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Abstract. Teichmüller’s classical mapping problem for plane domains concerns
finding a lower bound for the maximal dilatation of a quasiconformal homeomor-
phism which holds the boundary pointwise fixed, maps the domain onto itself,
and maps a given point of the domain to another given point of the domain. For
a domain D ⊂ Rn , n ≥ 2 , we consider the class of all K- quasiconformal maps
of D onto itself with identity boundary values and Teichmüller’s problem in this
context. Given a map f of this class and a point x ∈ D , we show that the maxi-
mal dilatation of f has a lower bound in terms of the distance of x and f(x). We
improve recent results for the unit ball and consider this problem in other more
general domains. For instance, convex domains, bounded domains and domains
with uniformly perfect boundaries are studied.

Keywords. quasiconformal mappings, identity boundary values, distortion the-
orems
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1. Introduction

Teichmüller’s classical mapping problem for plane domains concerns finding a
lower bound for the maximal dilatation of a quasiconformal homeomorphism which
holds the boundary pointwise fixed, maps the domain onto itself, and maps a given
point of the domain to another given point of the domain (see [AV, K, MV, T]).
G.J. Martin [M] has recently studied the Teichmüller problem for the mean distor-
tion. The classical problem has found applications in the theory of homogeneity of
domains as introduced in [GP] and more recently in the homogeneity constants of
surfaces [BBCMT, BCMT, KM].

Let D be a proper subdomain of Rn (n ≥ 2), and let

IdK(∂D) = {f : Rn → Rn is K-quasiconformal : f(x) = x, ∀x ∈ Rn \D}.

In his classical work [T] O. Teichmüller studied the class IdK(∂D) with D = R2 \
{0, e1}, e1 = (1, 0) , and proved the following sharp inequality

ρD(x, f(x)) ≤ logK

for all x ∈ D, where ρD is the hyperbolic metric of D = R2\{0, e1}. This result may
be regarded as a stability result since it says that f(x) is contained in the closure of
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the hyperbolic ball BρD(x, logK) centered at the point x and with the radius logK.
In particular, the radius tends to 0 as K → 1.

J. Krzyż [K] considered the same problem for the case of the unit disk, and
G. D. Anderson and M. K. Vamanamurthy [AV] found a counterpart for Krzyż’s
result in the case of the unit ball in Rn, n ≥ 3, under an additional symmetry
hypothesis. Very recently, V. Manojlović and M. Vuorinen [MV] removed the extra
symmetry hypothesis and proved the following Theorem 1.1. Continuing the work
of [MV], we study the case of subdomains of Rn more general than the unit ball.
For basic information on quasiconformal maps in Rn , n ≥ 2 , we refer the reader to
[FM, LV, V1].

As in [Vu3, p. 97 (7.44), p. 138, Theorem 11.2], we denote by ϕK,n : [0, 1] →
[0, 1], K > 0, the special function connected with the Schwarz lemma. Its precise
definition of ϕK,n is given in (2.3). What is important is that it is an increasing
homeomorphism with ϕK,n(r) → r as K → 1 . Write Bn(r) = {x ∈ Rn : |x| < r}
and Bn = Bn(1).

1.1. Theorem. [MV, Theorem 1.9] If f ∈ IdK(∂Bn), then, for all x ∈ Bn,

ρBn(x, f(x)) ≤ log
1− ϕ1/K,n(1/

√
2)2

ϕ1/K,n(1/
√

2)2

where ρBn is the hyperbolic metric defined in (2.1).

Theorem 1.1 shows that the mapping f uniformly tends to the identity mapping
when the maximal dilatation goes to 1.

In this paper we will first prove the following theorem which is similar to the
result of Manojlović and Vuorinen.

1.2. Theorem. If f ∈ IdK(∂Bn), then, for all x ∈ Bn,

ρBn(x, f(x)) ≤ log
1− ϕ1/K,n(1/2)

ϕ1/K,n(1/2)
.

Motivated by a question of F.W. Gehring, J. Krzyż [K, Theorem 1] proved the
following theorem. See also Teichmüller [T] and Krushkal [Kr, p.59].

1.3. Theorem. [K, Theorem 1] For f ∈ IdK(∂B2) the sharp bounds are:

(1.4) |f(0)| 6 µ−1

(
log

√
K + 1√
K − 1

)
≡ c

where µ is the function defined in (2.7) and

(1.5) tanh
ρB2(f(z), z)

2
6 c

for every z ∈ B2, where ρB2 is the hyperbolic metric.

A comparison shows that Theorem 1.2 yields a better bound than Theorem 1.1
when n = 2 (see Remark 3.4 (3) below). However, the sharp result of Krzyż, which
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only applies for n = 2 , is even better when n = 2 . For a graphical comparison of
these bounds for n = 2, see Figure 3.

We next extend this result to the case of convex domains. To this end, we require
a suitable metric, the distance ratio metric jD of a domain D ⊂ Rn , defined in
Section 2.

