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VECTOR VALUED INEQUALITIES FOR FAMILIES OF BILINEAR

HILBERT TRANSFORMS AND APPLICATIONS TO BI-PARAMETER

PROBLEMS

PRABATH SILVA

Abstract. Muscalu, Pipher, Tao and Thiele [6] showed that the tensor product between
two one dimensional paraproducts (also known as bi-parameter paraproduct) satisfies
all the expected L

p bounds. In the same paper they showed that the tensor product
between two bilinear Hilbert transforms is unbounded in any range. They also raised
the question about Lp boundedness of the bilinear Hilbert transform tensor product with
a paraproduct. We answer their question by obtaining a wide range of estimates for this
hybrid bilinear operator. Our method relies on new vector valued estimates for a family
of bilinear Hilbert transforms.

1. Introduction

Let Γ1 and Γ2 be linear subspaces of R2, and consider the smooth symbol m : R4 → C
which satisfies the condition

(1) |∂αξ ∂
β
ηm(ξ, η)| .

1

dist(ξ, Γ1)α
1

dist(η, Γ2)β

for ξ /∈ Γ1, η 6∈ Γ2. Consider the bilinear operator Tm associated to m defined by

(2) Tm(f, g)(x, y) =

∫

m(ξ, η)f̂(ξ1, η1)ĝ(ξ2, η2)e
2πi(x,y)·((ξ1,η1)+(ξ2,η2))dξdη,

where f̂ denotes the Fourier transform of f ,

f̂(ξ, η) =

∫

R2

f(x, y)e−i(x,y)·(ξ,η)dxdy.

When dim(Γ1) = dim(Γ2) = 0 the operator Tm is called a bi-parameter paraproduct
and the following theorem is proved in [6]:

Theorem 1.1 (Bi-parameter Paraproduct). Consider m and Tm defined as above with
dim(Γ1) = dim(Γ2) = 0. Then Tm maps Lp × Lq into Lr when 1

p
+ 1

q
= 1

r
and p, q > 1.

The double bilinear Hilbert transform corresponds to the case when dim(Γ1) = dim(Γ2) =
1. A prototypical example is when m(ξ, η) = sgn(ξ1−ξ2)sgn(η1−η2), in which case there
is a nice kernel representation

Tm(f, g)(x, y) =

∫ ∫

R2

f(x+ t, y + s)g(x− t, y − s)
dt

t

ds

s
.

It was proved in [6] that this operator does not satisfy any Lp estimates. This is a bit
surprising, since this operator can be thought of as being a tensor product -in a bilinear
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setting- of two bilinear Hilbert transforms

B(f, g)(z) =

∫

R

f(z + t)g(z − t)
dt

t
.

We recall the celebrated theorem proved in [5].

Theorem 1.2. The bilinear Hilbert transform maps Lp×Lq into Lr when 1
p
+ 1

q
= 1

r
with

p, q > 1, r > 2
3
.

In this paper we consider the case dim(Γ1) = 1, dim(Γ2) = 0. We call Γ1 non degenerate
when Γ1 6= R × {0}, {0} × R; the analysis in the degenerate cases is easier and we omit
it. In the non degenerate case we can view Tm as a tensor product between the bilinear
Hilbert transform and a paraproduct. We will denote this operator by BP for the rest of
the paper.

We prove the following Lp estimates for BP . This answers Question 8.2 in [6].

Theorem 1.3 (Main Theorem). The operator BP maps Lp × Lq into Lr with 1
p
+ 1

q
= 1

r

and p, q > 1, 1
p
+ 2

q
< 2, 1

q
+ 2

p
< 2.

α3 = 1

α3 =
1
2

α3 = 0

α3 = −1
2

α2 = −1
2

α2 = 0

α2 =
1
2

α2 = 1

α1 = 1 α1 =
1
2 α1 = 0α1 = −1

2

Figure 1. Range of exponents for T.

Remark 1.4. Figure 1 shows the full range of exponents in the plane α1 + α2 + α3 = 1;
there α1 = 1

p
, α2 = 1

q
, α3 = 1

r′
while r′ denotes the dual exponent of r. Note that this

range of exponents includes the Banach triangle, that is the range p, q, r > 1.

We prove Theorem 1.3 in Section 9 . To illustrate the main circle of ideas behind the
proof of Theorem 1.3, we first prove the less technically involved local L2 case in sections
7 and 8.
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We would like to point out the fact that Theorem 1.3 has resisted many attempts by
various mathematicians to employ time-frequency techniques with product theory fla-
vor. These techniques include product trees, product BMO, product John-Nirenberg and
Journe’s lemma. While the approach in [6] relies, at the very minimum, on the bounded-
ness of the square function on the bi-disk, our whole approach in this paper only assumes
the boundedness of the strong maximal function. Thus our methods are very one dimen-
sional in nature.

The proof of Theorem 1.3 uses vector valued estimates for the single scale operators
BPj defined below.

We start by recalling the Littlewood-Paley decomposition. Let φ be a smooth bump
function with 1(−1,1) ≤ φ ≤ 1(− 21

20
, 21
20

) and let ψ(x) = φ(x/2)− φ(x). Now we have

1R = φ+
∑

j≥1

ψj

1R\{0} =
∑

j∈Z

ψj

where φj and ψj are L
∞ dilations defined by φj(x) = φ( x

2j
) and ψj(x) = ψ( x

2j
). Note also

that supp ψj ⊂ [−2j+2,−2j] ∪ [2j, 2j+2].

Definition 1.5. We define the Littlewood-Paley frequency projections at scale 2j in the
second coordinate by

Π l
jf =

(

f̂(ξ, η)ψj(η)
)∨

Πo
j f =

(

f̂(ξ, η)φj(η)
)∨

.

Define also the single scale operators

(3) BPj(f, g) = BPj(Π
o
j f,Π

l
jg).

The following vector valued estimates proved in Section 8 are the key ingredient in
dealing with the local L2 case of Theorem 1.3.

Theorem 1.6. Let f = {fj}, g = {gj} be sequences of complex valued functions on R2.
Then we have the following estimate for 2 < p, q, r′ <∞,

(4) ‖ {BPj(fj , gj)}j ‖Lr(l2) . ‖f‖Lp(l∞) ‖g‖Lq(l2)

When using BPj to get estimates for BP it is important to note that BPj is not
symmetric with respect to the entries f and g, in fact this is one of the main issues that
we have to deal with when we prove the main Theorem 1.3. Also, when we apply Theorem
1.6 to get estimates for BP we take fj, gj to be Littlewood-Paley frequency projections,
and so it is important to work with l2 and l∞. These are in fact the only two lp spaces
that will have a relevance for proving the main Theorem 1.3.

However, our methods can prove estimates in a larger range as we see below, see also
Figures 5, 6 and 7. First for 4

3
< R < 4 define,

(5) AR =

{

α ∈ π0 : 0 < α1 < 1− 4

∣

∣

∣

∣

1

2
−

1

R

∣

∣

∣

∣

, |α2 − α3| < 1− 2

∣

∣

∣

∣

1

2
−

1

R

∣

∣

∣

∣

}

.

We refer the reader to Definition 3.1 for π0.
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Theorem 1.7. We have

(6) ‖ {BPj(fj, gj)j} ‖Lr(lR) . ‖f‖Lp(l∞) ‖g‖Lq(lR)

when 1
p
+ 1

q
= 1

r
, p, q > 1, 4

3
< R < 4, and (1

p
, 1
q
, 1
r′
) ∈ AR.

We prove an interpolation result in Section 4, which allow us to interpolate inner
spaces lP using complex interpolation and outer spaces Lp using generalized restricted
type interpolation. We use this interpolation result to get estimates in some even larger
range.

To see this extension, let us introduce some notation. For α = (α1, α2, α3) ∈ π0, we
define ᾱ = (α2, α1, α3). Next for given

4
3
< R < 4 define AR ⊂ π0 × π0 by,

AR = {(α, α) : α = (0,
1

R
,
1

R′
), α ∈ AR}.

We define AR ⊂ π0 × π0 by

(7) AR = {(α, α) : (α, α) ∈ AR or (ᾱ, ᾱ) ∈ AR}

and let Converx(B) denote the convex hull of a set B.

Theorem 1.8. We have

(8)

∥

∥

∥

∥

(

∑

|BPj(fj , gj)|
R
)

1
R

∥

∥

∥

∥

r

.

∥

∥

∥

∥

(

∑

|fj|
P
)

1
P

∥

∥

∥

∥

p

∥

∥

∥

∥

(

∑

|gj|
Q
)

1
Q

∥

∥

∥

∥

q

for 1
p
+ 1

q
= 1

r
with p, q > 1 and 1

P
+ 1

Q
= 1

R
, P,Q > 1, 4

3
< R < 4 and ( 1

P
, 1
Q
, 1
R′ ,

1
p
, 1
q
, 1
r′
) =

(α, α) ∈ Convex(AR).

Our methods reduce the vector valued inequalities to estimates for single operators BPj.
We use the fact that each operator BPj satisfies certain time frequency estimates outside
appropriate exceptional sets. In these regards, our approach bears some resemblance to
the argument in [1], though the bilinear nature of our estimates creates new difficulties.
One of these difficulties is encountered in the proof of estimates outside the Banach
triangle, in Section 9. The fact that one can have estimates below L1 is a feature unique
to the multilinear setting. The unboundedness of the Littlewood-Paley square function
below L1 calls for extra care in the argument.

We close this preliminary discussion by putting our results in a more general framework.
Let us consider a family of kernels Kj which satisfy the decay estimates,

(9) |∂αK̂j(ξ)| ≤
Cα

|ξ|α

for α ∈ N, where Cα is independent of j. Define the bilinear operator Bj associated to
the kernel Kj by

(10) Bj(f, g)(x) =

∫

R

f(x− t)g(x+ t)Kj(t)dt.

A particular example is K(t) = 1/t. And indeed, all these operators fall under the scope
of Theorem 1.2, and satisfy the same estimates, uniformly in j.

