#N .
Moreover, the system {k, p, ε, δ} is a set of complete invariants for ele-

ments [N, t] ∈ Θ that is subject to the following constraints:

i)If k([N, t]) ≡ 1mod 2, then ε([N, t]) = 0 and

p([N, t]) = 24m+ 4k([N, t]) + 24δ([N, t]) for some m ∈ Z;

ii)If k([N, t]) ≡ 0mod 2, then for some m ∈ Z

p([N, t]) =

{
24m+ 4k([N, t]) + 24δ([N, t]) if ε([N, t]) = 0
48m+ k([N, t]) + 24δ([N, t]) if ε([N, t]) = 1

.
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In addition, the manifold N is smoothable if and only if δ([N, t]) = 0.

Proof. This is a direct consequence of [14, Theorem 0; Theorem 1]. In
particular, the expressions of the function p are deduced from the following
relation on H6(N) which holds for all d ∈ Z:

(2dt+ ε([N, t])t)3 ≡ (p([N, t])x+ 24δ([N, t])x)(2dt + ε([N, t])t)mod 48.�

3 Circle bundles over [N, t] ∈ Θ

Lemma 2.2 singles out the family Θ of 1–connected 6–manifolds which plays
a key role in presenting the orbit spaces of regular circle actions on 2–
connected 7–manifolds. In this section we determine the homeomorphism
and diffeomorphism type of the total space Nt of the circle bundle over
[N, t] ∈ Θ, i.e. the oriented circle bundle over N with Euler class t. For
this purpose we shall recall in Section 3.1 that the definition of the known
invariant system for 2–connected 7–manifolds. The main results in this
section are Lemmas 3.3 and 3.5, which identify the homeomorphism and
diffeomorphism types of the manifolds Nt with certain M c

l,k.

3.1 Invariants for 2–connected 7–manifolds

Recall from Eells, Kuiper [7], Kreck, Stolz [16] and Wilkens [29] that associ-
ated to each 2–connected 7–manifold M there is a system {H, p12 , b,∆, µ, s1}
of invariants characterized by the following properties:

i) H is the forth integral cohomology group H4(M) [29];

ii) p1
2 (M) ∈ H is the first spin characteristic class [25] introduced

by Wilkens [29] in smooth category and extended to topological
category by Kreck–Stolz [16, Lemma 6.5];

iii) b : τ(H) ⊗ τ(H) → Q/Z is the linking form on the torsion
part τ(H) of the group H [29];

iv) ∆(M) ∈ H4(M ;Z2) is the Kirby–Siebenmann invariant of
M [16].

Furthermore, if the manifold M is smooth and bounds a smooth 8–manifold
W with the induced map j∗ : H4(W,M ;Q) → H4(W ;Q) an isomorphism,
then

v) the invariant µ ∈ Q/Z is firstly defined in [7] for a spin W
and extended in [16] for a general W , whose value is given by
the formula

µ(M) ≡– 1
25·7

σ(W ) + 1
27·7

p21(W )– 1
26·3

z2 · p1(W ) + 1
27·3

z4 modZ,
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where z ∈ H2(W ) satisfies w2(W ) = zmod 2, σ(W ) is the signature of the
intersection form on H4(W,M ;Q), and where p21(W ), z2 · p1(W ) and z4 are
the characteristic numbers

〈p1(W ) ∪ j∗−1p1(W ), [W,M ]〉, 〈z2 ∪ j∗−1p1(W ), [W,M ]〉,

〈z2 ∪ j∗−1z2, [W,M ]〉,

respectively. Finally, ifM is topological and bounds a topological 8–manifold
W with the induced map j∗ : H4(W,M ;Q) → H4(W ;Q) an isomorphism,
then

vi) the topological invariant s1 ∈ Q/Z is defined in [16] whose
value is given by

s1(M) ≡– 1
23σ(W ) + 1

25 p
2
1(W )– 7

24·3z
2 · p1(W ) + 7

25·3z
4modZ.