1.6. Theorem. Let D ( Rn be a convex domain and f ∈ IdK(∂D). Then, for all
x ∈ D,

jD(x, f(x)) ≤ log

1 +

√(
2ϕK,n(1/3)

1− ϕK,n(1/3)

)2

− 1

 .

For K close to 1, the inequality of Theorem 1.6 can be simplified further.

1.7. Theorem. Let D ( Rn be a convex domain and

Kn =

(
1 +

log 2

n− 1 + log 3

)n−1

∈ [K2, 2), K2 ≈ 1.33029.

If K ∈ (1, Kn] and f ∈ IdK(∂D), then for all x ∈ D

jD(x, f(x)) ≤ 2
√

1 + log 6(K − 1)1/2.

A common feature of all these results, including Teichmüller’s original result, is
that if f(x) 6= x for some point in the domain, then the maximal dilatation K > 1 .
This lower bound is not true for all subdomains in Rn, n ≥ 3, as is easy to show by
an example, see Remark 3.1.

In the case of uniform domains [MS, V3] with connected boundary, M. Vuorinen
[Vu1] established

(1.8) K ≥ c1(n,D)kD(x, f(x))n

whenever the quasihyperbolic distance kD(x, f(x)) exceeds a bound depending only
on n and D. Here c1(n,D) is a positive constant depending only on n and D.

The proof of the inequality (1.8) makes use of the classical Väisälä’s lower bound
for the modulus of the family of curves joining continua [V1, Theorem 10.12].
Aseev’s theorem [As, Theorem 3] (see Lemma 2.8 below) provides a counterpart
of this result with continua replaced with uniformly perfect sets. In this way we can
prove that (1.8) also holds for the case of uniform domains with uniformly perfect
boundary [BP, JV, S].

1.9. Theorem. Let D ( Rn be a uniform domain with uniformly perfect boundary
and x ∈ D, and let f ∈ IdK(∂D). Then there exists a positive constant c2(n,D)
depending only on n and the constants of uniformity and uniform perfectness of the
domain D such that for all x ∈ D

K ≥ c2(n,D)kD(x, f(x))n.
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The Hölder continuity of quasiconformal self mappings of the unit ball with the
origin fixed is an important topic which was first studied by Ahlfors [Ah] when the
dimension n = 2. Refining Ahlfors’ result, A. Mori proved that a K-quasiconformal
mapping f : B2 → B2 = f(B2), f(0) = 0, satisfies for all x, y ∈ B2 the inequality

|f(x)− f(y)| ≤M |x− y|1/K

with the best possible constant M = 16 independent of K and the sharp exponent
1/K [LV]. Later on, it was conjectured that here 16 can be replaced by 161−1/K .
This conjecture, sometimes referred to as the Mori’s conjecture for planar quasicon-
formal maps of the unit disk, is a well-known open problem and it has been studied
by many people. For the higher dimensional case n ≥ 3 an asymptotically sharp
constant, i.e. a constant tending to 1 when K → 1 , was proved for the first time by
Fehlmann and Vuorinen [FV]. Very recently, Bhayo and Vuorinen [BV] improved
the previous results by using a refined inequality for the Teichmüller function and
introducing an additional parameter which was chosen in an optimal way. Many au-
thors have studied these questions. For the detailed history of the Hölder continuity
of quasiconformal mappings, the readers are referred to the bibliographies of [MRV],
[FV], [Vu3] and [BV]. We will consider this problem and improve the constant for
the class of quasiconformal mappings of the unit ball with identity boundary values.
Note that in this case it is not required that the origin be fixed by the mapping.

1.10. Theorem. If f ∈ IdK(∂Bn), then for all x, y ∈ Bn

|f(x)− f(y)| ≤M1(n,K)|x− y|α, α = K1/(1−n)

whereM1(n,K) = λ1−α
n C(α) and C(α) = 21−αα−α/2(1−α)(α−1)/2 , withM1(n,K)→

1 when K → 1 , and λn ∈ [4, 2en−1) is the Grötzsch ring constant.

For the planar case of n = 2, I. Prause [P] has proved that 41−1/K is the optimal
constant under the same conditions of Theorem 1.10.

2. Notation and preliminary results

In this section we shall follow the standard notation and terminology forK−quasi-
conformal mappings in the Euclidean n−space Rn, see e.g. [AVV2], [V1] and [Vu3].

The hyperbolic metric ρBn(x, y) on Bn is defined by

(2.1) tanh2 ρBn(x, y)

2
=

|x− y|2

|x− y|2 + (1− |x|2)(1− |y|2)
.

A simple argument shows that we have

|x− y| ≤ 2 tanh
ρBn(x, y)

4
for all x, y ∈ Bn with equality for x = −y (see [Vu3, (2.27)]).