We have the following vector valued version of Theorem 1.2 for the family Bj of bilinear
Hilbert transforms.
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Theorem 1.9. We have

(11)

∥

∥

∥

∥

(

∑

|Bj(fj , gj)|
R
)

1
R

∥

∥

∥

∥

r

.

∥

∥

∥

∥

(

∑

|fj|
P
)

1
P

∥

∥

∥

∥

p

∥

∥

∥

∥

(

∑

|gj|
Q
)

1
Q

∥

∥

∥

∥

q

for 1
p
+ 1

q
= 1

r
with p, q > 1 and 1

P
+ 1

Q
= 1

R
, P,Q > 1, 4

3
< R < 4 and ( 1

P
, 1
Q
, 1
R′ ,

1
p
, 1
q
, 1
r′
) =

(α, α) ∈ Convex(AR).

Let us mention that in the one kernel case Kj = K, the above estimate when P = Q =
R = 2, p, q > 1 and r > 2

3
, follows immediately from Theorem 1.2, using the standard

randomization argument. This has been observed in [3]. We point out again that in order
to derive our main application, Theorem 1.3, we need to work with families of kernels
Kj , rather than just one kernel. This necessity comes in part from the presence of the
coefficients ǫs in (28). Equally importantly, due to the presence of one overlapping index,
working with just l2 is not enough for our purposes. We need to bring the l∞ space into
the picture.

By using the methods in this paper, we can recover part of the range from [6], for
the bi-parameter paraproduct. More precisely, we can show that Theorem 1.1 holds true
under the additional restriction r > 3

2
.

An interesting question is whether the range in Theorem 1.3 can be pushed to match
that from Theorem 1.2. While this is somewhat natural to expect, our methods do not
seem to shed light on this issue.

1.1. Acknowledgements: The author would like to thank his thesis advisor, Ciprian
Demeter, for his guidance and many helpful conversations about this problem.

2. Notation

In this section we introduce some notation that we use throughout the paper. We use
A . B to denote A ≤ CB, where C is a large absolute constant.

Given a cube Q ⊂ Rn (or a rectangle R ⊂ R2) we denote the measure of Q (or R) by
|Q| (or |R|). The side length of Q is denoted by l(Q), and we use cQ to denote the cube
with the same center as Q and c times the side length.

Given I ⊂ R, we define the cutoff function χ̃I by

(12) χ̃I(x) = (1 + (
|x− xI |

|I|
)2)−1/2,

where xI is the center of I.
We use M1f to denote the Hardy-Littlewood maximal function of f on R, and use Mf

to denote the strong maximal function on R2. We useMr for r ≥ 1 to denote the maximal
function defined by

Mrf = (M |f |r)1/r .

Let c(p, q, r) be a small but positive absolute constant depending only on (p, q, r). We use
ǫ to denote a small number dependent on p, q, r such that ǫ > c(p, q, r). We caution the
reader that our ǫ can change from line to line in our argument.
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3. Interpolation

In this section we go over the real interpolation theorems which are used in the paper.
From now, x may refer to an element of either R or R2. First, for a bilinear operator T
define the associated trilinear form Λ = ΛT of T by

Λ(f, g, h) =

∫

T (f, g)(x)h(x)dx.

We recall the generalized restricted type interpolation results for bilinear operators [7],
(see also [9]). These reduce the proof of Lp estimates for bilinear operators to proving
the so called generalized restricted type estimates for the associated trilinear forms. Then
we prove a bilinear variant of the interpolation used in [1], which reduces vector valued
estimates for a family of bilinear operators to a family of estimates for the operators in
the family.

Definition 3.1. A triple α = (α1, α2, α3) is called admissible, if

−∞ < αi < 1

for all 1 ≤ i ≤ 3,

α1 + α2 + α3 = 1

and there is at most one index j such that αj < 0. We call an index good if αi > 0, and
call it bad if αi ≤ 0. We denote the set of admissible triples by π0.

We denote the set of admissible triples without a bad index by π1, and we also call such
triples local L1 triples.

The set of admissible triples with

0 < αi < 1/2

for all 1 ≤ i ≤ 3 is denoted by π2, and we also call such triples local L2 triples.

Definition 3.2. If E is a subset of finite measure of either R or R2, we denote by X(E)
the space of all measurable complex valued functions f on R2 (or R) such that |f | ≤ 1E.

Definition 3.3. Let E,E ′ be sets with finite measure. We say that E ′ is a major subset
of E if E ′ ⊂ E and |E ′| ≥ 1

2
|E|. Given a triple E = (E1, E2, E3) and α ∈ π0, we say

E ′ = (E ′
1, E

′
2, E

′
3) is a major triple of (E, α) if there is an index j ∈ {1, 2, 3} such that for

i 6= j we have E ′
i = Ei, E

′
j is a major subset of Ej, and if α ∈ π0 \ π1, then j is the bad

index of α. Also we refer to Ej \ E
′
j as an exceptional set of Ej.

Definition 3.4. If α ∈ π0 we say that a trilinear form Λ is of generalized restricted type
α with constant K if for triple E = (E1, E2, E3) there exists a major triple E ′ of (E, α)
such that

(13) |Λ(f1, f2, f3)| ≤ K|E|α

for all functions fi ∈ X(E ′
i), i = 1, 2, 3. Here and in the rest of the paper |E|α :=

|E1|
α1 |E2|

α2 |E3|
α3.

If Λ is of generalized restricted type α for α ∈ π1, we also say Λ is of restricted type α.

We record the following lemma ([9], Lemma 3.5), whose proof follows immediately by
simply taking a geometric mean.
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Lemma 3.5 (Convexity). Let A ⊂ π0. If Λ is generalized restricted type α for α ∈ A
with constant K, and the choice of index j and the major subset E ′

j is independent of α,
then Λ is generalized restricted type β for β ∈ Convex(A) with the same constant K.

Remark 3.6. If Λ is restricted type α ∈ π1 with constant K, then by using induction we
can get (13) for E ′ = E with constant CαK. We will typically use this fact together with
Lemma 3.5, when A = {α, α0} and α0 ∈ π1, α ∈ π0 \ π1.

We first state the restricted type interpolation theorem. In our proofs interpolation
constants play an important role so we state interpolation theorems with the constants.

Theorem 3.7. Let α ∈ π1 and let T be a bilinear operator. If the associated trilinear
form ΛT is restricted type β ∈ π1 in a neighborhood of α with constant K, then we have

‖T (f, g)‖r . K‖f‖p‖g‖q;

here (1
p
, 1
q
, 1
r′
) = α and 1

r′
+ 1

r
= 1.

Next we state the generalized restricted type interpolation theorem from [7], see also
Theorem 3.8 in [9].

Theorem 3.8. Let α ∈ π0 \ π1 with first two indices good and let T be a bilinear oper-
ator such that the associated trilinear form ΛT is generalized restricted type β ∈ π0 in a
neighborhood of α with constant K. Then we have

‖T (f, g)‖r . K‖f‖p‖g‖q;

here (1
p
, 1
q
, 1
r′
) = α and 1

r′
+ 1

r
= 1.

Note that according to Lemma 3.5, to get (generalized) restricted type in a neighbor-
hood of a point α, it suffices to check this property for only three points whose open
convex hull contains α. We will use this observation a few times in our arguments.

Theorems 3.8 and 3.7 are about complex valued functions. It turns out that the same
proofs will apply, with no essential modifications, to the case when C is replaced by general
Banach spaces. We rewrite Theorem 3.8 and Theorem 3.7 in the case these Banach spaces
are lP spaces, which is the case of interest for our applications. See Lemma 3.10 and 3.11
below.

Definition 3.9. For 0 < P ≤ ∞ and for a subset E of Rn with finite measure, we denote
by XP (E) the space of all sequences of complex valued functions f = {fj} on Rn such

that ‖f(x)‖lP =
(
∑

|fj(x)|
P
)

1
P ∈ X(E).

Lemma 3.10. Let α ∈ π1 and let T = {Tj} be a sequence of bilinear operators. If the
following restricted type condition holds for β ∈ π1 in a neighborhood of α with constant
K independent of β—

For every triple E = (E1, E2, E3) there exists a major triple E ′ = (E ′
1, E

′
2, E

′
3)

of (E, β) such that

(14) |

∫

(

∑

|Tj(fj , gj)|
2
)

1
2
(x)h(x)dx| ≤ K|E|β

for all sequences of functions f = {fj} ∈ X∞(E ′
1), g = {gj} ∈ X2(E

′
2), and

h ∈ X(E ′
3)—



8 PRABATH SILVA

then we have

‖T (f, g)‖Lr(l2) := ‖‖ {Tj(fj, gj)} ‖l2‖r . K ‖f‖Lp(l∞) ‖g‖Lq(l2) ,

where (1
p
, 1
q
, 1
r′
) = α and 1

r′
+ 1

r
= 1.

Note that Remark 3.6 applies here too.

Lemma 3.11. Let α ∈ π0 \π1 with first two indices good, and let T = {Tj} be a sequence
of bilinear operators, which is restricted type α0 for some α0 ∈ π1 as in Lemma 3.10. If
the following generalized restricted type condition holds for β ∈ π0 in a neighborhood of α
with constant K independent of β—

For every triple E = (E1, E2, E3) there exists a major triple E ′ = (E ′
1, E

′
2, E

′
3)

of (E, β) such that

(15) |

∫

(

∑

|Tj(fj , gj)|
2
)

1
2

(x)h(x)dx| ≤ K|E|β

for all sequences of functions f = {fj} ∈ X∞(E ′
1), g = {gj} ∈ X2(E

′
2), and

h ∈ X(E ′
3)—

then we have,

‖T (f, g)‖Lr(l2) = ‖‖ {Tj(fj , gj)} ‖l2‖r . K ‖f‖Lp(l∞) ‖g‖Lq(l2) ,

where (1
p
, 1
q
, 1
r′
) = α and 1

r′
+ 1

r
= 1.

At this point we say a few words about how the previous lemmas will be used. The
above vector valued estimate (15) can be further reduced to showing estimates for single
operators. More precisely, we will rely on the simple Hölder estimate

|〈
(

∑

|Tj(fj , gj)|
2
)

1
2
, h〉| .