Example 3.1. Let Nt be the total space of the circle bundle over [N, t] ∈ Θ.
Then the system {H, p12 , b,∆, µ, s1} of invariants for the manifold Nt can
be expressed in terms of the invariants for Θ introduced in Lemma 2.2 as
follows. For simplicity we write p, k, ε and δ in place of p([N, t]), k([N, t]),
ε([N, t]) and δ([N, t]), respectively.

i) H4(Nt) ∼= Zk with generator π∗(x), where π : Nt → N is the
bundle projection and

Zk =

{
Z if k = 0

Z/kZ if k 6= 0
;

ii) ∆(Nt) ≡
1+(−1)k

2 · δπ∗(x)mod 2;

iii) p1
2 (Nt) ≡

p+εk
2 π∗(x)mod k;

iv) b(π∗(x), π∗(x)) ≡ 1
k
modZ;

v) µ(Nt) ≡– |k|
25·7k + (p+k)2

27·7k + (ε−1)(2p+k)
27·3 modZ;

vi) s1(Nt) =– |k|
23k

+ (p+k)2

25k
+ 7(ε−1)(2p+k)

25·3
modZ.

Firstly, from the section H2(N)
∪t
→ H4(N)

π∗

→ H4(Nt) → 0 in the Gysin
sequence of the fibration Nt

π
→ N and from the relation t2 = kx on H4(N)

we find that H4(Nt) ∼= Zk with generator π∗(x). This shows i).
Next, let f : N → BTOP be the classifying map for the stable tangent

bundle of N . In view of the decomposition TNt
∼= π∗TN ⊕ ε1(ε1 denotes

the trivial line bundle) for the tangent bundle of Nt the classifying map for
the stable tangent bundle of Nt is given by the composition f ◦ π : Nt →
N → BTOP . It follows that the Kirby-Siebenmann invariant ∆(Nt) of the
manifold Nt is π

∗∆(N) ≡ δπ∗(x)mod 2. This shows ii).
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To calculate the remaining invariants p1
2 , b, µ, s1 of the manifold Nt we

make use of the associated disk bundle Wt
π0→ N of the oriented 2–plane

bundle ξt over N with Euler class t. If ε = 1, It follows from the decompo-
sition TWt

∼= π∗
0TN ⊕ π∗

0ξt that w2(Wt) = 0 and p1
2 (Wt) =

p+k
2 π∗

0x. From
the relation ∂Wt = Nt we get

p1
2 (Nt) =

p+k
2 π∗x.

If ε = 0, from the decomposition TNt
∼= π∗TN ⊕ ε1 we get

p1
2 (Nt) =

p
2π

∗(x).

This shows iii).
To compute the linking form b of Nt we can assume that k 6= 0. Consider

the commutative ladder of exact sequences

0 → H4(Wt, Nt)
j∗

→ H4(Wt)
i∗
→ H4(Nt) → 0

∼=↑ φ ↑ π∗
0 ↑ id

0 → H2(N)
∪t
→ H4(N)

π∗

→ H4(Nt) → 0

with φ the Thom isomorphism. Since π∗(x) = i∗π∗
0(x) and y := φ(t) is a

generator of H4(Wt, Nt) with j∗(y) = π∗
0(t

2) = kπ∗
0(x) we get

b(π∗(x), π∗(x)) ≡ 1
k
< y ∪ π∗

0x, [Wt, Nt] >≡ 1
k
modZ.

This shows iv).
Since the induced map j∗ : H4(Wt, Nt;Q) → H4(Wt;Q) is clearly an

isomorphism when k 6= 0, the invariants µ and s1 are defined for Nt. More-
over, from the Lefschetz duality and the relation j∗(y) = kπ∗

0(x) we get

σ(Wt) =
|k|
k
. From the decomposition TWt

∼= π∗
0(TN ⊕ ξt) we get, in addi-

tion to

p1(Wt) = π∗
0(p1(N) + t2) = (p + k)π∗

0(x),

that

w2(Wt) ≡ (ε+ 1)π∗
0(t)mod 2.

Therefore we can take z = (1–ε)π∗
0(t) in the formulae for µ and s1, and as a

result

z2 = (1–ε)2π∗
0(t

2) = k(1–ε)2π∗
0(x).

As the group H4(Wt, Nt) ∼= Z is generated by y = φ(t) with the relation
j∗(y) = kπ∗

0(x), the isomorphism
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H4(Wt, Nt)⊗H4(Wt)
∪
→ H8(Wt, Nt)

by the Lefschetz duality, together with the formulae for p1(Wt) and z2 above,
implies the relations below

z2p1(Wt) = (1–ε)2(p+ k); p21(Wt) =
1
k
(p + k)2; z4 = k(1–ε)4.

Substituting these values in the formulae for µ and s1 yields v) and vi)
respectively. This completes the computation of the invariant system for
the manifolds Nt.