Let D ( Rn be a domain. The quasihyperbolic metric kD is defined by [GP]

kD(x, y) = inf
γ∈Γ

∫
γ

1

d(z)
|dz|, x, y ∈ D,
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where Γ is the family of all rectifiable curves in D joining x and y, and d(z) =
d(z, ∂D) is the Euclidean distance between z and the boundary of D. The distance-
ratio metric or j−metric is defined as [GP, Vu2]

(2.2) jD(x, y) = log

(
1 +

|x− y|
min{d(x), d(y)}

)
, x, y ∈ D.

It is well known that [GP, Lemma 2.1], [Vu3, (3.4)]

jD(x, y) ≤ kD(x, y)

for all domains D ( Rn and x, y ∈ D.
A domain D in Rn, D 6= Rn, is called uniform, if there exists a number U =

U(D) ≥ 1 such that kD(x, y) ≤ U jD(x, y) for all x, y ∈ D. Uniform domains
were introduced by Martio and Sarvas [MS]. Presently, there are several equivalent
definitions of uniform domains, see, for instance, Väisälä [V3]. The above definition,
which is most convenient for the sequel, is adopted from Gehring and Osgood [GO]
and Vuorinen [Vu2].

It is well known [AVV2, Lemma 7.56] that the unit ball Bn is a uniform domain
with the constant U = 2.

Given E,F,G ⊂ Rn we use the notation ∆(E,F ;G) for the family of all curves
that join the sets E and F in G and M(∆(E,F ;G)) for its modulus. If G = Rn,
we may omit G and simply denote ∆(E,F ;G) by ∆(E,F ). For a ring domain
R(C0, C1) with complementary components C0 and C1, we define the modulus of
R(C0, C1) by

modR(C0, C1) =

(
ωn−1

M(∆(C0, C1))

)1/(n−1)

,

where ωn−1 is the surface area of the unit sphere in Rn.
The Grötzsch ring domain RG,n(s), s > 1, and the Teichmüller ring domain

RT,n(t), t > 0, are doubly connected domains with complementary components
(Bn, [se1,∞)) and ([−e1, 0], [te1,∞)), respectively. For their capacities we write{

γn(s) = capRG,n(s) = M(∆(Bn, [se1,∞])),
τn(t) = capRT,n(t) = M(∆([−e1, 0], [te1,∞])).

These functions are related by the functional identity

γn(s) = 2n−1τn(s2 − 1).

For K > 0 we define an increasing homeomorphism ϕK,n : [0, 1] → [0, 1] with
ϕK,n(0) = 0, ϕK,n(1) = 1 and

(2.3) ϕK,n(r) =
1

γ−1
n (Kγn(1/r))

, 0 < r < 1.

The following important estimates are well known [Vu3]

(2.4) rα ≤ ϕK,n(r) ≤ λ1−α
n rα ≤ 21−1/KKrα, α = K1/(1−n) ,

(2.5) 21−KK−Krβ ≤ λ1−β
n rβ ≤ ϕ1/K,n(r) ≤ rβ, β = 1/α,
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where K ≥ 1, r ∈ (0, 1) , and the constant λn ∈ [4, 2en−1) is the so-called Grötzsch
ring constant. In particular, λ2 = 4.

For n ≥ 2, t ∈ (0,∞), K > 0, we denote

(2.6) ηK,n(t) = τ−1
n

(
1

K
τn(t)

)
=

1− ϕ1/K,n(1/
√

1 + t)2

ϕ1/K,n(1/
√

1 + t)2
.

For the purpose of comparing our bounds to earlier bounds we wish to express
these functions in terms of well-known functions. This is possible only for n = 2
[AVV2]. and the general case n ≥ 3 remains as a challenge. To this end, it is enough
to express the formulas for γ2(s) and ϕK,2(r) in terms of classical special functions.
First, we consider a decreasing homeomorphism µ : (0, 1) −→ (0,∞) defined by
[LV, Vu3]

(2.7) µ(r) =
π

2

K(r′)

K(r)
, K(r) =

∫ 1

0

dx√
(1− x2)(1− r2x2)

,

whereK(r) is Legendre’s complete elliptic integral of the first kind and r′ =
√

1− r2,
for all r ∈ (0, 1). Now γ2(1/r) = 2π/µ(r), r ∈ (0, 1) and ϕK,2(r) = µ−1(µ(r)/K) by
[LV, Vu3].

Let α > 0 and assume that D ⊂ Rn is a closed set containing at least two points.
Then D is s−uniformly perfect if there is no ring domain separating D with the
modulus greater than s. D is uniformly perfect if it is s−uniformly perfect for some
s > 0 [BP]. Uniformly perfectness is a useful tool in many topics of geometric
function theory. See [S] for a survey of this topic. The following lemma is an analog
of Väisälä’s lemma [V1, Theorem 10.12] with continua replaced by uniformly perfect
sets.

2.8. Lemma. [As, Theorem 3] Suppose that s > 0 and that s−uniformly perfect sets
E0 and E1 meets each component of the complement of the spherical ring D = {x :
r1 < |x− x0| < r2} ⊂ Rn with the following relation between the radii

r2/r1 > 1 + 2es.

Then
cap(E0, E1;D) ≥ C log

r2

r1

,

where the constant C > 0 depends only on s and the dimension n of the space.