(

∑

j

∫

|Tj(fj, gj)|
21E′

3

)
1
2

|E3|
1
2

which separates the contributions for individual j terms. Thus, (15) will follow if we can
prove that, uniformly in j

(16) ||Tj(fj1E′
1
, gj1E′

2
)1E′

3
||2 ≤ KK ′‖fj‖∞‖gj‖2

where

(17) K ′ = K ′
β = |E1|

β1|E2|
β2−

1
2 |E3|

β3−
1
2 .

Define the bilinear operator by

(18) SE′

j (f, g) = Tj(f1E′
1
, g1E′

2
)1E′

3

To show (16), using Theorem 3.8, it is enough to show SE′

j is generalized restricted type

γ ∈ π0 with constant KK ′ for γ in a neighborhood of the point (0, 1
2
, 1
2
) ∈ π0. Similar

considerations apply to (14). We summarize our progress so far as follows

Lemma 3.12. Let α ∈ π1 and let T = {Tj} be a sequence of bilinear operators. Assume
there is a neighborhood V of α in π1 such that for each β ∈ V and each E = (E1, E2, E3)
there exists a major triple E ′ = (E ′

1, E
′
2, E

′
3) of (E, β) such that the associated trilinear
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forms for SE′

j are generalized restricted type γ for γ in some neighborhood of the point

(0, 1
2
, 1
2
), with constant KK ′

β. Then we have

‖T (f, g)‖Lr(l2) = ‖‖ {Tj(fj, gj)} ‖l2‖Lr . K ‖f‖Lp(l∞) ‖g‖Lq(l2) ,

where (1
p
, 1
q
, 1
r′
) = α and 1

r′
+ 1

r
= 1.

Lemma 3.13. Let α ∈ π0 with first two indices good and let T = {Tj} be a sequence of
bilinear operators. Assume there is a neighborhood V of α in π0 such that for each β ∈ V
and each E = (E1, E2, E3) there exists a major triple E ′ = (E ′

1, E
′
2, E

′
3) of (E, β) such

that the associated trilinear forms for SE′

j are generalized restricted type γ for γ in some

neighborhood of the point (0, 1
2
, 1
2
), with constant KK ′

β. Then we have

‖T (f, g)‖Lr(l2) = ‖‖ {Tj(fj, gj)} ‖l2‖Lr . K ‖f‖Lp(l∞) ‖g‖Lq(l2) ,

where (1
p
, 1
q
, 1
r′
) = α and 1

r′
+ 1

r
= 1.

4. Generalized restricted type interpolation for operators taking

values in LP spaces with mixed norms

Next we further generalize the interpolation Lemmas 3.10, 3.11 by replacing inner spaces
l2, l∞ by LP spaces with mixed norms [2], and interpolate between those inner spaces.
Interpolation in inner spaces is done using complex interpolation [2] while interpolation
in the outer spaces (Lp) is done using generalized restricted type interpolation. We start
by recalling LP spaces with mixed norms from [2].

Definition 4.1. Let (Xi, µi), for 1 ≤ i ≤ n be some totally σ-finite measure spaces and
let P = (p1, . . . , pn) be some n-tuple with 1 ≤ pi ≤ ∞. Let (X, µ) =

∏

Xi be the product
space and let f = f(x1, x2, . . . , xn) be a measurable function on X. Define ‖f‖P by taking
Lpi norms successively,

‖f‖P = ‖ . . . ‖ . . . ‖f‖Lp1 (X1) . . . ‖Lpi(Xi) . . . ‖Lpn (Xn)

We denote the space of those f with finite ‖f‖P by LP (X).

In this section we use P,Q,R to denote n-tuples as in Definition 4.1. We use the notation
~α = ( 1

P
, 1
Q
, 1
R
) to denote ~α ∈ πn

1 where ~α = (α[1], α[2], . . . , α[n]) and α[i] = ( 1
pi
, 1
qi
, 1
ri
). Note

that we have nested sequence of sets Im = A1,m ×A2,m × · · · ×An,m, with Ai,m ⊂ Xi and
µi(Ai,m) < ∞ and ∪mIm = X. Following the notations from [2], we denote by H(X) the
set of all functions of the form

∑

k ck1Bk
where sum is over finitely many k and ∪kBk ⊂ Im

for some m and Bk is of the form Bk = B1,k ×B2,k × · · · × Bn,k.
We record the following fact [2] about LP . Let 1 ≤ P < ∞, that is 1 ≤ pi < ∞ for

1 ≤ i ≤ n. Then we have

(19) ‖f‖P = sup
g∈H(X)

∫

fgdµ

where the supremum is taken over g with ‖g‖P ′ ≤ 1.
Now we consider functions F (x, t) = F (x1, x2, . . . , xn, t) defined in X × Rm. For 0 <

p ≤ ∞ we denote

‖F‖Lp(LP ) = ‖‖F‖LP (t)‖Lp.
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Now we define the analogue of XP (E) in this settings. For 0 < P ≤ ∞, that is
1 ≤ pi <∞ for 1 ≤ i ≤ n and for a set E with finite measure we set

(20) XLP (E) = {F ∈ L∞(LP ) : F ∈ H(X × Rm), ‖F‖LP (t) ≤ 1E(t)}.

Now for a bilinear operator T (F,G)(x, t) we define the associated trilinear form by,

Λ(F,G,H) =

∫

T (F,G)(x, t)H(x, t)dµ(x)dt

Definition 4.2. If (~α, α) ∈ πn
1 × π0, we say that a trilinear form Λ is of generalized

restricted type (~α, α) with constant K if for triple E = (E1, E2, E3) there exists a major
triple E ′ of (E, α) such that

(21) |Λ(F1, F2, F3)| . K|E|α

for all functions Fi ∈ XLPi (E
′
i), i = 1, 2, 3, where ~α = ( 1

P1
, 1
P2
, 1
P3
) and |E|α = |E1|

α1 |E2|
α2 |E3|

α3.

If Λ is of generalized restricted type (~α, α) for α ∈ π1 we say Λ is of restricted type
(~α, α).

Note that Remark 3.6 still holds in this situation. Also note that we for Fi ∈ XLPi (E
′
i), i =

1, 2, by using (19) we have,

(22) sup
F3∈X

L
P3

(E′
3)

|Λ(F1, F2, F3)| ∼

∫

‖T (F1, F2)‖LP ′
3
(t)1E′

3
(t)dt.

Compare this with the generalized restricted type condition in Lemma 3.11. Note also
that Definition 4.2 allows us to use the linearity of T in inner space, which allow us to
use complex interpolation methods to interpolate between inner spaces. We prove the
following version of Lemma 3.5. The proof is a combination of the proof of the inter-
polation theorem from [2], and the proof of the convexity Lemma 3.5. Also note that
usually in complex interpolation we use strong endpoints but in here we have weak end-
point estimates, getting strong end points is done by next two real interpolation theorems,
Theorems 4.4 and 4.5.

Lemma 4.3. If Λ is generalized restricted type (~α, α) and (~β, β) with constant K1 and K2

respectively, with the same choice of index j and the major subset E ′
j , then Λ is generalized

restricted type ([~α, ~β]θ, [α, β]θ) with the constant K1−θ
1 Kθ

2 , where [α, β]θ = (1 − θ)α + θβ

and θ ∈ (0, 1), [~α, ~β]θ is defined similarly.

Proof of Lemma 4.3: Let ~α = ( 1
P1
, 1
Q1
, 1
R1
), ~β = ( 1

P2
, 1
Q2
, 1
R2
), [~α, ~β]θ = ~γ = ( 1

P
, 1
Q
, 1
R
), and

P = (p1, p2, . . . , pn). Let E = (E1, E2, E3) be a triple, and E ′ = (E ′
1, E

′
2, E

′
3) be a triple

given by the generalized restricted type conditions. Let F1 ∈ XLP (E ′
1), F2 ∈ XLQ(E ′

2),
and F3 ∈ XLR(E ′

3).
Consider the strip S = {z : 0 < Re(z) < 1}. We define the following tuples by,

(23) P (z) = (1− z)
P

P1
+ z

P

P2
, Q(z) = (1− z)

Q

Q1
+ z

Q

Q2
, R(z) = (1− z)

R

R1
+ z

R

R2
.

Notice that P (θ) = Q(θ) = R(θ) = (1, . . . , 1) ∈ Zn. Next we define a family of functions
F z for z ∈ S̄. First define the “projections” F z

i of F , for 1 ≤ i ≤ n− 1,
(24)

F z
i (xi+1, . . . , xn, t) =

(

‖ . . . ‖F (x1, . . . , xi, xi+1, . . . , xn, t)‖Lp1 (X1) . . . ‖Lpi(Xi)

)pi+1(z)−p1(z)
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where P (z) = (p1(z), . . . , pn(z)). Now define,

(25) F z(x, t) = |F (x, t)|p1(z)(Sign F )
m−1
∏

i=1

F z
i .

Note that F z ∈ H(X×Rm), F θ = F , F iy ∈ XLP1 (E
′
1), and F

1+iy ∈ XLP2 (E
′
1). Similarly

define Gz and Hz. Now define Ψ (z) = Λ(F z, Gz, Hz) using linearity of Λ and the fact
that F z, Gz, Hz ∈ H(X ×Rm), we get that Ψ is analytic in the strip S and continuous in
S̄.

Now using the generalized restricted type (~α, α) condition for z ∈ S̄ with Re(s) = 0 we
get,

|Ψ (z)| = |Λ(F z, Gz, Hz)| ≤ K1|E|
α.

Similarly for z ∈ S̄ with Re(s) = 1 we get,

|Ψ (z)| = |Λ(F z, Gz, Hz)| ≤ K2|E|
β.

Now using Hadamard’s three lines lemma we get,

|Ψ (z)| = |Λ(F z, Gz, Hz)| ≤ K1−θ
1 Kθ

2 |E|
[α,β]θ .

when Re(z) = θ. Now taking z = θ completes the proof of Lemma 4.3.
Next we state the interpolation theorems in this setting, these two theorems are about

fixed inner spaces and they are simple generalizations of generalized restricted type inter-
polation theorems, Theorem 3.8 and 3.7.