Example 3.2. The invariant system {H,∆, p12 , b, s1, µ} of the manifolds
M c

l,k has been computed by Crowley and Escher [3] for the case of c = 0.
We extend their calculation as to include the exceptional case of c = 1.

i)H4(M c
l,k)

∼= Zk with generator κ =

{
π∗
M (ι) if c = 0

(πM ◦ hM )∗(ι) if c = 1
;

ii) b(κ, κ) ≡ 1
k
modZ;

iii) ∆(M c
l,k) ≡

1+(−1)k

2 · cκmod 2;

iv) p1
2 (M

c
l,k) ≡ (2l + 12c)κmod k;

v) s1(M
c
l,k) ≡

(2l+k+12c)2−|k|
8k modZ;

vi) µ(M0
l,k) ≡

(k+2l)2−|k|
28·8k modZ.

Firstly, since hM : M1
l,k → M0

l,k is a homotopy equivalence we get

i) and ii) from the relations H4(M0
l,k)

∼= Zk (with generator π∗
M (ι)) and

b(π∗
M (ι), π∗

M (ι)) ≡ 1
k
modZ when c = 0.

Next, since the map STOP (M0
l,k)

∆
→ H4(M0

l,k;Z2) of taking Kirby– Sieben-
mann class is a surjective homomorphism [24, Theorem 15.1], and since[
M1

l,k, hM

]
is a generator of the cyclic group STOP (M0

l,k)
∼= Zk we have

∆(M1
l,k) = ∆(

[
M1

l,k, hM

]
) = 1+(−1)k

2 κmod2.

This shows iii).
To calculate the remaining invariants p1

2 , µ, s1 of the manifold M c
l,k we

construct an 8–manifold W c
l,k with boundary ∂W c

l,k
∼= M c

l,k as follows. Let

πW : W 0
l,k → S4 be the associated disk bundle of the sphere bundle πM :

M0
l,k → S4. Then M0

l,k = ∂W 0
l,k. Write STOP (W 0

l,k) for the set of equiv-

alence classes [W,h] of the pairs (W,h) with h : (W,∂W ) → (W 0
l,k,M

0
l,k)

a homotopy equivalence between 8-manifolds with boundary. Consider the
following commutative diagram analoguing to the one [3, (7)] due to Crowley
and Escher in the PL–category(see also Section 1)
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STOP (W 0
l,k)

η
→
∼=

[W 0
l,k, G/TOP ]

d
→
∼=

H4(W 0
l,k)

∼= Z

i∗ ↓ i∗ ↓ i∗ ↓

STOP (M0
l,k)

η
→
∼=

[M0
l,k, G/TOP ]

d
→
∼=

H4(M0
l,k)

∼= Zk

where i∗ : STOP (W 0
l,k) → STOP (M0

l,k) sends each [W,h] to the restric-

tion [∂W, h|∂W ]. Writing
[
W 1

l,k, hW

]
for the element (d ◦ η)−1(π∗

W (ι)) ∈

STOP (W 0
l,k) we get M1

l,k
∼= ∂W 1

l,k from the diagram above.
To find the formula of p1

2 (M
c
l,k) we compute the first Pontrjagin class

p1(W
c
l,k) of W

c
l,k. Let α denote the generator of H4(W c

l,k)
∼= Z satisfies

α =

{
π∗
W (ι) if c = 0;

(πW ◦ hW )∗(ι) if c = 1;

and associate an integer p(W c
l,k) to W c

l,k such that p1(W
c
l,k) = p(W c

l,k)α. Let

i : G/TOP → BTOP be the natural inclusion and let fc : W
c
l,k → BTOP be

the classifying map for the stable tangent bundle of W c
l,k. It follows from the

isomorphism STOP (W 0
l,k)

η
→ [W 0

l,k, G/TOP ] and the proof of [18, Theorem
2.23] that

i∗η([W
1
l,k, hW ]) = h∗−1

W [f1]–[f0]

and hence

p(W 1
l,k)π

∗
W (ι) = h∗−1

W p1(W
1
l,k) = p1(W

0
l,k) + f∗i

∗
p1,

where f = d−1(π∗
W (ι)) = η([W 1

l,k, hW ]) is the generator of [W 0
l,k, G/TOP ]

and p1 ∈ H4(BTOP ) is the first Pontrjagin class [14]. It is shown in [24,
Lemma 13.3,Proposition 13.4] that a generator g of [S4, G/TOP ] corre-
sponds to a topological bundle ξ with classifying map i ◦ g and Pontr-
jagin class p1(ξ) = g∗i

∗
p1 = ±24ι. With an appropriate choice of ±d :

[W 0
l,k, G/TOP ] → H4(W 0

l,k) applying π∗
W to this equation we get

f∗i
∗
p1 = 24π∗

W (ι).