Note that, from the proof of this lemma, it is easy to see that the result obviously
holds if one of the two sets E0 and E1 is a continuum.

3. Proofs of main results

3.1. Remark. (1). Let f : D → D be a quasiconformal mapping which extends to
a homeomorphism f ∗ : D → D with f ∗(x) = x for all x ∈ ∂D. By [R, Theorem 1]
or [V2, Theorem 2], the mapping f can be extended to a quasiconformal mapping
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f̃ : Rn → Rn by setting f̃(x) = x for x 6∈ D. Moreover, f̃ has the same dilatation
as f .

(2). As pointed out in [Vu1], it is not true for n ≥ 3 that for f ∈ IdK(∂D) the
condition kD(x, f(x)) > 0 implies K > 1 . Indeed, let X = {(x, 0, 0) : x ∈ R} be the
x1-axis, let D = R3 \X , and let f : D → D be a rotation around the x1-axis with
f(x) = (0,−1, 0), x = (0, 1, 0) . Then f is conformal, i.e. K = 1 , f keeps the x1-axis
X = ∂D pointwise fixed, and D is a uniform domain with connected boundary X
and kD(x, f(x)) = π . Clearly, for this domain c1(3, D) ≤ 1/π3 .

(3). For uniformly perfect hyperbolic domains D ⊂ R2 the hyperbolic metric and
the quasihyperbolic metric are equivalent [KL], i.e. there exists a constant C(D) > 1
such that

ρD ≤ kD ≤ C(D)ρD.

Let D be a uniformly perfect hyperbolic domain in the plane and f ∈ IdK(∂D).
Then for all z ∈ D,

jD(z, f(z)) ≤ kD(z, f(z)) ≤ C(D)ρD(z, f(z)) ≤ C(D)Kr(K),

where Kr(K) is Krzyż’s bound

Kr(K) = 2 arthµ−1

(
log

√
K + 1√
K − 1

)
.

Figure 1. The proof of Theorem 1.2 visualized.

3.2. Proof of Theorem 1.2. For arbitrarily given x ∈ Bn let Tx be a Möbius
transformation of Rn with Tx(Bn) = Bn and Tx(x) = 0 [B]. Define g : Rn → Rn

by setting g(z) = Tx ◦ f ◦ T−1
x (z) for z ∈ Bn and g(z) = z for z ∈ Rn \ Bn. Then



8 MATTI VUORINEN AND XIAOHUI ZHANG

g ∈ IdK(∂Bn) with g(0) = Tx(f(x)). Since the hyperbolic metric ρBn is preserved
under Möbius transformations of Bn onto itself, we have that for x ∈ Bn

(3.3) ρBn(x, f(x)) = ρBn(0, g(0)).

Choose z ∈ ∂Bn such that the point g(0) is contained in the segment [0, z].
Let Γ = ∆([g(0), z], ∂Bn(z, 2);Bn(z, 2)) be the family of curves joining [g(0), z] to
∂Bn(z, 2) in Bn(z, 2), and Γ′ = g−1(Γ) = ∆(g−1([g(0), z]), ∂Bn(z, 2);Bn(z, 2)). Then
we have

M(Γ) = γn

(
2

1− |g(0)|

)
and by the spherical symmetrization with center at z

M(Γ′) ≥ γn(2).

By K−quasiconformality we have KM(Γ) ≥M(Γ′) [V1] which, together with (2.3)
implies

|g(0)| ≤ 1− 2ϕ1/K,n(1/2)

and
ρBn(0, g(0)) = log

1 + |g(0)|
1− |g(0)|

≤ log
1− ϕ1/K,n(1/2)

ϕ1/K,n(1/2)
.

�

3.4. Remark. (1). If we take a slightly different construction of Grötzsch ring
domain, we will get another form of bound as following argument shows .

Figure 2. The argument visualized.

Choose z ∈ ∂Bn such that the origin is contained in the segment [g(0), z]. For
t ≥ 0 let Pt = P (g(0), (1 + t)|g(0)|) = {x ∈ Rn : x · g(0) = (1 + t)|g(0)|} be the
hyperplane in Rn perpendicular to the vector g(0), at distance 1 + t from the origin
[B], and the half space H be the component of Rn \ Pt which contains the origin.
Let σ be the inversion in the sphere Sn−1(w, r) where w = (3 + 2t)g(0)/|g(0)| and
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r = 2 + t, then we have σ(z) = (4 + 3t)g(0)/(2|g(0)|) and σ(H) = Bn(σ(z), r/2). It
is easy to see that

|σ(z)− σ(0)| = 2 + t

6 + 4t
and

|σ(z)− σ(g(0))| = (2 + t)(1 + |g(0)|)
6 + 4t− 2|g(0)|

.