Theorem 4.4. Let (~α, α) ∈ πn
1 × π1 and let T be a bilinear operator. If the associated

trilinear form ΛT is restricted type (~α, β) ∈ πn
1 × π1 for β ∈ π1 in a neighborhood of α

with constant K, then we have

‖T (F,G)‖Lr(LR) . K‖F‖Lp(LP )‖g‖Lq(LQ);

here (1
p
, 1
q
, 1
r′
) = α and 1

r′
+ 1

r
= 1 and ~α = ( 1

P
, 1
Q
, 1
R′ ).

Theorem 4.5. Let α ∈ π0 \π1 with first two good indices, ~α ∈ πn
1 , and let T be a bilinear

operator which is restricted type (~α, α0) for some α0 ∈ π1. If the associated trilinear form
ΛT is generalized restricted type (~α, β) for β ∈ π0 in a neighborhood of α with constant
K, then we have

‖T (F,G)‖Lr(LR) . K‖F‖Lp(LP )‖g‖Lq(LQ);

here (1
p
, 1
q
, 1
r′
) = α and 1

r′
+ 1

r
= 1 and ~α = ( 1

P
, 1
Q
, 1
R′ ).

First we show how to combine Lemma 4.3 with above Theorems. Let (~α, α), (~β, β),

(~γ, γ) ∈ πn
1 × π1 and (~δ, δ) be a point in the convex hull of {(~α, α), (~β, β), (~γ, γ)} with

convex hull of {α, β, γ} containing a neighborhood of δ. If T is generalized restricted type

(~α, α), (~β, β), and (~γ, γ) then using Lemma 4.3 we get that T is generalized restricted

type (~δ, δ). Having one such point is not enough to apply the Theorem 4.2. But if we
further assume that T is generalized restricted type (~α, α′) for α′ in a neighborhood of α

and similarly for the other two points (~β, β) and (~γ, γ), then by Lemma 4.3, we get that

T is generalized restricted type of (~δ, δ′) for δ′ in a neighborhood of δ, so we can apply
the above theorems now.
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We prove Theorem 4.5 now. Let v1 = (−2, 1, 1), v2 = (1,−2, 1), v3 = (1, 1,−2). Using
Lemma 4.3 we get that there exists µ > 0 such that T is generalized restricted type
(~α, α[i]) for i = 1, 2, 3 where α[i] = α + µvi. Denote ~α = ( 1

P
, 1
Q
, 1
R′ ) and α = (1

p
, 1
q
, 1
r′
).

Let F,G ∈ H(X × Rm), assume that ‖F‖LP (t), ‖G‖LQ(t) is supported in (0,∞) and
decreasing. For k1, k2 ∈ Z let

Fk1(x, t) = F (x, t)1[2k1 ,2k1+1]

and

Gk2(x, t) = G(x, t)1[2k2 ,2k2+1].

We have since r ≤ 1,

‖T (F,G)‖rLr(LR) =

∫

‖
∑

k1,k2∈Z

T (Fk1, Gk2)‖
r
LR(t)dt

≤
∑

k1,k2∈Z

∫

‖T (Fk1, Gk2)‖
r
LR(t)dt

Now assume ‖T (Fk1, Gk2)‖LR(t) is supported in (0,∞) and decreasing. So we get

‖T (F,G)‖rLr(LR) ≤
∑

k1,k2,k3∈Z

∫

‖T (Fk1, Gk2)‖
r
LR(t)1[2k3 ,2k3+1](t)dt

.
∑

k1,k2,k3∈Z

2k3(1−r)

(
∫

‖T (Fk1, Gk2)‖LR(t)1[2k3 ,2k3+1](t)dt

)r

.

Given triple

(26) E = ([2k1, 2k1+1], [2k2 , 2k2+1], [0, 2k1+1]),

let E ′
3 be the major set given by the generalized restricted type assumption, then we have

.
∑

k1,k2,k3∈Z

2k3(1−r)

(
∫

‖T (Fk1 , Gk2)‖LR(t)1E′
3
(t)dt

)r

.

Now using (19) we get Hk3 ∈ XLR′ (E ′
3) such that,

∫

‖T (Fk1, Gk2)‖LR(t)1E′
3
(t)dt .

∫

T (Fk1, Gk2)(x, t)Hk3(x, t)dxdt

Consider trilinear form given by

Λ(Fk1, Gk2, Hk3) =

∫

T (Fk1, Gk2)(x, t)Hk3(x, t)dxdt

Lets assume k1, k2 ≤ k3, other two cases follows similarly. Now using the fact that Λ is
generalized restricted type of (~α, α[3]), we get

|Λ(Fk1, Gk2, Hk3)| . |E|α
[3]

‖F‖LP (2k1)‖G‖LQ(2k2) = |E|α|E|µv3‖F‖LP (2k1)‖G‖LQ(2k2).
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now this with (26) we get,

∑

k1,k2≤k3

2k3(1−r)

(
∫

‖T (Fk1, Gk2)‖LR(t)1E′
3
(t)dt

)r

.
∑

k1,k2≤k3

‖F‖rLP (2
k1)‖G‖rLQ(2

k2)2
k1r
p 2

k2r
q |E|µrv3

=
∑

k̄1,k̄2≤0

2µk̄1r2µk̄2r
∑

k3

‖F‖rLP (2
k3+k̄1)‖G‖rLQ(2

k3+k̄2)2
(k3+k1)r

p 2
(k3+k2)r

q ,

here k̄i = ki − k3 for i = 1, 2. Now using the fact that
(
∑

2k‖F‖p
LP (2

k)
)1/p

. ‖F‖Lp(LP )

and similarly for G we get,

.
∑

k̄1,k̄2≤0

2µk̄1r2µk̄2r‖F‖rLp(LP )‖G‖
r
Lq(LQ) . ‖F‖rLp(LP )‖G‖

r
Lq(LQ).

This completes the proof of the Theorem 4.5.

5. Discretization

In this section we introduce the discrete model sums for the operator BP . First we
follow the notation and comments from [8] and introduce rank 1 collections of tri-tiles,
which are used in the decomposition of the bilinear Hilbert transform [5], [8]. We use
rank 1 collections in the decomposition of BP in the first coordinate. We also introduce
rank 0 collections of tri-tiles, which are used in the decomposition of the paraproduct,
and we use these in the decomposition of BP in the second coordinate.

Definition 5.1. Let n ≥ 1 and σ ∈ {1, 2, 3}n. We define the shifted n-dyadic mesh
D = Dn

σ to be the collection of cubes of the form

Dn
α = {2j(k + (0, 1)n + (−1)jσ) : j ∈ Z, k ∈ Zn}.

We define a shifted dyadic cube to be any member of a shifted n-dyadic mesh.

Note that for any cube Q there exists a shifted dyadic cube Q′ such that Q ⊂ 7
10
Q′ and

|Q′| ∼ |Q|.

Definition 5.2. A subset D′ of a shifted n-dyadic grid D is called sparse if for any two
cubes Q,Q′ ∈ D with Q 6= Q′ we have |Q| < |Q′| implies 109l(Q) < l(Q′) and |Q| = |Q′|
implies 109Q ∩ 109Q′ = ∅.

Note that any subset of shifted n−dyadic grid, say when n ≤ 3, can be split into O(1)
sparse subsets.

Definition 5.3 (Tri-tile). Let σ = (σ1, σ2, σ3) ∈ {0, 1, 3}3, and let 1 ≤ i ≤ 3. An i-tile
with shift σi is a rectangle P = IP ×ωP with area 1 and with IP ∈ D1

0, ωP ∈ D1
σi
. A tri-tile

with shift σ is a triple ~P = (P1, P2, P3) such that Pi is a i-tile with shift σi, and IPi
= I~P

is independent of i. The frequency cube Q~P of a tri-tile is defined to be
∏3

i=1 ωPi
.

Definition 5.4. A set ~P of tri-tiles is called sparse if all tri-tiles in ~P have the same shift

and the set {Q~P : ~P ∈ ~P} is sparse.
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Definition 5.5. Let P and P ′ be tiles. We write P ′ < P if IP ′ ( IP and 3ωP ⊂ 3ωP ′,
and P ′ ≤ P if P ′ < P or P ′ = P . We write P ′ . P if IP ′ ⊂ IP and 107ωP ⊂ 107ωP ′. We
write P ′ .′ P if P ′ . P and P ′ 6≤ P .

Definition 5.6 (Rank 1 collection of tri-tiles). A collection ~P of tri-tiles is said to have

rank 1 if one has the following properties for all ~P , ~P ′ ∈ ~P:

• If ωPj
= ωP ′

j
for some j ∈ {1, 2, 3}, then ωPi

= ωP ′
i
for all i ∈ {1, 2, 3}.

• If |I ~P ′| < |I~P | and P ′
j ≤ Pj for some j = 1, 2, 3, then P ′

i .′ Pi, for all i ∈
{1, 2, 3} \ {j}.

Next we define rank 0 collection of tri-tiles. With some minor modifications we can use
these collection of tri-tiles to decompose BP in the second coordinate.

Definition 5.7 (Rank 0 collection of tri-tiles). A collection ~P of tri-tiles is said to have

rank 0 if one has the following properties for all ~P ∈ ~P:

• There is at most one i = 1, 2, 3 such that 0 ∈ ωPi
, this i is called the overlapping

index of ~P .
• For non overlapping indexes i′ of ~P we have

ωPi′
=

(

1

|I~P |
,

2

|I~P |

)

.

Note that any rank 0 collection ~P of tri-tiles can be split into three sub collections

~P =

3
⋃

i=1

~P[i]

with each tri-tile ~P ∈ ~P[i] having overlapping index i, when it exists. We call the collection
~P[i] an i-overlapping collection of rank 0 tri-tiles. Note that we are allowing the tiles where
neither component is overlapping to be included in any of the collections.