This, together with the fact p(W 0
l,k) = 2(k + 2l) [19] and the formula for

p(W 1
l,k) above, implies that p(W c

l,k) = 2k + 4l + 24c. Consequently from
M c

l,k
∼= ∂W c

l,k we get iv).
Finally, we compute s1(M

c
l,k). The exact sequence

H4(W c
l,k,M

c
l,k)

j∗

→ H4(W c
l,k) → H4(M c

l,k) → 0,
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together with the isomorphisms H4(M c
l,k)

∼= Zk and H4(W c
l,k,M

c
l,k)

∼= Z by

the Lefschetz duality, implies that we can take a generator β ofH4(W c
l,k,M

c
l,k)

such that j∗(β) = kα. Since j∗ : H4(W c
l,k,M

c
l,k;Q) → H4(W c

l,k;Q) is an iso-
morphism for k 6= 0 the invariant s1 is defined for M c

l,k. It follows from the

Lefschetz duality and the relation j∗(β) = kα that σ(W c
l,k) = |k|

k
. On the

other hand, the formula for p(W c
l,k), together with the relation j∗(β) = kα

and the isomorphism

H4(W c
l,k,M

c
l,k)⊗H4(W c

l,k)
∪
→ H8(W c

l,k,M
c
l,k)

by the Lefschetz duality, implies that

p21(W
c
l,k) =

4
k
(k + 2l + 12c)2.

In addition, the relation w2(W
1
l,k) = w2(W

0
l,k) = 0 indicates that we can take

z = 0 in the formula of s1. Substituting the values of σ(W c
l,k), z, p

2
1(W

c
l,k) in

the formula for s1 shows v).
Similarly, we refer vi) to Crowley and Escher [3]. This completes the

computation of the invariant system for the manifolds M c
l,k.

3.2 Circle bundles over [N, t] ∈ Θ

In this section we will prove Lemmas 3.3 and 3.5 which identify the homeo-
morphism and diffeomorphism types of the manifolds Nt with certain M c

l,k.

Lemma 3.3. Let Nt be the total space of the circle bundle over [N, t] ∈ Θ.
Then there is a homeomorphism Nt

∼= M c
l,k where

(k, c) = (k([N, t]), 1+(−1)k([N,t])

2 · δ([N, t]));

l = p([N,t])+(3ε([N,t])−4)·k([N,t])−(1+(−1)k([N,t]))·12δ([N,t])
4 .

Proof. We divide the proof into two cases depending on ∆(Nt) ≡ 0 or 1
mod 2.

Case 1. ∆(Nt) ≡ 0mod 2 (i.e. the manifold Nt is smoothable, see [18,
p.33], [12] and [24, Theorem 5.4]): Module by a Z2 ambiguity Wilkens [29]
showed that the system {H, p12 , b} of invariants classifies Nt and M0

l,k up
to homeomorphism. Moreover, Crowley and Escher [3] proved that this
ambiguity can be realized by some M0

l,k whose homeomorphism types can
be distinguished by the invariant s1 and hence the system {H, p12 , b, s1}
classifies the manifolds Nt and M0

l,k. Therefore the proof is completed by

comparing these invariants for Nt and M0
l,k obtained in Example 3.1 and

3.2.
Case 2. ∆(Nt) ≡ 1mod 2: We only need to show that Nt is homeomor-

phic to M1
l,k with [N, t] ∈ Θ and
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(k, l) = (k([N, t]), p([N,t])+(3ε([N,t])−4)·k([N,t])−24
4 ).

It suffices to construct a homotopy equivalence q : Nt → M0
l,k with

[Nt, q] =
[
M1

l,k, hM

]
∈ STOP (M0

l,k).

According to Lemma 2.2 there exists a manifold N ′ with [N ′, t′] ∈ Θ
whose invariant system (k([N ′, t′]), p([N ′, t′]), ε([N ′, t′]), δ([N ′, t′]) is

(k([N, t]), p([N, t])–24, ε([N, t]), 0).