Let Γ = ∆([0, z], Pt;H) be the family of curves joining [0, z] to Pt in H, and Γ′ =
g(Γ) = ∆(g([0, z]), Pt;H). By the conformal invariance of the modulus, we have

M(Γ) = M(σ(Γ)) = γn

(
r/2

|σ(z)− σ(0)|

)
and by the spherical symmetrization with center at σ(z)

M(Γ′) = M(σ(Γ′)) ≥ γn

(
r/2

|σ(z)− σ(g(0))|

)
.

By K−quasiconformality we have KM(Γ) ≥M(Γ′) [V1] implying

1 + |g(0)|
3 + 2t− |g(0)|

≤ ϕK,n

(
1

3 + 2t

)
,

and further

|g(0)| ≤ (3 + 2t)ϕK,n(1/(3 + 2t))− 1

1 + ϕK,n(1/(3 + 2t))
.

Since the above inequality holds for all t ≥ 0, the choice t = 0 gives

|g(0)| ≤ 3ϕK,n(1/3)− 1

1 + ϕK,n(1/3)

and

ρBn(0, g(0)) = log
1 + |g(0)|
1− |g(0)|

≤ log
2ϕK,n(1/3)

1− ϕK,n(1/3)
.

Hence we have that

(3.5) ρBn(x, f(x)) ≤ log
2ϕK,n(1/3)

1− ϕK,n(1/3)

holds for all f ∈ IdK(∂Bn) and x ∈ Bn. �
(2). For the planar case of n = 2, the inequality (3.5) and Theorem 1.2 exactly

give the same bound. In fact, by setting r = 1/3 in the following identity [AVV2,
Theorem 10.5(2)]

ϕ1/K,2

(
1− r
1 + r

)
=

1− ϕK,2(r)

1 + ϕK,2(r)
, r ∈ [0, 1],

we have

log
1− ϕ1/K,2(1/2)

ϕ1/K,2(1/2)
= log

2ϕK,2(1/3)

1− ϕK,2(1/3)
.
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(3). We claim that Theorem 1.2 yields a better bound than Theorem 1.1 when
n = 2 . Indeed, from [AVV2, Theorem 10.9(2)] and the proof of [AVV2, Theorem
10.15] it is easy to see that

ϕ1/K,2(rp) ≤ ϕ1/K,2(r)p for 0 < p < 1,

which implies that

log
1− ϕ1/K,2(1/2)

ϕ1/K,2(1/2)
≤ log

1− ϕ1/K,2(1/
√

2)2

ϕ1/K,2(1/
√

2)2
.

Figure 3. Graphical comparison of bounds when n = 2 as a function of
K: (a) the Manojlović and Vuorinen bound from Theorem 1.1,

MV (2,K) = log
1− ϕ1/K,2(1/

√
2)2

ϕ1/K,2(1/
√
2)2

.

(b) the bounds from Theorem 1.2,

V Z(2,K) = log
1− ϕ1/K,2(1/2)

ϕ1/K,2(1/2)
.

(c) the Krzyż bound from Theorem 1.3 (valid only for n = 2),

Kr(K) = 2 arthµ−1

(
log

√
K + 1√
K − 1

)
.

Note that Vuorinen’s example related to (1.8) in Remark 3.1 is unbounded. For
bounded domain D ⊂ Rn, however, we have following estimate.

3.6. Theorem. Let D be a bounded domain in Rn, and f ∈ IdK(∂D). Then for all
x ∈ D

|f(x)− x| ≤ diam(D) tanh

(
1

2
log

1− b
b

)
, b = ϕ1/K,n(1/2) .
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Proof. For x ∈ D, D ⊂ Bn(x, diam(D)) since D is bounded. Let g(w) = (w −
x)/diam(D). It is easy to see that h = g ◦ f ◦ g−1 ∈ IdK(∂Bn). Hence it follows
from Theorem 1.2 that

ρBn

(
f(x)− x
diam(D)

, 0

)
= ρBn(h(0), 0) ≤ log

1− b
b

,

and hence

|f(x)− x| ≤ diam(D) tanh

(
1

2
log

1− b
b

)
since ρBn(z, 0) = 2 arth |z| for z ∈ Bn. �

3.7. Example. For sufficiently small ε ∈ (0, 1) there exists f ∈ Id1+ε(∂(Bn \ {0}))
and x0 ∈ Bn \ {0} such that kBn\{0}(x0, f(x0)) = 1/ε. Actually, we can take f to
be the radial mapping f(x) = |x|a−1x with a = (1 + ε)1/(n−1), and x0 = e−be1

with b = 1/(ε(a − 1)) < log 2. Then K(f) = an−1 = 1 + ε (see [V1, 16.2]). It is
clear that |x0|, |f(x0)| < 1/2, and hence kBn\{0}(x0, f(x0)) = kRn\{0}(x0, f(x0)) =
log(|x0|/|f(x0)|) = 1/ε.