Definition 5.8 (Wave packet on a tile). Let P be a tile. A wave packet on P is a smooth
function ϕP which has Fourier support in 9

10
ωP and obeys the estimates

|
dα

dxα
[e−ic(ωP x)ϕP (x)]| .M,α |IP |

− 1
2
−αχ̃M

IP
(x)

for all M > 0 and α ≥ 0.

Definition 5.9 (Product tiles). For pair of tri-tiles ~B = (B1, B2, B3), ~P = (P1, P2, P3)
define the product tri-tile by s = (s1, s2, s3) where the components si = Bi × Pi are called
product tiles. We call a smooth function ϕsi a wave packet associated with the product tile
si with spatial interval Rs = Is × Js if ϕsi has the Fourier support in 9

10
ωBi

× 9
10
ωPi

and

|∂αx∂
β
y [e

−ic(ωBi
)xe−ic(ωPi

)yϕ(x, y)]| .α,β,M |Is|
−α−1/2|Js|

−β−1/2χ̃M
Is (x)χ̃

M
Js (y).

Definition 5.10 (Collections of product tri-tiles). A collection of product tri-tiles, denoted
by S, is called sparse if

BS = { ~B : ~B × ~P ∈ S for some ~P}
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is a rank 1 sparse collection of tri-tiles, and

PS = {~P : ~B × ~P ∈ S for some ~B}

is a rank 0 collection of tri-tiles.
We call a sparse collection S[i] of product tri-tiles i-overlapping for some i = 1, 2, 3, if

PS[i] is a rank 0 collection of i-overlapping tri-tiles.

We call a collection S
[i]
j of product tri-tiles i-overlapping with scale j, if it is i-overlapping

as defined above and for all tri-tiles ~P ∈ P
S
[i]
j

we have |I~P | = 2−j. Note that in this case

we have ωPi′
= (2j, 2j+1) for i′ 6= i.

Note that any sparse collection S of product tri-tiles can be split into three sub collec-
tions,

(27) S =
3
⋃

i=1

S[i] =
3
⋃

i=1

⋃

j∈Z

S
[i]
j .

Now we can define the model operators for BP .

Definition 5.11. For a sparse collection of product tri-tiles S we define the associated
model operator T = TS by

(28) T (f, g)(x, y) =
∑

s∈S

ǫs
|Rs|1/2

〈f, ϕs1〉〈g, ϕs2〉ϕs3,

where |ǫs| ≤ 1, and ϕsi is a wave packets associated with si.

By standard arguments [6], [8], Theorem 1.3 can be reduced to the following theorem
about model operators T .

Theorem 5.12. Given a finite sparse collection S of product tri-tiles, the model operator
T defined by (28) maps Lp ×Lq into Lr for p, q > 1, 1

p
+ 2

q
< 2, 1

q
+ 2

p
< 2 with 1

p
+ 1

q
= 1

r
,

and the bound is independent of the collection S.

Definition 5.13. We define the model operators associated to S[i] by

(29) T [i](f, g)(x, y) =
∑

s∈S[i]

ǫs
|Rs|1/2

〈f, ϕs1〉〈g, ϕs2〉ϕs3,

where |ǫs| ≤ 1.

Note that by (27) we have

T = T [1] + T [2] + T [3]

In the following theorem we prove that T [i], i = 1, 2, 3, satisfy different ranges of Lp

bounds.

Theorem 5.14. The model operators T [i] defined by (29) map Lp×Lq into Lr for 1
p
+ 1

q
=

1
r
, p, q > 1 satisfying the additional restrictions

(a) 1
p
+ 2

q
< 2; for T [1]

(b) 2
p
+ 1

q
< 2; for T [2]

(c) r > 2/3, for T [3]
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We prove this theorem in Section 9. Note that since T = T [1] + T [2] + T [3], Theorem
1.3 follows immediately from Theorem 5.14.

We prove the following simpler version of Theorem 5.14 in Section 7, which captures
the key ideas without getting into technicalities.

Theorem 5.15. The model operator T defined by (28) maps Lp × Lq into Lr for 2 <
p, q, r′ <∞ with 1

p
+ 1

q
= 1

r
.

Next we introduce the model sums associated with the operators BPj .

Definition 5.16. We define the single scale model operators Tj = T
[1]
j associated with S

[1]
j

by

(30) Tj(f, g)(x, y) =
∑

s∈S
[1]
j

ǫs
|Rs|1/2

〈f, ϕs1〉〈g, ϕs2〉ϕs3,

Again by standard arguments one can reduce Theorem 1.6 to the following theorem
about model sums Tj .

Theorem 5.17. When 2 < p, q, r′ <∞ we have

(31) ‖ {Tj(fj, gj)}j ‖Lr(l2) . ‖f‖Lp(l∞) ‖g‖Lq(l2) .

We prove this theorem in section 8.

6. Some results from time frequency analysis

Even though our model operator T is defined with collections of product tri-tiles S, it is

enough to consider single scale collections S
[1]
j , as in Definition 5.10. This is in fact one of

the key observations in this paper, which allow us to get bounds for BP . By fixing j, we
focus attention on tri-tiles which depend only on one parameter, and hence we preserve
the existence of a relation of order, which is missing in the case of variable j. This will
be critical to our approach.

We start by defining trees in S
[1]
j .

Definition 6.1 (Tree). For 1 ≤ i ≤ 3 and sT ∈ S
[1]
j , we define an i-tree with top sT to be

a collection of product tri-tiles T ⊂ S
[1]
j such that for all s = ~B × ~P ∈ T we have

Bi ≤ BT,i and ~P = ~PT ,

where sT = ~BT × ~PT . We denote by RT = RsT . We say that T is a tree if it is an i-tree
for some 1 ≤ i ≤ 3.

Definition 6.2. For a collection S ⊂ S
[1]
j and a function f we define the i-size(S, f) for

i = 1, 2, 3 by

i-size(S, f) = sup
T⊂S

(

1

|RT |

∑

s∈T

|〈f, ϕsi〉|
2

)
1
2

where the supremum is taken over all the i′-trees T ⊂ S for i′ 6= i.
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We will drop the i dependence, whenever the value of i does not matter.
The following lemma is a simpler variant of the size lemma from [4]. Unlike our tri-tiles

in Sj , the ones in [4] have variable orientations, so the proof of the following lemma is less
technical.

Lemma 6.3 (Size Lemma). Given S ⊂ S
[1]
j and f , we can decompose S = Sbig ∪ Ssmall

so that size(Ssmall, f) <
1
2
size(S, f) and Sbig =

⋃

T∈Tbig
T with

∑

T∈Tbig

|RT | . ‖f‖22size(S, f)
−2.

here the constant is independent of j.

We have the following classical bound on size; we use this to get better bounds on size
by removing exceptional sets, using the strong maximal function.

Proposition 6.4 (Single tree estimate). Let r > 1. Let T ⊂ S
[1]
j be a tree, then we have

size(T ) .r sup
s∈T

inf
x∈Rs

Mr(f)(x)

uniformly over j.

Once we have the size Lemma 6.3 and single tree estimate in Proposition 6.4, we can
-for reader’s convenience- sketch a proof of the following theorem, in the local L2 regime.

Theorem 6.5. The operator Tj from Definition 5.16 maps Lp ×Lq into Lr uniformly in
j, when 1

p
+ 1

q
= 1

r
and p, q > 1, r > 2

3
.

We note that, in spite of being a two dimensional object, each Tj is essentially the
model sum for a bilinear Hilbert transform. One of the crucial estimates behind the proof
of Theorem 6.5 is the following lemma, which follows by repeated applications of Lemma
6.3.

Lemma 6.6. Let S ⊂ S
[1]
j and for i = 1, 2, 3 define σi = i-size(S, fi). Then we have

ΛS(f1, f2, f3) .
∑

2−n1≤σ1

2−n2≤σ2

2−n3≤σ3

2−n1−n2−n3 min
i=1,2,3

{

22ni‖fi‖
2
2

}

Now we use Lemma 6.6 to show ΛS is restricted type α for α ∈ π2. The key observation
here is that we can do this without removing exceptional sets, that is we can take the
major triple E ′ = E.

Given a triple E = (E1, E2, E3) take

(32) E ′ = E

and fi ∈ X(Ei). We have σi . 1 by Lemma 6.4, so by Lemma 6.6,

ΛS(f1, f2, f3) .
∑

2−n1.1
2−n2.1
2−n3.1

2−n1−n2−n3 min
i=1,2,3

{

22ni |Ei|
}

.
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Now for a = (a1, a2, a3) ∈ π2, we have

ΛS(f1, f2, f3) .
∑

2−n1.1
2−n2.1
2−n3.1

2−n1−n2−n3
(

22ni|Ei|
)a1 (

22ni|Ei|
)a2 (

22ni |Ei|
)a3

.

So we get

(33) ΛS(f1, f2, f3) . |E|a.

This shows that the trilinear form associated to Tj is restricted type a for a ∈ π2, so by
Theorem 3.7 we get the Lp boundedness of Tj in the local L2 range.

7. Proof of the local L2 case in Theorem 1.3

Recall that in Section 5 we have reduced Theorem 1.3 to the proof of boundedness of
model sum operators. We prove Theorem 5.15 here. Since T = T [1] + T [2] + T [3], it is
enough to show that each of the T [i] satisfies Theorem 5.15. By duality it is enough to
show that

|Λ[i](f1, f2, f3)| = |〈T [i](f1, f2), f3〉| . ||f1||p||f2||q||f3||r.

Now by the symmetry of the forms Λ[i] and the range of exponents π2, it is enough to
prove Lp estimates for T [1].

Next note that we have the decomposition

T [1] =
∑

j∈Z

Tj .

The power of this decomposition comes from the fact that it is a Littlewood-Paley

decomposition in the second variable, that is for s = ~B× ~P ∈ S
[1]
j we have ωP3 = (2j, 2j+1).

This observation gives

(34) Π l
jT

[1] = Tj

Also ωP2 = (2j, 2j+1) hence

(35) Tj(f, g) = Tj(f,Π
l
jg)

The Littlewood-Paley theorem implies

‖g‖p ∼

∥

∥

∥

∥

∥

∥

(

∑

j

|Π l
jg|

2

)1/2
∥

∥

∥

∥

∥

∥

p

.

and

‖T (f, g)‖r ∼

∥

∥

∥

∥

∥

∥

(

∑

j

|Tj(f, g)|
2

)1/2
∥

∥

∥

∥

∥

∥

r

.