Consider the map η : STOP (N
′

) → [N
′

, G/TOP ] in the surgery exact se-
quence of N

′

. By the argument at the end of the proof of [14, Theorem 1]
we find a homotopy equivalence hN : N → N

′

such that

i) the class η([N,hN ]) is trivial on the 2 skeleton of N
′

;

ii) the primary obstruction to finding a null-homotopy of η([N,hN ])
is the generator x′ ∈ H4(N

′

;π4(G/TOP )) with 〈x′ ∪ t′, [N ′]〉=1.

Pulling hN back by the bundle projection π′ : N
′

t → N
′

induces a homotopy
equivalence ht : Nt → N

′

t . On the other hand, by the result of Case 1 we
get a homeomorphism u : M0

l,k → N
′

t such that u∗(π′∗(x′)) = π∗
M (ι). So it

remains to show that
[
Nt, u

−1 ◦ ht
]
=

[
M1

l,k, hM

]
.

Let [N
′

, G/TOP ]2 denote the subset of [N
′

, G/TOP ] whose elements are
trivial on the 2 skeleton of N

′

and consider the following two commutative
diagrams:

STOP (N
′

)
π′∗

→ STOP (N
′

t )
↓ η ∼=↓ η[

N
′

, G/TOP
]

π′∗

→
[
N

′

t , G/TOP
]

STOP (N
′

t )
u∗

→
∼=

STOP (M0
l,k)

∼=↓ η ∼=↓ η[
N

′

, G/TOP
]
2

π′∗

→
[
N

′

t , G/TOP
]

u∗

→
∼=

[
M0

l,k, G/TOP
]

↓ d ∼=↓ d ∼=↓ d

H4(N
′

)
π′∗

→ H4(N
′

t )
u∗

→
∼=

H4(M0
l,k)

where

11



i) STOP (N
′

)
π′∗

→ STOP (N
′

t) maps
[
N

′′

, h
′′

]
to

[
N

′′

t , h
′′

t

]
with h

′′

t

a pull-back of h
′′

by the bundle projection π′ : N
′

t → N
′

;

ii) STOP (N
′

t )
u∗

→ STOP (M0
l,k) maps

[
M

′

, g
′

]
to

[
M

′

, u−1 ◦ g
′

]
;

iii) the maps d send a homotopy class to its primary obstruction
to null-homotopy.

The diagrams above, together with the relations

π′∗ [N,hN ] = [Nt, ht], u
∗(π′∗(x′)) = π∗

M (ι) and d(η [N,hN ]) = x′,

imply that u∗ [Nt, ht] =
[
M1

l,k, hM

]
, i.e.

[
Nt, u

−1 ◦ ht
]
=

[
M1

l,k, hM

]
. This

completes the proof of Case 2.�

The following lemma plays a key role in the proof of Lemma 3.5 and its
proof will be postponed to the end of this section.

Lemma 3.4. Let Nt be the total space of the circle bundle over [N, t] ∈ Θ
with δ([N, t]) = 0 and k([N, t]) = 0. Then there exists an 8–manifold W
homotopy equivalent to S4 whose boundary satisfies

∂W ∼=

{
Nt if ε([N, t]) = 1

Nt#Σ p([N,t])
24

if ε([N, t]) = 0 .

Lemma 3.5. Let Nt be the total space of the circle bundle over [N, t] ∈ Θ
with δ([N, t]) = 0. Then one has a diffeomorphism Nt

∼= M0
l,k#Σr where Nt

has the smooth structure as the total space of the circle bundle and where

(k, l, r) = (k([N, t]), p([N,t])+(3ε([N,t])−4)·k([N,t])
4 , (1−ε([N,t]))·(p([N,t])−4k([N,t]))

24 ).

Proof. In the case of k([N, t]) 6= 0 it is shown in [3] that the system
{H, p12 , b, µ} classifies Nt and M0

l,k up to diffeomorphism. Hence the proof is

done by comparing those invariants for Nt and M0
l,k obtained in Examples

3.1 and 3.2.
Assume next that k([N, t]) = 0 and let W be the 8–manifold given by

Lemma 3.4. We can take a closed tubular neighborhood E of an embedding
h : S4 →֒ Interior W which is also a homotopy equivalence [20, Lemma
6]. As Hi(W\Interior E, ∂E) ∼= Hi(W,E) = 0 for all i by the excision
theorem, W\Interior E is an h–cobordism between ∂W and ∂E. Hence
we get the diffeomorphisms ∂W ∼= ∂E ∼= M0

l,k for some l, k ∈ Z by the h-
cobordism theorem [21, Theorem 9.1] and the fact that E is the total space
of the normal disk bundle of the embedding h. Comparing the invariants
{H, p12 } of ∂W and M0

l,k given in Examples 3.1 and 3.2 we find that ∂W is

diffeomorphic to M0
p([N,t])