3.8. Proof of Theorem 1.6. We may assume that d(x, ∂D) ≤ d(f(x), ∂D) since
f−1 is also in IdK(∂D). Let z ∈ ∂D with d(x, ∂D) = |x − z|. For t > 0 let Pt
be the hyperplane perpendicular to x − z and at distance t from the point z, and
the half space H be the component of Rn \ Pt which contains z. Let σ be the
inversion in the sphere Sn−1(w, t) where w = z + 2t(z − x)/|z − x|, then we have
σ(H) = Bn(σ(z), t/2). It is easy to see that

|σ(z)− σ(x)| =
∣∣∣∣ t2 − t2

2t+ |x− z|

∣∣∣∣
and

|σ(z)− σ(y)| =
∣∣∣∣ t2 − t2

2t+ |f(x)− z|

∣∣∣∣
where y = z + |f(x)− z|(x− z)/|x− z|.

Let Γ = ∆([x, z], Pt;H) be the family of curves joining [x, z] to Pt in H, and
Γ′ = f(Γ) = ∆(f([x, z]), Pt;H). By the conformal invariance of the modulus and
the spherical symmetrization with center at z,

M(Γ) = M(σ(Γ)) = γn

(
t/2

|σ(z)− σ(0)|

)
and

M(Γ′) ≥M(∆([y, z], Pt;H)) = γn

(
t/2

|σ(z)− σ(y)|

)
.

By K−quasiconformality we have KM(Γ) ≥M(Γ′) implying

|f(x)− z|
2t+ |f(x)− z|

≤ ϕK,n

(
|x− z|

2t+ |x− z|

)
.
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Setting 2t/|x− z| = (1− s)/s, we have

|f(x)− z|
|x− z|

≤ 1− s
s

ϕK,n(s)

1− ϕK,n(s)
.

Since D is convex, it is easy to see that

|f(x)− z|2 ≥ |x− f(x)|2 + |x− z|2,
and hence

|x− f(x)|
|x− z|

≤

√(
|f(x)− z|
|x− z|

)2

− 1 .

The definition of the j−metric, together with the last two inequalities yields

jD(x, f(x)) ≤ log

1 +

√(
1− s
s

ϕK,n(s)

1− ϕK,n(s)

)2

− 1

 .

Taking s = 1/3, i.e. t = |x− z|, we get the inequality as desired. �

In order to prove Theorem 1.7, we need the following lemma.

3.9. Lemma. The function

h1(t) =
log2(1 + t)

log(1 + t2)

is strictly decreasing in (0, 1) and strictly increasing in (1,∞). In particular, for
0 < t ≤ 1,

(3.10) log2(1 + t) ≤ log(1 + t2).

Proof. Let g(t) = (1 + 1/t) log(1 + t) = g1(t)/g2(t) with g1(t) = log(1 + t) and
g2(t) = t/(1 + t). It is easy to see that g1(0) = 0 = g2(0) and g′1(t)/g′2(t) = 1 + t
which is clearly strictly increasing in (0,∞). It follows from the l’Hôpital Monotone
Rule [AVV1, Lemma 2.2] that the function g is strictly increasing in (0,∞).

By elementary computation, we have

h′1(t) =
2t2 log(1 + t)

(1 + t)(1 + t2) log2(1 + t2)
(g(t2)− g(t)),

which is negative for t ∈ (0, 1) and positive for t ∈ (1,∞) by the monotonicity of
g. Hence h1 is strictly decreasing in (0, 1) and strictly increasing in (1,∞). The
inequality (3.10) follows from the monotonicity of h1 since h1(0+) = 1. �

3.11. Proof of Theorem 1.7. Since λn ≤ 2en−1 and K ≤ Kn, it follows that

(3.12) (3λn)1−α ≤ 2.

It is easy to check that, for 1 ≤ a ≤ 2,
2a/3

1− a/3
≤ a2,



DISTORTION OF QUASICONFORMAL MAPPINGS WITH IDENTITY BOUNDARY VALUES13

which, together with (3.12) and (2.4), implies that

(3.13)
2ϕK,n(1/3)

1− ϕK,n(1/3)
≤ 2(3λn)1−α/3

1− (3λn)1−α/3
≤ (3λn)2(1−α) ≤ 4.

Let h1 be as in Lemma 3.9. Then

h1

√( 2ϕK,n(1/3)

1− ϕK,n(1/3)

)2

− 1

 ≤ max{h1(0+), h1(
√

15)} = h1(0+) = 1

since h1(
√

15) = 0.9046 · · · < 1. Hence

log

1 +

√(
2ϕK,n(1/3)

1− ϕK,n(1/3)

)2

− 1

 ≤

√
2 log

2ϕK,n(1/3)

1− ϕK,n(1/3)

≤ 2
√

log (3λn)
√

1− α

≤ 2
√

log (61−1/KK)

≤ 2
√

1 + log 6
√
K − 1,

as desired. �

Since a bounded convex domain is uniform, we have the following estimate for
the quasihyperbolic metric.

3.14. Corollary. Let D ( Rn be a bounded convex domain and f ∈ IdK(∂D). Then
for all x ∈ D.

kD(x, f(x)) ≤ U(D) log

1 +

√(
2ϕK,n(1/3)

1− ϕK,n(1/3)

)2

− 1


where U(D) is the uniformity constant of the domain D.