It thus suffices to prove

(36)

∥

∥

∥

∥

∥

∥

(

∑

j

|Tj(f, gj)|
2

)1/2
∥

∥

∥

∥

∥

∥

r

. ‖f‖p

∥

∥

∥

∥

∥

∥

(

∑

j

|gj|
2

)1/2
∥

∥

∥

∥

∥

∥

q

,

for arbitrary gj, and then apply this result with gj = Π l
jg.
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This will follow from Theorem 5.17, using a constant sequence of functions for f .

8. Proof of Theorem 5.17.

We use Lemma 3.12. Let α = (1
p
, 1
q
, 1
r′
) be an arbitrary point in π2. First define

E ′
2 = E2 \

{

x :M(1+ǫ)1E1(x) &

(

|E1|

|E2|

)
1

1+ǫ

}

,

and E ′
j = Ej for j 6= 2. Note that E ′

2 is a major subset of E2 and E ′ = (E1, E
′
2, E3) is

a major triple of (E, α). According to Lemma 3.12, it suffices to prove that the bilinear
operator SE′

j is generalized restricted type β with constant KK ′ where K ′ = K ′
α =

|E1|
α1 |E2|

α2−
1
2 |E3|

α3−
1
2 for each β in a small enough neighborhood U ⊂ π0 of (0, 1/2, 1/2).

By the symmetry of both K ′
α and of the trilinear form for SE′

j (defined in (18)) in the
second and third components (recall that the first index is overlapping) we can assume
|E2| ≥ |E3|. Thus we have

K ′ =

(

|E1|

|E2|

)
1
p
(

|E2|

|E3|

)
1
2
− 1

r′

≥

(

|E1|

|E2|

)
1
p

.

Also by using Theorem 6.5 we have

||SE′

j (f, g)||2 . ||f ||∞||g||2.

So we can further assume that |E1| ≤ |E2|, otherwise we are done.

Now it is enough to show SE′

j is generalized restricted type β with constant K
(

|E1|
|E2|

)
1
p

,

for β ∈ U . We will show slightly more, namely that the exponent 1
p
can be replaced with

any 0 < δ < 1.
Let F = (F1, F2, F3) be a triple of subsets with finite measure. Take

F ′
1 = F1 \

{

x :M(1+ǫ)1F2(x) &

(

|F2|

|F1|

)
1

1+ǫ

or M(1+ǫ)1F3(x) &

(

|F3|

|F1|

)
1

1+ǫ

}

Note that F ′ = (F ′
1, F2, F3) is a major subset of (F, β) for β ∈ π0 sufficiently close to

(0, 1/2, 1/2). Let fi ∈ X(F ′
i ) for i = 1, 2, 3.

Using standard arguments involving decomposing our collection into further sub collec-
tions based on the position relative to the exceptional sets (see for example [8]), we can
assume that we have the following upper bounds for sizes relative to fi,

σ1 .

(

|E1|

|E2|

)
1

1+ǫ

,

σ2 .

(

|F2|

|F1|

)
1

1+ǫ

,

and

σ3 .

(

|F3|

|F1|

)
1

1+ǫ

.
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U

V

· b

α3 = 1

α3 =
1
2

α3 = 0

α3 = −1
2

α2 = −1
2

α2 = 0

α2 =
1
2

α2 = 1

α1 = 1 α1 =
1
2 α1 = 0 α1 = −1

2

Figure 2. U , V and b.

Now for a = (a1, a2, a3) ∈ π2, by Lemma 6.6 we get

|〈SE′

j (f1, f2), f3〉| .
∑

2−n1≤σ1

∑

2−n2≤σ2

∑

2−n3≤σ3

2−n1−n2−n3(22n1|F1|)
a1

·(22n2 |F3|)
a3(22n3|F3|)

a3

(37) . |F1|
a1 |F2|

a2 |F3|
a3σ1−2a1

1 σ1−2a2
2 σ1−2a3

3

Choosing a triple a ∈ π2 close to the point (0, 1/2, 1/2) and some ǫ sufficiently small we
get

(38) |〈SE′

j (f1, f2), f3〉| .

(

|E1|

|E2|

)δ(a)

|F1|
b1 |F2|

b2|F3|
b3,

where 1 > δ(a) can be made as close to 1 as desired and b = b(a) = (b1, b2, b3) ∈ π0
can be made as close to the point (0, 1/2, 1/2) as desired, with the additional restrictions
b1 < 0, b2 > 1/2, b3 > 1/2.

Using (33) we get that for each d ∈ π2

(39) |〈SE′

j (f1, f2), f3〉| . |F ′|d.

The final part of the argument is rather delicate. Take a small enough open set V in
π2, far enough from the point (0, 1/2, 1/2), and choose a = (a1, a2, a3) ∈ π2 as above,
sufficiently close to (0, 1/2, 1/2) such that the following holds: there is a neighborhood
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U of (0, 1/2, 1/2) which is contained inside the convex hull of V and b = b(a), such that
each β ∈ U can be represented as

β = λb+ (1− λ)c

with c ∈ V and λδ(a) > 1
p
. See Figure 2.

Let now β = λb+(1−λ)c ∈ U . Taking the geometric mean of (38) and (39) with d = c
we get

|〈SE′

j (f1, f2), f3〉| . (|F ′|c)1−λ

(

(

|E1|

|E2|

)δ(a)

|F |b

)λ

.

(

|E1|

|E2|

)
1
p

|F |β,

completing the proof of Theorem 5.17.

9. Proof of the main theorem: the full range

Consider the associated trilinear form Λ[i] for T [i] given by

Λ[i](f1, f2, f3) = 〈T [i](f1, f2), f3〉.

We prove Theorem 5.14 by showing that Λ[i] is generalized restricted type α = (α1, α2, α3)
for α in the shaded triangles as shown in Figures 3 and 4. Note that we have proved Λ[i]

is restricted type α0 for α0 ∈ π2 in Section 7.
We prove the following Proposition to get Theorem 5.14.

Proposition 9.1. Let Λ be the trilinear form with overlapping component 1 defined by

Λ(f1, f2, f3) =
∑

s∈S[1]

ǫs
|Rs|1/2

〈f1, ϕs1〉〈f2, ϕs2〉〈f3, ϕs3〉.

Then Λ is generalized restricted type (α1, α2, α3)
(a) for triples in the open triangle A with vertices (−1/2, 1, 1/2), (−1/2, 1/2, 1) and

(0, 1/2, 1/2);
(b) for triples in the open triangle B with vertices (1,−1/2, 1/2), (1/2, 0, 1/2) and

(0, 0, 1).

The triangles A and B are shown in the right and left shaded triangles respectively in
the left picture in Figure 3.

We first show how to get Theorem 5.14 using Proposition 9.1. First note that in
Proposition 9.1 we have a trilinear form with overlapping first component and positive
third component. Now for a T [i] and triple α in one of the shaded triangles corresponding
to range of exponents for T [i] given in the Figures 3 and 4, consider the associated trilinear
form Λ[i] for T [i] given by,

Λ[i](f1, f2, f3) = 〈T [i](f1, f2), f3〉.

Next for a permutation σ ∈ S3, define the trilinear form Λ
[i]
σ by

Λ[i]
σ (f1, f2, f3) = Λ[i](fσ(1), fσ(2), fσ(3)).

One can choose a permutation σ so that the Λ
[i]
σ is having overlapping first component

and positive exponent in third component. Now use proposition 9.1 to get the associated
trilinear form Λ[i] is generalized restricted type (α1, α2, α3). Finally note that these give
the ranges of exponents for T [i] as in Theorem 5.14.
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Figure 3. Range of exponents in proposition 9.1 and Λ[1].
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Figure 4. Range of exponents for Λ[2] and Λ[3].

Proof of Proposition 9.1: Proofs of the cases (a) and (b) are similar so we do them
simultaneously.

First note that by the symmetry of the second and third components in part (a) it
is enough to consider the points from the open triangle A′ with vertices (0, 1/2, 1/2),
(−1/2, 1, 1/2) and (−1/4, 1/2, 3/4), note that we have α2 + 2α3 < 2 for α ∈ A′.

Let α = (α1, α2, α3) ∈ A′ ∪ B. Let G = (G1, G2, G3) ⊂ R2 be a triple of measurable
subsets with finite measure. We have to remove exceptional sets from the set correspond-
ing to the negative exponent. We use the strong maximal function M as before, that is
for α ∈ A′ we remove an exceptional set from G1 and when α ∈ B from G2.

In the first case, α ∈ A′, we take

G′
1 = G1 \

{

M1+ǫ1G2 &

(

|G2|

|G1|

)
1

1+ǫ

}

and take G′ = (G′
1, G2, G3), and we prove the following estimate for |fi| ≤ 1G′

i
:

(40) |Λ(f1, f2, f3)| . |G|α = |G1|
α1 |G2|

α2|G3|
α3.
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In the second case, α ∈ B, we remove an exceptional set from G2 and define

G′
2 = G2 \

{

M1+ǫ1G1 &

(

|G1|

|G2|

)
1

1+ǫ

}

,

and take G′ = (G′
1, G2, G3), and we prove the same estimate (40) for |fi| ≤ 1G′

i
.

We undualize now: consider the bilinear operator T = T [1] associated to Λ given by

T (f, g) =
∑

s∈S1

ǫs
|Rs|1/2

〈f, ϕs1〉〈g, ϕs2〉ϕs3;

so
Λ(f1, f2, f3) = 〈T (f1, f2), f3〉.