4
,0
[3]. This shows

12



Nt
∼=





M0
p([N,t])

4
,0
#Σ p([N,t])

24

if ε([N, t]) = 0

M0
p([N,t])

4
,0

if ε([N, t]) = 1

which completes the proof.�

Proof of Lemma 3.4. The construction of W and the corresponding
calculations will be divided into two cases depending on ε([N, t]) = 0 or
1. Let π0 : Wt → N be the associated disk bundle of the circle bundle
π : Nt → N .

Case 1. ε([N, t]) = 1: Take an embedding f : S2 →֒ Interior Wt that
represents a generator of the group H2(Wt) ∼= Z. Since w2(Wt) = 0(see
Example 3.1), the f extends to an embedding f : S2 ×D6 →֒ Interior Wt.
The 8–manifold W is obtained from Wt by surgery along f . On one hand,
it is clear that ∂W ∼= ∂Wt

∼= Nt. On the other hand, from the homotopy
equivalences

X ≃ Wt ∪f D
3 ≃ W ∪D6

with X the trace of the surgery [1, P.83-84] we find that W is 3–connected
with H4(W ) ∼= H4(X) ∼= Z. Moreover, since Nt is 2–connected and W is
3–connected we can conclude that Hi(W ) ∼= H8−i(W,Nt) = 0 for i ≥ 5 by
the Lefschetz duality and the cohomology exact sequence. Hence from the
Whitehead theorem we get W ≃ S4.

Case 2. ε([N, t]) = 0: The desired manifold W is constructed as follows.
Represent the generator x∩ [N ] ∈ H2(N) by an embedding g : S2×D4 →֒ N
(w2(N) = 0). Let h be the pull-back of g by the projection π as shown in
the diagram

(3.1)
S3 ×D4 h

→֒ Nt

↓ π ↓

S2 ×D4 g
→֒ N

,

and let W̃ := Nt × [0, 1] ∪(h,1) D
4 ×D4. Then

(3.2) ∂W̃ ∼= Nt ⊔ (–Σr) for some r ∈ Z

since in (3.1) the map h induces an isomorphism π3(S
3×D4) → π3(Nt) [28,

Lemma 1]. The manifold W is obtained from W̃ by removing the tubular

neighborhood of a smooth arc α : [0, 1] → W̃ with α(0) ∈ Nt, α(1) ∈ ∂W
′

and α(0, 1) ⊂Interior W̃ .
It remains to show that

i) W ≃ S4; ii) r = p([N,t])
24 (in (3.2)).
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The property i) follows from the facts that the trace W̃ of the surgery along
h has the homotpy type Σr ∪ D4 and the homeomorphism type of W is
obtained from W̃ to collapse the component Σr of ∂W̃ to a point.

For the property ii) we only need to show µ(Σr) ≡
p(N)
24·28 modZ. By the

collar neighborhood theorem, the homotopy sphere Σr in (3.2) bounds an
8–manifold W

′

:= Wt ∪h D4 × D4. For the convenience of calculation, we

make use of an alternative decomposition W
′

= Wt ∪i0
CP 2 ×D4 where i0

is the pull-back of g by the projection π0 as in the diagram

V ×D4 i0
→֒ Wt

↓ π0 ↓

S2 ×D4 g
→֒ N

.

From the isomorphism

H4(CP
2) ⊕ H4(Wt)

i1∗⊕i2∗→
∼=

H4(W
′

)

by the Mayer–Vietoris sequence with α ∈ H4(Wt) ∼= Z the generator satisfies
〈π∗

0x, α〉 = 1 (see Section 2) and i1 : CP
2 → W

′

, i2 : Wt → W
′

the inclusions,
we can see below that the intersection matrix of W

′

with respect to the basis
x1, x2 ∈ H4(W

′

, ∂W
′

) is
(

0 1
1 0

)

where i1∗[CP
2] = x1 ∩ [W

′

, ∂W
′

], i2∗α = x2 ∩ [W
′

, ∂W
′

]. First observe that
〈
x1 ∪ x1, [W

′

, ∂W
′

]
〉
= 0

as the normal bundle of i1 is trivial. Next since the self-intersection number
of i2∗α is the same as that of α and the homomorphism j∗ : H4(Wt, Nt) →
H4(Wt) is trivial (see Example 3.1), this implies