It is well known that the unit ball Bn is a uniform domain with the constant
U(Bn) = 2. This fact, together with Corollary 3.14 and Theorem 1.7, yields the
following estimate.

3.15. Corollary. Let K ∈ (1, Kn] and f ∈ IdK(∂Bn), then for all x ∈ Bn

kBn(x, f(x)) ≤ 4
√

1 + log 6(K − 1)1/2.

3.16. Remark. For the planar case, by [AVV2, Theorem 10.5 (3)] we have

1− ϕK,2(r) = (1 + ϕK,2(r))ϕ1/K,2

(
1− r
1 + r

)
,

which, together with (2.4) and (2.5), yields for K > 1

(3.17) 1− ϕK,2(r) ≥ 41−K(1 + r)1−K(1− r)K ≥ 81−K(1− r)K .
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By using the inequality (3.17) and (2.4), a similar argument as in the proof of
Theorem 1.7 gives

log

1 +

√(
2ϕK,2(1/3)

1− ϕK,2(1/3)

)2

− 1

 ≤√2 log 12
√
K − 1/K.

3.18. Proof of Theorem 1.9. The idea of this proof is exactly the same as in
the case of uniform domain with connected boundary [Vu1]. Write y = f(x). We
may assume d(x) ≤ d(y). Fix z ∈ ∂D such that d(x) = |x − z|. Then we have
|y − z| ≥ |x− z| and

(3.19)
|y − z|
|x− z|

≥ 1

2

|x− y|
d(x)

≥ 1

2

(
ejD(x,y) − 1

)
≥ 1

2

(
ekD(x,y)/U − 1

)
,

where U is the uniformity constant of the domain D. Assume now that kD(x, y) ≥
2nU log(1 + 2es) where s is the constant of uniform perfectness of the domain D.
Then this condition together with (3.19) yields

(3.20)
|y − z|
|x− z|

≥ ekD(x,y)/(2U) ≥ (1 + 2es)n.

Write m = |x− z|, M = |y − z| and t = m1/nM1−1/n. Then t ∈ (m,M) and M/t =
(M/m)1/n ≥ 1 + 2es. Let [a, x] = {au + x(1− u) : 0 ≤ u ≤ 1}, A = ∂D \ Bn(x, t),
and let Γt = ∆([a, x], A) be the family of all curves joining [a, x] to A. From Lemma
2.8 and [V1, 7.5] it follows that

C log
M

t
≤M(fΓt) ≤ KM(Γt)ωn−1

(
log

t

m

)1−n

,

and hence

(3.21) K ≥ dn

(
log

M

m

)n
; dn = C(n, s)(n− 1)n−1/(ωn−1n

n),

where C(n, s) depends only on s and n, and ωn−1 depends only on n. Combining
(3.21) and the first inequality of (3.20), we have

K ≥ dn(2U)−nkD(x, y)n

for kD(x, y) ≥ 2nU log(1 + 2es). Since K ≥ 1, it is clear that

K ≥ kD(x, y)n/(2nU log(1 + 2es))n

for kD(x, y) < 2nU log(1 + 2es). Hence in all cases

K ≥ c2(n,D)kD(x, y)n,

where c2(n,D) = min{dn(2U)−n, (2nU log(1 + 2es))−n}. �

Next we study the distortion of K–quasiconformal mappings f : Rn → Rn with
the property

(3.22) f(te1) = te1 for all t ∈ R.
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The following theorem improves the result of [FV, Theorem 1.6]. Observe that the
constant in the theorem tends to one when K goes to 1.

3.23. Theorem. Let f : Rn → Rn be a K–quasiconformal mapping which keeps the
x1–axis pointwise fixed. If K > 1, then

|f(x)| ≤
(
λ2β−2
n

ββ

(β − 1)β−1
− λ2−2β (β − 1)β+1

4ββ

)
|x|

for all x ∈ Rn where β = K1/(n−1) and λn is the Grötzsch ring constant.

Proof. We may assume that x 6= 0 and f(x) is in the left half space (first coordinate
non-positive). For fixed s > 0 let h : Rn → Rn be the Möbius transformation
which takes f(x), 0, se1, ∞ onto −e1, −y, y, e1, respectively, where |y| < 1. We
consider the ring R′ whose complement consists of E = h−1([−y, y]) and F =
h−1([−e1,∞] ∪ [e1,∞]). By [AVV2, Theorem 15.9], we have

capR′ ≤ τn

(
|f(x)/s|+ |f(x)/s− e1| − 1

2

)
≤ τn

(
|f(x)/s|+

√
|f(x)/s|2 + 1− 1

2

)
,(3.24)

where the second inequality follows from the inequality |f(x)− se1|2 ≥ |f(x)|2 + s2

and the monotonicity of τn. On the other hand, we put R = f−1(R′) and conclude
by [AVV2, Theorem 8.44]

(3.25) capR ≥ τn

(
|x|
s

)
.