Note that since α3 ∈ (1/2, 1) in both cases we have 1 < 1
α3
< 2. Let r′ = 1

α3
and let r be

the dual exponent of r′. Notice to get (40) it is enough to show the estimate

(41) ||T (f1, f2)||r . |G1|
α1 |G2|

α2,

To get (41) we view T (f1, f2) as a linear operator on the second component. For f1 fixed
as above, consider, for the part (a), T̃ given by

(42) T̃ (f1, g) =
∑

s∈S1

1

|Rs|1/2
〈f1, ϕs1〉〈g1G2, ϕs2〉ϕs3.

and for the part (b) consider,

(43) T̃ (f1, g) =
∑

s∈S1

1

|Rs|1/2
〈f1, ϕs1〉〈g1G′

2
, ϕs2〉ϕs3.

We will prove the following estimate for T̃ :

||T̃ (f1, g)||r . |G1|
α1 |G2|

α2−1/r||g||r.

Since α2 − 1/r = −α1 we can write above estimate as

(44) ||T̃ (f1, g)||r .

(

|G1|

|G2|

)α1

||g||r.

Now define linear ( f1 is fixed) single scale operators Tj associated to the collections S
[1]
j .

For part (a) define Tj by

Tj(f1, g)(x, y) =
∑

s∈S
[1]
j

ǫs
|Rs|1/2

〈f1, ϕs1〉〈g1G2, ϕs2〉ϕs3,

and define Tj for part (b) by

Tj(f1, g)(x, y) =
∑

s∈S
[1]
j

ǫs
|Rs|1/2

〈f1, ϕs1〉〈g1G′
2
, ϕs2〉ϕs3.

Since we are working in the collection with lacunary second and third components, by
using the classical (linear) Littlewood Paley theorem we get the estimates

||T (f1, g)||r ∼

∥

∥

∥

∥

∥

∥

(

∑

j

|Tj(f1, g)|
2

)1/2
∥

∥

∥

∥

∥

∥

r

,
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||g||r ∼

∥

∥

∥

∥

∥

∥

(

∑

j

|gj|
2

)1/2
∥

∥

∥

∥

∥

∥

r

,

where gj = Π l
jg. Note also that we have Tj(f1, g) = Tj(f1, gj). So to get (44) it is enough

to show that

(45)

∥

∥

∥

∥

∥

∥

(

∑

j

|Tj(f1, gj)|
2

)1/2
∥

∥

∥

∥

∥

∥

r

.

(

|G1|

|G2|

)α1

∥

∥

∥

∥

∥

∥

(

∑

j

|gj|
2

)1/2
∥

∥

∥

∥

∥

∥

r

.

We follow the proof of the Lemma 3.13 for the linear operators Tj to reduce the vector
valued estimates to estimates for single operators. Let

K0 =

(

|G1|

|G2|

)α1

.

We start with the following linear version of Lemma 3.11.

Proposition 9.2. Suppose for any measurable sets F2, F3 ⊂ R2 with finite measure, we

have F ′
2 ⊂ F2 with |F ′

2| ≥
1
2
|F2|, such that for any

(

∑

j |gj|
2
)

≤ 1F ′
2
we have

(46)

∫

(

∑

j

|Tj(f1, g)|
2

)1/2

1F3 . K0|F2|
1/r̃|F3|

1/r̃′

for r̃ in a small neighborhood of r. Then
∥

∥

∥

∥

∥

∥

(

∑

j

|Tj(f1, g)|
2

)1/2
∥

∥

∥

∥

∥

∥

r

. K0

∥

∥

∥

∥

∥

∥

(

∑

j

|gj|
2

)1/2
∥

∥

∥

∥

∥

∥

r

.

For r̃ consider α̃2 given by α̃2 = 1 − 1
r̃′
− α1. Note that when r̃ is close enough to r,

the triple (α1, α̃2,
1
r̃′
) is in the same open triangle (A′ or B), as α. For the rest of the

argument we denote (α1, α̃2,
1
r̃′
) simply by α = (α1, α2, α3) and r̃ by r.

Given F2 and F3 remove an exceptional set from F2 and define

F ′
2 = F2 \

{

M1+ǫ1F3 ≥

(

|F3|

|F2|

)
1

1+ǫ

}

.

Note that since

∫

(

∑

j

|Tj(f1, g)|
2

)1/2

1F3 .

(

∫

∑

j

|Tj(f1, g)|
2 1F3

)1/2

|F3|
1/2,

to get (46) it is enough to show

(47)

∫

|Tj(f1, g)|
21F3 . K2

0 |F2|
2/r−1|F3|

2/r′−1||g||22.

Note also that −(2/r − 1) = 2/r′ − 1 = 2α3 − 1.
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Now consider the bilinear operators Sj = SF ′,G′

j corresponding to the single scale col-

lections S
[1]
j . For the case (a) we define Sj(f, g) by

(48) Sj(f, g) =
∑

s∈Sj

1

|Rs|1/2
〈f1G′

1
, ϕs1〉〈g1G2∩F ′

2
, ϕs2〉ϕs31F3,

and in case (b) we define Sj(f, g) by

(49) Sj(f, g) =
∑

s∈Sj

1

|Rs|1/2
〈f1G1, ϕs1〉〈g1G′

2∩F
′
2
, ϕs2〉ϕs31F3.

Now to get (47) it is enough to show the following L2 estimate for the operators Sj:

(50) ||Sj(f, g)||2 . K0K||f ||∞||g||2,

with constant independent of j, where

K =

(

|F3|

|F2|

)α3−1/2

.

By generalized restricted type interpolation, to get (50) it is enough to show the as-
sociated trilinear form for Sj(f, g) is generalized restricted type t = (t1, t2, t3) ∈ π0 in a
neighborhood of (0, 1/2, 1/2), which we prove in the following Proposition.

Proposition 9.3. Suppose for given E1, E2, E3 ⊂ R2 with finite measure we have E ′
1 is

a major set of E1 such that for all |f | ≤ 1E′
1
, |g| ≤ 1E2, and |h| ≤ 1E3,

(51) |〈Sj(f, g), h〉| . K0K|E1|
t1 |E2|

t2 |E3|
t3

for t1, t2 ∈ B(1/2, ǫ′) with t1 + t2 + t3 = 1, for sufficiently small ǫ′ > 0, and with constant
in (51) independent of j.

Given E = (E1, E2, E3), we define E ′
1 by

E ′
1 = E1 \

({

M1+ǫ1E2 ≥

(

|E2|

|E1|

)
1

1+ǫ

}

∪

{

M1+ǫ1E3 ≥

(

|E3|

|E1|

)
1

1+ǫ

})

,

here M denotes the strong maximal function as before; note also that the choice of E ′
1 is

independent of j as needed.
For the rest of the proof we consider the two parts of Proposition 9.1 separately. We

first prove part (a). Using Lemma 6.4 and classical arguments involving decomposing Sj

in to further sub collections based on the position relative to the exceptional sets we can
assume that we have following bounds on σi for i = 1, 2, 3.

σ1 . 1,

σ2 . min

{

(

|G2|

|G1|

)
1

1+ǫ

,

(

|E2|

|E1|

)
1

1+ǫ

}

,

and

σ3 . min

{

(

|F3|

|F2|

)
1

1+ǫ

,

(

|E3|

|E1|

)
1

1+ǫ

}

.
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Now by using Proposition 6.6 we get for (α, β, γ) ∈ π2,

|〈Sj(f, g), h〉| . |E1|
α|E2|

β|E3|
γσ1−2α

1 σ1−2β
2 σ1−2γ

3 .

Now we have for ν, θ ∈ (0, 1
1+ǫ

),

|〈Sj(f, g), h〉| . |E1|
α|E2|

β|E3|
γ

·

(

|G2|

|G1|

)θ(1−2β)(
|E2|

|E1|

)(1−θ)(1−2β) (
|F3|

|F2|

)ν(1−2γ)(
|E3|

|E1|

)(1−ν)(1−2γ)

.

Note since α ∈ A′, we have 1 − α3 ∈ (0, 1/2), 1/2 + α1 ∈ (0, 1/2), and 2α3 + α2 −
3
2
∈

(0, 1/2). Now choose ǫ′ small enough so that when |µ2|, |µ3| < ǫ′, we get γ := 1−α3−µ3 ∈
(0, 1/2), β := 1/2+α1−µ2 ∈ (0, 1/2), and α := 1−β−γ = 2α3+α2−

3
2
+µ2+µ3 ∈ (0, 1/2).

Finally note that 0 < −α1 < 1−2β and 0 < α3−
1
2
< 1−2γ. So we can get θ, ν ∈ (0, 1),

hence in (0, 1
1+ǫ

), so that θ(1 − 2β) = −α1 and ν(1− 2γ) = α3 −
1
2
With these choices of

α, β, γ, θ, and ν we get

|〈S(f, g), h〉| .

(

|G1|

|G2|

)α1
(

|F3|

|F2|

)α3−1/2

|E1|
µ1 |E2|

1/2+µ2 |E3|
1/2+µ3

here µ1 + µ2 + µ3 = 0. This completes the proof of part (a) of the proposition 9.1.
Next we prove part (b). By similar argument as in part (a) we get, for (α, β, γ) ∈ π2

|〈Sj(f, g), h〉| . |E1|
α|E2|

β|E3|
γσ1−2α

1 σ1−2β
2 σ1−2γ

3 ,

and following bounds on σi’s,

σ1 .

(

|G1|

|G2|

)
1

1+ǫ

,

σ2 . min

{

1,

(

|E2|

|E1|

)
1

1+ǫ

}

,

and

σ3 . min

{

(

|F3|

|F2|

)
1

1+ǫ

,

(

|E3|

|E1|

)
1

1+ǫ

}

.

For ν, δ ∈ (0, 1
1+ǫ

), we have

|〈Sj(f, g), h〉| . |E1|
α|E2|

β|E3|
γ

·

(

|G1|

|G2|

)(1−2α)(
|E2|

|E1|

)δ(1−2β)(
|F3|

|F2|

)ν(1−2γ)(
|E3|

|E1|

)(1−ν)(1−2γ)

.

Now since α ∈ B, we have that 1−α3 ∈ (0, 1/2), 1
2
− 1

2
α1 ∈ (0, 1/2), and α3+

1
2
α1−

1
2
∈

(0, 1/2). Now for ǫ′ small enough and |µ3| < ǫ′, we get γ := 1 − α3 − µ3 ∈ (0, 1/2),
α := 1

2
− 1

2
α1 ∈ (0, 1/2), and β := 1− γ − α = α3 +

1
2
α1 −

1
2
+ µ3 ∈ (0, 1/2).