〈
x2 ∪ x2, [W

′

, ∂W
′

]
〉
= 〈j∗DWtα ∪DWtα, [Wt, Nt]〉 = 0 [1, p.115]

where DWtα denotes the Lefschetz duality of α. Finally we have
〈
x1 ∪ x2, [W

′

, ∂W
′

]
〉
=

〈
j
′∗x1, i2∗α

〉
=

〈
i∗2j

′∗x1, α
〉
= 〈π∗

0x, α〉 = 1

with j
′

: W
′

→ (W
′

, ∂W
′

) the inclusion and where π∗
0x = i∗2j

′∗x1 fol-
lows from the relations π−1

0 f [S2] = i−1
2 i1[CP

2], x = DNf∗[S
2] and x1 =

DW
′ i1∗[CP

2]. Thus the signature σ(W
′

) is 0.

We can take z to be a generator of H2(W
′

) ∼= Z since i∗2w2(W
′

) =
w2(Wt) 6= 0 by Example 3.1 and the isomorphism i

∗

2TW
′ ∼= TWt . To get

the values of z2, p1(W
′

), it is necessary to compute the images of z2, p1(W
′

)
under the isomorphism
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i∗1 ⊕ i∗2 : H
4(W

′

) → H4(CP 2)⊕H4(Wt),

whose matrix with respect to the basis {j
′∗

x1, j
′∗

x2} and {[CP 2]∗, π∗
0x}

is the same as the intersection matrix of W
′

with respect to the basis
x1, x2, where [CP 2]∗ ∈ H4(CP 2) satisfies

〈
[CP 2]∗, [CP 2]

〉
= 1. Since i∗1z ∈

H2(CP 2), i∗2z ∈ H2(Wt) are generators, it follows that

i∗1 ⊕ i∗2(z
2) = (i∗1z

2, π∗
0t

2) = ([CP 2]∗, 0).

Moreover, according to the isomorphisms i
∗

2TW
′ ∼= TWt and i

∗

1TW
′ ∼=

TCP 2 ⊕ ε4, the relations
〈
p1(CP

2), [CP 2]
〉
= 3 and p1(Wt) = p([N, t])π∗

0x
imply that

i∗1 ⊕ i
∗

2p1(W
′

) = (3[CP 2]∗, p([N, t])π∗
0x).

Therefore we can see that

z2 = j
′∗

x2; p1(W
′

) = p([N, t])j
′∗

x1 + 3j
′∗

x2.

Again from these relations and the intersection form of W
′

we get

p21(W
′

) = 6p([N, t]); z2p1(W
′

) = p([N, t]); z4 = 0.

Consequently, substituting these values in the formula of µ, this implies

µ(M
′

) = p(N)
24·28 modZ.�

Remark 3.6. In a communication concerning this work Diarmuid Crowley
pointed out that according to a result of Wilkens [30, Theorem 1 (ii)] the
decomposition Nt

∼= M0
l,k#Σr in Lemma 3.4 can be simplified as Nt

∼= M0
l,k

when k([N, t]) = 0, which will play a role in the proof of Corollary 4.5 in
the coming section.

In the recent paper [4] (see also [2] [5]) Crowley and Nordstrom gen-
eralised the classical Eells-Kuiper invariant µ. Their new invariant can
be applied to give a simple proof of the diffeomorphism Nt

∼= M0
l,k when

k([N, t]) = 0.

4 Proof of Theorem 1.3 and applications

We establish Theorem 1.3 and present some applications.

Proof of Theorem 1.3. LetM be a 2–connected 7–manifold with a regular
circle action. By Lemmas 2.1 and 2.2 M is the total space of the oriented
circle bundle over N#rS

3 × S3 with Euler class t ∈ H2(N#rS
3 × S3) ∼= Z

a generator, where [N, t] ∈ Θ, r ∈ N. Identify t with the generator t ∈
H2(N) ∼= Z under the isomorphism H2(N) → H2(N#rS

3×S3) induced by
the map N#rS

3 × S3 → N collapsing #rS
3 × S3 to a point. By Lemmas

3.3 and 3.4 it suffices to show that M ∼= Nt#2rS
3 × S4.