Inequalities (3.24), (3.25), and capR ≤ KcapR′ then yield

|f(x)|
|x|

t+

√(
|f(x)|
|x|

t

)2

+ 1 ≤ 2ηK,n(t) + 1, t =
|x|
s
.

Hence
|f(x)|
|x|

≤ (2ηK,n(t) + 1)2 − 1

2(2ηK,n(t) + 1)t

<
(ηK,n(t) + 1)2 − 1/4

(ηK,n(t) + 1)t

≤ λ2(β−1)
n

(1 + t)β

t
− λ2(1−β)

4(1 + t)βt
,(3.26)

where (3.26) follows from the formula (2.6) and the second inequality in (2.5). The
choice of t = 1/(β − 1) yields

|f(x)|
|x|

≤ λ2β−2
n

ββ

(β − 1)β−1
− λ2−2β (β − 1)β+1

4ββ
,

and the theorem is proved. �
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3.27. Proof of Theorem 1.10. Let us extend f identically outside the unit ball.
For R > 1 let h(x) = x/R, then

g := h ◦ f ◦ h−1 : Bn → Bn

is a K–quasiconformal mapping. By applying the following well-known inequality
[MRV, 3.1] (also see [Vu2, 3.3])

tanh
ρ(f(x), f(y))

2
≤ ϕK,n

(
tanh

ρ(x, y)

2

)
and the estimate for the hyperbolic metric [Vu3, Exercise 2.52(1)]

|x− y|
1 + |x||y|

≤ tanh
ρ(x, y)

2
≤ |x− y|

1− |x||y|
to the mapping g and points x/R, y/R for x, y ∈ Bn, we have

|f(x)/R− f(y)/R|
1 + |f(x)||f(y)|/R2

≤ ϕK,n

(
|x/R− y/R|
1− |x||y|/R2

)
.

Hence by (2.4)

|f(x)− f(y)| ≤ λ1−α
n

R + |f(x)||f(y)|/R
(R− |x||y|/R)α

|x− y|α

≤ λ1−α
n A(R)|x− y|α,(3.28)

where

A(R) =
R +R−1

(R−R−1)α
.

It is easy to check that A(1+) =∞ = A(∞) and

R0 =

√
1 +
√
α

1−
√
α

is the unique value of R in the interval (1,∞) such that A′(R) = 0. Hence we have

C(α) := min
1<R<∞

A(R) = A(R0) = 21−αα−α/2(1− α)(α−1)/2.

Since the inequality (3.28) holds for all R > 1, we get

|f(x)− f(y)| ≤ λ1−α
n C(α)|x− y|α.

It is easy to see that C(1−) = 1, and hence M1(n,K) = λ1−α
n C(α)→ 1 as K → 1.

�

Applying the above theorem to the inverse of f , we have the following corollary.

3.29. Corollary. If f ∈ IdK(∂Bn), then for all x, y ∈ Bn

1

M2(n,K)
|x− y|1/α ≤ |f(x)− f(y)| ≤M2(n,K)|x− y|α

where M2(n,K) = M1(n,K)1/α.
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The following figure shows some upper bounds for Mori’s constant, and it should
be noted that the first three bounds hold for all quasiconformal self-maps of the unit
ball with the origin fixed but without the additional condition of identity boundary
values, while the fourth bound holds for all quasiconformal self-maps of the unit ball
with identity boundary values but without the condition of the origin fixed. Note
that the figure shows the logarithms of the bounds.

Figure 4. Graphical comparison of various bounds when n = 2 and
λ2 = 4, as a function of K: (a) the Fehlmann and Vuorinen bound
[FV]

FV (2, K) =

(
1 + ϕ2,K

(
K2 − 1

K2 + 1

))
22K−3/K (K2 + 1)(K+1/K)/2

(K2 − 1)(K−1/K)/2
,

(b) the Bhayo and Vuorinen bound [BV, 1.8, for n = 2], valid for
K ∈ (1, K1), K1 = 4/3,

BV (2, K) = 31−1/K2

41−1/K−1/K2

K2(K2 − 1)1/K2−1,

(c) Mori’s conjectured bound 161−1/K , (d) the bound M1(2, K) from
Theorem 1.10.

3.30. Remark. In [MV, Remark 3.15], it is proved that

ϕK,2(r) ≤ 2ϕK,2

(√
1 + r

2

)2

− 1

for all r ∈ [0, 1]. Writing A(r, s) =
√

(r + s)/2, then the authors conjectured that
(3.31) A(ϕK,2(r), ϕK,2(s)) ≤ ϕK,2(A(r, s))

holds for all r, s ∈ [0, 1]. In fact, by [WZC]

A(ϕK,2(r), ϕK,2(s))2 ≤ ϕK,2(A(r, s)2),

and by [AVV2, Theorem 10.15]

ϕK,2(A(r, s)2)1/2 ≤ ϕK,2(A(r, s)).
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Now these two inequalities imply (3.31).
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