Finally note that for small enough ǫ′ > 0 and |µ2| < ǫ′, we get 0 < α3−
1
2
< 1− 2γ and

0 < 1
2
− β + µ2 < 1 − 2β. Now we can get ν, δ ∈ (0, 1) so that ν(1 − 2γ) = α3 −

1
2
and
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δ(1− 2β) = 1
2
− β + µ2. With these choices of α, β, γ, ν, and δ we get

|〈S(f, g), h〉| .

(

|G1|

|G2|

)α1
(

|F3|

|F2|

)α3−1/2

|E1|
µ1 |E2|

1/2+µ2 |E3|
1/2+µ3 .

This completes the proof of the proposition.

10. Vector valued Bilinear Hilbert transform

In this section we prove the Theorems 1.7 and 1.8. One can follow the same line of
arguments to prove the Theorem 1.9.

We first prove the Theorem 1.7. We use results proved in Section 4, with LP = lP .
Given sequences of functions f = {fj}, g = {gj} define F (j, x) = fj(x), G(j, x) = gj(x).
Also define the operator T (F,G)(j, x) = Tj(fj, gj)(x). Now we need to prove the following
bound for p, q, r, R as in the Theorem 1.7,

‖T (F,G)‖Lr(lR) . ‖F‖Lp(l∞)‖G‖Lq(lR).

Consider the trilinear form associated to T ,

Λ(F,G,H) =

∫

∑

j

T (F,G)(j, x)H(j, x)dx

First for 4
3
< R < 4 define the following sets AR

1 , A
R
2 ⊂ π0,

(52)

AR
1 =

{

α ∈ π0 : α1 > 0, α2 >
1

R
,
1

2
−

1

2
α1 −

∣

∣

∣

∣

α2 −
1

2

∣

∣

∣

∣

−

∣

∣

∣

∣

1

R
−

1

2

∣

∣

∣

∣

> 0,

∣

∣

∣

∣

1

R
−

1

2

∣

∣

∣

∣

+
1

2
α1 <

1

R

}

.

(53) AR
2 = {α = (α1, α2, α3) ∈ π0 : (α1, α3, α2) ∈ AR′

1 }.

These sets are shown in the Figures 5, 6, and 7. Note that the convex hull of AR
1 and AR

2

is AR.

(54) AR = Convex(AR
1 ∪ AR

2 ).

We denote ~αR = (0, 1
R
, 1
R′ ). We will show that Λ is of generalized restricted type (~αR, α)

for α ∈ AR
1 . By doing the same argument with interchanging second and third coordinates

we get Λ is of generalized restricted type (~αR′ , α) for α ∈ AR
2 . So to get the Theorem 1.7

it is enough to show that Λ is generalized restricted type (~αR, α) for α ∈ AR
1 .

Let α ∈ AR
1 . Note that for α = (α1, α2, α3) ∈ AR

1 we have α2 − 1
R
> 0. Given

E = (E1, E2, E3) we remove exceptional set from E3,

E ′
3 = E3 \

{

x :M(1+ǫ)1E2 &

(

|E2|

|E3|

)
1

1+ǫ

or M(1+ǫ)1E1 &

(

|E1|

|E3|

)
1

1+ǫ

}

.

Note that E ′ = (E1, E2, E3) is a major triple of (E, α). Let F ∈ XlP (E
′
1) ,G ∈ XlQ(E

′
2),

and H ∈ XlR(E
′
3) where XlP as define in (20). We need to show that,

|Λ(F,G,H)| = |E|α.

Note that we have,
∑

j

‖gj‖LR‖hj‖LR′ ≤ ‖G‖lR(LR)‖H‖lR′(LR′ ) = ‖G‖LR(lR)‖H‖LR′(lR′ ) ≤ |E2|
1
R |E3|

1
R′
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So it is enough to show that,
∫

∑

j

|T (F,G)(j, x)H(j, x)|dx . |E|α|E2|
− 1

R |E3|
− 1

R′

∑

j

‖gj‖LR‖hj‖LR′

Now it is enough to prove estimates for single operators,
∫

|Tj(f1E1, g1E2)(x)h(x)1E′
3
|dx . |E|α|E2|

− 1
R |E3|

− 1
R′ ‖g‖LR‖h‖LR′ .

We define the bilinear operators Sj by,

Sj(f, g)(x) = Tj(f1E1, g1E2)(x)1E′
3
.

Note that it is enough to prove the estimates,

‖Sj(f, g)‖LR . |E|α|E2|
− 1

R |E3|
− 1

R′ ‖f‖L∞‖g‖LR

We prove this by proving associated trilinear form for Sj is of generalized restricted

type β ∈ π0 with constant |E|α|E2|
− 1

R |E3|
− 1

R′ for β in a neighborhood of (0, 1
R
, 1
R′ ).

Given a triple F = (F1, F2, F3) we remove exceptional set from F1 and define

F ′
1 = F1 \

{

x :M(1+ǫ)1F2 &

(

|F2|

|F1|

)
1

1+ǫ

or M(1+ǫ)1F3 &

(

|F3|

|F1|

)
1

1+ǫ

}

Now as before by using time frequency estimates we get, for |f | ≤ 1F ′
1
, |g| ≤ 1F2 , |h| ≤ 1F3,

and a = (a1, a2, a3) ∈ π2

|〈Sj(f, g), h〉| . |F1|
a1 |F2|

a2 |F3|
a3σ1−2a1

1 σ1−2a2
2 σ1−2a3

3

with following bounds for σi’s,

σ1 .

(

|E1|

|E3|

)
1

1+ǫ

,

σ2 . min

{

(

|E2|

|E3|

)
1

1+ǫ

,

(

|F2|

|F1|

)
1

1+ǫ

}

,

and

σ3 .

(

|F3|

|F1|

)
1

1+ǫ

.

So we have for µ, ν ∈ [0, 1
1+ǫ

] and δ1, δ2 > 0 with δ1 + δ2 ∈ [0, 1
1+ǫ

],

|〈Sj(f, g), h〉| . |F1|
a1 |F2|

a2 |F3|
a3

(

|E1|

|E3|

)µ(1−2a1)( |F2|

|F1|

)δ1(1−2a2)

(

|E2|

|E3|

)δ2(1−2a2)( |F3|

|F1|

)ν(1−2a3)

.

We are need to get estimates of the form,

|〈Sj(f, g), h〉| . |E1|
α1 |E2|

α2−
1
R |E3|

α3−
1
R′ |F1|

β1|F2|
β2|F3|

β3,

where β = (β1, β2, β3) ∈ π0 in a neighborhood of the point (0, 1
R
, 1
R′ ).

First note that the choice of µ, ν, δ1+ δ2 ∈ (0, 1
1+ǫ

) allow us reduce problem to choice of

a = (a1, a2, a3) ∈ π2 under the following four conditions. First, third and fourth conditions
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are obtained from exponents in |E1|, |F3| and |E2|. Second condition is obtained by the
sum of exponents of |E2| and |F2|.

• a1 ∈ (0, a∗1) := (0, 1
2
− 1

2
α1)

• a2 ∈ (0, a∗2) := (0, 1
2
− |α2 −

1
2
|)

• a3 ∈ (0, a∗3) := (0, 1
2
− | 1

R′ −
1
2
|)

• α2 −
1
R
= δ2(1− 2a2).

First note that we can get α ∈ π2 satisfying first three conditions if we have, a∗1 + a∗2 +
a∗3 − 1 > 0. This gives us the following condition on α and R,

(55) ∆ = ∆(α,R) =
1

2
−

1

2
α1 −

∣

∣

∣

∣

α2 −
1

2

∣

∣

∣

∣

−

∣

∣

∣

∣

1

R
−

1

2

∣

∣

∣

∣

> 0.

Note that this is the third condition in the definition (52) of AR
1 . Now we find additional

condition needed to finding a ∈ π2 which also satisfy the last condition. Now note that
we have to choose a2 in the range a2 ∈ (a∗2 −∆, a∗2). Using this with the condition from
the sum of exponents in |F2| and |E2| we get that to find a2, δ2 satisfying last condition
we need to have the additional condition,

α2 −
1

R
= δ2(1− 2a2) < α2 − (a∗2 −∆)

that is,

(56)

∣

∣

∣

∣

1

R
−

1

2

∣

∣

∣

∣

+
1

2
α1 <

1

R
.

Note this is the fourth condition on (52). This completes the proof of the Theorem 1.7.
Next we prove Theorem 1.8. By using interpolation results proved in Section 4 it is

enough to show the generalized restricted type condition for associated trilinear form in
the corresponding range obtained by interchanging first and second coordinates from the
Theorem 1.7, see (7). Note that BPj is not symmetric in first and second coordinates
but we have the same estimates for bilinear operators Sj, thus the proof follows the same
lines. This completes the proof of the Theorem 1.8.

α2 = −1
2

α2 = 0

α2 =
1
2

α2 = 1

α
1
=
1

α
1
=

1
2

α
1
=
0

α
1
=
−
1
2

α3 = 1

α3 =
1
2

α3 = 0

α3 = −1
2

Figure 5. Range of exponents AR
1 , A

R
2 , A

R for R = 2.



30 PRABATH SILVA

α2 = −1
2

α2 = 0

α2 =
1
2

α2 = 1

α
1
=
1

α
1
=

1
2

α
1
=
0

α
1
=
−
1
2

α3 = 1

α3 =
1
2

α3 = 0

α3 = −1
2

Figure 6. Range of exponents AR
1 , A

R
2 , A

R for 1
R
= .6 > 1

2
.

α2 = −1
2

α2 = 0

α2 =
1
2

α2 = 1

α
1
=
1

α
1
=

1
2

α
1
=
0

α
1
=
−
1
2

α3 = 1

α3 =
1
2

α3 = 0

α3 = −1
2

Figure 7. Range of exponents AR
1 , A

R
2 , A

R for 1
R
= .4 < 1

2
.
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