Consider the decomposition
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N#rS
3 × S3 = (N\

◦
D1) ∪f (#rS

3 × S3\
◦
D2)

with Di
∼= D6 and f : ∂D2 → ∂D1 a diffeomorphism. Since the restriction

of the bundle Nt → N on D1 is trivial and Nt
∼= Nt#S7 one has the

corresponding decomposition

M ∼= (Nt\
◦
D1 × S1) ∪f×id ((#rS

3 × S3\
◦
D2)× S1) ∼= Nt#M0

where id is the identity on S1, and where

M0 = (S7\
◦
D1 × S1) ∪f×id ((#rS

3 × S3\
◦
D2)× S1).

Since M0 can be easily identified with the total space of the oriented cir-
cle bundle over CP 3#rS

3 × S3 with Euler class a proper generator of
H2(CP 3#rS

3 × S3) ∼= Z, a calculation similar to that in Example 3.1
shows that the invariant system {H, p12 , b, µ} for M0 and #2rS

3 × S4 co-
incides. Consequently M0 is diffeomorphic to #2rS

3 × S4. This shows that
M ∼= Nt#2rS

3 × S4 which completes the proof.�

A classical topic is to decide which homotopy spheres admit smooth
regular circle actions ( [13] [17] [22] [23]). Combining Theorem 1.3 with
Example 3.2 we recover the classical computation of Montgomery and Yang
[22] .

Corollary 4.1. Among the 28 homotopy 7–spheres Σr, 0 ≤ r ≤ 27 the
following ones admit smooth regular circle actions

Σr, r = 0, 4, 6, 8, 10, 14, 18, 20, 22, 24.�

In term of our notation the unit tangent bundle of the sphere S4 is
M0

−1,2. The additive property of the Eells-Kuiper invariant µ shows that

M0
−1,2#Σr with 0 ≤ r ≤ 27 represent all the diffeomorphism types of the

smooth manifolds homeomorphic to M0
−1,2. One can deduce from Theorem

1.3 and Example 3.2 that

Corollary 4.2. All the smooth manifolds homeomorphic to the unit tangent
bundle of the sphere S4 and admitting smooth regular circle actions are

M0
−1,2#Σr, r = 0, 2, 6, 7, 8, 12, 14, 15, 16, 19, 20, 23, 26.�

In [11] Grove, Verdiani and Ziller constructed on the manifoldM0
−1,2#Σ27

a metric with positive sectional curvature (see Goette [10, p.34-35]). Accord-
ing to Corollary 4.2 this manifold does not admit any smooth regular circle
action.

Definition 4.3 Two regular (resp. smooth regular) circle actions
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S1 ×Mi → Mi, i = 1, 2,

on two manifolds (resp. smooth manifolds) Mi are called equivalent if there
is a equivariant homeomorphism (diffeomorphism) f : M1 → M2. Let
ρT (M) (resp.ρS(M)) be the number of all equivalence classes of regular
(resp. smooth regular) circle actions on a given manifold (resp. smooth
manifold) M .

Since the number ρT (M) can be seen as the number of those elements
[N, t] ∈ Θ satisfying Nt

∼= M , we get from Lemmas 2.2 and 3.3 that

Corollary 4.4. For the family

M = M c
6m,(1+c)k#2rS

3 × S4, c ∈ {0, 1}, r ∈ N,m, k ∈ Z

of manifolds that represent all homeomorphism classes of the 2–connected
7–manifolds with regular circle actions (see Theorem 1.3) we have

ρT (M) =





1 if k = 0 and m ≡ 1mod 2,
2 if k = 0 and m ≡ 0mod 2,
∞ if k 6= 0

.�

Similarly, in the smooth category we get from Lemmas 2.2 and 3.5,
together with Remark 3.6, that

Corollary 4.5. For the family

M = M0
6(1+a)m,(1+a)k#Σ(1−a)m#2rS

3 × S4, a ∈ {0, 1}, r ∈ N,m, k ∈ Z

of manifolds that represent all diffeomorphism classes of the smooth 2–
connected 7–manifolds with smooth regular circle actions (see Theorem 1.3)
we have

σ(M) =





1 if k = 0, a = 0 and m ≡ 1mod 2,
2 if k = 0 and (1 + a)m ≡ 0mod 2,
∞ if k 6= 0

.�
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